
Geosci. Model Dev., 15, 15–43, 2022
https://doi.org/10.5194/gmd-15-15-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

PyCO2SYS v1.8: marine carbonate system calculations in Python
Matthew P. Humphreys1, Ernie R. Lewis2, Jonathan D. Sharp3,4, and Denis Pierrot5

1Department of Ocean Systems (OCS), NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
2Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
3Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, USA
4Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA, USA
5Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration,
Miami, FL, USA

Correspondence: Matthew P. Humphreys (matthew.humphreys@nioz.nl)

Received: 17 May 2021 – Discussion started: 8 June 2021
Revised: 27 October 2021 – Accepted: 25 November 2021 – Published: 4 January 2022

Abstract. Oceanic dissolved inorganic carbon (TC) is the
largest pool of carbon that substantially interacts with the
atmosphere on human timescales. Oceanic TC is increasing
through uptake of anthropogenic carbon dioxide (CO2), and
seawater pH is decreasing as a consequence. Both the ex-
change of CO2 between the ocean and atmosphere and the
pH response are governed by a set of parameters that inter-
act through chemical equilibria, collectively known as the
marine carbonate system. To investigate these processes, at
least two of the marine carbonate system’s parameters are
typically measured – most commonly, two from TC, total al-
kalinity (AT), pH, and seawater CO2 fugacity (fCO2 ; or its
partial pressure, pCO2 , or its dry-air mole fraction, xCO2 )
– from which the remaining parameters can be calculated
and the equilibrium state of seawater solved. Several soft-
ware tools exist to carry out these calculations, but no fully
functional and rigorously validated tool written in Python,
a popular scientific programming language, was previously
available. Here, we present PyCO2SYS, a Python package
intended to fill this capability gap. We describe the elements
of PyCO2SYS that have been inherited from the existing
CO2SYS family of software and explain subsequent adjust-
ments and improvements. For example, PyCO2SYS uses au-
tomatic differentiation to solve the marine carbonate system
and calculate chemical buffer factors, ensuring that the effect
of every modelled solute and reaction is accurately included
in all its results. We validate PyCO2SYS with internal con-
sistency tests and comparisons against other software, show-
ing that PyCO2SYS produces results that are either virtually
identical or different for known reasons, with the differences

negligible for all practical purposes. We discuss insights that
guided the development of PyCO2SYS: for example, the fact
that the marine carbonate system cannot be unambiguously
solved from certain pairs of parameters. Finally, we consider
potential future developments to PyCO2SYS and discuss the
outlook for this and other software for solving the marine
carbonate system. The code for PyCO2SYS is distributed
via GitHub (https://github.com/mvdh7/PyCO2SYS, last ac-
cess: 23 December 2021) under the GNU General Public
License v3, archived on Zenodo (Humphreys et al., 2021),
and documented online (https://pyco2sys.readthedocs.io/en/
latest/, last access: 23 December 2021).

1 Introduction

The ocean absorbs about a quarter of the anthropogenic car-
bon dioxide (CO2) currently emitted each year (Friedling-
stein et al., 2020). This absorption is a double-edged sword.
Removing CO2 from the atmosphere reduces the impact of
these emissions on Earth’s climate. However, CO2 uptake
causes seawater pH and calcium carbonate mineral saturation
states (�) to decline through a process termed ocean acidi-
fication, which has adverse effects on some marine species
and ecosystems (Doney et al., 2009).

Exchange of CO2 between the atmosphere and ocean, and
the biogeochemical consequences of this process, are gov-
erned by a series of equilibrium chemical reactions and pa-
rameters collectively known as the marine carbonate system
(Millero, 2000). The core parameters are the substance con-

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://github.com/mvdh7/PyCO2SYS
https://pyco2sys.readthedocs.io/en/latest/
https://pyco2sys.readthedocs.io/en/latest/


16 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

tents of aqueous CO2, the bicarbonate and carbonate ions
formed by its hydration and dissociation (HCO−3 and CO2−

3 ),
and the sum of these three components (dissolved inorganic
carbon, TC); total alkalinity (AT; Dickson, 1981); the fugac-
ity, partial pressure, or dry-air mole fraction of CO2 in sea-
water (fCO2 , pCO2 , or xCO2 ; Weiss, 1974); and pH (Dickson
et al., 2015). If any valid pair of these parameters is known,
plus auxiliary data including temperature, pressure, salinity,
and nutrient contents, then all the other parameters can be
calculated (Park, 1969; Zeebe and Wolf-Gladrow, 2001).

Many research questions require solving the marine car-
bonate system from some measured or modelled pair of its
parameters. Several software tools have been developed for
this purpose such that most scientific software environments
and programming languages have a widely accepted marine
carbonate system solver (Orr et al., 2015). However, there
is not yet an established and fully functional tool for the
popular scientific programming language Python, although
partial solutions exist (e.g. Branson, 2018). Here, we present
PyCO2SYS, a Python package designed to fill this capability
gap and provide a robust platform for future developments
in calculating marine chemical speciation. Being free, open-
source, and working across all major operating systems, a
Python package is a highly accessible, desirable, and useful
tool.

As its name suggests, PyCO2SYS originates from the ex-
isting CO2SYS family of software. The original CO2SYS
program for MS-DOS (Lewis and Wallace, 1998) has been
further developed and “translated”, with implementations
now available for Microsoft Excel (Pierrot et al., 2006; Orr
et al., 2018; Pierrot et al., 2021) and MATLAB/GNU Octave
(van Heuven et al., 2011; Xu et al., 2017; Orr et al., 2018;
Sharp and Byrne, 2019; Sharp et al., 2020). PyCO2SYS was
created as an as-close-as-possible translation of CO2SYS-
MATLAB v2.0.5 (Orr et al., 2018), but we have since made
several additional developments to it. Many of these devel-
opments involved reshaping the internal code into a more
Pythonic style. These changes did not affect the calculations
and so are not discussed further. Other developments added
new functionality or made minor differences to the calculated
results; these are documented and justified here.

As the original CO2SYS software is so well-established
in the research field, we provide a relatively brief sum-
mary of the components of PyCO2SYS that are identical to
CO2SYS-MATLAB in Sect. 2, before describing the areas
where PyCO2SYS differs in more detail in Sect. 3. Equa-
tions that were inherited from CO2SYS-MATLAB or taken
from the literature are generally reported in appendices rather
than being reproduced in these sections. We go on to validate
PyCO2SYS in Sect. 4 by examining its internal consistency
and by comparing its calculations with another CO2SYS im-
plementation. In Sect. 5, we discuss some nuances of solving
the marine carbonate system that were explored during devel-
opment and compare its computational speed with CO2SYS-

MATLAB, before concluding with our perspectives on the
outlook for PyCO2SYS and other related software.

2 Methods inherited from CO2SYS

The components of PyCO2SYS that have been inherited di-
rectly from CO2SYS-MATLAB v2.0.5 (Orr et al., 2018),
with only the minimal changes needed to translate to Python
plus aesthetic code restructuring, are described in this sec-
tion.

2.1 Units and pH scales

The abundances of all solutes and total alkalinity provided
as arguments to PyCO2SYS or returned from it as results
are in units of micromoles per kilogram (µmol kg−1), with
kilograms (kg) being of the total solution. This means that
they are neither concentrations nor molarity values, which
are both per unit volume rather than mass, nor are they molal-
ity values, which are per kilogram of H2O. Although some-
times referred to as molinity, the correct term is substance
content (IUPAC, 1997), which we abbreviate to content.

Temperature is in degrees Celsius (◦C) and salinity is prac-
tical salinity, which is dimensionless (Millero et al., 2008).

Pressure is in decibars (dbar) and represents the hy-
drostatic pressure exerted by the overlying water col-
umn, consistent with typical oceanographic conductivity–
temperature–depth (CTD) measurement reporting. Atmo-
spheric pressure is not included, so pressure is effectively
zero in the laboratory and at the sea surface.

The pH can be provided on the free, total, seawater, and/or
NBS (now NIST) scale, with [H+] as a substance content,
as noted above, and thus in moles per kilogram of solution
(mol kg solution−1) (Appendix A; Zeebe and Wolf-Gladrow,
2001; Velo et al., 2010). In the results, pH is returned on all
four of these scales.

2.2 Parameterisations and constants

A notable feature of all CO2SYS software is the variety of
different parameterisation options to calculate the various
equilibrium constants and some components’ total contents
from salinity, temperature, and pressure. Which parameteri-
sations the user selects can appreciably alter the results, so
these choices should always be explicitly reported.

Some of these options also influence other, seemingly un-
related, parameters of other chemical systems. This is not
widely appreciated because this happens internally, hidden
within the code. The most influential choice is for the car-
bonic acid dissociation constants, K∗1 and K∗2 , for which
there are 17 different options in PyCO2SYS (Table 1). We
organise these options into three groups based on their effect
on the “hidden” internal parameterisations (Table 2).

1. Standard case. These are all identical, aside from their
varying carbonic acid constants.

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 17

Table 1. Parameterisations of the dissociation constants of carbonic acid available in PyCO2SYS and corresponding implicit settings (Ta-
ble 2).

Option no. in Carbonic acid constants “Other settings” case
PyCO2SYS

1 Roy et al. (1993) Standard
2 Goyet and Poisson (1989) Standard
3 Dickson and Millero (1987) a Standard
4 Dickson and Millero (1987) b Standard
5 Dickson and Millero (1987) c Standard
6 Mehrbach et al. (1973) GEOSECS-Takahashi
7 Mehrbach et al. (1973) GEOSECS-Peng
8 Millero (1979) d Freshwater
9 Cai and Wang (1998) Standard
10 Lueker et al. (2000) Standard
11 Mojica Prieto and Millero (2002) Standard
12 Millero et al. (2002) Standard
13 Millero et al. (2006) Standard
14 Millero (2010) Standard
15 Waters and Millero (2013) e Standard
16 Sulpis et al. (2020) Standard
17 Schockman and Byrne (2021) Standard

a Refit of Hansson (1973a, b) data. b Refit of Mehrbach et al. (1973) data. c Refit of
Hansson (1973a, b) and Mehrbach et al. (1973) data. d Constants for zero-salinity
freshwater. e Including the corrections of Waters et al. (2014).

2. GEOSECS cases: GEOSECS-Takahashi and
GEOSECS-Peng. GEOSECS-Peng treats phosphate
differently with respect to its contribution to alkalinity,
and this difference is reported in the results as the
“Peng correction”; see Lewis and Wallace (1998) for a
more detailed explanation.

3. Freshwater case. Salinity and other total salt contents
(ammonia, borate, calcium, fluoride, phosphate, silicate,
sulfate, and sulfide) are set to zero, irrespective of the
user inputs.

Other internal settings are consistent across all cases (Ta-
ble 3). These three cases have been present since the original
CO2SYS for MS-DOS (Lewis and Wallace, 1998). That pro-
gram included only options 1–8 for the carbonic acid disso-
ciation constants (Table 1), with the others being published
subsequent to its release. All subsequently added carbonic
acid options follow the standard case. While it is beyond the
scope of this paper to judge the relative merits of the differ-
ent options, in general we recommend that one of the stan-
dard cases be used unless there is a specific reason for doing
otherwise.

In addition to the carbonic acid equilibria, the user has
multiple parameterisation options for each of the following:
(i) the ratio between total borate and salinity, (ii) the bisul-
fate dissociation constant K∗SO4

, and (iii) the hydrogen fluo-
ride dissociation constant K∗HF (Tables 2 and 3). However,
note that for (i), the user’s choice is not respected in the
GEOSECS cases, and neither (ii) nor (iii) is included at all

in the freshwater case (Table 2). It should also be noted that
choices (ii) and (iii) affect pH scale conversions, including
of equilibrium constants, which can have a small (but practi-
cally negligible) effect on the results.

Equilibrium constants in PyCO2SYS are all stoichiomet-
ric rather than thermodynamic and thus denoted with K∗.
This means that they represent the equilibrium balance of so-
lute substance contents, not of their chemical activities. They
are evaluated as follows:

1. calculated on the pH scale reported in the literature as
a function of temperature and salinity at zero in-water
pressure;

2. converted to the seawater pH scale (Appendix A);

3. corrected to the in situ pressure;

4. converted to the pH scale indicated by the user’s input
(Appendix A).

There are some exceptions to the evaluation steps listed
above. First, the pH scale conversions (steps 2 and 4) are
not applied to K∗SO4

, K∗HF, K∗sp(calcite), K∗sp(aragonite), or
K∗0 . For K∗SO4

and K∗HF, this is because these constants al-
ways remain on the free pH scale. The other constants in this
list are for equilibria that do not directly involve H+ and are
therefore independent of the pH scale. Second, no pressure
correction (step 3) is applied to the CO2 solubility factor K∗0
(Weiss, 1974). This value and calculations of fCO2 , pCO2 ,
and xCO2 are thus valid only for the surface ocean (Sect. 5.3).

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



18 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

Table 2. Parameterisations that vary depending on the case of the selected carbonic acid constants (Table 1). P : pressure.

Setting Standard GEOSECS Freshwater

Salinity User-defined User-defined Zero

Total ammonia User-defined User-defined Zero

Total borate Uppström (1974) Culkin (1965) Zero

oraLee et al. (2010)

Total calcium Riley and Tongudai (1967) Culkin (1965) Zero

Total fluoride Riley (1965) Riley (1965) Zero

Total silicate User-defined User-defined Zero

Total sulfate Morris and Riley (1966) Morris and Riley (1966) Zero

Total phosphate User-defined User-definedb Zero

Total sulfide User-defined User-defined Zero

K∗1 and K∗2 P effects Millero (1995) Takahashi et al. (1982) Millero (1983)

K∗H2O value Millero (1995) Millero (1979) Millero (1979)

K∗H2O P effect Millero (1995) Millero (1995) Millero (1983)

K∗B value Dickson (1990b) Li et al. (1969) –

K∗B P effect Millero (1979) Edmond and Gieskes (1970) –

K∗P valuec Yao and Millero (1995) Kester and Pytkowicz (1967) –

K∗P P effectc Millero (1983) Millero (1983) –

K∗Si value Yao and Millero (1995) Sillén et al. (1964) –

K∗Si P effect Millero (1995) d Millero (1995) d –

K∗sp(calcite) value Millero (1983) Ingle (1975) –

K∗sp(calcite) P effect Ingle (1975) Takahashi et al. (1982) –

K∗sp(aragonite) value Millero (1983) Ingle et al. (1973) –

K∗sp(aragonite) P effect Ingle (1975) Takahashi et al. (1982) –

Fugacity factor Weiss (1974) 1e Weiss (1974)

a Depending on user input. b In GEOSECS-Takahashi, phosphate is not included in the definition of total alkalinity; in GEOSECS-Peng,
phosphate is included, though the contribution of each species to alkalinity is determined incorrectly based on charge rather than a zero
level of protons at pK 4.5. c Includes all dissociation constants for this system: K∗P1, K∗P2, and K∗P3 (Appendix B). d Copies the pressure
correction for boric acid. e A constant value of 1 is used in this case, i.e. pCO2 = fCO2 .

Table 3. Parameterisations that (except where noted) are not influenced by the case of the selected carbonic acid constants (Table 1).

Setting References

K∗SO4
a Khoo et al. (1977), Dickson (1990a), or Waters and Millero (2013)b; P correction follows Millero (1995)

K∗HF
a Dickson and Riley (1979) or Perez and Fraga (1987)c; P correction follows Millero (1995)

K∗NH3
Clegg and Whitfield (1995); P correction follows Millero (1995)

K∗H2S Yao and Millero (1995); P correction follows Millero (1995)

H+ activity coefficient Takahashi et al. (1982), except for GEOSECS-Peng, which uses Peng et al. (1987)

Humidity correction Weiss and Price (1980)

CO2 solubility (K∗0 ) Weiss (1974)

a As selected by the user. b Including the corrections of Waters et al. (2014). c This option was written into the code for CO2SYS-MATLAB v2.0.5 and other versions, but
commented out and therefore not directly usable. It is available in CO2SYS-MATLAB v3.2.0.

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 19

In PyCO2SYS, users can also specify their own values for
any or all of the equilibrium constants or total salt contents.
Any values specified in this way are used as-is throughout
PyCO2SYS: no pH scale or pressure corrections are applied,
so it is left to the user to ensure that the values are provided
on the appropriate pH scale and at the relevant temperature
and pressure.

2.3 Input and output conditions

A useful feature of all CO2SYS software that can nonethe-
less cause confusion is calculations at “input” and “output”
conditions; “conditions” refers to temperature and pressure.
There is an unhelpful overlap of nomenclature, with input
and output used firstly in a programming context to refer to
arguments that are passed into functions and returned from
them as results, and secondly in a measurement context in
which they refer to the temperatures and pressures under
which the known parameter pairs are provided and at which
results are to be calculated. For clarity, we therefore use the
terms “arguments” and “results” in the programming con-
text, while input and output always refer to the measurement
context. Thus, we provide values at both input and output
conditions as arguments to PyCO2SYS and we receive cal-
culations at both input and output conditions as results from
the program.

Input and output conditions are used when measurements
were conducted at a different temperature and/or pressure
from what the sample would experience in situ or to eval-
uate the effect of changing these conditions on the solution
chemistry. All core carbonate system parameters except for
AT and TC are temperature- and pressure-sensitive, so the
values of other measured arguments and calculated results
may differ between the input and output conditions. For ex-
ample, measurements might be conducted in a laboratory at
25 ◦C on samples that were collected from several kilome-
tres’ depth in the ocean at sub-zero temperatures. In this case,
we would provide the measurement conditions (i.e. temper-
ature and pressure in the laboratory) as input arguments and
the environmental conditions (i.e. temperature and pressure
in the ocean) as output arguments. The corresponding output-
condition results from PyCO2SYS then represent the true
state of the sample in situ in its environment. The input-
condition results are of less environmental interest but may
be useful for quality-control purposes.

If calculations are conducted using only in situ values, for
example from model output or with the temperature and pres-
sure corrections already applied, then output-condition argu-
ments need not be supplied. Results are then calculated only
under the input conditions for computational efficiency.

2.4 Solving the marine carbonate system

We refer to the parameters from which PyCO2SYS can solve
the marine carbonate system as the “core” marine carbon-

ate system parameters. These are AT, TC, pH (on any scale),
pCO2 , fCO2 , xCO2 , [CO2(aq)], [HCO−3 ], and [CO2−

3 ]. Any
pair of these can be provided, except for two of pCO2 , fCO2 ,
xCO2 , and [CO2(aq)], which would not be valid because these
are all directly proportional to each other at a given tempera-
ture, salinity, and atmospheric pressure.

To calculate its results (Fig. 1), PyCO2SYS first deter-
mines the unknown core parameters from whichever pair
is provided by the user under the input conditions (Ap-
pendix C). The parameter pairs that require an iterative solver
to find pH (i.e. AT plus TC or one of its components) are
solved using a scheme that has been updated from previous
versions of CO2SYS (Sect. 3.1). The AT and TC provided or
determined under the input conditions are then used to solve
the core marine carbonate system again under the output con-
ditions if these have been provided. This is possible because
both AT and TC are unaffected by temperature and pressure
changes.

Other properties of interest are subsequently calculated
from whichever core parameters are most convenient un-
der both input and (if provided) output conditions. These
properties include all the individual components of alka-
linity (Appendix B), calcite, and aragonite saturation states
(Appendix D), as well as various chemical buffer factors
(Sect. 3.3.4).

3 New developments in PyCO2SYS

3.1 Solving the alkalinity–pH equation

3.1.1 Automatic differentiation

Solving the alkalinity–pH equation is a critical component of
marine carbonate system modelling. Like other implemen-
tations of CO2SYS, PyCO2SYS uses the Newton–Raphson
method. The general equation is

pHn+1 = pHn−
1AT(pHn,v)
1A′T(pHn,v)

, (1)

where A′T = dAT/dpH and

1AT(pHn,v)= AT(pHn,v)−AT(known), (2)

in which v is any of TC, fCO2 , [HCO−3 ], or [CO2−
3 ].

AT(pHn,v) is determined as described in Sects. C2.1 (when
v is TC) and C2.3–C2.5 (when v is one of fCO2 , [CO2−

3 ], or
[HCO−3 ]).

Unlike other implementations of CO2SYS, the equations
that determine the relative abundances of different chemi-
cal species as functions of pH and their total contents (Ap-
pendix B) appear only once in PyCO2SYS in what we
term the “main chemical speciation function”. While this ap-
proach does not alter the calculated results, it does make the
software more robust by reducing the opportunity for typo-
graphical errors when similar equations are repeated across
the code.

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



20 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

Figure 1. Overview of the process by which PyCO2SYS and other CO2SYS implementations solve the marine carbonate system (MCS) and
calculate other results. Arguments provided by the user are shown as open symbols on a yellow background, while calculations and results
use filled symbols. Components under input conditions are shown in light blue, those under output conditions are in red towards the right,
and components that are independent of input/output conditions are in dark blue. Any pair of the parameters in the “MCS arguments” box at
the top left can be provided, noting that only one of [CO2(aq)], pCO2 , fCO2 , or xCO2 may be included in a pair. Coupled with user-provided
nutrients, total salts calculated from salinity (Totals), and stoichiometric dissociation constants calculated from salinity and input temperature
and pressure (K∗ values), all core MCS parameters are determined (Input MCS results) from the known pair (Appendix C). Other results
(e.g. carbonate mineral saturation states, buffer factors) are then calculated from the results under input conditions (Others). If the user
provides output-condition temperature and/or pressure values, then the dissociation constants are recalculated under these new conditions,
the core MCS is solved again (Output MCS results) from these updated constants (K∗ values out), the original “totals”, and the now-known
AT and TC, which are independent of temperature and pressure. Finally, other results are calculated again from the output-condition results
(Others out).

The derivative term in Eq. (1) is evaluated from the main
chemical speciation function using automatic differentiation,
as implemented by the Python package Autograd (Maclau-
rin, 2016). Distinct from numerical or symbolic differenti-
ation, the automatic approach breaks down the code to be
differentiated into a sequence of individual arithmetic oper-
ations (addition, subtraction, etc.) and simple functions (log-
arithms, exponentials, etc.), then combines the derivatives of
these components together using the chain rule. The over-
all differentials to arbitrary order of complicated functions
can thus be evaluated efficiently and are accurate to the com-
puter’s precision.

Through our approach, the effect of every component of
alkalinity in the main chemical speciation equation is in-
cluded in the derivative term in Eq. (1). In contrast, some
other implementations of CO2SYS use simplified expres-
sions that only include the contributions of carbonate, borate,
and water to the total alkalinity. Under typical open-ocean
conditions, this makes little practical difference because the
simplified equations include the most important components

of the seawater solution. However, including every modelled
component does make the solver more robust for more un-
usual solution compositions.

Automatic differentiation is also used to evaluate chem-
ical buffer factors, again ensuring that the influence of ev-
ery modelled equilibrium system is accurately included. The
calculated buffer factors are described in more detail in
Sect. 3.3.4.

A further advantage of the automatic differentiation ap-
proach is that if the main chemical speciation function is
modified in the future, for example to include additional
components of alkalinity, then these changes are automati-
cally incorporated into all the alkalinity–pH solvers without
needing to modify the various solver functions. In short, our
approach ensures that PyCO2SYS calculations will remain
internally consistent and reflect the influence of every solute
and equilibrium modelled in the main chemical speciation
function, even if this function is modified in the course of
future development (Sect. 5.5).

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 21

3.1.2 Vectorised arguments and solver jumps

PyCO2SYS adjusts how to determine when the alkalinity–
pH solver should stop solving for vectorised arguments. In
CO2SYS-MATLAB v2.0.5, the solvers continue to iterate
and update all values until the change in every element of
the array satisfies the 1pH tolerance threshold (10−4 in
CO2SYS-MATLAB, 10−8 in PyCO2SYS). This means that
a given set of arguments could return slightly different re-
sults depending on what data appear in the other, suppos-
edly independent, elements of the argument arrays. Although
negligible for all practical purposes, these differences are de-
tectable in code validation exercises. In PyCO2SYS (and in
CO2SYS-MATLAB v3.2.0; Sharp et al., 2020) this process
has been changed such that each element stops being updated
once it has reached the tolerance threshold, independent of
the other elements.

The maximum solver jump – which constrains the greatest
change in pH possible between solver iterations, thus helping
to prevent overshoot – is implemented slightly differently in
PyCO2SYS than in other CO2SYS programs. In CO2SYS-
MATLAB, any 1pH values with a magnitude greater than 1
are halved. In PyCO2SYS, the same applies, but any 1pH
values with a magnitude still greater than 1 after halving are
decreased to 1 (while preserving the sign). This has a negli-
gible effect on calculations, but it is sometimes detectable in
intercomparisons.

3.1.3 pH scale conversions

PyCO2SYS fixes a simplification in earlier CO2SYS imple-
mentations regarding how pH scales are converted within
the main chemical speciation function. This simplifica-
tion is noted in the programmer’s comments in the rel-
evant CO2SYS-MATLAB functions, carried through from
the original MS-DOS implementation (Lewis and Wallace,
1998): “Though it is coded forH on the total pH scale, for the
pH values occurring in seawater (pH> 6) it will be equally
valid on any pH scale (H terms negligible) as long as the K
Constants are on that scale.”

In short, pH and the equilibrium constants are provided
to these functions on the same pH scale as each other – ex-
cept for K∗SO4

and K∗F , which are always on the free scale
(Sect. 2.2). Calculations of all alkalinity components except
[HSO−4 ] and [HF] have therefore always been correct. How-
ever, because K∗SO4

and K∗F are always on the free scale, pH
must be converted to this scale in order to determine the con-
tributions of [HSO−4 ] and [HF] to total alkalinity. Other ver-
sions of CO2SYS prior to CO2SYS-MATLAB v3.2.0 (Sharp
et al., 2020) and CO2SYS-Excel v3 (Pierrot et al., 2021) as-
sume that the user-selected pH scale is total and thus apply
the total-to-free scale conversion (Appendix A) regardless of
what the user-selected pH scale actually is.

This simplification makes a negligible difference to cal-
culations at typical seawater pH (because [HSO−4 ] and [HF]

are each on the order of 10−10 µmol kg−1 relative to AT on
the order of 2000 µmol kg−1) and then only when the user-
selected pH scale is not total. But, as implied in the origi-
nal programmer’s note, it can have a noticeable adverse ef-
fect under other conditions, such as the low pH values en-
countered during the acidimetric titrations of seawater used
to measure AT. In PyCO2SYS, CO2SYS-MATLAB v3.2.0,
and CO2SYS-Excel v3, the correct conversion factor is used
based on the user-selected pH scale.

3.2 Initial pH estimates

Like most iterative solvers, the Newton–Raphson method
(Sect. 3.1) requires an initial pH value that is near the true
value in order to prevent overshoot and guarantee conver-
gence to a root. Previous versions of CO2SYS used 8 as
the initial pH estimate in every case. This works well for
typical open-ocean seawater but may be less appropriate in
niche environments or when modelling acidimetric titrations.
Munhoven (2013) found a better initial pH estimate for solv-
ing from knownAT and TC by considering only the contribu-
tions of carbonate and borate species to AT, simplifying the
AT equation.

ACB = [HCO−3 ] + 2[CO2−
3 ] + [B(OH)−4 ] (3)

Following Munhoven (2013) and as also implemented
elsewhere (e.g. Orr and Epitalon, 2015), PyCO2SYS and
CO2SYS-MATLAB v3.2.0 also take this approach (Ap-
pendix F). Furthermore, we have extended it to apply to
the pH solvers that use one of the components of TC
as the second known parameter, as follows. We note that
these extensions are equivalent to those described and dis-
cussed in greater detail by Munhoven (2021), although they
were added to the PyCO2SYS code in its v1.3.0 release
(https://doi.org/10.5281/zenodo.3780139, Humphreys et al.,
2020) before the publication of that study.

3.2.1 Solving from AT and fCO2

For clarity in the equations in this section, we abbreviate
[CO2(aq)] as s and [H+] as h. As noted in Appendix C1.2,
the approach described here is also used for known parameter
pairs of AT plus any of pCO2 , xCO2 , or [CO2(aq)].

First, fCO2 is converted to s using Eq. (C5). Carbonate–
borate alkalinity (ACB) as a function of s and h is

ACB(h,s)=
K∗1 s(h+ 2K∗2 )

h2 +
K∗BTB

h+K∗B
. (4)

This can be rearranged into a third-order polynomial in h:

Ps(h,s)= h
3
+h2g2(s)+hg1(s)+ g0(s)= 0, (5)

with the following.

g2(s)=K
∗
B

(
1−

TB

ACB

)
−
K∗1 s

ACB
(6)

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022

https://doi.org/10.5281/zenodo.3780139


22 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

g1(s)=
(2K∗2 +K

∗
B)K

∗

1 s

−ACB
(7)

g0(s)=
2K∗1K

∗

2K
∗
Bs

−ACB
(8)

Following a scheme equivalent to Munhoven (2013), the
initial h value is determined by

h0(s)=


10−3 for AT ≤ 0

hmin+
√
−

Ps (hmin)√
g2

2−3g1

for AT > 0. (9)

Negative ACB is impossible because both terms in Eq. (4)
are always positive, so the equations given above cannot
be applied if AT is indeed negative (e.g. after the alkalin-
ity end point in an acidimetric titration). The default h0 of
10−3 mol kg−1, corresponding to a pH of 3, is therefore used
in this case. Otherwise, hmin in Eq. (9) is found following
Munhoven (2013).

hmin =


(
−g2+

√
g2

2 − 3g1

)
/3 for g2 < 0

−g1/

(
g2+

√
g2

2 − 3g1

)
for g2 ≥ 0

(10)

When AT is positive, the square-rooted term g2
2 − 3g1 is al-

ways greater than zero, and thus hmin has a real value. How-
ever, there is an additional constraint: ACB cannot be greater
than 2TC+ TB (Munhoven, 2013). If AT is actually greater
than this limit, then we use a default h0 of 10−7 mol kg−1

instead (pH 7).

3.2.2 Solving from AT and [HCO−3 ]

For clarity in the equations in this section, we abbreviate
[HCO−3 ] as b and [H+] as h.

Carbonate–borate alkalinity as a function of b is

ACB(h,b)= b+
2K∗2b
h
+
K∗BTB

h+K∗B
. (11)

This can be rearranged into a second-order polynomial in h:

Pb(h,b)= h
2g2(b)+hg1(b)+ g1(b)= 0, (12)

with the following.

g2(b)= b−ACB (13)
g1(b)=K

∗
B(b+ TB−ACB)+ 2K∗2b (14)

g0(b)= 2K∗2K
∗
Bb (15)

The initial h value is estimated following

h0(b)=

−g1−
√
g2

1−4g0g2

2g2
for b < AT

10−3 for b ≥ AT.

(16)

When b < AT, the square-rooted term g2
1 − 4g0g2 is always

positive, and thus h0(b) has a real value. Otherwise, b can
only be greater than AT if the negative components of AT
such as [H+] are dominant, as happens at low pH. The de-
fault initial pH estimate used by PyCO2SYS in that case is
therefore 3.

3.2.3 Solving from AT and [CO2−
3 ]

For clarity in the equations in this section, we abbreviate
[CO2−

3 ] here as c and [H+] as h.
Carbonate–borate alkalinity as a function of c is

ACB(h,c)=
ch

K∗2
+ 2c+

K∗BTB

h+K∗B
. (17)

This can be rearranged into a second-order polynomial in h:

Pc(h,c)= h
2g2(c)+hg1(c)+ g0(c)= 0, (18)

with the following.

g2(c)= c (19)
g1(c)=K

∗
Bc+K

∗

2 (2c−ACB) (20)
g0(c)=K

∗

2K
∗
B(2c+ TB−ACB) (21)

The initial h value is estimated following

h0(c)=

−g1+
√
g2

1−4g0g2

2g2
for AT > 2c+ TB

10−3 for AT ≤ 2c+ TB.

(22)

When 2c+ TB <AT, the square-rooted term g2
1 − 4g0g2 is

always positive, and thus h0(c) has a real value. Otherwise,
2c+ TB can only be greater than AT if the negative compo-
nents of AT such as [H+] are dominant, as happens at low
pH. The default initial pH estimate used by PyCO2SYS in
that case is therefore 3.

3.3 New calculations, components, and constants

3.3.1 Additional alkalinity components

The contributions of ammonia and bisulfide to alkalinity (Cai
et al., 2017; Xu et al., 2017) plus the ability to solve from
carbonate and/or bicarbonate ion content have been added
in collaboration with Sharp et al. (2020) to ensure consis-
tency between PyCO2SYS and CO2SYS-MATLAB v3.2.0.
However, the GEOSECS alkalinity definition did not account
for these species, so if using one of the GEOSECS options
for the carbonic acid constants (Table 1) then users should
be sure to set their total contents to zero for GEOSECS-
compatible results. If values are provided, then they will
be included in the alkalinity equation just as for the non-
GEOSECS cases.

The total substance contents and stoichiometric dissoci-
ation constants for up to two additional acid–base systems

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 23

that contribute to total alkalinity can be provided as argu-
ments to PyCO2SYS and are part of its speciation model.
The effects of these extra components are automatically in-
corporated into all PyCO2SYS calculations, including the
iterative pH solvers (Sect. 3.1), buffer factors (Sect. 3.3.4),
and uncertainty propagation (Sect. 3.6). These extra compo-
nents are modelled following Sharp and Byrne (2020), as de-
scribed in Appendix B11. No corrections of any sort (e.g.
for pressure or pH scale; Sect. 2.2) are made to the dissoci-
ation constants for these user-defined additional components
within PyCO2SYS; the user must ensure that they are already
suitable for the conditions being analysed and on the user-
indicated pH scale.

3.3.2 Gas constant

Previous versions of CO2SYS used an old value for
the universal gas constant (R) of 8.31451 J mol−1 K−1.
PyCO2SYS uses the 2018 CODATA-recommended value
by default instead (i.e. 8.314462618 J mol−1 K−1), consis-
tent with CO2SYS-MATLAB v3.2.0 and CO2SYS-Excel v3.
This has a minor effect on conversions between pCO2 , fCO2 ,
and xCO2 (less than 10−4 %), as well as on the pressure cor-
rections for the equilibrium constants (less than 10−3 % at
5000 dbar). It is detectable in comparisons with other ver-
sions of CO2SYS, but it is of no practical consequence.

3.3.3 Substrate : inhibitor ratio

Like CO2SYS-MATLAB v3.2.0, PyCO2SYS calculates the
“substrate : inhibitor ratio” of Bach (2015), which quantifies
the balance between the availability of a substrate for calcifi-
cation (i.e. HCO−3 ) and the inhibition of calcification by H+

(Eq. D2).

3.3.4 Buffer factors

A buffer factor quantifies the sensitivity of a certain marine
carbonate system parameter to a change in another param-
eter. Best known is the Revelle factor, which is the ratio
of the fractional change in pCO2 corresponding to a frac-
tional change in TC at constantAT (Revelle and Suess, 1957).
Frankignoulle (1994) derived a broader set of buffer factors
for the marine carbonate system, quantifying the responses of
several different parameters to changes in TC and AT; these
were later rediscovered by Egleston et al. (2010) and further
extended by Hagens and Middelburg (2016). PyCO2SYS
calculates the buffer factors of Egleston et al. (2010) and uses
the nomenclature of that paper.

Closely related to these buffer factors, Frankignoulle et al.
(1994) introduced the factor ψ , which quantifies the change
in TC required to return to the original seawater pCO2 after
the action of calcification (which reduces AT and TC in a
2 : 1 ratio) or CaCO3 dissolution (the reverse). Humphreys
et al. (2018) introduced the “isocapnic quotient” (Q), which
is the ratio of AT to TC change that does not affect seawater

pCO2 , thus generalising the concept of ψ for application to
all biogeochemical processes that affect AT and TC (denoted
φ). PyCO2SYS calculates both ψ and Q, the latter of which
can be used to calculate φ for any biogeochemical process
(Humphreys et al., 2018).

PyCO2SYS offers two independent ways to evaluate the
various buffer factors of the marine carbonate system: with
explicit equations and by automatic differentiation. The latter
is used by default.

The “explicit” approach follows equations reported in the
literature (Frankignoulle et al., 1994; Egleston et al., 2010;
Humphreys et al., 2018), noting that the typographical errors
in Egleston et al. (2010) identified in several studies (e.g. Orr,
2011; Álvarez et al., 2014; Richier et al., 2018; Orr et al.,
2018) have been corrected. In general, these equations do
not include the effect of species beyond the carbonate, bo-
rate, and water contributions to total alkalinity, except that
the buffer factors of Egleston et al. (2010) were extended to
include phosphate and silicate effects by Orr et al. (2018).

The “automatic” approach uses automatic differentiation
to find the derivative necessary to evaluate each buffer factor.
The appropriate derivatives are taken from the functions that
calculate a third carbonate system parameter from a known
pair (Appendix C). All species modelled in the main chemi-
cal speciation function are therefore included, including any
extra alkalinity components (Sect. 3.3.1), and typographi-
cal errors from the literature cannot influence these calcu-
lations. The details of the derivatives used are provided in
Appendix E.

Of the buffer factors, only the Revelle factor was included
in previous versions of CO2SYS. It was evaluated using
finite-central-difference derivatives, which is replicated as
the explicit option in PyCO2SYS (with the corrections de-
scribed in Appendix G). However, as for all other buffer fac-
tors, the Revelle factor calculation uses automatic differenti-
ation by default. To calculate the Revelle factor using a math-
ematical approach equivalent to the explicit calculation of
the other buffer factors, one could calculate γTC of Egleston
et al. (2010) (see Appendix E1) with the explicit approach
and then use Eq. (E7).

3.3.5 Atmospheric pressure

For conversions between pCO2 , fCO2 , and xCO2 , atmospheric
pressure is assumed to be 1 atm by default, and it remains
fixed at this value in CO2SYS-MATLAB and CO2SYS-
Excel. However, in PyCO2SYS, the user can also specify a
value other than 1 atm if necessary. Different values can be
provided for input and output conditions (Sect. 2.3).

Atmospheric pressure can have a non-negligible effect on
calculations in some regions: for example, over much of the
Southern Ocean, atmospheric pressure is typically 3 % lower
than the global mean, corresponding to a 10 µatm reduction
in pCO2 and fCO2 relative to the values calculated at 1 atm
(Orr et al., 2017).

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



24 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

This optional argument is only intended for modelling the
effects of variations in atmospheric pressure on samples from
the surface ocean or in the laboratory. It is not suitable for
determining interior ocean pCO2 , fCO2 , and xCO2 values that
are corrected for the pressure of the overlying water column.
This separate issue is discussed further in Sect. 5.3.

3.4 No-solve modes

As well as solving from a pair of parameters, PyCO2SYS
can be run with one or no marine carbonate system parameter
arguments.

If no parameters are provided, then PyCO2SYS returns all
the equilibrium constants and total salt contents that are cal-
culated from temperature, pressure, and salinity (Sect. 2.2)
without actually using these to do any further computations.

If one parameter is provided, then the results that can be
computed with that parameter alone are returned. This ap-
plies to pH, pCO2 , fCO2 , xCO2 , and [CO2(aq)], as follows.

The pH can be converted between the different scales
without knowledge of a second carbonate system parame-
ter. Therefore, if pH alone is provided to PyCO2SYS, it is
converted to every pH scale under the input conditions (Ap-
pendix A). Conversion to a different temperature and/or pres-
sure does require solving the carbonate system (Fig. 1), so
output-condition values are not calculated.

Seawater pCO2 , fCO2 , xCO2 , and [CO2(aq)] can also be in-
terconverted without knowledge of a second carbonate sys-
tem parameter (Appendix C1.2). Therefore, if any of these
parameters alone are provided to PyCO2SYS, all the oth-
ers are calculated under the input conditions. If an output-
condition temperature is provided, then pCO2 is also adjusted
to the new temperature following Takahashi et al. (2009), and
all others in this set of parameters are calculated under output
conditions from the new pCO2 value.

3.5 Multidimensional arguments

All arguments to PyCO2SYS, including settings, can be
multidimensional. A combination of scalar and multidimen-
sional arguments can be provided, with the latter formatted
as NumPy ndarrays (Harris et al., 2020). Results that de-
pend only on scalar arguments are themselves scalar, while
results depending on multidimensional inputs are “broad-
casted” into consistently shaped arrays (Fig. 2). The code
is optimised to efficiently compute across multidimensional
arrays following the approach of CO2SYS-MATLAB since
its v1.1 (van Heuven et al., 2011). However, all multidimen-
sional arrays in CO2SYS-MATLAB are flattened into one-
dimensional vectors and returned in the results in that same
format.

3.6 Uncertainty propagation

Propagating the uncertainty in an argument through to a re-
sult requires knowing the derivative of the result with respect

Figure 2. Schematic representation of broadcasting array shapes
with NumPy in PyCO2SYS. (a) Two of the arguments to
PyCO2SYS are provided as arrays, each containing 11 different
values for TC and temperature. Other arguments could be similarly
shaped vectors or single scalar values. (b) If the array arguments
were all provided as one-dimensional rows, then the calculated re-
sults (e.g. aragonite saturation state) would also be one-dimensional
rows. Each element of the results array corresponds to the element
in the same position in each argument array. For scalar arguments,
the same value is used across each result array. (c) If the array ar-
guments are provided as a mixture of rows and columns, then the
results are calculated on a broadcasted grid including every com-
bination of the arguments’ elements. The same principle applies to
arguments and results of arbitrarily higher dimensionality.

to the argument. Uncertainty propagation is available for a
subset of the arguments in the original MS-DOS CO2SYS
(Lewis and Wallace, 1998) and was added to the Excel and
MATLAB implementations more recently (Orr et al., 2018).
However, while much of the code to solve the marine carbon-
ate system in PyCO2SYS has been directly inherited from
CO2SYS-MATLAB, its implementation of uncertainty prop-
agation differs.

PyCO2SYS evaluates the derivatives using a finite-
forward-difference approach. We use finite differences rather

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 25

Figure 3. An example figure used to select a suitable 1a value for
uncertainty propagation, in this case for 1K∗1 . The pH was calcu-
lated from AT and TC, and then the value of K∗1 was incremented
by the amounts shown on the horizontal axis; the vertical axis is for
the corresponding gradient calculated from the pH response, shown
by the red curve. The perpendicular blue lines show the 1a value
selected in this case (i.e. 10−12), which falls within the flat section
towards the centre of the figure. To the left of this (i.e. at higher
1a), the upwards curvature of the red line is due to non-linearity,
while the erratic deviations to the right (i.e. at lower 1a) are due to
solver tolerance and computer precision limitations.

than automatic differentiation here because the latter, while
possible, is computationally inefficient to apply over the
entire PyCO2SYS program. We use forward- rather than
central-difference derivatives because the former can be
safely evaluated at zero for variables for which negative val-
ues are impossible (e.g. salinity). The derivative of a result r
with respect to an argument a is thus calculated.

∂r(a)

∂a
≈
r(a+1a)− r(a)

1a
(23)

The value of 1a is fixed for each argument (Appendix H).
Different values for different arguments are necessary be-
cause some arguments can differ by over 20 orders of mag-
nitude from others. If 1a is too large, then the derivative
may be inaccurate because the equations governing the ma-
rine carbonate system are non-linear, but if 1a is too small,
then the derivative may be inaccurate due to the limitations of
solver tolerance and computer precision. We therefore tested
a range of 1a values for each variable under typical open-
ocean conditions and selected an appropriate value between
these extremes (e.g. Fig. 3). The full list of 1a values is pro-
vided in Table H1.

PyCO2SYS can conveniently obtain derivatives of all its
results with respect to all of its arguments and also with re-
spect to all parameters that are normally calculated internally
from temperature, pressure, and/or salinity, such as equilib-
rium constants and total salt contents.

The derivatives are calculated by a function that wraps the
entire PyCO2SYS program, rather than by adding extra in-
ternal variables that keep track of the effects of differences in
to the arguments, as has been implemented elsewhere (e.g.
Orr et al., 2018). The PyCO2SYS approach means that if

the main program is producing valid results, then the deriva-
tives can also be considered reliable without needing to ver-
ify some separate calculation mechanism.

To determine the overall uncertainty in each result, the un-
certainty components from different arguments are combined
using

σ 2(r)=
∑
i

(
∂r

∂ai

)2

σ 2(ai), (24)

where σ is the uncertainty as a standard deviation (thus, σ 2 is
a variance). However, Eq. (24) is only valid if the uncertain-
ties in all arguments are independent from each other. Propa-
gation of co-varying uncertainties can still be carried out with
PyCO2SYS because, as noted above, the derivative of any re-
sult with respect to any argument can be calculated. The user
can therefore assemble the Jacobian matrix of partial deriva-
tives needed to propagate any arbitrary set of co-varying ar-
gument uncertainties through to any result (JCGM, 2008).

4 Validation

There are no “certified” results of marine carbonate system
calculations against which software like PyCO2SYS can be
validated. But we can test its internal consistency, and we can
compare its results with the calculations of other programs
and values reported in the literature.

PyCO2SYS is developed and hosted on GitHub (https:
//github.com/mvdh7/PyCO2SYS), with releases archived on
Zenodo (Humphreys et al., 2021). Every validation test de-
scribed in this section is built into PyCO2SYS’s test suite;
therefore, these tests are executed automatically by GitHub’s
continuous integration service every time the code is up-
dated. Were any test to fail, an email report would be sent
to us, the developers, and the failure displayed publicly
in a badge on the GitHub repository’s public web page
(Fig. 4). Updates to PyCO2SYS are made in a develop-
mental branch of the repository, and the tests must all pass
before these changes may be incorporated into the main
branch and publicly released in a new version. All valida-
tion tests described below were run with PyCO2SYS v1.8.0
(https://doi.org/10.5281/zenodo.5602840, Humphreys et al.,
2021), but these protocols should ensure that the quantitative
statements made here will hold true as the code continues to
be developed.

For all versions of PyCO2SYS up to v1.8.0, the test suite
runs on Python v3.7, 3.8, and 3.9. Other versions of Python
may also work but are untested.

4.1 Internal consistency

4.1.1 Round-robin test

In a “round-robin” test, we first determine all of the core car-
bonate system parameters from one pair and then solve the

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022

https://github.com/mvdh7/PyCO2SYS
https://github.com/mvdh7/PyCO2SYS
https://doi.org/10.5281/zenodo.5602840


26 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

Figure 4. The status badge for the validation tests, which are pub-
licly visible at PyCO2SYS’s GitHub repository (https://github.com/
mvdh7/PyCO2SYS#pyco2sys, last access: 23 December 2021),
when the current version of the code (a) passes every test or (b) fails
any test.

Table 4. Results of an example round-robin test with PyCO2SYS
with default parameterisation options. Other conditions: salinity 33,
temperature 22 ◦C, pressure 1234 dbar, total silicate 10 µmol kg−1,
total phosphate 1 µmol kg−1, total ammonia 2 µmol kg−1, total sul-
fide 3 µmol kg−1. The pH solver tolerance in PyCO2SYS is 10−8

in terms of pH.

Parameter Value Maximum absolute
difference

AT (µmol kg−1) 2300.0 5.91× 10−11

TC (µmol kg−1) 2100.0 5.55× 10−11

pHT 7.871 1.15× 10−14

pCO2 (µatm) 572.6 1.51× 10−11

fCO2 (µatm) 570.7 1.50× 10−11

xCO2 (µatm) 587.7 1.55× 10−11

[CO2−
3 ] (µmol kg−1) 143.8 3.81× 10−12

[HCO−3 ] (µmol kg−1) 1938.5 5.16× 10−11

[CO2(aq)] (µmol kg−1) 17.7 6.54× 10−13

system again using every possible pair of determined param-
eters. Under typical seawater conditions, we find the same
results for every parameter pair to within better than the tol-
erance of the iterative pH solvers (i.e. 10−8 in pH). The max-
imum absolute difference in each parameter across all possi-
ble input pair combinations is acceptably small (Table 4).

4.1.2 Buffer factors

If we include only the solution components that appear in
the explicit equations for the buffer factors (i.e. zero nutrients
and total salts, except for TB) then we can compare these re-
sults with the automatic values (Sect. 3.3.4). Under a range
of typical seawater conditions, we find that the differences
between these two calculation approaches are totally negli-
gible: on the order of 10−12 % for the Egleston et al. (2010)
buffers, 10−9 % for ψ and Q, and 10−7 % for the Revelle
factor. The Revelle factor is less well-matched because its
explicit value is computed using a finite-difference scheme
(for consistency with CO2SYS-MATLAB), which is inher-
ently less accurate than using a direct equation.

Typically, one would not set the total salt contents to zero
when computing buffer factors with the default automatic ap-
proach. As a consequence, differences between the explicit

and automatic buffer factors may be larger than described
above but still practically negligible: keeping nutrients at
zero but using TSO4 and TF calculated from a salinity of 35,
we find that the automatic buffer factors change such that
their differences with the corresponding explicit buffer fac-
tors increase to the order of 0.01 %.

4.1.3 Uncertainty propagation simulations

The propagation of independent uncertainties using forward-
difference derivatives (Sect. 3.6) is tested by comparison with
Monte Carlo simulations for all equilibrium constants and all
known parameter pair combinations. In every case, the uncer-
tainty determined from the simulations (n= 104) as a stan-
dard deviation is either within 3 % of the directly calculated
value if the latter is non-zero or negligibly small if it is zero
(absolute value less than 10−10). The 3 % cutoff is relatively
high because of the relatively small number of simulations;
the cutoff can be reduced if a greater number of simulations
is used, but then the computation time for the test suite be-
comes impractically long.

4.2 Comparison with other CO2SYS software

We used CO2SYS-MATLAB v2.0.5 (Orr et al., 2018) as
the main alternative software to compare our results with.
PyCO2SYS was originally created as an as-close-as-possible
Python translation of this particular version, so any dif-
ferences in the results should be both understood and in-
tentional. Its predecessor, CO2SYS-MATLAB v1.1 (van
Heuven et al., 2011), was included in the software inter-
comparison study of Orr et al. (2015). Indeed, it was se-
lected as the reference software to test the others against.
CO2SYS-MATLAB v2.0.5 differs from v1.1 only in that
it contains one additional parameterisation for the carbonic
acid dissociation constants plus some extra internal vari-
ables associated with uncertainty propagation. Comparing
PyCO2SYS with CO2SYS-MATLAB v2.0.5 therefore also
shows PyCO2SYS’s performance and reliability in the con-
text of the wider set of software tested and discussed by Orr
et al. (2015).

However, these CO2SYS-MATLAB versions do not per-
mit solving with either carbonate or bicarbonate ion con-
tent as a known parameter, nor do they include ammonia or
sulfide speciation. They also lack the parameterisations of
Sulpis et al. (2020) and Schockman and Byrne (2021) for the
carbonic acid dissociation constants (options 16 and 17 in Ta-
ble 1) and the parameterisation of Waters and Millero (2013)
for bisulfate dissociation (Table 3). We therefore also tested
PyCO2SYS against CO2SYS-MATLAB v3.2.0 (Sharp et al.,
2020), which does include all these options.

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022

https://github.com/mvdh7/PyCO2SYS#pyco2sys
https://github.com/mvdh7/PyCO2SYS#pyco2sys


M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 27

4.2.1 Temperature–salinity–pressure
parameterisations

All equilibrium constants and total salt contents, calculated
from salinity, temperature, and pressure, are virtually iden-
tical (absolute tolerance 10−12, relative tolerance 10−16, in
pK∗ values or in µmol kg−1) to those in both CO2SYS-
MATLAB v2.0.5 and v3.2.0. These tests are run across a
range of practical salinity from 0 to 50, temperature from−1
to 50 ◦C, and pressure from 0 to 105 dbar, including values of
exactly zero in every case. Every pH scale and parameterisa-
tion option is included (Tables 1 and 2).

4.2.2 Solving the marine carbonate system

If PyCO2SYS is adjusted to match CO2SYS-
MATLAB v2.0.5, i.e. if the following points are true,
then the differences between PyCO2SYS and CO2SYS-
MATLAB calculations are virtually zero (no greater than
10−10 %, excluding the Revelle factor as noted above):

1. approximate slopes are used for the pH solvers, includ-
ing only carbonate–borate–water alkalinity, instead of
using automatic differentiation to determine these ex-
actly (Sect. 3.1.1);

2. pH solver tolerance is set to 10−4 instead of 10−8

(Sect. 3.1.2);

3. the original approach to prevent overshoot from solver
jumps in pH that are too great is used (Sect. 3.1.2);

4. the iterative pH solver continues updating all elements
until all pH changes fall beneath the tolerance threshold
(Sect. 3.1.2);

5. the pH scale conversion simplification is reinstated
(Sect. 3.1.3);

6. initial pH guesses are always set to 8 instead of using
our extended Munhoven (2013) approach (Sect. 3.2);

The Revelle factor is an exception, but this is due to minor
errors in its encoding in CO2SYS-MATLAB (Appendix G).
If we replicate these errors in PyCO2SYS, then we do return
virtually identical Revelle factor values.

If the adjustments above, other than fixing the pH scale
conversion simplification, are not made, then the differences
between PyCO2SYS and CO2SYS-MATLAB v2.0.5 are up
to the order of 10−5 %: greater, but still negligible for all
practical purposes.

Fixing the pH scale conversion simplification too
(Sect. 3.1.3) makes no difference to calculations for which
the user-defined input pH scale is total but causes discrepan-
cies between PyCO2SYS and CO2SYS-MATLAB v2.0.5 of
up to 50 % in the “free” hydrogen ion content and 10−2 %

in other results when other input pH scale options are se-
lected. The differences are amplified at low pH, as the as-
sumptions of the pH scale conversion simplification do not
hold (Sect. 3.1.3).

Repeating the exercise above for CO2SYS-
MATLAB v3.2.0 has similar results, with differences
negligible for all practical purposes. Only adjustments 1, 2,
and 3 from the list above need to be made to PyCO2SYS
in this case. With PyCO2SYS fully adjusted to match
CO2SYS-MATLAB v3.2.0, differences in calculated values
are still mostly less than 10−10 % and with one exception all
less than 10−6 %. The exception, a difference still less than
10−3 %, is for the aqueous CO2 content under a limited set
of input conditions and only with the new known parameter
pair combinations added since CO2SYS-MATLAB v2.0.5.
It arises because there are several different ways to calculate
[CO2(aq)]: by difference from known TC, [HCO−3 ], and
[CO2−

3 ]; from any one of these three variables, [H+], and
K∗1 and K∗2 equilibrium constants using the equations in
Appendix C (Sects. C2.6, C2.11, and C2.12); or from
fCO2 or pCO2 and the CO2 solubility constant (K∗0 ). While
these approaches are identical in theory, in practice they
return different results due to the limitations of solver
tolerance and floating-point precision. PyCO2SYS and
CO2SYS-MATLAB do not always use the same approach
to calculate [CO2(aq)] in each situation (this also varies
between CO2SYS-MATLAB versions), hence their greater
– but still negligible – differences from each other. Whatever
the known parameter pair, PyCO2SYS always follows the
principles that (i) the values of parameters provided as
arguments by the user should never be overwritten with
recalculations, and (ii) the final unknown from TC, [CO2−

3 ],
[HCO−3 ], and [CO2(aq)] should always be calculated from
the other three by addition or by difference as appropriate.

4.2.3 Uncertainty propagation comparisons

PyCO2SYS reproduces all the derivatives reported by Orr
et al. (2018) in their Tables 2 and 3 to within 10−3 % under
the same input conditions and all the propagated uncertain-
ties reported by Orr et al. (2018) in their Table 4 to within
10−4 %. We consider all these differences to be negligible.

Across all combinations of optional parameters, mean
uncertainties in AT, TC, pCO2 , fCO2 , [HCO−3 ], [CO2−

3 ],
[CO2(aq)], �(calcite), �(aragonite), and xCO2 propagated
from the standard values suggested by Orr et al. (2018) are
within 0.5 % of the corresponding uncertainty values calcu-
lated with CO2SYS-MATLAB v3.2.0 under the same input
conditions. Greater differences in uncertainties calculated
under output conditions arise because CO2SYS-MATLAB
does not propagate the uncertainties from input-condition
equilibrium constants through to output-condition results.

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



28 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

4.3 Simulated seawater titration

PyCO2SYS can be used to reproduce the closed-cell seawa-
ter titration datasets simulated by Dickson (1981). Each sim-
ulated dataset contains pH values for a seawater sample as it
is titrated with incremental HCl additions across a pH range
from approximately 8 to 3.

Dickson (1981) specified exact values for all stoichiomet-
ric equilibrium constants. PyCO2SYS allows these to be pro-
vided instead of being calculated internally from temperature
and salinity (Sect. 2.2). The titration is then simulated by cal-
culating how AT should change through the titration due to
acid addition, accounting for dilution ofAT, TC, and all other
dissolved solutes by acid addition, and then solving the car-
bonate system for pH from the so-determined AT and TC.
Being tested here is the ability to solve for pH from known
AT and TC across a wide range of pH and AT values, includ-
ing negative AT.

The first titration dataset, without phosphate, is repro-
duced perfectly by PyCO2SYS to the number of decimal
places reported by Dickson (1981). The second titration, with
10 µmol kg−1 of total phosphate included, is reproduced per-
fectly by PyCO2SYS with the exception of three values at
different titrant masses.

– 0.45 g: pH either 6.588221 (Dickson) or 6.599221
(PyCO2SYS)

– 0.60 g: pH either 6.366846 (Dickson) or 6.366486
(PyCO2SYS)

– 1.25 g: pH either 5.549957 (Dickson) or 5.549951
(PyCO2SYS)

The other 48 data points in this titration agree perfectly.
The noted discrepancies occur in non-consecutive data points
and are therefore unlikely to all be associated with an er-
ror in a particular equilibrium. Coupled with the nature of
the differences (underlined above), which is one or two spe-
cific digits switched or replaced rather than the entire num-
ber being different, we conclude that these differences most
likely represent minor typographical errors and therefore that
PyCO2SYS does accurately reproduce these simulations in
full.

5 Discussion

5.1 Initial pH estimates

The aim of our revised scheme for initial pH estimates, fol-
lowing Munhoven (2013), was to find values that were closer
to the final solution across a wide range of pH, thus provid-
ing a more suitable starting point for the iterative solvers and
thereby reducing the number of iterations required to con-
verge at the solution.

We find that the initial pH estimates determined accord-
ing to the scheme described in Sect. 3.2 do follow a pattern
similar to the final solutions across wide ranges of argument
values, including at the extremes at which the initial-estimate
equations become invalid and default pH values are used in-
stead (Fig. 5). The number of iterations required to fall be-
neath the solver’s tolerance threshold (10−8 in pH) is also
reduced compared with the original approach of always us-
ing an initial pH of 8. Indeed, for typical ocean conditions we
find that the iterative solver often does not alter the initial es-
timate at all. Suitable starting points for the iterative solvers
are clearly being found.

5.2 Parameter pairs with multiple solutions

It is not strictly true that the marine carbonate system can
always be solved from any pair of its parameters. Some
combinations have multiple solutions. For example, both
the AT–[CO2−

3 ] and TC–[HCO−3 ] pairs can correspond to
two different pH values (Deffeyes, 1965; Zeebe and Wolf-
Gladrow, 2001; Munhoven, 2021). In this section, we show
how PyCO2SYS is designed to return the root corresponding
to typical seawater. However, it is important to realise that
these alternative pH values are real solutions that could be
made up in the laboratory or be found in nature; they are not
simply mathematical anomalies to be ignored. We therefore
used PyCO2SYS to explore the compositions of these alter-
natives.

5.2.1 Total alkalinity and carbonate ion content

The iterative AT–pH solvers can be thought of as working
by evaluating AT at a sequence of different possible pH val-
ues until the pH that returns the true AT is found. This pH
is known as the “root” of the AT–pH equation. The differ-
ence between the true AT and these estimates from pH is
the “residual” alkalinity, which is zero at the root. We find
that the equations for initial pH estimates and final pH val-
ues have very similar roots and similar residuals in the region
around these roots (Fig. 6). This similarity is why the initial
pH estimates provide such suitable starting points for the fi-
nal solvers.

For theAT–[CO2−
3 ] parameter pair, there are generally two

real pH roots and thus two possible equilibrium states of the
marine carbonate system (Fig. 6d). We used PyCO2SYS to
conceptualise the two pH roots for the AT–[CO2−

3 ] parame-
ter pair, as follows. The lower-pH root corresponds to typical
seawater: a relatively high-TC system, wherein bicarbonate
ions are the main component of TC, and carbonate alkalin-
ity ([HCO−3 ] + 2[CO2−

3 ]) is the main component of AT. The
higher-pH root corresponds to a low-TC system, wherein vir-
tually all of TC is in the form of carbonate ion, and AT is
dominated by non-carbonate species (Fig. 7).

Which root the solver finds depends on the initial pH
estimate and the residual alkalinity–pH slope at that point

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 29

Figure 5. Initial estimates (solid lines) and final solutions (dashed lines) of pH from known parameter pairs of total alkalinity (2.3 mmol kg−1)
with a range of values for (a) dissolved inorganic carbon (TC), (b) aqueous CO2 fugacity, (c) bicarbonate ion content, and (d) carbonate ion
content. The initial estimates track the final solution very closely across the range of typical seawater conditions. This is expected because
these estimates were derived under the assumption that the carbonate and borate contributions are dominant in total alkalinity (Sect. 3.2), as
is true for typical seawater. The default high and low pH values of 10 and 3 used where the initial estimate equations are not valid for the
argument values (Eqs. 16 and F6) appear as flat sections in (a) and (c), respectively.

(Eq. 1). This is an advantage of the improved initial pH esti-
mates in PyCO2SYS when working with seawater and sim-
ilar systems: the initial-estimate equation has only a single
real root (Fig. 6d). Because the initial estimate is based on
equations for a system that only includes carbonate and bo-
rate alkalinity (Sect. 3.2.3), the carbonate system contribu-
tion to total alkalinity will always dominate, so the single
root of the initial estimate will coincide with the lower-pH
true root, which is appropriate for seawater. The solver will
thus more robustly find the correct root each time.

In typical open-ocean work this is largely academic: the
true pH is typically around 8 and the higher root greater
than 10, so a constant initial pH estimate of 8 would also
return the correct root. But in more unusual environments,
the new algorithm introduced here could help ensure that the
solver identifies the correct root. It is possible for the user to
specify a different initial pH estimate to control which root
PyCO2SYS obtains (as we did to create Fig. 7).

5.2.2 Dissolved inorganic carbon and bicarbonate ion
content

As noted previously (e.g. Zeebe and Wolf-Gladrow, 2001),
there are also two possible pH solutions for the TC–[HCO−3 ]
parameter pair. We conceptualise these roots as follows: the
remaining portion of TC not accounted for by HCO−3 is either

dominantly composed of CO2−
3 if the solution’s pH is closer

to pK∗2 (i.e. higher) or of CO2(aq) if the pH is closer to pK∗1
(i.e. lower).

Solving from TC and [HCO−3 ] is more straightforward than
from AT and [CO2−

3 ] because the unknown pH can be deter-
mined from a second-order polynomial, which can be calcu-
lated directly using the quadratic formula rather than need-
ing to use an iterative solver. Here, the root found does not
depend upon the value of some initial pH estimate. Instead,
the quadratic formula generates two possible roots, which
must be chosen between. The usual approach, as advised by
e.g. Zeebe and Wolf-Gladrow (2001), is to take the higher-
pH root, and this is the default behaviour of PyCO2SYS.
However, PyCO2SYS can be set to return the other root in-
stead, which we used to illustrate the differing chemistry of
the two possibilities (Fig. 8). Munhoven (2021) discusses
root-selection strategy for this parameter pair combination
in more detail.

5.3 Pressure corrections for pCO2

In PyCO2SYS, pCO2 (and by extension, fCO2 and xCO2 )
is always evaluated at a total pressure near 1 atm; it is not
corrected for the pressure of the overlying water column
(Sect. 2.2). This approach is consistent with all existing im-
plementations of CO2SYS. In practice, it means that these

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



30 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

Figure 6. Residuals between known AT (2.3 mmol kg−1) and (i) carbonate–borate alkalinity (solid lines; ACB) from Eqs. (F1), (4), (11),
and (17), as well as (ii) total alkalinity (dashed lines; AT) from Eq. (B1), calculated across a range of pH, with a second known parameter of
(a) dissolved inorganic carbon (2.15 mmol kg−1), (b) CO2 fugacity (600 µatm), (c) bicarbonate ion content (2011 µmol kg−1), and (d) car-
bonate ion content (116 µmol kg−1), all at a salinity of 35 and temperature of 15 ◦C. Each possible pH value returns a different residual
alkalinity, and the true pH root is where the residual alkalinity is zero. Both the initial estimates and the final solutions find this zero-residual
pH root using the ACB and AT equations, respectively (Sect. 3.1.1 and 3.2). The similarity between the ACB and AT residual curves, partic-
ularly around zero residual alkalinity, shows that the initial estimates provide excellent starting values for the subsequent iterative solvers. In
(d), the final iterative solver has two possible roots, where residual alkalinity is zero. However, the initial estimate has only one root, corre-
sponding to the lower-pH final root. This ensures that the final solver will always converge to the lower-pH root, which is usually appropriate
for the seawater system.

values represent the approximate pCO2 that seawater would
have if it were brought to the surface ocean without chang-
ing the solution composition – “approximate” because this
calculation should use potential temperature, rather than in
situ temperature, to retrieve the true value expected after adi-
abatic decompression (Orr and Epitalon, 2015). PyCO2SYS
does not calculate potential temperature, but this could be
provided by the user in place of in situ temperature.

Although a pressure correction for pCO2 (i.e. a pressure
correction for K∗0 and the fugacity factor; Appendix C1.2) is
theoretically possible (Weiss, 1974; Orr and Epitalon, 2015),
it could be argued that this is unnecessary. First, the vast
majority of pCO2 measurements are carried out only at the
surface ocean (e.g. Bakker et al., 2016), in part due to prac-
tical constraints of the “gold-standard” equilibrator-based
methodology. Second, the concept of pCO2 has utility only
in the context of air–sea CO2 exchange, which takes place
only at the surface ocean.

However, recent developments in sensor technology are
beginning to enable direct measurements of in situ pCO2 at
depth in the ocean (Clarke et al., 2017). There is also grow-
ing interest in calculating in situ pCO2 values at depth for in-

tercomparison exercises in which the marine carbonate sys-
tem has been overdetermined by measuring more than two of
its core parameters (e.g. Raimondi et al., 2019), and the rel-
evant pressure correction is implemented in software tools
such as seacarb and mocsy (Orr and Epitalon, 2015; Orr
et al., 2015). Therefore, we anticipate an increasing need for
pressure-corrected pCO2 values, and while we have kept the
approach in PyCO2SYS consistent with other CO2SYS soft-
ware for now, we consider a robust implementation of these
calculations to be an important target for future code devel-
opment.

5.4 Computational speed

One does not choose to write code in Python for its compu-
tational speed. Therefore, while optimising performance was
not ignored in developing PyCO2SYS, it was not a main fo-
cus. We compared the computational speed of PyCO2SYS
against that of CO2SYS-MATLAB v3.2.0 across a few
different tasks for reference purposes. We ran CO2SYS-
MATLAB in both MATLAB itself (expensive, proprietary
software) and GNU Octave, a free and open-source MAT-
LAB clone.

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 31

Table 5. Comparison of computational speed for various tasks with PyCO2SYS and CO2SYS-MATLAB running in both MATLAB and
GNU Octave. Values shown are the mean± standard deviation of seven runs. The tasks are described in Sect. 5.4.

Task Python time (s) MATLABtime (s) GNU Octave time (s)

All combinations 0.95± 0.04 0.68± 0.11 0.64± 0.01
GLODAP – input only 23.8± 0.3 13.1± 0.3 16.5± 0.9
GLODAP – input and output 49.9± 2.7 13.1± 0.3 16.5± 0.9

Figure 7. Main components of (a) total alkalinity (AT) and (b) dis-
solved inorganic carbon (TC) at the two possible pH roots for
a known parameter pair of AT (2300 µmol kg−1) and [CO2−

3 ]

(120 µmol kg−1). The low-pH root (left) represents typical seawa-
ter, with relatively high TC (2143 µmol kg−1) and both AT and
TC dominated by the bicarbonate ion (HCO−3 ). The high-pH root

(right) has the same AT and [CO2−
3 ], but AT is dominated by hy-

droxide (OH−), and TC is much lower (122 µmol kg−1) and com-
prised almost entirely of CO2−

3 . These calculations were carried out
at 15 ◦C, with a practical salinity of 35 and zero nutrients. If nutri-
ents were present, then like borate (B(OH)−4 ) they would have dif-
ferent contributions to AT at the different pH roots; pH is on the
total scale (Appendix A).

The different tasks are described in the subsequent sec-
tions, and the results are summarised in Table 5. Details of
the computer and software used for testing are provided in
Appendix I.

Overall, the PyCO2SYS computation time has the same
order of magnitude as CO2SYS-MATLAB, but it is gener-

Figure 8. Main components of (a) total alkalinity (AT) and (b) dis-
solved inorganic carbon (TC) at the two possible pH roots for
a known parameter pair of TC (2100 µmol kg−1) and bicarbon-
ate ion content ([HCO−3 ]; 1900 µmol kg−1). The high-pH root
(left) represents typical seawater, in which most of the TC not ac-
counted for by [HCO−3 ] is composed of [CO2−

3 ]; AT is relatively
high (2364 µmol kg−1) and fCO2 low (331 µatm). In the low-pH
root (right), the non-HCO−3 portion of TC is instead dominated
by CO2(aq); alkalinity is lower (1932 µmol kg−1) and fCO2 high
(5008 µatm). These calculations were carried out at 15 ◦C, with a
practical salinity of 35 and zero nutrients; pH is on the total scale
(Appendix A).

ally somewhat slower. However, the difference is negligible
in practice for relatively small datasets (up to about 105 data
points) but may become more noticeable in larger calcula-
tions. Potential future improvements to PyCO2SYS’s com-
putational speed are discussed in Sect. 5.5.

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



32 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

5.4.1 All combinations

The “all combinations” task was the validation test described
in Sect. 4.2.2: that is, a single call to the (Py)CO2SYS func-
tion that includes one calculation using every possible com-
bination of parameter pair and optional setting (e.g. choices
of parameterisations for the equilibrium constants) for a total
of 40 800 data points. Both input and output conditions were
computed.

CO2SYS-MATLAB completed this task in a very simi-
lar time in both MATLAB and GNU Octave, with the latter
slightly faster, and PyCO2SYS took about 1.5 times longer
(Table 5). However, this difference would generally be negli-
gible, as all three implementations of the test had an average
run time of less than 1 s.

5.4.2 GLODAP

In this task, (Py)CO2SYS was run across the entire GLO-
DAPv2.2021 Merged Master File (Lauvset et al., 2021) with
AT and TC as the known parameter pair. This file contains
a little over 1.3 million data points for each variable. The
results in Table 5 show the mean and standard deviation of
seven runs in each case.

This calculation is an example in which results would only
be required under one set of temperature and pressure con-
ditions rather than needing to evaluate both input and out-
put conditions. This allows PyCO2SYS to be used more
efficiently, as it only calculates output-condition results if
they are explicitly requested (Sect. 2.3), whereas CO2SYS-
MATLAB always calculates its results at both input and out-
put conditions.

The results in Table 5 show that CO2SYS-MATLAB run-
ning in MATLAB was the fastest, with GNU Octave taking
longer by a factor of about 1.3. When calculating only under
input conditions, PyCO2SYS took longer by a factor of about
1.8 than CO2SYS-MATLAB running in MATLAB and by
3.8 if both the input- and output-condition calculations were
carried out.

5.5 Outlook

The Autograd package that PyCO2SYS uses for automatic
differentiation is still being maintained, and its most recent
release (v1.3, July 2019) is stable, but it is no longer in ac-
tive development. Its successor, JAX (Bradbury et al., 2018),
has further benefits including “just-in-time” code compila-
tion and parallelisation. These features could speed up com-
putation speed in PyCO2SYS, especially the components in-
volving automatic differentiation, potentially by several or-
ders of magnitude. However, JAX cannot currently run na-
tively on the Microsoft Windows operating system, which
would greatly restrict the usability of PyCO2SYS for the
oceanographic research community. This limitation is due to
JAX’s dependence on the separate XLA (accelerated linear

algebra) compiler rather than being an intrinsic issue with
JAX itself. Should this compatibility issue be resolved in the
future, we envision updating PyCO2SYS to use JAX instead
of Autograd. This should be relatively straightforward thanks
to the close similarities between the API (application pro-
gramming interface) of these packages.

As future developments are made to PyCO2SYS, we will
aim to maintain consistency with other CO2SYS-family
tools but cannot guarantee that all new features or updates
will be added simultaneously across all implementations. In
practice, the workload required to achieve this is not cur-
rently feasible, and we would not wish to hold back develop-
ment because of the time required to replicate changes across
multiple implementations. That said, the results should re-
main consistent enough that users can select which imple-
mentation to use based on their preferred software environ-
ment rather than the other way around.

This ambition could also extend beyond the CO2SYS fam-
ily of software. Independently developed tools for solving
the marine carbonate system exist in other languages, such
as seacarb in R (Gattuso et al., 2021) and mocsy in Fortran
(Orr and Epitalon, 2015). These give sufficiently consistent
results with each other that the selection of which tool to use
does not affect scientific interpretation (Orr et al., 2015), and
we have shown that PyCO2SYS is, and will remain, no ex-
ception. Even so, development and validation of PyCO2SYS
so far have focused on comparisons with only CO2SYS-
family software for practical reasons. Now that the basis
of PyCO2SYS is established, we would welcome more di-
rect interaction with the groups developing these other tools,
working towards a set of marine–carbonate system-solving
tools that return identical results regardless of the software
platform. There can be a great advantage in having indepen-
dent implementations led by different groups of researchers
and developers. For example, this approach can help catch
bugs and typographical errors, especially if each group ex-
tracts equations and parameterisations from the original lit-
erature instead of copying existing code. Working together,
the groups would have a greater pool of knowledge and expe-
rience to identify errors in the literature (see e.g. Lewis and
Wallace, 1998, their Appendix A), which are often unpub-
lished and known only through personal communications.
But calculations must be regularly compared with each other
if this advantage is to be realised.

Thanks largely to the efforts of Orr et al. (2018), many
tools now have an uncertainty propagation capability, as does
PyCO2SYS. However, we still lack meaningful and statisti-
cally equivalent estimates for the actual uncertainties in the
equilibrium constants. The software therefore stands ahead
of our knowledge: as more work is done to robustly quantify
these uncertainties, the tools are already in place to propagate
them through to all marine carbonate system calculations.

As development of PyCO2SYS continues, we do not antic-
ipate changing its fundamental approach to solving the ma-
rine carbonate system, but we will try to incorporate the latest

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 33

research, including keeping up to date with new parameteri-
sations, for example of stoichiometric equilibrium constants
(e.g. Sulpis et al., 2020; Schockman and Byrne, 2021). Inte-
gration with a speciation model that can determine the equi-
librium constants based on chemical activities, rather than
parameterising these based on salinity, is an area of inter-
est (Turner et al., 2016) but would likely require such sub-
stantial changes to constitute a separate software tool. We
do envision further additions to the main chemical specia-
tion function in PyCO2SYS, for example to better represent
the impact of organic contributions to alkalinity (e.g. Cantrell
et al., 1990; Muller and Bleie, 2008; Kuliński et al., 2014;
Abril et al., 2015; Ulfsbo et al., 2015) – noting that a simpli-
fied representation of such extra components can already be
modelled in PyCO2SYS (Sect. 3.3.1).

Through all these efforts, we aim to ensure that
PyCO2SYS remains a reliable and comprehensive tool for
analysing seawater chemistry from samples and experiments
in the laboratory through to the changing marine carbonate
system across the global ocean.

Appendix A: pH scales and conversions

The pH scales in PyCO2SYS are free (pHF), total (pHT), sea-
water (pHS), and NBS (pHN), defined following e.g. Zeebe
and Wolf-Gladrow (2001) and Velo et al. (2010).

pHF =−log10{[H
+
]} (A1)

pHT =−log10{[H
+
](1+ TSO4/K

∗

SO4
)} (A2)

pHS =−log10{[H
+
](1+ TSO4/K

∗

SO4
+ TF/K

∗
F)} (A3)

pHN =−log10{[H
+
](1+ TSO4/K

∗

SO4
+ TF/K

∗
F)γH+} (A4)

Here, γH+ is the chemical activity coefficient for H+ (Ta-
ble 3). Note that in PyCO2SYS, [H+] in all these definitions
is a substance content (Sect. 2.1). The pH values and stoi-
chiometric equilibrium constants (K∗) are thus converted be-
tween these different pH scales using the following factors.

Y T
F = 1+ TSO4/K

∗

SO4
; Y F

T = 1/Y T
F (A5)

Y S
F = 1+ TSO4/K

∗

SO4
+ TF/K

∗
F; Y F

S = 1/Y S
F (A6)

YN
S = γH+; Y S

N = 1/YN
S (A7)

Here, γH+ is the hydrogen ion activity calculated from tem-
perature and salinity following either Peng et al. (1987) or
Takahashi et al. (1982) (see Table 3). The different scales are
denoted by the subscript and superscript letters, with F for
free, T for total, S for seawater, and N for NBS. Convert from
any pH scale A to any other pH scale B using these factors:

pHB = pHA+ pYBA = pHA− log10

(
YBA

)
, (A8)

or alternatively and equivalently

[H+]B = YBA [H
+
]A. (A9)

The equations above are used in the same way to convert K∗

values between pH scales.

Appendix B: Total alkalinity and its components

Each equation here is written assuming that [H+] and all
equilibrium constants (K∗) are supplied on the same pH scale
as each other.

B1 Total alkalinity

Total alkalinity (AT) is calculated as the sum of all its com-
ponents (Dickson, 1981; Wolf-Gladrow et al., 2007; Sharp
and Byrne, 2020).

AT = Aw+AC+AB+AP+ASi+ANH3 +AH2S

+ASO4 +AF+Aα +Aβ (B1)

Equations for all the individual alkalinity components (AC,
AB, etc.) are given in the subsequent sections in terms of pH-
independent total substance contents (TC, TB, etc.) and [H+].

B2 Water

H2O 
 OH−+H+; K∗w = [OH−][H+] (BR1)

Aw = [OH−] − [H+] =
K∗w
[H+]

− [H+] (B2)

B3 Carbonic acid

TC = [CO2(aq)] + [HCO−3 ] + [CO2−
3 ] (B3)

CO2(aq)+H2O 
 HCO−3 +H+;

K∗1 =
[HCO−3 ][H

+
]

[CO2(aq)]
(BR2)

HCO−3 
 CO2−
3 +H+; K∗2 =

[CO2−
3 ][H

+
]

[HCO−3 ]
(BR3)

AC can be expressed in terms of [H+] and any of TC, fCO2 ,
[HCO−3 ], or [CO2−

3 ].

AC = [HCO−3 ] + 2[CO2−
3 ] (B4)

AC([H+],TC)=
TCK

∗

1 ([H
+
] + 2K∗2 )

K∗1K
∗

2 +K
∗

1 [H
+] + [H+]2

(B5)

AC([H+],fCO2)=
fCO2K

∗

0K
∗

1 ([H
+
] + 2K∗2 )

[H+]2
(B6)

AC([H+], [HCO−3 ])= [HCO−3 ] +
2K∗2 [HCO−3 ]
[H+]

(B7)

AC([H+], [CO2−
3 ])=

[CO2−
3 ][H

+
]

K∗2
+ 2[CO2−

3 ] (B8)

Undissociated H2CO3 is considered negligible and thus
not explicitly modelled, but rather implicitly included as part
of the [CO2(aq)] term (Zeebe and Wolf-Gladrow, 2001).

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



34 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

B4 Boric acid

TB = [B(OH)3] + [B(OH)−4 ] (B9)

B(OH)3+H2O 
 B(OH)−4 +H+;

K∗B =
[B(OH)−4 ][H

+
]

[B(OH)3]
(BR4)

AB = [B(OH)−4 ] =
TBK

∗
B

K∗B+ [H+]
(B10)

B5 Phosphoric acid

TP = [H3PO4] + [H2PO−4 ] + [HPO2−
4 ] + [PO3−

4 ] (B11)

H3PO4 
 H2PO−4 +H+; K∗P1 =
[H2PO−4 ][H

+
]

[H3PO4]
(BR5)

H2PO−4 
 HPO2−
4 +H+; K∗P2 =

[HPO2−
4 ][H

+
]

[H2PO−4 ]
(BR6)

HPO2−
4 
 PO3−

4 +H+; K∗P3 =
[PO3−

4 ][H
+
]

[HPO2−
4 ]

(BR7)

AP= [HPO2−
4 ] + 2[PO3−

4 ] − [H3PO4]

=
TP(K

∗

P1K
∗

P2[H
+
] + 2K∗P1K

∗

P2K
∗

P3− [H
+
]
3)

K∗P1K
∗

P2K
∗

P3+K
∗

P1K
∗

P2[H
+] +K∗P1[H

+]2+ [H+]3
(B12)

B6 Orthosilicic acid

TSi = [H4SiO4] + [H3SiO−3 ] (B13)

H4SiO4 
 H3SiO−4 +H+;

K∗Si =
[H3SiO−4 ][H

+
]

[H4SiO4]
(BR8)

ASi = [H3SiO−4 ] =
TSiK

∗

Si
K∗Si+ [H

+]
(B14)

Further deprotonation of H3SiO−4 is considered negligible
and thus not modelled.

B7 Ammonium

TNH3 = [NH3] + [NH+4 ] (B15)

NH+4 
 NH3+H+; K∗NH3
=
[NH3][H+]
[NH+4 ]

(BR9)

ANH3 = [NH3] =
TNH3K

∗
NH3

K∗NH3
+ [H+]

(B16)

B8 Sulfide

TH2S = [H2S] + [HS−] (B17)

H2S 
 HS−+H+; K∗H2S =
[HS−][H+]
[H2S]

(BR10)

AH2S = [HS−] =
TH2SK

∗

H2S

K∗H2S+ [H
+]

(B18)

Further deprotonation of HS− is considered negligible and
thus not modelled (Schoonen and Barnes, 1988).

B9 Sulfate

TSO4 = [HSO−4 ] + [SO2−
4 ] (B19)

HSO−4 
 SO2−
4 +H+; K∗SO4

=
[SO2−

4 ][H
+
]

[HSO−4 ]
(BR11)

ASO4 =−[HSO−4 ] =
−TSO4

1+K∗SO4
/[H+]

(B20)

Undissociated H2SO4 is considered negligible and thus
not modelled.

B10 Fluoride

TF = [HF] + [F−] (B21)

HF 
 F−+H+; K∗F =
[F−][H+]
[HF]

(BR12)

AF =−[HF] =
−TF

1+K∗F/[H+]
(B22)

B11 Arbitrary additional components

Tα = [Hα] + [α−] (B23)

Hα
 α−+H+; K∗α =
[α−][H+]
[Hα]

(BR13)

Aα =

{
−[Hα] for − log10(K

∗
α)≤ 4.5

+[α−] for − log10(K
∗
α) > 4.5

(B24)

The reactions and equations for the second additional com-
ponent β and its alkalinity contribution Aβ are identical

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 35

to those given for α above. PyCO2SYS automatically de-
termines how to modify the alkalinity equation following
Eq. (B24) based on the user-provided K∗α and K∗β values,
with a zero level of protons corresponding to a pK∗ of 4.5
(Wolf-Gladrow et al., 2007).

Though the definition of alkalinity (Dickson, 1981) states
that species are separated into proton acceptors and donors
based on their dissociation constant at zero ionic strength and
25 ◦C, we use the user-defined dissociation constants at the
given conditions because one cannot convert arbitrary dis-
sociation constants to their alkalinity-relevant values. Inter-
pretations of results when arbitrary components are supplied
to PyCO2SYS with pK∗ values close to 4.5 should consider
this nuance.

Appendix C: Solving the core marine carbonate system

Here, we lay out all the equations that are used to convert be-
tween different carbonate system parameters in PyCO2SYS.
These follow long-established approaches from the literature
(Zeebe and Wolf-Gladrow, 2001; Dickson et al., 2007). The
equations are organised based on which parameter pair is ini-
tially known.

C1 General considerations

C1.1 pH to [H+] conversions

As the stoichiometric equilibrium constants are converted to
the user-specified pH scale, i.e. consistent with the pH values,
pH and [H+] are interconverted in the equations throughout
this section using

pH=−log10[H
+
] (C1)

regardless of which pH scale is being used.

C1.2 Known pCO2 , xCO2 or [CO2(aq)]

If one of pCO2 , xCO2 , or [CO2(aq)] is in the known parameter
pair, then its values are first converted to fCO2 as follows.

For known pCO2 ,

fCO2 =GpCO2 , (C2)

whereG is the fugacity factor (Table 2), typically near 0.997.
For known xCO2 ,

fCO2 =GPvxCO2 , (C3)

where Pv is the humidity correction (Table 3):

Pv = Pa−pw, (C4)

in which Pa is total atmospheric pressure (assumed to be
1 atm unless a different value is provided by the user) and
pw is the water vapour pressure (Weiss and Price, 1980).

For known [CO2(aq)],

fCO2 =
[CO2(aq)]

K∗0
, (C5)

where K∗0 is the solubility factor for CO2 (Table 3).
The calculation steps given below for fCO2 are then fol-

lowed to solve the core marine carbonate system. After-
wards, pCO2 , xCO2 , and [CO2(aq)] are calculated where
they were not in the original known parameter pair: pCO2

and xCO2 are calculated using Eqs. (C2) and (C3), while
[CO2(aq)] is calculated by difference using the definition of
TC in Eq. (B3).

C2 Solving routines

C2.1 From AT and TC

An initial pH estimate is determined as described in Ap-
pendix F. The estimate is then revised using the iterative ap-
proach of Sect. 3.1, in which the AT(pHn,v) term in Eq. (2)
is calculated from Eq. (B1) for AT substituting in Eq. (B5)
for the AC term. Equation (2) is the automatically differenti-
ated with respect to pH to obtain the 1A′T term in Eq. (1).

The components of TC are then calculated from TC and the
final pH value.

fCO2 =
TC[H+]2

K∗0 ([H
+]2+K∗1 [H

+] +K∗1K
∗

2 )
(C6)

[HCO−3 ] =
TCK

∗

1 [H
+
]

[H+]2+K∗1 [H
+] +K∗1K

∗

2
(C7)

[CO2−
3 ] =

TCK
∗

1K
∗

2
[H+]2+K∗1 [H

+] +K∗1K
∗

2
(C8)

C2.2 From AT and pH

First, we determine AC from known AT and pH by using
Eq. (B1). TC is then calculated from AC.

TC =
AC([H+]2+K∗1 [H

+
] +K∗1K

∗

2 )

K∗1 ([H
+] + 2K∗2 )

(C9)

The components of TC are then calculated from TC and pH
using Eqs. (C6), (C7), and (C8).

There is an upper limit on pH for each given AT value,
above which negative AC would be required to balance
Eq. (B1). PyCO2SYS prints a warning if such an impossi-
ble pairing is used and returns NaN (not a number) for TC
(and all other results calculated from it) instead of a negative
value.

C2.3 From AT and fCO2

An initial pH estimate is determined as described in Ap-
pendix F. The estimate is then revised using the iterative ap-
proach of Sect. 3.1, in which the AT(pHn,v) term in Eq. (2)

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



36 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

is calculated from Eq. (B1) for AT substituting in Eq. (B6)
for the AC term. Equation (2) is the automatically differenti-
ated with respect to pH to obtain the 1A′T term in Eq. (1).
TC is then calculated fromAT and pH following Sect. C2.2

and its remaining unknown components with Eqs. (C7)
and (C8).

C2.4 From AT and [CO2−
3 ]

An initial pH estimate is determined as described in Ap-
pendix F. The estimate is then revised using the iterative ap-
proach of Sect. 3.1, in which the AT(pHn,v) term in Eq. (2)
is calculated from Eq. (B1) for AT substituting in Eq. (B8)
for the AC term. Equation (2) is the automatically differen-
tiated with respect to pH to obtain the 1A′T term in Eq. (1).
The lower of the two pH roots is returned by default, as dis-
cussed in Sect. 5.2.2.
TC is then calculated fromAT and pH following Sect. C2.2

and its remaining unknown components with Eqs. (C6)
and (C7).

C2.5 From AT and [HCO−3 ]

An initial pH estimate is determined as described in Ap-
pendix F. The estimate is then revised using the iterative ap-
proach of Sect. 3.1, in which the AT(pHn,v) term in Eq. (2)
is calculated from Eq. (B1) for AT substituting in Eq. (B7)
for the AC term. Equation (2) is the automatically differenti-
ated with respect to pH to obtain the 1A′T term in Eq. (1).
TC is then calculated fromAT and pH following Sect. C2.2

and its remaining unknown components with Eqs. (C6)
and (C8).

C2.6 From TC and pH

First, AT is calculated from TC and pH using Eq. (B1). The
components of TC are then calculated from TC and pH using
Eqs. (C6), (C7), and (C8).

C2.7 From TC and fCO2

First, pH is calculated from TC and fCO2 using

[H+] =
K∗1 r +

√
(K∗1 r)

2+ 4(1− r)K∗1K
∗

2 r

2(1− r)
, (C10)

where

r =K∗0 · fCO2/TC. (C11)

AT and the remaining unknown components of TC are then
calculated from TC and pH using Eqs. (B1), (C7), and (C8).

C2.8 From TC and [CO2−
3 ]

First, pH is calculated from TC and [CO2−
3 ] using

[H+] =
−K∗1 +

√
K∗21 − 4K∗1K

∗

2 (1− TC/[CO2−
3 ])

2
. (C12)

AT and the remaining unknown components of TC are then
calculated from TC and pH using Eqs. (B1), (C6), and (C7).

C2.9 From TC and [HCO−3 ]

First, pH is calculated from TC and [HCO−3 ] using

[H+] =

TC− [HCO−3 ]−√
([HCO−3 ] − TC)2− 4[HCO−3 ]

2K∗2 /K
∗

1

2[HCO−3 ]/K
∗

1
. (C13)

AT and the remaining unknown components of TC are then
calculated from TC and pH using Eqs. (B1), (C6), and (C8).

C2.10 From pH and fCO2

First, TC is calculated from pH and fCO2 using

TC =
K∗0 · fCO2

(
[H+]2+K∗1 [H

+
] +K∗1K

∗

2
)

[H+]2
. (C14)

AT and the remaining unknown components of TC are then
calculated from TC and pH using Eqs. (B1), (C7), and (C8).

C2.11 From pH and [CO2−
3 ]

First, fCO2 is calculated from pH and [CO2−
3 ] using

fCO2 =
[CO2−

3 ][H
+
]
2

K∗0K
∗

1K
∗

2
. (C15)

TC is then calculated from pH and fCO2 using Eq. (C14).
Finally,AT and [HCO−3 ] are calculated from TC and pH using
Eqs. (B1) and (C7), respectively.

C2.12 From pH and [HCO−3 ]

First, TC is calculated from pH and [HCO−3 ] using

TC = [HCO−3 ]
(

1+
[H+]
K∗1
+

K∗2
[H+]

)
. (C16)

AT and the remaining unknown components of TC are then
calculated from TC and pH using Eqs. (B1), (C6), and (C8).

C2.13 From fCO2 and [CO2−
3 ]

First, pH is calculated from fCO2 and [CO2−
3 ] using

[H+] =

√
K∗0K

∗

1K
∗

2 · fCO2

[CO2−
3 ]

. (C17)

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 37

TC is then calculated from pH and fCO2 using Eq. (C14).
Finally,AT and [HCO−3 ] are calculated from TC and pH using
Eqs. (B1) and (C7), respectively.

C2.14 From fCO2 and [HCO−3 ]

First, [CO2−
3 ] is calculated from fCO2 and [HCO−3 ] using

[CO2−
3 ] =

[HCO−3 ]
2K∗2

K∗0K
∗

1 · fCO2

. (C18)

The pH is then calculated from fCO2 and [CO2−
3 ] using

Eq. (C17). Next, TC is calculated from pH and fCO2 using
Eq. (C14). Finally, AT is calculated from TC and pH using
Eq. (B1).

C2.15 From [CO2−
3 ] and [HCO−3 ]

First, fCO2 is calculated from [CO2−
3 ] and [HCO−3 ] using

fCO2 =
[HCO−3 ]

2K∗2

K∗0K
∗

1 [CO2−
3 ]

. (C19)

The pH is then calculated from fCO2 and [CO2−
3 ] using

Eq. (C17). Next, TC is calculated from pH and fCO2 using
Eq. (C14). Finally, AT is calculated from TC and pH using
Eq. (B1).

Appendix D: Other marine carbonate system variables

Calcite and aragonite saturation states (�) are calculated
from the definition

�=
[Ca2
+][CO2−

3 ]

K∗sp
, (D1)

where K∗sp is the solubility product, a function of salinity,
temperature, and pressure that is different for each mineral
(Table 2).

The “substrate : inhibitor ratio” of Bach (2015) is calcu-
lated from the bicarbonate and free hydrogen ion contents.

SIR=
[HCO−3 ]
[H+]

(D2)

Note that in Eq. (D2), the [H+] term is always calculated on
the free pH scale of Eq. (A1).

Appendix E: Buffer factors with automatic
differentiation

E1 Buffer factors of Egleston et al. (2010)

To evaluate the buffer factors of Egleston et al. (2010) with
automatic differentiation (AD), we first evaluated the follow-
ing partial differentials (with the subscripted variable held
constant):

– (∂TC/∂pH)AT by AD of Eq. (C9) with respect to pH;

– (∂AT/∂pH)TC by AD of Eq. (B1), substituting AC by
Eq. (B5), with respect to pH;

– (∂ ln[CO2(aq)]/∂pH)TC by taking the natural log of the
product of K∗0 and Eq. (C6), then AD with respect to
pH;

– (∂ ln[CO2(aq)]/∂pH)AT by taking the natural log of the
product of K∗0 and Eq. (C6), substituting TC by Eq. (9),
then AD with respect to pH.

The buffer factors γTC , γAT , βTC , and βAT are thus defined
(Egleston et al., 2010) and calculated in PyCO2SYS.

γTC =

(
∂ ln[CO2(aq)]

∂TC

)−1

AT

=

(
∂TC

∂pH

)
AT

(
∂ ln[CO2(aq)]

∂pH

)−1

AT

(E1)

γAT =

(
∂ ln[CO2(aq)]

∂AT

)−1

TC

=

(
∂AT

∂pH

)
TC

(
∂ ln[CO2(aq)]

∂pH

)−1

TC

(E2)

βTC =

(
∂ ln[H+]
∂TC

)−1

AT

=−log10(e)

(
∂TC

∂pH

)
AT

(E3)

βAT =

(
∂ ln[H+]
∂AT

)−1

TC

=−log10(e)

(
∂AT

∂pH

)
TC

(E4)

Here, e is Euler’s number (2.71828. . .).
For the saturation-state buffers ωTC and ωAT we also eval-

uate

– (∂ ln�/∂[CO2−
3 ]) by AD of the natural log of

�(aragonite), calculated with Eq. (D1), with respect
to [CO2−

3 ] (note that this is the same value as for
�(calcite), due to the logarithm and the fact that these
terms differ by the constant ratio of their solubility prod-
ucts);

– (∂[CO2−
3 ]/∂pH)TC by AD of Eq. (C8) with respect to

pH;

– (∂[CO2−
3 ]/∂pH)AT by AD of Eq. (C8), substituting TC

by Eq. (C9), with respect to pH.

The buffer factors are then given by the following.

ωTC =

(
∂ ln�
∂TC

)−1

AT

=

(
∂TC

∂pH

)
AT

(
∂ ln�

∂[CO2−
3 ]

)−1

AT

(
∂[CO2−

3 ]

∂pH

)−1

AT

(E5)

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022



38 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

ωAT =

(
∂ ln�
∂AT

)−1

TC

=

(
∂AT

∂pH

)
TC

(
∂ ln�

∂[CO2−
3 ]

)−1

TC

(
∂[CO2−

3 ]

∂pH

)−1

TC

(E6)

The approach taken here avoids AD evaluations over the
iterative solvers because, while possible, that is computation-
ally slower than over non-iterative functions.

E2 Revelle factor

The Revelle factor (RF; Broecker et al., 1979) is computed
from TC and γTC , with the latter evaluated as described in
Sect. E1, following Egleston et al. (2010).

RF =

(
∂fCO2

∂TC

)(
TC

fCO2

)
=
TC

γTC

(E7)

E3 Isocapnic quotient and ψ

To evaluate the isocapnic quotient (Q) of Humphreys et al.
(2018), we first evaluate the derivatives:

– (∂TC/∂pH)fCO2
by AD of Eq. (C14) with respect to pH;

– (∂AT/∂pH)fCO2
by AD of Eq. (B1) using Eq. (B6) for

the AC term with respect to pH.

The isocapnic quotient is defined and calculated in
PyCO2SYS as follows.

Q=

(
∂AT

∂TC

)
fCO2

=

(
∂AT

∂pH

)
fCO2

(
∂TC

∂pH

)−1

fCO2

(E8)

Finally, the “released CO2 : precipitated carbonate ratio”
(ψ) of Frankignoulle et al. (1994) is calculated following
Humphreys et al. (2018).

ψ =
2
Q
− 1 (E9)

Appendix F: Initial pH estimate when solving from AT
and TC

For clarity in the equations in this section, we abbreviate
[H+] as h.

Following Munhoven (2013), carbonate–borate alkalinity
(ACB) from Eq. (3) as a function of TC and h is

ACB(h,TC)=
TCK

∗

1 (h+ 2K∗2 )
h2+K∗1h+K

∗

1K
∗

2
+
TBK

∗
B

h+K∗B
. (F1)

This can be rearranged into a third-order polynomial in h:

PTC(h)= h
3
+h2g2(TC)+hg1(TC)+ g0(TC)= 0, (F2)

with the following.

g2(TC)=K
∗
B

(
1−

TB

ACB

)
−K∗1

(
1−

TC

ACB

)
(F3)

g1(TC)=K
∗

1

[
K∗B

(
1−

TB+ TC

ACB

)
+K∗2

(
1−

2TC

ACB

)]
(F4)

g0(TC)=K
∗

1K
∗

2K
∗
B

(
1−

2TC+ TB

ACB

)
(F5)

The initial h value is determined by

h0(TC)=


10−3 for AT ≤ 0

hmin+

√
−
PTC (hmin)√
g2

2−3g1

for AT > 0

10−10 for AT ≥ 2TC+ TB,

(F6)

where hmin is defined in Eq. (10). Negative ACB is impos-
sible because its equation contains only positive terms, so
the equations above cannot be applied if AT is indeed nega-
tive. The default h0 of 10−3 mol kg−1, corresponding to a pH
of 3, is therefore used for that case (e.g. after the alkalinity
end point in an acidimetric titration). The maximum possible
ACB is 2TC+ TB, where TC is entirely CO2−

3 and TB is en-
tirely B(OH)−4 . Where AT is actually higher than this limit
of this simplified expression, we expect a high pH (given the
dominance of CO2−

3 within TC) and therefore use an initial
estimate pH of 10. Otherwise, hmin in Eq. (F6) is found using
Eq. (10). A default h0 of 10−7 mol kg−1 (pH 7) is used when
g2

2 − 3g1 ≤ 0 in Eq. (F6) (Munhoven, 2013).

Appendix G: Revelle factor calculation errors in older
versions of CO2SYS-MATLAB

Older versions of CO2SYS-MATLAB, including v2.0.5 (Orr
et al., 2018) from which PyCO2SYS was originally con-
verted, have minor errors in how the Revelle factor is eval-
uated. These have been corrected in PyCO2SYS (also in
CO2SYS-MATLAB v3.2.0 and CO2SYS-Excel v3), leading
to small differences in the calculated values. These differ-
ences are on the order of 0.1; for context, the Revelle factor
typically has a value on the order of 10. The differences are
thus notable from a computational perspective (i.e. many or-
ders of magnitude greater than solver tolerance and floating-
point errors) but still mostly negligible in practical applica-
tions.

Rather than being corrected explicitly in PyCO2SYS,
these errors are corrected automatically thanks to the ap-
proach of using automatic differentiation instead of finite-
difference derivatives. The key errors in the original
CO2SYS-MATLAB implementation of the finite-difference
approach are the following.

1. An incorrect reference TC value is used in the final eval-
uation. Rather than using the “central” TC value, the
change in pCO2 is divided by the adjusted (TC−1TC).

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022



M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 39

2. Under output conditions, the Peng correction is not in-
cluded in the evaluation of the Revelle factor (Sect. 2.2).

The lower accuracy of the finite-difference method relative
to automatic differentiation, particularly given the relatively
large 1TC used in the original finite-difference implementa-
tion (i.e. 1 µmol kg−1), explains the differences between the
two approaches that remain after the errors above have been
corrected.

Appendix H: Fixed 1a values for uncertainty analysis

Table H1. Fixed 1a values for uncertainty analysis.

Argument(s) −log101a Argument(s) −log101a

Core parameters 4 Pressure 3
K∗NH3

16 Salinity 3
K∗sp(aragonite) 13 Temperature 3
K∗SO4

7 Tα 3
K∗B 15 TNH3 3
K∗sp(calcite) 13 Tβ 3
K∗1 12 TB 3
K∗2 15 TCa 3
K∗CO2

8 TF 3
K∗HF 9 TP 3
K∗P1 4 TSi 3
K∗P2 12 TSO4 3
K∗P3 15 TH2S 3
K∗Si 16 Pv 5
K∗H2S 13 Pa 4
K∗w 20 G 5
Any pK∗ 4 R 4

Appendix I: Set-up for computational speed testing

The computational speed tests described in Sect. 5.4 were run
on an HP Spectre x360 laptop with an Intel Core i7-8565U
CPU (1.80 GHz) and 16 GB of RAM. The operating system
was Windows 10.

The Python tests were run using Python v3.9.7, Auto-
grad v1.3, NumPy v1.21.2, and PyCO2SYS v1.8.0.

The MATLAB tests were run using MATLAB R2019b
(Update 9) and CO2SYS-MATLAB v3.2.0.

The GNU Octave tests were run using GNU Oc-
tave v6.3.0 via its command-line interface and CO2SYS-
MATLAB v3.2.0.

Code availability. The current version of PyCO2SYS is freely
available from its GitHub repository at https://github.com/mvdh7/
PyCO2SYS (last access: 23 December 2021) under the GNU
General Public License v3. Installation is recommended from
the Python Package Index (PyPI) via pip, and documenta-
tion is available online (https://PyCO2SYS.readthedocs.io, last
access: 23 December 2021). The exact version of PyCO2SYS
used to produce the results discussed in this paper (v1.8.0),
including input data and scripts to run the model and per-
form all validation tests described here, is archived on Zenodo
(https://doi.org/10.5281/zenodo.5602840, Humphreys et al., 2021).

Data availability. No data sets were used in this article.

Author contributions. MPH was responsible for conceptualisation,
methodology, software, validation, writing the original draft, and vi-
sualisation. ERL was responsible for software and writing (review
and editing). JDS was responsible for software, validation, and writ-
ing (review and editing). DP was responsible for software and writ-
ing (review and editing).

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank Doug Wallace for providing useful
comments on this paper, and we acknowledge his important role in
the creation of the original CO2SYS software. We further acknowl-
edge the developers of all subsequent versions of CO2SYS upon
whose work PyCO2SYS was built. We thank Luke Gregor, Daniel
Sandborn, and Abigail Schiller for code contributions including ex-
tending the range of data types with which PyCO2SYS can be used.
We are grateful to Guy Munhoven and James Orr for their detailed
and constructive reviews.

Review statement. This paper was edited by Paul Halloran and re-
viewed by James Orr and Guy Munhoven.

References

Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Mar-
wick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deir-
mendjian, L., Polsenaere, P., and Borges, A. V.: Technical Note:
Large overestimation of pCO2 calculated from pH and alkalinity
in acidic, organic-rich freshwaters, Biogeosciences, 12, 67–78,
https://doi.org/10.5194/bg-12-67-2015, 2015.

Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L.,
Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022

https://github.com/mvdh7/PyCO2SYS
https://github.com/mvdh7/PyCO2SYS
https://PyCO2SYS.readthedocs.io
https://doi.org/10.5281/zenodo.5602840
https://doi.org/10.5194/bg-12-67-2015


40 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

CO2 system in the Mediterranean Sea: a basin wide perspective,
Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014,
2014.

Bach, L. T.: Reconsidering the role of carbonate ion concentration
in calcification by marine organisms, Biogeosciences, 12, 4939–
4951, https://doi.org/10.5194/bg-12-4939-2015, 2015.

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K.
M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D.,
Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C.,
Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S.
R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A.,
Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle,
R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Feather-
stone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N.,
Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J.,
Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss,
B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V.,
Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Land-
schützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke,
A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S.,
Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T.,
Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S.,
Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger,
R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J.,
Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A.
C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-
decade record of high-quality fCO2 data in version 3 of the Sur-
face Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–
413, https://doi.org/10.5194/essd-8-383-2016, 2016.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C.,
Maclaurin, D., and Wanderman-Milne, S.: JAX: composable
transformations of Python+NumPy programs, GitHub, avail-
able at: http://github.com/google/jax (last access: 23 December
2021), 2018.

Branson, O.: oscarbranson/cbsyst: beta, Zenodo [code],
https://doi.org/10.5281/zenodo.1402261, 2018.

Broecker, W. S., Takahashi, T., Simpson, H. J., and
Peng, T.-H.: Fate of Fossil Fuel Carbon Dioxide and
the Global Carbon Budget, Science, 206, 409–418,
https://doi.org/10.1126/science.206.4417.409, 1979.

Cai, W.-J. and Wang, Y.: The chemistry, fluxes, and sources
of carbon dioxide in the estuarine waters of the Satilla and
Altamaha Rivers, Georgia, Limnol. Oceanogr., 43, 657–668,
https://doi.org/10.4319/lo.1998.43.4.0657, 1998.

Cai, W.-J., Huang, W.-J., Luther, G. W., Pierrot, D., Li, M., Testa,
J., Xue, M., Joesoef, A., Mann, R., Brodeur, J., Xu, Y.-Y., Chen,
B., Hussain, N., Waldbusser, G. G., Cornwell, J., and Kemp,
W. M.: Redox reactions and weak buffering capacity lead to
acidification in the Chesapeake Bay, Nat. Commun., 8, 369,
https://doi.org/10.1038/s41467-017-00417-7, 2017.

Cantrell, K. J., Serkiz, S. M., and Perdue, E. M.: Evaluation of
acid neutralizing capacity data for solutions containing natu-
ral organic acids, Geochim. Cosmochim. Acta, 54, 1247–1254,
https://doi.org/10.1016/0016-7037(90)90150-J, 1990.

Clarke, J. S., Achterberg, E. P., Connelly, D. P., Schuster, U., and
Mowlem, M.: Developments in marine pCO2 measurement tech-
nology; towards sustained in situ observations, Trends Anal.
Chem., 88, 53–61, https://doi.org/10.1016/j.trac.2016.12.008,
2017.

Clegg, S. L. and Whitfield, M.: A chemical model of seawa-
ter including dissolved ammonia and the stoichiometric disso-
ciation constant of ammonia in estuarine water and seawater
from −2 to 40 ◦C, Geochim. Cosmochim. Acta, 59, 2403–2421,
https://doi.org/10.1016/0016-7037(95)00135-2, 1995.

Culkin, F.: The major constituents of sea water, in: Chemical
Oceanography, edited by: Riley, J. P. and Skirrow, G., Academic
Press, London, UK, vol. 1, 121–161, 1965.

Deffeyes, K. S.: Carbonate Equilibria: A Graphic and Al-
gebraic Approach, Limnol. Oceanogr., 10, 412–426,
https://doi.org/10.4319/lo.1965.10.3.0412, 1965.

Dickson, A. and Millero, F.: A comparison of the equilib-
rium constants for the dissociation of carbonic acid in
seawater media, Deep-Sea Res. Pt. A, 34, 1733–1743,
https://doi.org/10.1016/0198-0149(87)90021-5, 1987.

Dickson, A. G.: An exact definition of total alkalinity and a pro-
cedure for the estimation of alkalinity and total inorganic car-
bon from titration data, Deep-Sea Res. Pt. A, 28, 609–623,
https://doi.org/10.1016/0198-0149(81)90121-7, 1981.

Dickson, A. G.: Standard potential of the reaction: AgCl(s)+
0.5H2(g)=Ag(s)+HCl(aq), and the standard acidity constant of
the ion HSO−4 in synthetic sea water from 273.15 to 318.15 K, J.
Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-
9614(90)90074-Z, 1990a.

Dickson, A. G.: Thermodynamics of the dissociation of boric
acid in synthetic seawater from 273.15 to 318.15 K, Deep-
Sea Res. Pt. A, 37, 755–766, https://doi.org/10.1016/0198-
0149(90)90004-F, 1990b.

Dickson, A. G. and Riley, J. P.: The estimation of acid dis-
sociation constants in sea-water media from potentiometric
titrations with strong base. II. The dissociation of phospho-
ric acid, Mar. Chem., 7, 101–109, https://doi.org/10.1016/0304-
4203(79)90002-1, 1979.

Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide
to Best Practices for Ocean CO2 Measurements, PICES Special
Publication 3, North Pacific Marine Science Organization, Sid-
ney, BC, Canada, 2007.

Dickson, A. G., Camões, M. F., Spitzer, P., Fisicaro, P., Stoica,
D., Pawlowicz, R., and Feistel, R.: Metrological challenges for
measurements of key climatological observables. Part 3: seawa-
ter pH, Metrologia, 53, R26–R39, https://doi.org/10.1088/0026-
1394/53/1/R26, 2015.

Doney, S. C., Fabry, V. J., Feely, R. A., and Kley-
pas, J. A.: Ocean Acidification: The Other CO2
Problem, Annu. Rev. Marine Sci., 1, 169–192,
https://doi.org/10.1146/annurev.marine.010908.163834, 2009.

Edmond, J. M. and Gieskes, J. M. T. M.: On the calculation of the
degree of saturation of sea water with respect to calcium car-
bonate under in situ conditions, Geochim. Cosmochim. Acta,
34, 1261–1291, https://doi.org/10.1016/0016-7037(70)90041-4,
1970.

Egleston, E. S., Sabine, C. L., and Morel, F. M. M.: Revelle revis-
ited: Buffer factors that quantify the response of ocean chemistry
to changes in DIC and alkalinity, Global Biogeochem. Cy., 24,
GB1002, https://doi.org/10.1029/2008GB003407, 2010.

Frankignoulle, M.: A complete set of buffer factors for
acid/base CO2 system in seawater, J. Mar. Syst., 5, 111–118,
https://doi.org/10.1016/0924-7963(94)90026-4, 1994.

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022

https://doi.org/10.5194/os-10-69-2014
https://doi.org/10.5194/bg-12-4939-2015
https://doi.org/10.5194/essd-8-383-2016
http://github.com/google/jax
https://doi.org/10.5281/zenodo.1402261
https://doi.org/10.1126/science.206.4417.409
https://doi.org/10.4319/lo.1998.43.4.0657
https://doi.org/10.1038/s41467-017-00417-7
https://doi.org/10.1016/0016-7037(90)90150-J
https://doi.org/10.1016/j.trac.2016.12.008
https://doi.org/10.1016/0016-7037(95)00135-2
https://doi.org/10.4319/lo.1965.10.3.0412
https://doi.org/10.1016/0198-0149(87)90021-5
https://doi.org/10.1016/0198-0149(81)90121-7
https://doi.org/10.1016/0021-9614(90)90074-Z
https://doi.org/10.1016/0021-9614(90)90074-Z
https://doi.org/10.1016/0198-0149(90)90004-F
https://doi.org/10.1016/0198-0149(90)90004-F
https://doi.org/10.1016/0304-4203(79)90002-1
https://doi.org/10.1016/0304-4203(79)90002-1
https://doi.org/10.1088/0026-1394/53/1/R26
https://doi.org/10.1088/0026-1394/53/1/R26
https://doi.org/10.1146/annurev.marine.010908.163834
https://doi.org/10.1016/0016-7037(70)90041-4
https://doi.org/10.1029/2008GB003407
https://doi.org/10.1016/0924-7963(94)90026-4


M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 41

Frankignoulle, M., Canon, C., and Gattuso, J.-P.: Marine calcifi-
cation as a source of carbon dioxide: Positive feedback of in-
creasing atmospheric CO2, Limnol. Oceanogr., 39, 458–462,
https://doi.org/10.4319/lo.1994.39.2.0458, 1994.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M.,
Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch,
S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin,
S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R.,
Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan,
S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie,
L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritza-
lis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V.,
Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K.,
Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre,
N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland,
G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I.,
Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poul-
ter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger,
J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tan-
hua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G.,
Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J.,
Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.:
Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–
3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.

Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., Orr, J., Gentili, B.,
Hagens, M., Hofmann, A., Mueller, J.-D., Proye, A., Rae, J.,
and Soetaert, K.: seacarb: Seawater Carbonate Chemistry, avail-
able at: https://CRAN.R-project.org/package=seacarb, last ac-
cess: 23 December 2021.

Goyet, C. and Poisson, A.: New determination of carbonic
acid dissociation constants in seawater as a function of tem-
perature and salinity, Deep-Sea Res. Pt. A, 36, 1635–1654,
https://doi.org/10.1016/0198-0149(89)90064-2, 1989.

Hagens, M. and Middelburg, J. J.: Generalised expres-
sions for the response of pH to changes in ocean
chemistry, Geochim. Cosmochim. Acta, 187, 334–349,
https://doi.org/10.1016/j.gca.2016.04.012, 2016.

Hansson, I.: The Determination of Dissociation Constants of Car-
bonic Acid in Synthetic Sea Water in the Salinity Range of 20–
40 ‰ and Temperature Range of 5–30 ◦C, Acta Chem. Scand.,
27, 931–944, https://doi.org/10.3891/acta.chem.scand.27-0931,
1973a.

Hansson, I.: A new set of acidity constants for carbonic acid
and boric acid in sea water, Deep-Sea Res., 20, 461–478,
https://doi.org/10.1016/0011-7471(73)90100-9, 1973b.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

Humphreys, M. P., Daniels, C. J., Wolf-Gladrow, D. A.,
Tyrrell, T., and Achterberg, E. P.: On the influence of
marine biogeochemical processes over CO2 exchange be-
tween the atmosphere and ocean, Mar. Chem., 199, 1–11,
https://doi.org/10.1016/j.marchem.2017.12.006, 2018.

Humphreys, M. P., Gregor, L., Pierrot, D., van Heuven, S. M. A.
C., Lewis, E. R., and Wallace, D. W. R.: PyCO2SYS: marine
carbonate system calculations in Python (v1.3.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3780139, 2020.

Humphreys, M. P., Schiller, A. J., Sandborn, D., Gregor,
L., Pierrot, D., van Heuven, S. M. A. C., Lewis, E.
R., and Wallace, D. W. R.: PyCO2SYS: marine carbon-
ate system calculations in Python (v1.8.0), Zenodo [code],
https://doi.org/10.5281/zenodo.5602840, 2021.

Ingle, S. E.: Solubility of calcite in the ocean, Mar. Chem., 3, 301–
319, https://doi.org/10.1016/0304-4203(75)90010-9, 1975.

Ingle, S. E., Culberson, C. H., Hawley, J. E., and Pytkow-
icz, R. M.: The solubility of calcite in seawater at atmo-
spheric pressure and 35 ‰ salinity, Mar. Chem., 1, 295–307,
https://doi.org/10.1016/0304-4203(73)90019-4, 1973.

IUPAC: Compendium of Chemical Terminology, 2nd edn. (the
“Gold Book”), Blackwell Scientific Publications, Oxford, UK,
https://doi.org/10.1351/goldbook, 1997.

JCGM: JCGM 100:2008 Evaluation of measurement data –
Guide to the expression of uncertainty in measurement, Bu-
reau International des Poids et Mesures, Sèvres, France, avail-
able at: https://www.bipm.org/utils/common/documents/jcgm/
JCGM_100_2008_E.pdf (last access: 23 December 2021), 2008.

Kester, D. R. and Pytkowicz, R. M.: Determination of
the Apparent Dissociation Constants of Phosphoric
Acid in Seawater, Limnol. Oceanogr., 12, 243–252,
https://doi.org/10.4319/lo.1967.12.2.0243, 1967.

Khoo, K. H., Ramette, R. W., Culberson, C. H., and Bates, R. G.:
Determination of hydrogen ion concentrations in seawater from
5 to 40C: standard potentials at salinities from 20 to 45 per mille,
Anal. Chem., 49, 29–34, https://doi.org/10.1021/ac50009a016,
1977.

Kuliński, K., Schneider, B., Hammer, K., Machulik, U., and Schulz-
Bull, D.: The influence of dissolved organic matter on the acid–
base system of the Baltic Sea, J. Mar. Syst., 132, 106–115,
https://doi.org/10.1016/j.jmarsys.2014.01.011, 2014.

Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A.,
Kozyr, A., Álvarez, M., Becker, S., Brown, P. J., Carter, B. R.,
Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M.,
Ishii, M., Jeansson, E., Jutterström, S., Jones, S. D., Karlsen, M.
K., Lo Monaco, C., Michaelis, P., Murata, A., Pérez, F. F., Pfeil,
B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo,
A., Wanninkhof, R., Woosley, R. J., and Key, R. M.: An updated
version of the global interior ocean biogeochemical data prod-
uct, GLODAPv2.2021, Earth Syst. Sci. Data, 13, 5565–5589,
https://doi.org/10.5194/essd-13-5565-2021, 2021.

Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A.,
and Liu, Y.-M.: The universal ratio of boron to chlorinity for the
North Pacific and North Atlantic oceans, Geochim. Cosmochim.
Acta, 74, 1801–1811, https://doi.org/10.1016/j.gca.2009.12.027,
2010.

Lewis, E. and Wallace, D. W. R.: Program Developed for
CO2 System Calculations, ORNL/CDIAC-105, Carbon Diox-
ide Information Analysis Center, Oak Ridge National Lab-
oratory, U.S. Department of Energy, Oak Ridge, TN, USA,
https://doi.org/10.15485/1464255, 1998.

Li, Y.-H., Takahashi, T., and Broecker, W. S.: Degree of satura-
tion of CaCO3 in the oceans, J. Geophys. Res., 74, 5507–5525,
https://doi.org/10.1029/JC074i023p05507, 1969.

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022

https://doi.org/10.4319/lo.1994.39.2.0458
https://doi.org/10.5194/essd-12-3269-2020
https://CRAN.R-project.org/package=seacarb
https://doi.org/10.1016/0198-0149(89)90064-2
https://doi.org/10.1016/j.gca.2016.04.012
https://doi.org/10.3891/acta.chem.scand.27-0931
https://doi.org/10.1016/0011-7471(73)90100-9
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.marchem.2017.12.006
https://doi.org/10.5281/zenodo.3780139
https://doi.org/10.5281/zenodo.5602840
https://doi.org/10.1016/0304-4203(75)90010-9
https://doi.org/10.1016/0304-4203(73)90019-4
https://doi.org/10.1351/goldbook
https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://doi.org/10.4319/lo.1967.12.2.0243
https://doi.org/10.1021/ac50009a016
https://doi.org/10.1016/j.jmarsys.2014.01.011
https://doi.org/10.5194/essd-13-5565-2021
https://doi.org/10.1016/j.gca.2009.12.027
https://doi.org/10.15485/1464255
https://doi.org/10.1029/JC074i023p05507


42 M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python

Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2
calculated from dissolved inorganic carbon, alkalinity, and equa-
tions for K1 and K2: validation based on laboratory measure-
ments of CO2 in gas and seawater at equilibrium, Mar. Chem.,
70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0,
2000.

Maclaurin, D.: Autograd: Automatic Differentiation for Python, in:
Modeling, Inference and Optimization with Composable Dif-
ferentiable Procedures, PhD thesis, Harvard University, Cam-
bridge, MA, USA, 41–57, available at: https://dougalmaclaurin.
com/phd-thesis.pdf (last access: 23 December 2021), 2016.

Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkow-
icz, R. M.: Measurement of the Apparent Dissocia-
tion Constants of Carbonic Acid in Seawater at At-
mospheric Pressure, Limnol. Oceanogr., 18, 897–907,
https://doi.org/10.4319/lo.1973.18.6.0897, 1973.

Millero, F. J.: The thermodynamics of the carbonate system
in seawater, Geochim. Cosmochim. Acta, 43, 1651–1661,
https://doi.org/10.1016/0016-7037(79)90184-4, 1979.

Millero, F. J.: Influence of pressure on chemical processes in the sea,
in: Chemical Oceanography, edited by: Riley, J. P. and Chester,
R., Academic Press, 1983.

Millero, F. J.: Thermodynamics of the carbon dioxide system
in the oceans, Geochim. Cosmochim. Acta, 59, 661–677,
https://doi.org/10.1016/0016-7037(94)00354-O, 1995.

Millero, F. J.: The Carbonate System in Marine Environ-
ments, in: Chemical Processes in Marine Environments,
edited by: Gianguzza, A., Pelizetti, E., and Sammartano, S.,
Environmental Science, Springer, Berlin, Heidelberg, 9–41,
https://doi.org/10.1007/978-3-662-04207-6_2, 2000.

Millero, F. J.: Carbonate constants for estuarine waters, Mar.
Freshw. Res., 61, 139–142, https://doi.org/10.1071/MF09254,
2010.

Millero, F. J., Pierrot, D., Lee, K., Wanninkhof, R., Feely,
R., Sabine, C. L., Key, R. M., and Takahashi, T.: Dis-
sociation constants for carbonic acid determined from
field measurements, Deep-Sea Res. Pt. I, 49, 1705–1723,
https://doi.org/10.1016/S0967-0637(02)00093-6, 2002.

Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., and
Pierrot, D.: Dissociation constants of carbonic acid in seawater
as a function of salinity and temperature, Mar. Chem., 100, 80–
94, https://doi.org/10.1016/j.marchem.2005.12.001, 2006.

Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.:
The composition of Standard Seawater and the definition of the
Reference-Composition Salinity Scale, Deep-Sea Res. Pt. I, 55,
50–72, https://doi.org/10.1016/j.dsr.2007.10.001, 2008.

Mojica Prieto, F. J. and Millero, F. J.: The values of pK1+ pK2
for the dissociation of carbonic acid in seawater, Geochim. Cos-
mochim. Acta, 66, 2529–2540, https://doi.org/10.1016/S0016-
7037(02)00855-4, 2002.

Morris, A. W. and Riley, J. P.: The bromide/chlorinity and sul-
phate/chlorinity ratio in sea water, Deep-Sea Res., 13, 699–705,
https://doi.org/10.1016/0011-7471(66)90601-2, 1966.

Muller, F. L. L. and Bleie, B.: Estimating the organic acid
contribution to coastal seawater alkalinity by potentiometric
titrations in a closed cell, Anal. Chim. Acta, 619, 183–191,
https://doi.org/10.1016/j.aca.2008.05.018, 2008.

Munhoven, G.: Mathematics of the total alkalinity–pH equation
– pathway to robust and universal solution algorithms: the

SolveSAPHE package v1.0.1, Geosci. Model Dev., 6, 1367–
1388, https://doi.org/10.5194/gmd-6-1367-2013, 2013.

Munhoven, G.: SolveSAPHE-r2 (v2.0.1): revisiting and extending
the Solver Suite for Alkalinity-PH Equations for usage with CO2,
HCO−3 or CO2−

3 input data, Geosci. Model Dev., 14, 4225–4240,
https://doi.org/10.5194/gmd-14-4225-2021, 2021.

Orr, J. C.: Recent and future changes in ocean carbon-
ate chemistry, in: Ocean Acidification, edited by: Gattuso,
J. P. and Hansson, L., Oxford University Press, 41–66,
https://doi.org/10.1093/oso/9780199591091.003.0008, 2011.

Orr, J. C. and Epitalon, J.-M.: Improved routines to model the ocean
carbonate system: mocsy 2.0, Geosci. Model Dev., 8, 485–499,
https://doi.org/10.5194/gmd-8-485-2015, 2015.

Orr, J. C., Epitalon, J.-M., and Gattuso, J.-P.: Comparison of
ten packages that compute ocean carbonate chemistry, Biogeo-
sciences, 12, 1483–1510, https://doi.org/10.5194/bg-12-1483-
2015, 2015.

Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L., Dan-
abasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-C., Graven,
H., Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K.,
Matear, R. J., McKinley, G. A., Mouchet, A., Oschlies, A., Ro-
manou, A., Schlitzer, R., Tagliabue, A., Tanhua, T., and Yool, A.:
Biogeochemical protocols and diagnostics for the CMIP6 Ocean
Model Intercomparison Project (OMIP), Geosci. Model Dev., 10,
2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, 2017.

Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gat-
tuso, J.-P.: Routine uncertainty propagation for the ma-
rine carbon dioxide system, Mar. Chem., 207, 84–107,
https://doi.org/10.1016/j.marchem.2018.10.006, 2018.

Park, P. K.: Oceanic CO2 system: an evaluation of ten
methods of investigation, Limnol. Oceanogr., 14, 179–186,
https://doi.org/10.4319/lo.1969.14.2.0179, 1969.

Peng, T.-H., Takahashi, T., Broecker, W. S., and Olafs-
son, J.: Seasonal variability of carbon dioxide, nutrients
and oxygen in the northern North Atlantic surface wa-
ter: observations and a model, Tellus B, 39, 439–458,
https://doi.org/10.3402/tellusb.v39i5.15361, 1987.

Perez, F. F. and Fraga, F.: Association constant of fluoride
and hydrogen ions in seawater, Mar. Chem., 21, 161–168,
https://doi.org/10.1016/0304-4203(87)90036-3, 1987.

Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Ex-
cel Program Developed for CO2 System Calculations, avail-
able at: https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_
XLS_v2.1/ (last access: 23 December 2021), 2006.

Pierrot, D., Epitalon, J.-M., Orr, J. C., Lewis, E. R., and Wallace,
D.: MS Excel program developed for CO2 system calculations –
version 3.0, available at: https://github.com/dpierrot/co2sys_xl,
last access: 23 December 2021.

Raimondi, L., Matthews, J. B. R., Atamanchuk, D., Azetsu-
Scott, K., and Wallace, D. W. R.: The internal consistency
of the marine carbon dioxide system for high latitude ship-
board and in situ monitoring, Mar. Chem., 213, 49–70,
https://doi.org/10.1016/j.marchem.2019.03.001, 2019.

Revelle, R. and Suess, H. E.: Carbon Dioxide Exchange Between
Atmosphere and Ocean and the Question of an Increase of
Atmospheric CO2 during the Past Decades, Tellus, 9, 18–27,
https://doi.org/10.3402/tellusa.v9i1.9075, 1957.

Richier, S., Achterberg, E. P., Humphreys, M. P., Poulton,
A. J., Suggett, D. J., Tyrrell, T., and Moore, C. M.: Ge-

Geosci. Model Dev., 15, 15–43, 2022 https://doi.org/10.5194/gmd-15-15-2022

https://doi.org/10.1016/S0304-4203(00)00022-0
https://dougalmaclaurin.com/phd-thesis.pdf
https://dougalmaclaurin.com/phd-thesis.pdf
https://doi.org/10.4319/lo.1973.18.6.0897
https://doi.org/10.1016/0016-7037(79)90184-4
https://doi.org/10.1016/0016-7037(94)00354-O
https://doi.org/10.1007/978-3-662-04207-6_2
https://doi.org/10.1071/MF09254
https://doi.org/10.1016/S0967-0637(02)00093-6
https://doi.org/10.1016/j.marchem.2005.12.001
https://doi.org/10.1016/j.dsr.2007.10.001
https://doi.org/10.1016/S0016-7037(02)00855-4
https://doi.org/10.1016/S0016-7037(02)00855-4
https://doi.org/10.1016/0011-7471(66)90601-2
https://doi.org/10.1016/j.aca.2008.05.018
https://doi.org/10.5194/gmd-6-1367-2013
https://doi.org/10.5194/gmd-14-4225-2021
https://doi.org/10.1093/oso/9780199591091.003.0008
https://doi.org/10.5194/gmd-8-485-2015
https://doi.org/10.5194/bg-12-1483-2015
https://doi.org/10.5194/bg-12-1483-2015
https://doi.org/10.5194/gmd-10-2169-2017
https://doi.org/10.1016/j.marchem.2018.10.006
https://doi.org/10.4319/lo.1969.14.2.0179
https://doi.org/10.3402/tellusb.v39i5.15361
https://doi.org/10.1016/0304-4203(87)90036-3
https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_XLS_v2.1/
https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_XLS_v2.1/
https://github.com/dpierrot/co2sys_xl
https://doi.org/10.1016/j.marchem.2019.03.001
https://doi.org/10.3402/tellusa.v9i1.9075


M. P. Humphreys et al.: PyCO2SYS v1.8: marine carbonate system calculations in Python 43

ographical CO2 sensitivity of phytoplankton correlates with
ocean buffer capacity, Glob. Change Biol., 24, 4438–4452,
https://doi.org/10.1111/gcb.14324, 2018.

Riley, J. P.: The occurrence of anomalously high fluoride con-
centrations in the North Atlantic, Deep-Sea Res., 12, 219–220,
https://doi.org/10.1016/0011-7471(65)90027-6, 1965.

Riley, J. P. and Tongudai, M.: The major cation/chlorinity
ratios in sea water, Chem. Geol., 2, 263–269,
https://doi.org/10.1016/0009-2541(67)90026-5, 1967.

Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson,
T., Good, C. E., Millero, F. J., and Campbell, D. M.: The dis-
sociation constants of carbonic acid in seawater at salinities 5
to 45 and temperatures 0 to 45 ◦C, Mar. Chem., 44, 249–267,
https://doi.org/10.1016/0304-4203(93)90207-5, 1993.

Schockman, K. M. and Byrne, R. H.: Spectrophotometric
Determination of the Bicarbonate Dissociation Constant
in Seawater, Geochim. Cosmochim. Acta, 300, 231–245,
https://doi.org/10.1016/j.gca.2021.02.008, 2021.

Schoonen, M. A. A. and Barnes, H. L.: An approxima-
tion of the second dissociation constant for H2S, Geochim.
Cosmochim. Acta, 52, 649–654, https://doi.org/10.1016/0016-
7037(88)90326-2, 1988.

Sharp, J. D. and Byrne, R. H.: Carbonate ion concen-
trations in seawater: Spectrophotometric determina-
tion at ambient temperatures and evaluation of propa-
gated calculation uncertainties, Mar. Chem., 209, 70–80,
https://doi.org/10.1016/j.marchem.2018.12.001, 2019.

Sharp, J. D. and Byrne, R. H.: Interpreting measurements of to-
tal alkalinity in marine and estuarine waters in the presence of
proton-binding organic matter, Deep-Sea Res. Pt. I, 165, 103 338,
https://doi.org/10.1016/j.dsr.2020.103338, 2020.

Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr,
J. C., Lewis, E. R., and Wallace, D. W.: CO2SYSv3 for MAT-
LAB, Zenodo [code], https://doi.org/10.5281/zenodo.3952803,
2020.

Sillén, L. G., Martell, A. E., and Bjerrum, J.: Stability constants of
metal-ion complexes, special publication, 17th edn., Chemical
Society, London, UK, 1964.

Sulpis, O., Lauvset, S. K., and Hagens, M.: Current estimates of
K1* and K2* appear inconsistent with measured CO2 system
parameters in cold oceanic regions, Ocean Sci., 16, 847–862,
https://doi.org/10.5194/os-16-847-2020, 2020.

Takahashi, T., Williams, R. T., and Bos, D. L.: Carbonate Chemistry,
in: GEOSECS Pacific Expedition: Hydrographic Data, vol. 3,
77–105, National Science Foundation, Washington, D.C., 1982.

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C.,
Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez,
F., Sabine, C., Watson, A., Bakker, D. C., Schuster, U., Metzl,
N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnar-
son, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R.,
Wong, C., Delille, B., Bates, N., and de Baar, H. J.: Climatolog-
ical mean and decadal change in surface ocean pCO2, and net
sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II,
56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.

Turner, D. R., Achterberg, E. P., Chen, C.-T. A., Clegg, S. L., Hatje,
V., Maldonado, M. T., Sander, S. G., Berg, V. D., G, C. M., and
Wells, M.: Toward a Quality-Controlled and Accessible Pitzer
Model for Seawater and Related Systems, Front. Mar. Sci., 3,
139, https://doi.org/10.3389/fmars.2016.00139, 2016.

Ulfsbo, A., Kuliński, K., Anderson, L. G., and Turner,
D. R.: Modelling organic alkalinity in the Baltic Sea us-
ing a Humic-Pitzer approach, Mar. Chem., 168, 18–26,
https://doi.org/10.1016/j.marchem.2014.10.013, 2015.

Uppström, L. R.: The boron/chlorinity ratio of deep-sea wa-
ter from the Pacific Ocean, Deep-Sea Res., 21, 161–162,
https://doi.org/10.1016/0011-7471(74)90074-6, 1974.

van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wal-
lace, D. W. R.: CO2SYS v 1.1, MATLAB program developed for
CO2 system calculations, ORNL/CDIAC-105b, Carbon Diox-
ide Information Analysis Center, Oak Ridge National Labora-
tory, U.S. Department of Energy, Oak Ridge, TN, USA, avail-
able at: https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_
MATLAB_v1.1/ (last access: 23 December 2021), 2011.

Velo, A., Pérez, F. F., Lin, X., Key, R. M., Tanhua, T., de la
Paz, M., Olsen, A., van Heuven, S., Jutterström, S., and Ríos,
A. F.: CARINA data synthesis project: pH data scale unifica-
tion and cruise adjustments, Earth Syst. Sci. Data, 2, 133–155,
https://doi.org/10.5194/essd-2-133-2010, 2010.

Waters, J., Millero, F. J., and Woosley, R. J.: Corrigendum
to “The free proton concentration scale for seawater pH”,
[MARCHE: 149 (2013) 8–22], Mar. Chem., 165, 66–67,
https://doi.org/10.1016/j.marchem.2014.07.004, 2014.

Waters, J. F. and Millero, F. J.: The free proton concen-
tration scale for seawater pH, Mar. Chem., 149, 8–22,
https://doi.org/10.1016/j.marchem.2012.11.003, 2013.

Weiss, R. F.: Carbon dioxide in water and seawater: the
solubility of a non-ideal gas, Mar. Chem., 2, 203–215,
https://doi.org/10.1016/0304-4203(74)90015-2, 1974.

Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and
seawater, Mar. Chem., 8, 347–359, https://doi.org/10.1016/0304-
4203(80)90024-9, 1980.

Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger,
A., and Dickson, A. G.: Total alkalinity: The explicit
conservative expression and its application to bio-
geochemical processes, Mar. Chem., 106, 287–300,
https://doi.org/10.1016/j.marchem.2007.01.006, 2007.

Xu, Y.-Y., Pierrot, D., and Cai, W.-J.: Ocean carbonate
system computation for anoxic waters using an up-
dated CO2SYS program, Mar. Chem., 195, 90–93,
https://doi.org/10.1016/j.marchem.2017.07.002, 2017.

Yao, W. and Millero, F. J.: The chemistry of the anoxic waters
in the Framvaren Fjord, Norway, Aquat. Geochem., 1, 53–88,
https://doi.org/10.1007/BF01025231, 1995.

Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium,
Kinetics, Isotopes, Elsevier Oceanography Series 65, Elsevier
B.V., Amsterdam, the Netherlands, 2001.

https://doi.org/10.5194/gmd-15-15-2022 Geosci. Model Dev., 15, 15–43, 2022

https://doi.org/10.1111/gcb.14324
https://doi.org/10.1016/0011-7471(65)90027-6
https://doi.org/10.1016/0009-2541(67)90026-5
https://doi.org/10.1016/0304-4203(93)90207-5
https://doi.org/10.1016/j.gca.2021.02.008
https://doi.org/10.1016/0016-7037(88)90326-2
https://doi.org/10.1016/0016-7037(88)90326-2
https://doi.org/10.1016/j.marchem.2018.12.001
https://doi.org/10.1016/j.dsr.2020.103338
https://doi.org/10.5281/zenodo.3952803
https://doi.org/10.5194/os-16-847-2020
https://doi.org/10.1016/j.dsr2.2008.12.009
https://doi.org/10.3389/fmars.2016.00139
https://doi.org/10.1016/j.marchem.2014.10.013
https://doi.org/10.1016/0011-7471(74)90074-6
https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_MATLAB_v1.1/
https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_MATLAB_v1.1/
https://doi.org/10.5194/essd-2-133-2010
https://doi.org/10.1016/j.marchem.2014.07.004
https://doi.org/10.1016/j.marchem.2012.11.003
https://doi.org/10.1016/0304-4203(74)90015-2
https://doi.org/10.1016/0304-4203(80)90024-9
https://doi.org/10.1016/0304-4203(80)90024-9
https://doi.org/10.1016/j.marchem.2007.01.006
https://doi.org/10.1016/j.marchem.2017.07.002
https://doi.org/10.1007/BF01025231

	Abstract
	Introduction
	Methods inherited from CO2SYS
	Units and pH scales
	Parameterisations and constants
	Input and output conditions
	Solving the marine carbonate system

	New developments in PyCO2SYS
	Solving the alkalinity–pH equation
	Automatic differentiation
	Vectorised arguments and solver jumps
	pH scale conversions

	Initial pH estimates
	Solving from AT and fCO2
	Solving from AT and [HCO3-]
	Solving from AT and [CO32-]

	New calculations, components, and constants
	Additional alkalinity components
	Gas constant
	Substrate:inhibitor ratio
	Buffer factors
	Atmospheric pressure

	No-solve modes
	Multidimensional arguments
	Uncertainty propagation

	Validation
	Internal consistency
	Round-robin test
	Buffer factors
	Uncertainty propagation simulations

	Comparison with other CO2SYS software
	Temperature–salinity–pressure parameterisations
	Solving the marine carbonate system
	Uncertainty propagation comparisons

	Simulated seawater titration

	Discussion
	Initial pH estimates
	Parameter pairs with multiple solutions
	Total alkalinity and carbonate ion content
	Dissolved inorganic carbon and bicarbonate ion content

	Pressure corrections for pCO2
	Computational speed
	All combinations
	GLODAP

	Outlook

	Appendix A: pH scales and conversions
	Appendix B: Total alkalinity and its components
	Appendix B1: Total alkalinity
	Appendix B2: Water
	Appendix B3: Carbonic acid
	Appendix B4: Boric acid
	Appendix B5: Phosphoric acid
	Appendix B6: Orthosilicic acid
	Appendix B7: Ammonium
	Appendix B8: Sulfide
	Appendix B9: Sulfate
	Appendix B10: Fluoride
	Appendix B11: Arbitrary additional components

	Appendix C: Solving the core marine carbonate system
	Appendix C1: General considerations
	Appendix C1.1: pH to [H+] conversions
	Appendix C1.2: Known pCO2, xCO2 or [CO2(aq)]

	Appendix C2: Solving routines
	Appendix C2.1: From AT and TC
	Appendix C2.2: From AT and pH
	Appendix C2.3: From AT and fCO2
	Appendix C2.4: From AT and [CO32-]
	Appendix C2.5: From AT and [HCO3-]
	Appendix C2.6: From TC and pH
	Appendix C2.7: From TC and fCO2
	Appendix C2.8: From TC and [CO32-]
	Appendix C2.9: From TC and [HCO3-]
	Appendix C2.10: From pH and fCO2
	Appendix C2.11: From pH and [CO32-]
	Appendix C2.12: From pH and [HCO3-]
	Appendix C2.13: From fCO2 and [CO32-]
	Appendix C2.14: From fCO2 and [HCO3-]
	Appendix C2.15: From [CO32-] and [HCO3-]


	Appendix D: Other marine carbonate system variables
	Appendix E: Buffer factors with automatic differentiation
	Appendix E1: Buffer factors of Egleston et al. (2010)
	Appendix E2: Revelle factor
	Appendix E3: Isocapnic quotient and 

	Appendix F: Initial pH estimate when solving from AT and TC
	Appendix G: Revelle factor calculation errors in older versions of CO2SYS-MATLAB
	Appendix H: Fixed a values for uncertainty analysis
	Appendix I: Set-up for computational speed testing
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

