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Abstract. Precipitation nowcasting plays a vital role in pre-
venting meteorological disasters, and Doppler radar data act
as an important input for nowcasting models. When using the
traditional extrapolation method it is difficult to model highly
nonlinear echo movements. The key challenge of the now-
casting mission lies in achieving high-precision radar echo
extrapolation. In recent years, machine learning has made
great progress in the extrapolation of weather radar echoes.
However, most of models neglect the multi-modal character-
istics of radar echo data, resulting in blurred and unrealis-
tic prediction images. This paper aims to solve this problem
by utilizing the features of a generative adversarial network
(GAN), which can enhance multi-modal distribution mod-
eling, and design the radar echo extrapolation model GAN–
argcPredNet v1.0. The model is composed of an argcPredNet
generator and a convolutional neural network discriminator.
In the generator, a gate controlling the memory and output is
designed in the rgcLSTM component, thereby reducing the
loss of spatiotemporal information. In the discriminator, the
model uses a dual-channel input method, which enables it
to strictly score according to the true echo distribution, and
it thus has a more powerful discrimination ability. Through
experiments on a radar dataset from Shenzhen, China, the
results show that the radar echo hit rate (probability of de-
tection; POD) and critical success index (CSI) have an av-
erage increase of 21.4 % and 19 %, respectively, compared
with rgcPredNet under different intensity rainfall thresholds,
and the false alarm rate (FAR) has decreased by an average
of 17.9 %. We also found a problem during the comparison

of the result graph and the evaluation index. The recursive
prediction method will produce the phenomenon that the pre-
diction result will gradually deviate from the true value over
time. In addition, the accuracy of high-intensity echo extrap-
olation is relatively low. This is a question worthy of further
investigation. In the future, we will continue to conduct re-
search from these two directions.

1 Introduction

Precipitation nowcasting refers to the prediction and analysis
of rainfall in the target area over a short period of time (0–6 h)
(Bihlo, 2019; Luo et al., 2020). The important data needed
for this work come from Doppler weather radar with high
temporal and spatial resolution (Wang et al., 2007). Relevant
departments can issue early warning information through ac-
curate nowcasting to avoid loss of life and destruction of
infrastructure (Luo et al., 2021). However, this task is ex-
tremely challenging due to its very low tolerance for time
and position errors (Sun et al., 2014).

The existing nowcasting systems mainly include two
types, numerical weather prediction (NWP) and radar echo
extrapolation (Chen et al., 2020). The widely used optical
flow method several problems, such as its poor capture qual-
ity in fast echo change regions, the high complexity of the al-
gorithm and its low efficiency (Shangzan et al., 2017). Since
echo extrapolation can be considered a time series image-
prediction problem, these shortcomings of the optical flow
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method are expected to be solved by using a recurrent neural
network (RNN) (Giles et al., 1994).

With the continuous development of deep learning, more
and more neural networks have been applied to the field
of nowcasting. Forecast models such as ConvLSTM and
EBGAN-Forecaster show that this new method’s extrapo-
lation effect is better than that of optical flow method (Shi
et al., 2015; Chen et al., 2019). However, these models still
have the problem of blurred and unrealistic prediction im-
ages (Tian et al., 2020; Xie et al., 2020; Jing et al., 2019).
One of the main reasons is that radar echo maps are typically
multi-modal data acquired by multiple sensors and different
stations; some algorithms ignore this feature of radar echo
maps, using the mean square error and mean absolute error
as the loss function, which is better suited to a unimodal dis-
tribution.

The paper proposes a generative adversarial network-
argcPredNet (GAN–argcPredNet) network model, which
aims to solve this problem through GAN’s ability to
strengthen the characteristics of multi-modal data model-
ing. The generator adopts the same deep coding–decoding
method as PredNet to establish a prediction model, and uses
a new structure of convolutional long short-term memory
(LSTM) as a predictive neuron, which can effectively re-
duce the loss of spatiotemporal information compared with
rgcLSTM. The deep convolutional network is used as the dis-
criminator to classify the distribution, and the dual-channel
input mechanism is used to strictly judge the distribution of
real radar echo images. Finally, based on the weather radar
echo dataset, the generator and the discriminator are alter-
nately trained to make the extrapolated radar echo map more
real and precise.

2 Related work

2.1 Sequence prediction networks

The essence of radar echo image extrapolation is the prob-
lem of sequence image prediction, which can be solved by
implementing an end-to-end sequence learning method (Shi
et al., 2015; Sutskever et al., 2014). ConvLSTM introduces
a convolution operation into the conversion of the internal
data state of the LSTM, effectively utilizing the spatial in-
formation of the radar echo data (Shi et al., 2015). However,
the trajectory gated recurrent unit (TraijGRU) has also been
proposed as a solution (Shi et al. 2017) since the location-
invariant nature of the convolutional recursive structure is in-
consistent with the natural change motion. A GRU (gated re-
current unit), as a kind of recurrent neural network, performs
a similar function to LSTM but is computationally cheaper
(Group, 2017). Similarly, ConvGRU introduces convolution
operations inside the GRU to enhance the sparse connectivity
of the model unit and is used to learn video spatiotemporal
features (Ballas et al., 2015). The RainNet network learns the

movement and evolution of radar echo based on the U-NET
convolutional network for extrapolation prediction (Ayzel et
al., 2020). PredNet is based on a deep coding framework and
adds error units to each network layer that can transmit error
signals like the human brain structure (Lotter et al., 2016).
In order to increase the depth of the network and the connec-
tions between modules, Skip-PredNet further introduces skip
connections and uses ConvGRU as the core prediction unit.
Experiments show that its effect is better than the TrajGRU
benchmark (Sato et al., 2018). Although these networks can
achieve echo prediction, they have problems with both blur-
ring and producing unrealistic extrapolated images.

2.2 GAN-based radar echo extrapolation

The generative adversarial network (GAN) consists of two
parts: a generator and a discriminator (Goodfellow et al.,
2014). GAN can be an effective model for generating images.
Using an additional GAN loss, a model can better achieve
multi-modal data modeling and each of its outputs will be
clearer and more realistic (Lotter et al., 2016). Multiple com-
plementary learning strategies show that generative adversar-
ial training can maintain the sharpness of future frames and
solve the problem of lack of clarity in prediction (Michael et
al., 2015). In this regard, the extrapolators built a generative
adversarial network to solve the problem of extrapolated im-
age blur by trying to use this adversarial training to extrapo-
late more detailed radar echo maps (Singh et al., 2017). Sim-
ilarly, an adversarial network with ConvGRU as the core was
proposed, mainly to solve the problem of ConvGRU’s inabil-
ity to achieve multi-modal data modeling (Tian et al., 2020).
There are also researchers working on the idea of a four-
level pyramid convolution structure that propose four pairs
of models to generate an adversarial network for radar echo
prediction (Chen et al., 2019). It should be noted that the tra-
ditional GAN network has the problem that it uses unstable
training, which will cause the model unable to learn. There-
fore, the design of the nowcasting model should be based on
a stable and optimized GAN network.

3 Model

In this section, we describe the model both overall and in de-
tail. Section 3.1 introduces the overall structure and training
process of the model. In Sect. 3.2, we describe the structure
of the argcPredNet generator and focus on the argcLSTM
neuron. In Sect. 3.3, we introduce the design of the discrimi-
nator and the loss function of the model.

3.1 GAN–argcPredNet model overview

Radar echo extrapolation refers to the prediction of the dis-
sipation and distribution of future echoes based on the exist-
ing radar echo sequence diagram. If the problem is formu-
lated, then each echo map can be regarded as a tensor, i.e.,
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x ∈ RW×H×C, where W, H and C represent the width, height
and number of channels, respectively, and R represents the
feature area. If M represents a given sequence of echo maps
and N is used to predict the most likely changes in the fu-
ture, this problem can be expressed as Eq. (1). This paper
sets the input sequenceM and output sequence N to 5 and 7,
respectively.

x̂t+1, . . ., x̂t+N =
argmax

xt+1, . . .,xt+N

p(xt+1, . . .,xt+N |xt−M+1, . . .,xt ) (1)

Unlike other forecasting models, GAN–argcPredNet uses
WGAN-gp (Wasserstein generative adversarial network with
gradient penalty) as a predictive framework. The model
solves the problem of training instability through gradient
penalty measures (Gulrajani et al., 2017). Our model mainly
includes two parts: generator and discriminator. As shown
in Fig. 1, the generator is composed of argcPredNet, which
is responsible for learning the potential features of the data
and simulating the data distribution to generate prediction
samples. Following this, the predicted samples and the real
samples are input into the discriminator to make a judgment,
where the real data are judged to be true, and thus the pre-
dicted data are judged to be false. Finally, we use the Adam
optimizer for training the adversarial loss and then update
the parameters of the discriminator, optimize the loss func-
tion of the generator once every five updates and complete
the update of the generator parameters. The algorithm flow
is shown in Table 1 (Gulrajani et al., 2017).

3.2 argcPredNet generator

3.2.1 argcLSTM

The internal structure of the argcLSTM neuron used in the
model is shown in Fig. 2. In order to provide better feature-
extraction capabilities, the structure contains two trainable
gating units: the forget gate f (t) and the input gate g(t). The
latter can calculate the weight of the current state indepen-
dently and complete the feature retention of the input infor-
mation. The peephole connection from the unit state to the
forget gate is removed. This operation does not have a big
impact on the result, but it simplifies the redundant param-
eters. The complete definition of the argcLSTM unit is as
follows (Eqs. 2–5).

f (t) = σ
(
Wf x∗x

(t)
+Uf h∗h

(t−1)
+ bf

)
(2)

g(t) = σ
(
Wgx∗x

(t)
+Ugh∗h

(t−1)
+ bg

)
(3)

C̃(t) = tanh
(
Wch∗h

(t−1)
+Wcx∗x

(t)
+ bc

)
(4)

C(t) = f (t) ◦C(t−1)
+ g(t) ◦ C̃(t) (5)

h(t) = g(t) ◦ tanh
(
C(t)

)
(6)

In Eqs. (2)–(6), ∗ represents convolution operation; ◦ rep-
resents the Hadamard product; σ represents sigmoid nonlin-
ear activation function’ f (t) and g(t) represent the forget gate
and update gate, respectively; and x(t), h(t), and C(t) repre-
sent the input, hidden state, and unit state at time t , respec-
tively.

3.2.2 argcPredNet

The argcPredNet generator has the same structure as Pred-
Net, which is composed of a series of repeatedly stacked
modules, with a total of three layers. The difference is
that argcPredNet uses argcLSTM as the prediction unit. As
shown in Fig. 3, each layer of the module contains the follow-
ing four units: the input convolutional layer (Al), the recur-
rent representation layer (Rl), the prediction convolutional
layer (Âl) and the error representation layer (El).

The recursive prediction layer uses the argcLSTM loop
unit, which is used to generate the prediction of the next
frame and the input of Âl and Al+1. The network uses error
calculation, whereEl will output an error representation, and
the error representation is passed forward through the convo-
lutional layer to become the input of the next layerAl+1. The
hidden state of the recurrent unit Rtl is updated according to
the output of Et−1

l , Rt−1
l and the up-sampled Rtl+1. For Al ,

the input of the lowest target, namely A0, is set to the actual
sequence itself. When l > 0, the input of Al is the lower er-
ror signal El−1, which results from convolution calculation,
linear rectification function (RELU) activation and the max-
imum pooling layer. The complete update rules are shown in
Eqs. (7) to (10). The specific parameter settings of the gener-
ator are shown in Table 2. The numbers 1, 128, 128 and 256
represent the number of filters used from the first layer to the
fourth layer.

Atl =

{
xt
MAXPOOL

(
RELU

(
CONV

(
Etl−1

)))
if l = 0

0< l < L (7)

Âtl = RELU
(
CONV

(
Rtl
))

(8)

Etl =
[
RELU

(
Atl − Â

t
l

)
;RELU

(
Âtl −A

t
l

)]
(9)

Rtl =

 argcLSTM
(
Et−1
l ,Rt−1

l

)
argcLSTM

(
Et−1
l ,Rt−1

l ,UPSAMPLE
(
Rtl+1

))
if l = L

0< l < L (10)

3.3 Discriminator and loss

3.3.1 Convolutional discriminator

The purpose of the discriminator is to recognize images,
which similar to the purpose to the classifier. In the GAN–
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Figure 1. The schematic of the GAN–argcPredNet architecture.

Table 1. GAN–argcPredNet training algorithm flow.

Algorithm Model uses default values of λ= 10, ncritic = 5, α = 0.0001, β1 = 0.5, β2 = 0.9.
Parameters: The gradient penalty coefficient λ, the number of critic iterations per generator iteration ncritic, the batch
size m, Adam hyperparameters α, β1, β2, initial critic parameters ω0, initial generator parameters θ0.

1. for i = 1, · · ·epoch do
2. for t = 1· · ·ncritic do
3. for j = 1· · ·m do
4. Sample real data x ∼ Pr, latent variable z∼ pz, a random number ε ∼ ∪ [0,1]
5. x̃←Gθ (z)

6. x̂← εx+ (1− ε) x̃
7. L(j) =Dω (x̃)−Dω (x)+ λ

(∥∥∇x̂Dω (x̂)∥∥2− 1
)2

8. end for
9. ω← Adam(∇ω

1
m

m∑
j=1

L(j), ωαβ1β2)

10. end for
11. Sample a batch of latent variables

{
zj
}m
j=1
∼ Pzs

12. θ← Adam(∇θ
1
m

m∑
j=1
−Dω(Gθ (z)), θαβ1β2)

13. end for

Figure 2. The internal structure of argcLSTM.

Table 2. Generator parameter settings.

Components Name Filter size No. of filters

Module A Convolution layer 3× 3 (1, 128, 128, 256)
Max pool 3× 3 /

Unit Ât
l

Convolution layer 3× 3 (1, 128, 128, 256)

Module R Up-sampled 3× 3 /
argcLSTM 3× 3 (1, 128, 128, 256)

argcPredNet model, a double-channel convolutional neural
network (DC-CNN) network is designed for discrimination.
The process is shown in Fig. 4. It is a four-layer convolution
model with a dual-channel input method.

The DC-CNN network extracts a pair of images from the
three pairs of images, inputs them to the fully connected layer

Geosci. Model Dev., 15, 1467–1475, 2022 https://doi.org/10.5194/gmd-15-1467-2022



K. Zheng et al.: GAN–argcPredNet v1.0 1471

Figure 3. Module expansion diagram of layer l at time t .

Figure 4. The DC-CNN structure.

through a four-layer convolution transformation and finally
generates a probability output through the Sigmoid function,
indicating the possibility that the input image is from a real
image. When the input is a real image, the discriminator will
maximize the probability, and thus the value will approach
1. If the input is a generator-synthesized image, the discrim-
inator will minimize the probability, and thus the value will
approach −1. The specific parameter settings of the discrim-
inator are shown in Table 3.

3.3.2 Loss function

The generative adversarial network relies on the distribution
of simulated data to generate images. It can retain more echo
details, thereby realizing the modeling of multi-modal data.
A gradient penalty term is added to GAN–argcPredNet, and
the loss function of the discriminator is shown in Eq. (11).

LD =D(x̃)−D(x)+ λ
(∥∥∇x̂D (x̂)∥∥2− 1

)2 (11)

The generator has the following loss function (Eq. 12):

LG = Ex̃∼Pg

[
D(x̃)

]
−Ex∼Pr [D(x)] . (12)

Table 3. Discriminator parameter settings.

Name Filter size Stride No. of filters Output size

Convolution_1 3× 3 2× 2 32 48× 48
Convolution_2 3× 3 2× 2 64 24× 24
Convolution_3 3× 3 2× 2 128 12× 12
Convolution_4 3× 3 2× 2 256 6× 6

The model has the following maximum–minimum loss func-
tion (Eq. 13):

min
G

max
D

V (D,G)= Ex̃∼Pg

[
D(x̃)

]
−Ex∼Pr [D(x)]

+ λEx̂∼Px̂

(∥∥∇x̂D (x̂)∥∥2− 1
)2
, (13)

where x̃ represents the distribution of generated samples, Pg
represents the set of generated sample distributions, x repre-
sents the distribution of real samples and Pr represents the
set of real sample distributions. The third term is the penalty
item of the gradient penalty mechanism. In the penalty term,
x̂ represents the actual data and generation of a new sample
formed by random sampling between data. Px̂ represents a
set of randomly sampled samples. λ is a hyperparameter that
represents the coefficient of the penalty term, and the value
in the model is set to 10.

4 Experiments

In order to verify the effectiveness of the model, the pa-
per uses the radar echo data from January to July 2020
in Shenzhen, China, to conduct experiments on the four
models of ConvGRU, rgcPredNet, argcPredNet, and GAN–
argcPredNet. All experiments are implemented in Python
and based on the Keras deep-learning library with Tensor-
Flow as the back end for model training and testing.

4.1 Dataset description

This experiment uses the radar echo data of Shenzhen, China.
The dataset is made up of rain images after quality control.
The reflectivity range is 0–80 dBZ, the amplitude limit is be-
tween 0 and 255, and the data are collected every 6 min, with
a total of one layer. The height above sea level is 3 km. A to-
tal of 600 000 echo images were collected, of which 550 000
were used as the training set and 50 000 were used as the test
set. Each set of data contained 12 consecutive images. The
horizontal resolution of the radar echo maps is 0.01◦ (about
1 km), the number of grids is 501×501 (i.e., an area of about
500 km× 500 km) and the image resolution is 96×96 pixels.

4.2 Evaluation metrics

In order to evaluate the accuracy of the model for precipita-
tion nowcasting, the experiment uses three evaluation indica-
tors to evaluate the prediction precision of the model, critical
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Figure 5. CSI index score.

Figure 6. POD index score.

success index (CSI, Eq. 14), false alarm rate (FAR, Eq. 15)
and hit rate (probability of detection, POD; Eq. 16).

CSI=
TP

TP+FN+FP
(14)

FAR=
FN

TP+FN
(15)

POD=
TP

TP+FP
(16)

In the formula, TP indicates that both the predicted value and
the true value reach the specified threshold, FN means that
the true value reaches the specified threshold but that the pre-
dicted value has been not reached, and FP indicates that the
true value has not reached the specified threshold but that the
predicted value has reached the specified threshold.

Figure 7. FAR index score.

Table 4. Rain level

Rain rate (mm h−1) Rainfall level

0≤ R < 0.5 None or hardly noticeable
0.5≤ R < 2 Light
2≤ R < 5 Light to moderate
5≤ R < 10 Moderate
10≤ R < 30 Moderate to heavy
30≤ R Rainstorm warning

4.3 Results

The experiment comprehensively evaluates the prediction ac-
curacy of precipitation with different thresholds. The radar
reflectivity and rainfall intensity refer to the Z–R relation-
ship (Shi et al., 2017). The calculation formula is as follows:

Z = 10loga+ 10b logR. (17)

In this paper, a is set to 58.53, b is set to 1.56, Z represents
the intensity of radar reflectivity,R represents the intensity of
rainfall, and the corresponding relationship between rainfall
and rainfall level is given in Table 4 (Shi et al., 2017).

Figures 5, 6 and 7 compare the CSI, POD and FAR in-
dex scores, respectively in detail for each model at different
rainfall thresholds.

This result is calculated based on 50 000 test pictures
(more than 4000 test sets), which is taken as a representa-
tive number. It can be seen that when the rainfall rate in-
creases from 0.5 to 30 mm h−1, GAN–argcPredNet always
performs best (by a significant margin advantage), argcPred-
Net is second, and the ConvGRU model is the worst. Another
point worth noting is that as the rainfall intensity increases,
the performance of all models shows a downward trend. In
the comparison of CSI indicators, GAN–argcPredNet leads
the rest of the models when the rainfall rate is lower than
when the rainfall rate is lower than 30 mm h−1. When the
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Figure 8. Four prediction examples for the precipitation nowcasting problem. From top to bottom: ground truth frames, prediction by GAN–
argcPredNet, prediction by argcPredNet, prediction by rgcPredNet, prediction by ConvGRU.

rainfall level is 30≤ R, its leading advantage is the weak-
est. ArgcPredNet only leads rgcPredNet by a slight mar-
gin, and its performance with rgcPredNet is not as good as
ConvGRU in the range of 2–5 mm h−1. For POD indicators,
GAN–argcPredNet performs best, and its leading advantage
is more prominent. The performance of argcPredNet is not
so outstanding as it is almost the same as argcPredNet, but
the index of the two is always better than ConvGRU. For
the FAR score, the performance of GAN–argcPredNet is still
the best, while argcPredNet and rgcPredNet are worse than
ConvGRU in the range of 2–5 mm h−1, and the score for the
rain rate 0.5–10 mm h−1 interval is slightly lower than that of
GAN–argcPredNet.

To compare the three methods more intuitively, Fig. 8
shows the image prediction results of the three models on
the same piece of test data.

Compared with the other three models, GAN–argcPredNet
generates better image clarity and shows more detailed fea-
tures on a small scale. The contrast between the areas
marked by the red circle in Fig. 8 is more obvious. GAN–
argcPredNet made the best prediction of the shape and in-
tensity of the echo. The area selected by the rectangle mainly
shows the echo changes in the northern region within 30 min.
Both models correctly predict the movement of the echo to
a certain extent, and the prediction process shown by GAN–
argcPredNet is the most complete. In some mixed intensity
and edge areas, our model clearly predicts the echo intensity
information, which clearly shows the effect of the confronta-
tion training.

Table 5. MSE and MSSIM index scores of each model.

Name MSE×102
↓ MSSIM ↑

ConvGRU 0.950 0.705
rgcPredNet 0.496 0.724
argcPredNet 0.476 0.790
GAN–argcPredNet 0.451 0.833

In order to compare the prediction results more specif-
ically, the experiment uses mean square error (MSE) and
mean structural similarity (MSSIM) to evaluate the quality
of the generated images (Wang et al., 2004). The MSE and
MSSIM index scores of the images generated by each model
are shown in Table 5. ConvGRU has the lowest two indexes.
Although the MSE index of rgcPredNet is slightly lower than
that of the argcPredNet and GAN–argcPredNet models, the
MSSIM index of the argcPredNet and GAN–argcPredNet
models is 0.066 and 0.109 higher than that of the rgcPred-
Net network model, respectively.

5 Conclusions

This study demonstrated a radar echo extrapolation model.
The main innovations are summarized as follows. First, the
argcPredNet generator is established based on the time and
space characteristics of radar data. The argcPredNet genera-
tor can predict future echo changes based on historical echo
observations. Second, our model uses adversarial training
methods to try to solve the problem of blurry predictions.
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Based on the evaluation indicators and qualitative analy-
sis results, GAN–argcPredNet has achieved excellent results.
Our model can reduce the prediction loss in a small-scale
space so that the prediction results have more detailed fea-
tures. However, the recursive extrapolation method causes
the error to accumulate as time goes by, and the prediction re-
sult deviates more and more from the true value. In addition,
when the amount of high-intensity echo data is small, the pre-
diction of high-risk and strong convective weather through
machine learning is also a problem that we are very con-
cerned about because it is more realistic. Therefore, we will
carry out research into these two issues in the future.

Code and data availability. The GAN–argcPredNet and
argcPredNet models are free and open source. The cur-
rent version number is GAN–argcPredNet v1.0, and the
source code is provided through a GitHub repository
https://github.com/LukaDoncic0/GAN-argcPredNet (last ac-
cess: 14 February 2022) and can be accessed through a Zenodo
repository https://doi.org/10.5281/zenodo.5035201 (Zheng and
Liu, 2021a). The pretrained GAN–argcPredNet and argcPredNet
weights are available at https://doi.org/10.5281/zenodo.4765575
(Zheng and Liu, 2021b). The radar data used in the article come
from the Guangdong Meteorological Department. Due to the
institutional confidentiality policy, the data will not be disclosed
to the public. If you need access to the data, please contact Kun
Zheng (zhengk@cug.edu.cn) and Yan Liu (liuyan_@cug.edu.cn).
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