
Geosci. Model Dev., 15, 1413–1439, 2022
https://doi.org/10.5194/gmd-15-1413-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

CSDMS: a community platform for numerical modeling of Earth
surface processes
Gregory E. Tucker1,2, Eric W. H. Hutton3, Mark D. Piper3, Benjamin Campforts3, Tian Gan3,
Katherine R. Barnhart1,2,a, Albert J. Kettner3, Irina Overeem2,3, Scott D. Peckham3, Lynn McCready3, and
Jaia Syvitski3
1Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
2Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
3Institute for Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, USA
acurrent address: Geologic Hazards Science Center, U.S. Geological Survey, Golden, CO, USA

Correspondence: Gregory E. Tucker (gtucker@colorado.edu)

Received: 30 June 2021 – Discussion started: 13 July 2021
Revised: 3 January 2022 – Accepted: 6 January 2022 – Published: 17 February 2022

Abstract. Computational modeling occupies a unique niche
in Earth and environmental sciences. Models serve not just
as scientific technology and infrastructure but also as dig-
ital containers of the scientific community’s understanding
of the natural world. As this understanding improves, so too
must the associated software. This dual nature – models as
both infrastructure and hypotheses – means that modeling
software must be designed to evolve continually as geosci-
entific knowledge itself evolves. Here we describe design
principles, protocols, and tools developed by the Community
Surface Dynamics Modeling System (CSDMS) to promote a
flexible, interoperable, and ever-improving research software
ecosystem. These include a community repository for model
sharing and metadata, interface and ontology standards for
model interoperability, language-bridging tools, a modular
programming library for model construction, modular soft-
ware components for data access, and a Python-based exe-
cution and model-coupling framework. Methods of commu-
nity support and engagement that help create a community-
centered software ecosystem are also discussed.

1 Introduction

Our planet’s surface is a dynamic place, changing on
timescales from the momentary triggering of a landslide,
to year-by-year resculpting of coastlines, to the formation
of mountains and sedimentary basins over geologic time.

The challenge of living sustainably on a dynamic, human-
impacted planet is multi-faceted and multi-disciplinary and
requires a deeper understanding of a diverse set of processes
ranging from permafrost thawing to wildfire impacts, and
from river delta sinking to changes in flooding. These in-
terwoven research challenges have two things in common:
they cross traditional boundaries of research, and their so-
lution requires computational models and model–data inte-
gration. Meeting these challenges efficiently requires an ef-
fective, integrated, and holistic software cyber-infrastructure
to support computational modeling and analysis across the
environmental sciences. Models embody theory in a quan-
titative and algorithmic form. By performing calculations at
blinding speed, numerical models extend our cognitive abil-
ities, helping us explore and visualize the consequences of
hypotheses. They allow us to apply existing theory to new
situations. Where the processes are sufficiently understood,
models can forecast potential trajectories of natural and an-
thropogenically perturbed Earth systems.

Creating, modifying, applying, and maintaining the soft-
ware that implements numerical models requires time,
money, and specialized skills. The software may be invisi-
ble, but its creation and maintenance constitute an infrastruc-
ture investment just as vital to science as the infrastructure
supporting ship-based science or radio astronomy. More ef-
ficient infrastructure allows for more time devoted to other
aspects of research and practice. Just as with laboratory in-
frastructure, scientific results that rely on software cyber-

Published by Copernicus Publications on behalf of the European Geosciences Union.



1414 G. E. Tucker et al.: CSDMS

infrastructure are only as robust and reproducible as the soft-
ware itself. Scientific software therefore needs quality con-
trol: errors in scientific software not only impede research
but also can produce misleading results that lead to more se-
rious consequences. The fact that modeling is both useful and
technically challenging can give rise to a pernicious tempta-
tion: to use an inadequate model for the job simply because
the code that implements it is more easily available or more
usable than better alternatives (Addor and Melsen, 2019).

A modular community software infrastructure must there-
fore maximize flexibility, creativity, and reliability while
minimizing technical overhead. To use an artistic analogy:
an ideal modeling infrastructure should provide the geo-artist
with a wide palette of colors, while making it easy to mix new
ones, so that more time can be devoted to creating and less
time to fussing with materials. Those materials must also be
robust enough that the colors and textures will not degrade
over time.

Here we describe software tools, standards, and practices
that are designed to enhance research productivity by re-
ducing the “time to science” in Earth modeling. Such tools
and concepts form the key elements behind the Community
Surface Dynamics Modeling System (CSDMS). Founded
in 2007 with major support from the US National Science
Foundation, CSDMS is a facility that supports and promotes
computational modeling of diverse Earth surface processes in
domains that span geomorphology, sedimentology, stratigra-
phy, marine geology, and hydrology and related aspects of
geodynamics, geochemistry, soils, ecosystems, and human
dimensions. CSDMS is currently organized into 12 commu-
nity interest groups, representing about 2000 members, and
a small (about six full-time-equivalent positions) Integration
Facility that manages a web portal, develops middleware,
and coordinates community events and resources. Here we
present tools and standards developed by and for the CSDMS
community. We describe a set of effective engineering prac-
tices that are well known among professional software devel-
opers but less known among geoscientists and environmen-
tal scientists. We highlight aspects of the human element:
community engagement and education turn out to be key ele-
ments in forging a shared and ever-improving computational
ecosystem.

We start with a background review of issues in scien-
tific computing and research software across the sciences
(Sect. 2) and a brief history of CSDMS (Sect. 3). Section 4
frames the operational tasks involved in numerical process
modeling as a six-fold spectrum, ranging from simply exe-
cuting a model program to building a complete model from
scratch. This sets the stage for a review of tools and prac-
tices designed to make these various tasks more efficient and
their products more sustainable through sharing, standardiza-
tion, education, and a set of enabling tools (Sects. 6–7). We
conclude with a discussion of opportunities, needs, and chal-
lenges (Sect. 8).

2 Background

2.1 Scientific computing is here to stay

Computing has emerged as a pillar of scientific inquiry,
alongside theory, experimentation, and direct observation
(Reed et al., 2005). The ability to perform calculations at
speeds that would have astonished researchers of our grand-
parents’ generation continues to open up new territory across
the sciences and allows us to probe the limits of predictabil-
ity in natural and engineered systems (Post and Votta, 2005;
Post, 2013). Computing, and the software that supports it, un-
derlies numerous recent success stories, from improved hur-
ricane forecasting to the imaging of black holes.

Within the sphere of computing, numerical modeling – de-
fined here as the computing of solutions to a set of equa-
tions and algorithms that represent a system – plays a central
role. The process of formulating a computational model and
the theory behind it encourages deep and precise thinking
(e.g., Guest and Martin, 2020). Computational models both
encapsulate theory and provide machinery with which to ex-
plore the consequences of that theory. Pipitone and Easter-
brook (2012), for example, described climate models as “ex-
ecutable theories of climate”. Numerical models in Earth and
environmental science embody executable theory for many
different aspects of the natural world (Fig. 1). At the same
time, the numerical algorithms and the software that im-
plement them provide a kind of mind-enhancing machinery.
Whereas other scientific technology extends our senses – al-
lowing us to “see” what lies beyond the visible spectrum and
to “feel” the vibrations in the Earth – computational mod-
eling extends our cognitive capacity. By turning ideas into
algorithms, we gain the ability to explore the logical conse-
quences of our ideas, make predictions, and compare them
with observations. Discovery comes not only when the cal-
culations provide self-consistent explanations for otherwise
mysterious phenomena, but especially when the calculations
surprise us, revealing a logic trail that leads to new insights
(Bras et al., 2003).

With the rapid growth in computing and digital infras-
tructure, many scientists now devote a large fraction of their
research time to developing software (Hannay et al., 2009;
Prabhu et al., 2011; Wilson et al., 2014; Singh Chawla, 2016;
Pinto et al., 2018). A survey of nearly 2000 researchers in
40 countries by Hannay et al. (2009) revealed that 84 %
of respondents considered software development important
for their research. According to their findings and those of
Prabhu et al. (2011), scientists spend as much as a third of
their time writing and debugging computer programs. In the
geosciences software has become critical research infrastruc-
ture that is as vital and worthy of maintenance as ships, tele-
scopes, and seismographic arrays. Yet the invisibility of soft-
ware has led to challenges in developing and sustaining this
critical research infrastructure (Eghbal, 2016).

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1415

Figure 1. Examples of Earth surface process models across a variety of domains and timescales, here focusing on models of sedimentary
processes: (a) probabilistic landslide occurrence (Strauch et al., 2018), (b) catchment sediment yield (Carriere et al., 2020), (c) landform
evolution (Barnhart et al., 2019), (d) coastal and shelf dispersal of fluvially derived sediment (Kuehl et al., 2016), (e) salt marsh evolution
under tidal and sea level forcing (Mariotti, 2018), (f) delta evolution as a function of river and wave forcing (Ratliff et al., 2018), (g) tur-
bidity current dynamics (Nasr-Azadani et al., 2013), (h) submarine turbidity fan stratigraphy (Groenenberg et al., 2010), and (i) sequence
stratigraphy (Steckler et al., 2019).

2.2 Growing pains

Experimental science absolutely depends on having high-
quality laboratory infrastructure and operating it with care-
ful, systematic protocols. In this respect, computational sci-
ence differs only in the invisibility of its primary infrastruc-
ture. Experimental research methods, with their emphasis on
transparency and replicability, pre-date computational sci-
ence by over 200 years (Wilson, 2006; Fomel and Claer-
bout, 2009), and so it comes as no surprise that computa-
tional science has experienced growing pains. Errors in soft-
ware can have serious consequences for research. Software
faults led to the failure of the Arianne rocket in 1996 and
of the Mars Climate Orbiter mission in 1999. In 2006, dis-
covery of a bug in image-processing software led to the re-
traction of five papers in computational biochemistry (Miller,
2006). High-profile cases like these have sparked concern
about the quality and reliability of research software. Stud-
ies of scientific software development practices underscore
these concerns, suggesting that the practice of formal test-
ing of code correctness remains relatively limited (Post and
Votta, 2005; Wilson, 2006; Hannay et al., 2009; Nguyen-
Hoan et al., 2010; Clune and Rood, 2011; Howison and Herb-

sleb, 2011; Prabhu et al., 2011; Kanewala and Bieman, 2014;
Heaton and Carver, 2015). Hatton (1997) evaluated the per-
formance of a collection of seismic data processing programs
and found that the results varied even among programs that
claimed to use the same algorithm. Seeing little evidence of
progress 10 years later, Hatton (2007) worried that founda-
tions for scientific software would remain weak if the com-
munity persisted in “building scientific castles on software
sands when we could do so much better”.

However, serious flaws in scientific software are not in-
evitable. Pipitone and Easterbrook (2012) found, for exam-
ple, that climate models, which are subject to rigorous test-
ing and quality controls, have very low defect density as
compared with other open-source software of similar scale.
Their findings show that software quality control practices
can work well when applied to research products. So why are
such practices not used more widely? One common obstacle
is simply a lack of awareness of, and training in, effective
quality-control practices such as unit testing and continuous
integration (Wilson, 2006; Faulk et al., 2009; Hannay et al.,
2009; Kanewala and Bieman, 2014), a finding that led Faulk
et al. (2009) to remark that “scientists are trained to man-

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022



1416 G. E. Tucker et al.: CSDMS

age threats to validity in experimental design but not in their
codes”.

A related challenge lies in computational reproducibility:
the ability to recreate the results of a study using the same
data and software. The ability to reproduce others’ findings
forms a cornerstone of the scientific method. Yet as computa-
tional science has bloomed, concern has grown over the diffi-
culty or impossibility of reproducing published results (e.g.,
Schwab et al., 2000; Peng, 2011; Stodden et al., 2013; Barba,
2016; AlNoamany and Borghi, 2018; Chen et al., 2019;
Krafczyk et al., 2019). In the words of LeVeque (2009), “sci-
entific and mathematical journals are filled with pretty pic-
tures of computational experiments that the reader has no
hope of repeating”. In a reproducibility study of 306 arti-
cles in the Journal of Computational Physics, Stodden et al.
(2018) found only six that provided enough method infor-
mation to re-run the analysis without help from the original
authors. Of the remaining papers, about half were impossible
to reproduce even after contacting the authors for assistance.

Reproducibility has several dimensions: sharing (the digi-
tal artifacts need to be available), discoverability (one needs
to be able to find them), learnability (there needs to be suf-
ficient documentation), and operability (the operating inter-
face needs to be familiar, and the correct computational envi-
ronment and dependencies must be available). Failure in any
of these dimensions hurts productivity because researchers
end up spending more time either figuring out opaque, poorly
documented software or reinventing their own version from
scratch. Collectively, reports of non-reproducible results and
unsustainable, under-tested software suggest that computa-
tional science relies on a brittle cyber-infrastructure, and pro-
ductivity suffers as a result (Wilson, 2006; Faulk et al., 2009;
Prabhu et al., 2011).

A variety of factors contribute to the challenges of research
software quality, reproducibility, and reusability. Most scien-
tists lack formal training in software development and tend
not to know about tools and practices that could increase their
productivity (Kelly, 2007; Basili et al., 2008; Faulk et al.,
2009; Hannay et al., 2009; Hwang et al., 2017; AlNoamany
and Borghi, 2018; Pinto et al., 2018; Kellogg et al., 2018). In-
centives also play a role: the academic system rewards pub-
lication of new results rather than production of high-quality,
reusable software (though credit mechanisms for software
are now starting to emerge) (LeVeque, 2009; Howison and
Herbsleb, 2011; Morin et al., 2012; Turk, 2013; Ahalt et al.,
2014; Poisot, 2015; Hwang et al., 2017; Wiese et al., 2019).
The combination of incentive structure and lack of training
in best practices can lead to inflexible, hard-to-maintain soft-
ware (Brown et al., 2014; Johanson and Hasselbring, 2018).
Often enough it ends up as “abandonware” when a project
ends (Barnes, 2010). Reluctance by code authors to provide
pro bono support also plays a role. A certain embarrass-
ment factor may contribute: in our own experience, as well
as reports from other fields, researchers often express reluc-
tance to share “messy” code, even when they have used the

software as the basis for published research (Barnes, 2010;
Morin et al., 2012; LeVeque, 2013).

2.3 New community practices

Despite the growing pains, there are solutions on the hori-
zon. Tools and practices already exist that can improve the
quality and efficiency of software cyber-infrastructure, and
improve productivity through coordination and reuse. Prac-
tices, tools, and techniques that the software community uses
routinely have begun to see uptake in the sciences, with
good success (Bangerth and Heister, 2013; Turk, 2013; Hast-
ings et al., 2014; Wilson et al., 2014; Brown et al., 2014;
Poisot, 2015; Hwang et al., 2017; Nanthaamornphong and
Carver, 2017; Scott, 2017; Taschuk and Wilson, 2017; Wil-
son et al., 2017; Benureau and Rougier, 2018; Bryan, 2018;
Adorf et al., 2018; Lathrop et al., 2019); in Sect. 3, we de-
scribe how the CSDMS community has implemented some
of these. While there remains a critical need for teaching and
training in scientific computing, some universities, as well
as community organizations such as Software Carpentry and
various domain-centered groups (including CSDMS), have
begun to fill that niche (e.g., Jacobs et al., 2016).

One promising development is the emergence of software
journals, which provide a mean to reward research software
with the academic credit it deserves. For example, the Jour-
nal of Open Source Software (JOSS), which began publish-
ing in May 2016, focuses not on papers about results ob-
tained by software, but instead on the “full set of software
artifacts” (Smith et al., 2018). Reviewers of JOSS submis-
sions evaluate the software in terms of criteria such as instal-
lation, functionality, documentation, example of usage, and
testing. A short abstract describing the purpose and func-
tion of package forms the only textual component of a JOSS
publication. For the Earth and environmental sciences, JOSS
now complements more traditional text-based journals (like
this one) that provide a forum for software-oriented issues
such as algorithm development and model verification. The
growing importance of software in research has also led to a
new type of career track: research software engineers (RSEs),
whose cross-training in computing and domain science po-
sitions them to help researchers build and maintain high-
quality, sustainable software (Baxter et al., 2012). Thus, the
academic world now has the beginnings of a credit mecha-
nism that incentivizes high-quality research software cyber-
infrastructure and the first glimmers of a professional struc-
ture to help create and maintain that cyber-infrastructure.

Better incentives and support for writing, documenting,
and publishing research software can help address the pro-
ductivity problem because they encourage software reuse
over reinvention. Community software libraries and modu-
lar frameworks provide another avenue for reuse. Libraries
are already widely available for general tasks such as numer-
ical computing, parallel programming, and general science
and engineering operations; some examples include PETSc

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1417

(Balay et al., 1997, 2015a, b), deal.II (Arndt et al., 2021b, a),
and the SciPy family (Virtanen et al., 2020). “Librarization”
of software makes it easier to share, reuse, and maintain
(Brown et al., 2014). Frameworks are defined as a collec-
tion of interoperable modules together with an environment
for running and combining them. A framework provides a
way to create coupled numerical models and more generally
to simplify computational workflows (e.g., Leavesley et al.,
1996; Voinov et al., 2004; Peckham et al., 2013). Frame-
works, as well as some open-source libraries, take advantage
of contributions from many different community members:
the software becomes a resource created by and for a sci-
entific community. Growth of a community framework does
not happen by accident, however. Case studies of commu-
nity frameworks, libraries, and other software packages re-
veal that success requires two elements: a thoughtful, de-
liberate approach to community engagement (Bangerth and
Heister, 2013; Turk, 2013; Lawrence et al., 2015), and care-
fully designed standards and protocols (Peckham et al., 2013;
Harpham et al., 2019).

3 A community-based modeling system for Earth
surface processes

The opportunities and growing pains that face scientific com-
puting generally also apply to the sciences that deal with the
Earth’s surface. To embrace these opportunities, the CSDMS
Integration Facility was launched in 2007 with a mission to
accelerate the pace of discovery in Earth-surface processes
research. The centerpiece was envisioned as “a modeling
environment containing a community-built, freely available
suite of integrated, ever-improving software modules aimed
at predicting the erosion, transport, and accumulation of sed-
iment and solutes in landscapes and sedimentary basins over
a broad range of time and space scales” (Anderson et al.,
2004). A key concept is that a modular, community-built
modeling system not only opens new opportunities for using
coupled models to explore the interactions among processes
that were once considered in isolation but also increases pro-
ductivity by lowering the kinds of barriers described earlier.
Achieving this requires a combination of the following ele-
ments.

– community, including coordination, sharing, communi-
cation, and collaboration (e.g., conferences, workshops,
hackathons);

– computing, including software tools, standards, tem-
plates, and access to high-performance computing and
cloud resources;

– education, including in-person and online resources for
learning tools, techniques, and best practices and re-
sources for teaching these to others.

Figure 2. Taxonomy of model operation tasks. Tasks are listed in
(approximately) increasing order of complexity from bottom to top.
The most basic procedure involves executing a model with pre-
existing inputs to reproduce a prior calculation, whereas building
a new code requires program design, development, documentation,
and testing.

In the following sections, we describe the software tech-
nology, community building, and education elements devel-
oped by CSDMS and how they help mitigate the obstacles
discussed in Sect. 2. A useful way to understand the pur-
pose of these products and activities is to consider the dif-
ferent modes in which researchers operate numerical models
and the opportunities that these different modes present to
increase efficiency and productivity.

4 A taxonomy of model operation

What tasks are often required in computational modeling?
How might those tasks be made efficient? Here we iden-
tify six types of model-related activity, each of which has
a unique set of challenges. Inspired by Bloom’s Taxonomy
of cognitive learning tasks, these six activities are arranged
in order of complexity. The six modeling modes are summa-
rized in Fig. 2.

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022



1418 G. E. Tucker et al.: CSDMS

4.1 Reproducing

The most basic operation of a numerical model is to run it
with predefined inputs. This is often the first step in learn-
ing how to use a particular model. The ability to reproduce
a model calculation efficiently involves all four of the FAIR
principles (findable, accessible, interoperable, reproducible)
(Wilkinson et al., 2016; Lamprecht et al., 2020; Katz et al.,
2021; Chue Hong et al., 2021). The user must be able to find
and access the right version of the software. The user needs
to learn how to execute the model: a task made easier if the
program follows an interoperability standard. In order to re-
produce the prior calculation, the user must have access to
the input data and must be able to recreate a compatible exe-
cution environment, including whatever dependencies might
be needed.

4.2 Applying

To use a computational model in a new application, a user
needs to understand the theory and algorithms behind it,
which requires good documentation. In addition, operating
the model involves creating new input data and often exe-
cuting various pre-processing operations to derive the right
kind of inputs. Sometimes it also requires setting up a grid
mesh. In some cases, mesh generation is a major undertak-
ing, for example, meshes for 2D storm-surge models such as
ADCIRC (Luettich et al., 1992) and 3D regional ocean circu-
lation models such as ROMS (Shchepetkin and McWilliams,
2005) are time-intensive to set up.

4.3 Linking

Here linking means operating a model as part of a sequen-
tial workflow. For example, the workflow might include pre-
processing data, using those data as input to the execution of
a model, using the output as input to another model, and/or
performing additional operations on the model’s output. To
link a model in this way requires, among other things, com-
patibility in data formats. Any incompatibility between the
outputs from one step and the inputs to the next means some-
one has to write code to do the appropriate translation.

4.4 Modifying

When a model provides most but not all of the functionality
needed for a particular application, the would-be user faces a
choice: modify the existing program or write a new one that
fits the purpose. Modifying an existing model program can
save a lot of duplication of effort, but this is only true when
the model package includes good internal documentation, a
modular design, and a structure that allows for modifications
and enhancements while preserving the original functional-
ity. A standard interface design can help by providing a fa-
miliar structure.

4.5 Coupling

Many of the exciting research frontiers in Earth and envi-
ronmental science lie at the seams between systems. Some
examples include rivers and coasts (e.g., Ratliff et al., 2018);
tectonics and Earth surface processes (e.g., Roy et al., 2016);
ecosystem, soil, and landscape evolution (e.g., Istanbulluoglu
and Bras, 2005; Pelletier et al., 2017; Lyons et al., 2020); per-
mafrost and hydrology; and human actions and biophysical
systems (e.g., Robinson et al., 2018). For these sorts of prob-
lems, coupled numerical modeling provides a great way to
develop insight and to test hypotheses by comparing mod-
els with observations. The complexity of the task of cou-
pling two numerical models depends on the nature of cou-
pling (for example, sequential execution within each time
step versus coupling via joint matrix inversion) and on the
program structure of each. The task becomes much simpler
when both models offer a public, standardized interface: a set
of callable functions that allow the appropriate exchange of
data and mutual execution of algorithms.

4.6 Building

New ideas stimulate the need for new models. It is a healthy
sign of growth when a scientific community produces lots
of new models because it signifies rapid development and
exploration of new concepts. Writing a numerical model
program from scratch can be a time-consuming exercise.
Libraries of pre-existing functions and data structures can
greatly simplify the task. Most modern programming lan-
guages offer libraries to handle basic mathematical opera-
tions, but even with these available model-building can be a
major effort.

The job becomes easier when the developer can draw on
component libraries that provide data structures and algo-
rithms to address common tasks in numerical modeling, such
as grid setup and input/output. It becomes easier still when
common domain-specific algorithms have been librarized
and made available as building blocks with a standard in-
terface (e.g., Brown et al., 2014). Below we will look at an
example of a component library that was designed specifi-
cally for building numerical models.

5 The CSDMS model repository: a platform for
sharing and archiving software resources

Not so long ago, making model source code freely available
was more the exception than common practice. Model de-
velopers tended to view their models as trade secrets. If oth-
ers wanted to use a model, the developer needed to be con-
tacted, and could negotiate to become more involved in the
research. Furthermore, fewer tools and platforms were avail-
able to promote sharing, like GitHub (established 2008) or
SourceForge (established 1999).

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1419

Science clearly benefits from openly shared source code.
For one, sharing reduces duplication. After all, there is less
need to write a model from scratch once a model has proven
to capture a certain process well. Therefore, sharing of source
code accelerates science, as others are on a faster trajectory
to learn from and build upon previous model development ef-
forts. Sharing of source code also makes science more robust
and trusted, as people can report and fix bugs. Reproducing
computational results requires shared digital files (either ex-
ecutable binary files or source code; ideally the latter so that
the algorithms are transparent). It is therefore encouraging
to see a modeling culture shift over the last 2 decades (e.g.,
Hsu et al., 2015). For good data management, there are now
the FAIR principles – findability, accessibility, interoperabil-
ity, and reusability – that have been formulated as guidelines
for data producers and publishers (Wilkinson et al., 2016).
According to the FAIR principles, each dataset should be as-
signed a unique persistent identifier such as a digital object
identifier (DOI), along with searchable metadata. By includ-
ing a formal, broadly applicable representation language and
using open and widely accepted domain-relevant vocabular-
ies and ontologies, datasets become more interoperable. In
addition, by providing an abundance of documents that de-
scribe datasets and how they can be used, including license
information, data become more reusable.

The FAIR principles can be applied to research software,
albeit with modifications that account for the unique aspects
of software (for example, unlike most forms of digital data,
software is executable) (Lamprecht et al., 2020; Katz et al.,
2021; Chue Hong et al., 2021). For model code, version-
control platforms are now more widely used for sharing
source code, which helps enable findability and accessibility.
But as the FAIR principles indicate, sharing code by itself
is not enough. Therefore, CSDMS implemented the FAIR
principles in setting up a model repository for Earth surface
dynamics (Fig. 3). A minimal set of metadata parameters is
defined to describe a model, provide contact information for
the model development team, indicate technical details such
as operating platform and the software license, describe the
model input and output, list its processes and key physical pa-
rameters, and indicate limitations. This minimal set of meta-
data includes a link to the actual source code, which needs
to be made available all the time through a personal web
repository or through the CSDMS community repository. All
model metadata stored on the CSDMS web server, as well
as the actual source code (when stored in the CSDMS code
repository on GitHub), are accessible for machines through
web application programming interfaces (APIs). This makes
it possible to automatically find and use the model. DOIs
for stable versions of any listed code are generated on re-
quest and included with the metadata. Model metadata are
enriched by including additional reference information, such
a comprehensive bibliography. Following this practice, the
CSDMS model repository currently holds 387 open-source
models of the community (as of February 2021). The models

and tools in the repository span a range of languages, with
Python, C, and Fortran being the most popular (Fig. 4). The
diversity of languages raises a challenge in creating an inter-
operable framework. We will return to this point and look at
one solution in Sect. 6.2.

6 The CSDMS Workbench

The CSDMS Workbench is a suite of tools, standards, docu-
ments, and resources that collectively provide a modular en-
vironment for model execution, analysis, and model–data in-
tegration. The Workbench comprises six main elements:

1. the Basic Model Interface (BMI), an interface standard
that simplifies model execution and coupling (Hutton
et al., 2020a; Peckham et al., 2013);

2. babelizer, a language-bridging tool that adds a Python
interface to BMI-enabled model programs written in
various other languages;

3. the Python Modeling Toolkit (pymt), a Python-language
execution and model-coupling environment that in-
cludes utilities for grid mapping and other operations,
together with a set of model components;

4. data components, which are small Python-language
modules that use the BMI to fetch data from particular
datasets;

5. Landlab, a component-based Python library for model
building and sharing of interoperable components (Hob-
ley et al., 2017; Barnhart et al., 2020a);

6. Standard Names, which is an ontology standard for
naming variables.

In the following we give a brief description of each of these
elements and how they combine to form a modular modeling
system.

6.1 The Basic Model Interface (BMI) standard

When you sit in the driver’s seat of an unfamiliar car, you’re
presented with a familiar sight: whatever the make or model,
the vehicle provides a steering wheel, brake pedal, and
speedometer. Although we do not usually think of it this way,
drivers across the globe benefit from a standard interface – a
set of control mechanisms and information displays that have
essentially the same design regardless of whether the car is
a tiny electric two-seater vehicle or a giant stretch limou-
sine. This standard interface makes operating a car much eas-
ier than if each vehicle presented a radically different inter-
face. Imagine a world where switching from a sports car to a
pickup truck required months of study and practice!

We believe numerical models should offer a similar stan-
dardization. To this end, CSDMS developed the Basic Model

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022



1420 G. E. Tucker et al.: CSDMS

Figure 3. Schematic illustration of the CSDMS model repository. Community-contributed model codes are supplied with extensive metadata
collected as part of the contribution process. These metadata allow repository users to filter their searches according to various criteria. An
example of the filtered-search interface is shown at right.

Figure 4. Distribution of different languages used by models and
tools in the CSDMS model repository (percentages out of 453 total
programs; not weighted by program size).

Interface (BMI) (Peckham et al., 2013; Hutton et al., 2020a).
In software engineering, an interface is a named set of func-
tions with prescribed arguments and return values. The BMI
provides a standard set of functions for querying and con-
trolling a model. Just as with a car, when a model is equipped
with a BMI, it becomes easier to use because its control func-
tions are now the same as every other model with a BMI.

Further, because BMI includes variable-exchange func-
tions, a model with a BMI can be coupled with other models
that expose a BMI. Tables 1 and 2 list the individual func-
tions that comprise the Basic Model Interface, along with a
brief description of each. The table shows the current ver-
sion of BMI, version 2.0, which represents a collection of
improvements to the original specification, especially in the
representation of model grids (Hutton et al., 2020a). A model
program that has been wrapped with a BMI can function as
an interoperable component, which can be combined with
others to create integrated models (Fig. 5).

While a BMI can be written for any language, CSDMS
currently supports four languages: C, C++, Fortran, and
Python. A simple example of using a BMI written in Fortran
is shown in Listing 1.

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1421

Table 1. Listing and description of Basic Model Interface (BMI) functions for run control and data access.

Function Name Description

initialize Perform startup tasks for the model.
update Advance model state by one time step.
update_until Advance model state until the given time.
finalize Perform tear-down tasks for the model.
get_component_name Name of the model.
get_input_item_count Count of a model’s input variables.
get_output_item_count Count of a model’s output variables.
get_input_var_names List of a model’s input variables.
get_output_var_names List of a model’s output variables.
get_var_grid Get the grid identifier for a variable.
get_var_type Get the data type of a variable.
get_var_units Get the units of a variable.
get_var_itemsize Get the size (in bytes) of one element of a variable.
get_var_nbytes Get the total size (in bytes) of a variable.
get_var_location Get the grid element type of a variable.
get_current_time Current time of the model.
get_start_time Start time of the model.
get_end_time End time of the model.
get_time_units Time units used in the model.
get_time_step Time step used in the model.
get_value Get a copy of values of a given variable.
get_value_ptr Get a reference to the values of a given variable.
get_value_at_indices Get variable values at specific locations.
set_value Set the values of a given variable.
set_value_at_indices Set the values of a variable at specific locations.

Table 2. Listing and description of Basic Model Interface (BMI) functions for querying grid data.

Function Name Description

get_grid_rank Get the number of dimensions of a computational grid.
get_grid_size Get the total number of elements of a computational grid.
get_grid_type Get the grid type as a string.
get_grid_shape Get the dimensions of a computational grid.
get_grid_spacing Get the spacing between grid nodes.
get_grid_origin Get the origin of a grid.
get_grid_x Get the locations of a grid’s nodes in dimension 1.
get_grid_y Get the locations of a grid’s nodes in dimension 2.
get_grid_z Get the locations of a grid’s nodes in dimension 3.
get_grid_node_count Get the number of nodes in the grid.
get_grid_edge_count Get the number of edges in the grid.
get_grid_face_count Get the number of faces in the grid.
get_grid_edge_nodes Get the edge-node connectivity.
get_grid_face_edges Get the face-edge connectivity.
get_grid_face_nodes Get the face-node connectivity.
get_grid_nodes_per_face Get the number of nodes for each face.

The model shown in this example is the surface water
component of the Precipitation Runoff Modeling System
(PRMS), developed by the U.S. Geological Survey (Leaves-
ley et al., 1983). In the example, the model is initialized from
its native configuration file, then stepped forward in time un-
til it reaches its stop time, whereupon any resources it uses

are deallocated. Note that only BMI function calls are used
to drive the model; no knowledge of the underlying calls to
control PRMS is needed.

Hoch et al. (2019) provide a current research example
of using BMI. In their study, they coupled a hydrologic
model, PCR-GLOBWB, with a pair of hydrodynamic mod-

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022



1422 G. E. Tucker et al.: CSDMS

Figure 5. When a numerical model program is “wrapped” with a
standard interface and compiled as an importable module, it be-
comes an interoperable component.

Listing 1. Example Fortran BMI code.

els, CaMa-Flood and LISFLOOD-FP, through BMI. They
observed that a coupled model system enhanced the accuracy
of peak discharge simulations (Fig. 6).

Hoch et al. (2019) conclude that “results confirm that
model coupling can indeed be a viable way forward towards
more integrated flood simulations. However, results also sug-
gest that the accuracy of coupled models still largely depends
on the model forcing”.

6.2 Language interoperability: the babelizer

Looking at Fig. 4, we notice that software generated by the
CSDMS community reflects a range of programming lan-
guages, and thus language interoperability is critical to a cou-
pling framework if it is to bring together this diverse set of
models.

One approach to solving this problem is to choose a hub
language through which other languages will communicate.
Other approaches include that used by the Common Com-
ponent Architecture and the babel compiler (Epperly et al.,
2012), where bridges are built from one language directly
to every other language, and eWaterCycle through gprc4bmi
where models communicate through the network ports of
software containers (Hut et al., 2021). An advantage of this

approach is that it needs only to provide bridges from each
supported language to the hub language, rather than build-
ing bridges for each language to every other language. CS-
DMS uses Python as a hub language for several reasons: it
is open source, has a large user base in the user community,
and has an active community that supports a vast library of
third-party packages (numpy, scipy, xarray, pandas, etc.), and
importantly there are existing pathways to bring many other
languages into Python.

The babelizer is a command-line utility CSDMS created
to streamline the process of bringing a BMI component into
Python. For libraries that expose a BMI, the babelizer creates
the necessary glue code to create a Python-importable pack-
age that presents the BMI component as a Python class. We
wrote the babelizer to be easily extensible to additional lan-
guages, but presently it can be used to wrap libraries written
in C, C++, and Fortran using the Cython language.

6.3 Execution and coupling framework: pymt

Models in the Earth sciences are as diverse as the environ-
ments they are intended to represent. Codes are written by
hundreds of authors, in different languages, and from a di-
verse range of domains; operate on timescales and space
scales that span orders of magnitude, and are oftentimes writ-
ten in isolation – never intended for use by someone outside
the core development team. For these reasons models do not
fit so neatly together.

Although the CSDMS collection of models is incredibly
diverse, there is a common thread possible – the Basic Model
Interface (BMI; Sect. 6.1) – which connects them and allows
us to create tools that allow scientists to easily pick up, run,
and even couple these models with one another. While only
a subset of codes in the Model Repository (Sect. 5) provide
a BMI, the concept is general enough that any model can
be given one. To provide a framework for operating and cou-
pling these BMI-equipped codes, the CSDMS Integration Fa-
cility develops and maintains a Python package known as the
pymt (Python Modeling Toolkit).

The CSDMS Integration Facility has written the pymt as
a Python package that gives scientists a set of utilities for
running and coupling Earth system models within a Python
environment. We primarily see the pymt as two things: (1) a
collection of Earth surface models, in which every model ex-
poses a standardized interface (and thus if you are able to run
one model, you will be able to run any model), and (2) tools
needed for coupling models across disparate time and space
scales. A key feature of pymt is extensibility. Any contributor
can implement a BMI and use the babelizer (6.2) to create to
add a new model or utility to the toolkit.

Although the pymt itself is written in Python, the mod-
els in its collection need not be written in Python. The ba-
belizer allows developers and contributors to bring models
from other languages into a Python environment. The cur-
rent pymt model collection is detailed in Table 3. One thing

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1423

Figure 6. Simulated discharge at a river monitoring station from coupled hydrologic and hydrodynamic models (reproduced from Fig. 6 in
Hoch et al., 2019).

Table 3. Models available as components in the Python Modeling Tool pymt.

Component Property/process(es) Language

FrostNumber permafrost occurrence Python
Kudryavtsev (Ku) soil active layer thickness Python
GIPL soil temperature and heat flow Fortran
ECSimpleSnow snow balance Fortran
HydroTrend river water and sediment discharge C
RAFEM river avulsion and floodplain evolution Python
CHILD landscape evolution C++
CEM sandy, wave-dominated coastline evolution C
GridMet meteorological data access Python
sedflux3D seafloor evolution C
Avulsion river avulsion C
Plume hypopycnal sediment plume C
Subside 2D lithospheric flexure C
OverlandFlow∗ surface water runoff Python
Flexure∗ 1D and 2D lithospheric flexure Python
LinearDiffuser∗ 2D linear diffusion Python
ExponentialWeatherer∗ weathering of bedrock on hillslopes Python
TransportLengthHillslopeDiffuser∗ hillslope diffusion Python
Vegetation∗ productivity, biomass, and leaf area index Python
SoilMoisture∗ root zone soil moisture Python
DepthDependentDiffuser∗ depth- and slope-dependent linear diffusion Python
FaSTMECH river flow and morphodynamics solver Fortran
PRMSStreamflow river channel flow (Muskingum routing) Fortran
PRMSGroundwater subsurface water flow Fortran
PRMSSoil soil zone flow Fortran
PRMSSurface surface water flow Fortran

∗ Landlab component

to note when reading through this list, apart from the diver-
sity of models, is that models span a range of granularity (i.e.,
the size of a model’s scope). Granularity ranges from a single
equation (for example, from hydrology, the Richards equa-
tion or Green–Ampt method of model infiltration) to a collec-
tion of coupled process models (or even a complete modeling
framework, e.g., CHILD, Tucker et al., 2001, or Sedflux3D,
Hutton and Syvitski, 2008). However, we find that the most
useful model size is one between these two extremes, which
simulates a single physical process (for example the com-
paction of sediment under an overlying load, or the transport
of sediment by way of hypopycnal sediment plumes). Mod-
els of this size are flexible in the number of other models they

can couple with but not so small that they do not justify the
extra overhead of creating a separate component.

We have included with the pymt a collection of tools that
a modeler can use to connect a disparate set of models. For
example, models will not necessarily operate on the same
spatial grid and thus may have different spatial resolutions
or even different grid types (e.g., raster versus unstructured
mesh). To overcome this problem, we use the Earth System
Modeling Framework (ESMF) grid mapper, which uses in-
terpolation to translate variables between grids. Using this
grid mapper, a modeler can write a script that gets grid val-
ues from one model, and pymt will automatically map them

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022



1424 G. E. Tucker et al.: CSDMS

onto the grid of another (Fig. 7). For more on these grid map-
ping capabilities, see ESMF Joint Specification Team, 2021.

Another common issue when exchanging data between
models in a coupled is system is unit mismatches. To ad-
dress this issue, the pymt contains a Python wrapped version
of the udunits unit conversion library. When connecting com-
ponents within pymt, the user specifies the units for quanti-
ties that components will either use or provide. As with grid
mapping, the pymt decorates the standard BMI with addi-
tional functionality, thus leaving these common tasks to the
framework rather than to the developer of each model. The
two quantity converters (grid mapping and unit conversion)
target the BMI get_value methods, i.e., the differences in
quantities defined on a spatial grid. However, two models can
also differ temporally.

Depending on a model’s time resolution, the algorithm it
uses to solve a set of equations, or the timescale being sim-
ulated, models may not advance forward time at compati-
ble intervals. However, when coupling models, we require
the exchange of quantities to be made when models are syn-
chronized in time. While the BMI update_until method
could be used for this, we recognize (for some of the reasons
listed above) that not all models can realistically implement
this method. For such cases we have added time interpolators
to the pymt by way of a modified update_until method
that estimates values at intermediate time steps. The pymt ac-
complishes this by temporarily saving quantities at previous
time steps and then interpolating between time steps. Con-
sider, for example, a user who wants to couple two models:
the first advances in time at 1t1 and the second at a larger
time step of 1t2. Both models sit at time t0 but the first wants
to get a quantity, x(t), from the second at t = t0+1t1. To
do so, pymt advances the second model by its time step to
t = t0+1t2 and returns an interpolated value of x(t0+1t1).
pymt does this behind the scenes within the second model’s
update_until method.

Figure 7 shows the results of a coupling experiment that
demonstrates some of pymt’s capabilities. Here we have
coupled the landscape evolution model CHILD with the
seascape evolution model sedflux3D. The landscape is up-
lifted and eroded by CHILD, including fluvial transport of
sediment to the coast. At the coast, sedflux3D takes over and
transports sediment to the seafloor through surface sediment
plumes and builds up a delta over time, which becomes part
of the subaerial landscape (and thus part of the domain of
CHILD). For every time step, CHILD passes river fluxes to
sedflux3D which, in turn, passes updated landscape eleva-
tions back to CHILD. Apart from the difference in domains
(land versus sea), the two models also differ in their com-
putational grids: CHILD uses an unstructured mesh while
sedflux3D uses a uniform rectilinear grid. The pymt man-
ages the time stepping, variable exchange, and the mapping
of variables between the two grids.

In addition to providing a set of coupling tools, pymt pro-
vides an interactive environment to couple and run models.

Figure 7. Results of a coupling experiment using the Python Mod-
eling Toolkit (pymt). The CHILD model (C++; unstructured mesh)
erodes an uplifting landscape and transports sediment to the coast.
Sedflux (C; structured rectilinear grid) sends sediment from the
coast to the ocean as surface plumes where it then settles onto the
seafloor. As sediment accumulates on the seafloor, deltas begin to
form and this new landscape is sent back to CHILD, completing the
two-way coupling between these two pymt components.

Although the two models in our previous example were writ-
ten in C (sedflux3D) and C++ (CHILD), when imported as
Python classes in pymt, users are able to instantiate and run
the two models interactively. A user advances models one
time step at a time and can then query or even change val-
ues dynamically. When run in their native languages, a user
would set the initial conditions for a model simulation and
then let the model run to completion before examining out-
put. A user would never be able to dynamically change values
as it advanced. The functionality that pymt provides allows
a user to experiment interactively, examining state variables
as the model evolves, and dynamically changing model state
variables as it advances – all within a Python environment
with its large collection of visualization and analysis pack-
ages.

6.4 Data components

Researchers rarely use numerical models in isolation. Work-
ing with models nearly always includes working with
datasets too: the data that go into a model as input, the
output data that a model produces, and the data to which
a model’s output is compared. Productivity suffers when
these datasets are cumbersome to access and use. Just as
model interface standards like BMI make it easier to work
with numerical models, standardized methods for data access
and retrieval can ease the burden of working with data. To
that end, CSDMS has developed a programmatic approach
that uses the BMI for data retrieval and access. Functions
such as initialize() retrieve and open a dataset, and
get_value() fetches particular data items or subsets. A
program that uses the BMI to access items from a particular

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1425

dataset is known as a data component. Using the same in-
terface for model and data operation makes it easier to swap
models and datasets; for example, one might compare use of
model-calculated versus measured wave heights in a simu-
lation of coastal sediment transport. Because CSDMS data
components are written in Python, they can take advantage
of data-management packages like pandas and xarray.

The data components are designed to provide a consis-
tent way to access various types of datasets (e.g., time se-
ries, raster grid, and multidimensional space–time data) and
subsets of them without needing to know the original file
formats. Each data component effectively “wraps” a dataset
with a BMI (with the exception of certain BMI functions,
such as set_value, which do not apply to datasets). Data
components can easily interact with BMI-enabled numeri-
cal models in the pymt modeling framework or other similar
frameworks.

One example is the National Water Model (NWM) data
component. This data component can access and subset the
forecasted streamflow time series generated by the NWM hy-
drologic modeling framework. Figure 8 shows an example of
how the NWM data component can be used to get the stream-
flow data at a river channel for a flooding event. Figure 9
shows the corresponding time series plot. This data compo-
nent includes a set of standard control and query functions
(e.g., initialize(), update()). These standard meth-
ods make the dataset easier to couple with BMI-enabled nu-
merical models without needing to know the time series file
format.

6.5 Creating new models: Landlab

Landlab is a Python-language library designed to support
the creation, combination, and reuse of 2-D models (Hob-
ley et al., 2017; Barnhart et al., 2020a). For the moment, let
us presume that a model developer has identified input and
output parameters, model state variables, and the governing
equations and/or model rules. We might then synthesize the
tasks of building the model (Sect. 4.6) into two types: (a) cre-
ating required data structures and (b) implementing a numer-
ical solution to the governing equations that act on those data
structures. For example, most models need to represent the
computational domain, including information across the do-
main, and adjacency information describing how the differ-
ent parts of the domain are connected to one another. This di-
vision is simplistic and neglects many intricacies, yet it cap-
tures the fundamental activities of model building.

Landlab provides reusable software infrastructure that ad-
dresses the most common needs for our two model-building
tasks. For grid-based data structures, Landlab provides a grid
object to represent the computational domain and store fields
of state variables (Fig. 10). Landlab provides several two-
dimensional grid types, which all share the same underly-
ing graph-based data structures. Current grid types include
regular raster, network, regular hexagon, and unstructured

(Delaunay–Voronoi). For all grid types, the adjacency infor-
mation and access to fields follows the same interface – mak-
ing it easier for a model to work on multiple grid types.

To address the second model-building task, Landlab pro-
vides two capabilities. First is a set of numerical utilities that
support common needs. These include, for example, the abil-
ity to calculate differences, gradients, fluxes, and divergences
of values stored at fields. Second is a library of components
(Fig. 11). Each Landlab component simulates a single pro-
cess, such as routing of shallow water flow across a terrain
surface (Adams et al., 2017), calculating groundwater flow
(Litwin et al., 2020), modeling sediment movement in a river
network (Pfeiffer et al., 2020), or simulating biological evo-
lution across a landscape (Lyons et al., 2020). Components
are implemented as Python classes, and are derived from a
common base class that defines common attributes, and en-
forces a minimum set of metadata for each component. If a
researcher wishes to write the code for a numerical model,
and the desired elements of that model have already been
implemented as Landlab components, the model can be pro-
grammed efficiently by instantiating each component, and
then executing the run_one_step method for each com-
ponent within a loop (Fig. 11).

The component base class was designed to expose a Ba-
sic Model Interface (BMI; Sect. 6.1), which allows a Land-
lab component to be used as a BMI-enabled component. Al-
though we do not expect most Landlab users to directly use
this alternate interface, the component’s BMI acts as a bridge
that allows it to be incorporated into other BMI-friendly
frameworks and tools (e.g., pymt, dakotathon).

The Python Modeling Toolkit (pymt; Sect. 6.3) is a model-
coupling framework that provides tools for using and cou-
pling BMI-enabled components, written in a range on pro-
gramming languages, which may not have been written with
the intent of operating within a coupling framework. Operat-
ing as a BMI component, Landlab components act as isolated
elements that no longer share a common grid and data; when
used in this mode, Landlab components require an input file
that describes the grid, parameter values, and initialization
setup. This is by design and required by the BMI so that
a user interacts with the component as with any other BMI
component without being aware of the inner workings of a
Landlab component.

Despite the name, Landlab is not restricted to terrestrial
processes. Its component collection includes, for example,
components for coastal and marine processes such as tidal
circulation and marine sedimentation. Its design is amenable
to a wide variety of 2D grid-based numerical models and cel-
lular automata applications. Landlab can be used, for exam-
ple, to construct integrated source-to-sink models that treat
the full geologic cycle, tracking sediment from its creation
on land to its deposition in marine basins (Fig. 12).

The design of Landlab supports a variety of usage styles.
Interested users and/or developers may use Landlab to create
models as components, or as scripts that combine compo-

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022



1426 G. E. Tucker et al.: CSDMS

Figure 8. Screenshot of a Jupyter Notebook demonstrating how to use the NWM data component to access and subset a streamflow dataset.

nents. Alternatively, Landlab can be used to build standalone
packages such as terrainbento (Barnhart et al., 2019),
which combine Landlab components into a predefined set of
models.

In terms of computational performance, the philosophy be-
hind Landlab development has been to start with simple al-

gorithms that work – in other words, to initially prioritize
development speed over computational speed. When com-
putational performance becomes a bottleneck, the first step
is to replace the problematic algorithm with a more perfor-
mant one (if known). For example, Landlab version 2.4.1
introduced new flow-routing components that embed highly

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1427

Figure 9. Time series plot for the accessed NWM streamflow
dataset.

performant, parallel-capable algorithms developed by Barnes
(2016). In addition, bottleneck code elements in Landlab
components and core routines are often rewritten in Cython,
which is a Python-language extension that provides explicit
type declarations and translates to C code that is compiled
into importable object modules. In general, Landlab’s modu-
lar design facilitates performance benchmarking by enabling
one to compare performance between components that use
different algorithms or codes to execute the same task.

6.5.1 HyLands: an example of a component-based
integrated model

The modular design of Landlab enables the development of
numerical tools in an efficient manner. An example of a re-
cently developed Landlab-built model is HyLands: a land-
scape evolution model that simulates mass wasting and sed-
iment redistribution on hillslopes. The model was originally
written in a closed-source language (Campforts et al., 2020);
translating the original code into Landlab converts the origi-
nal product into a fully open-source tool for the broader com-
munity and provides a new process component to simulate
landsliding. The grid engine and other tools available within
the Landlab library enabled efficient implementation and
provide capabilities for coupling with other existing Land-
lab components. An example is the Stream Power with Al-
luvium Conservation and Entrainment (SPACE) component,
which has been developed to simulate fluvial sediment trans-
port and incision (Shobe et al., 2017) and is showcased here
as an example of model coupling with HyLands.

The integration capabilities of Landlab, where new and ex-
isting components can be combined in a straightforward way,
opens up new possibilities for applied environmental engi-
neering and fundamental scientific research. For HyLands in
particular, the coupling of a deep-seated landslide algorithm
with a sediment routing system will (i) help on a more ap-
plied level to explore the impact of future changes in storm
frequency on landslide occurrence and sediment dynamics
(Fan et al., 2019) and (ii) on a more fundamental level to fa-

cilitate the investigation of the interaction between landslides
and sediment dynamics over geological timescales. The lat-
ter is illustrated in Fig. 13, where we use the Landlab soft-
ware to simulate the impact of uplifting terrain on the for-
mation of alluvial fans. Simulations are executed with and
without landslide activity (Fig. 13a versus 13b). Resulting
magnitude–frequency and area–volume relationships for the
simulated landslides are shown in Fig. 14. The evolution of
the alluvial fans is further visualized in the movies listed in
Table 4. For details regarding the algorithms and physics sup-
porting the HyLands component, see Campforts et al. (2020).

6.6 Standard Names

Ensuring interoperability when coupling models or select-
ing datasets as inputs to models requires accurate alignment
of scientific variables. Scientific variables are complex con-
cepts composed of multiple facets – a phenomenon or ob-
ject of observation, the corresponding physical quantity be-
ing measured, spatiotemporal context for the phenomenon,
spatiotemporal reference for the measured quantity, mathe-
matical operations applied to transform the physical quan-
tity, etc. Because of this, and because terminology varies
across disciplines, the semantic mediation task – determining
whether two variables represent compatible concepts – can
be quite involved. In CSDMS, BMI works in tandem with
the CSDMS Standard Names (CSN) (Peckham et al., 2013)
to ensure proper alignment between resources. The Standard
Names were developed to standardize and unify the repre-
sentation of scientific variables within CSDMS.

A CSDMS Standard Name contains two parts: an object
part and a quantity part, with adjectives and modifiers (as pre-
fixes) being used to help avoid ambiguity and identify a spe-
cific object and a specific, associated quantity. The quantity
part may include one or more operation prefixes that create a
new quantity from an existing quantity. An example related
to surface-water hydrology is the runoff rate, for which the
Standard Name is as follows.

land_surface_water__runoff_volume_flux

The double-underscore separates the object (surface water
on land) from the quantity (the volume flux of runoff). The
word “flux” implies a quantity per time per surface area, and
thus the implied dimensions are length per time.

As with all standard naming approaches, the Standard
Names are limited in the amount of information they can
represent because their data model and definitions are not
explicitly represented. The Scientific Variables Ontology
(SVO) (Stoica and Peckham, 2018, 2019b, a; Stoica, 2020;
SVO, 2020), a blueprint for representing scientific variables
utilizing a compact set of domain-independent categories, re-
lationships, and modular design patterns, was developed to
address these issues. In computer science, an ontology is a
system that attempts to capture and organize knowledge in

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022



1428 G. E. Tucker et al.: CSDMS

Figure 10. Example of a simple finite-volume numerical model of hillslope evolution, written in Python using the Landlab library. The
model uses a diffusion equation to represent an evolving hillslope. The concise source code at right illustrates the use of a Landlab grid
object together with fields and built-in functions for numerical gradient and divergence functions on these fields.

Figure 11. Example of a simple landscape evolution model written using the Landlab programming library. Model code at right illustrates
the use of three components to create the model.

a particular domain (in machine-readable form) as under-
stood by experts in that domain or subject area. In SVO,
the CSN are represented with an explicit, formal model in
machine-readable form using Semantic Web best practices
(W3C Working Group, 2008). Because SVO is formalized,
it can be used to enable searching, semi-automated genera-
tion of new variable representations, and inexact but suffi-
cient variable alignments through logical reasoning.

7 Community engagement

One of CSDMS’ major activities has been the creation of
a thriving community around Earth surface dynamics mod-
eling (Overeem et al., 2013). As of 2020, over 2000 mem-
bers, representing 552 institutions (144 US academic) and
71 countries, had joined the community. CSDMS is, by de-
sign, a broad and deep coalition of members from disciplines
reflected by five Working Groups and seven Focus Research
Groups (Fig. 15). From its inception, CSDMS has encour-
aged trans-disciplinarity by providing opportunities such as
annual meetings, workshops, hackathons, and training events
for domain scientists to interact with colleagues from other
Earth and social science disciplines. These connections are

essential for knowledge exchange among community ef-
forts and allow for wider penetration of new technology and
ideas. Cross-pollination of ideas from these events and other
community-member interactions have led to a variety of in-
dependently funded research projects. CSDMS has played
a key role in shifting the paradigm to open code-sharing
in Earth surface processes by facilitating resource-sharing
through model, data, and education repositories on the CS-
DMS web portal. CSDMS also offers a variety of services
to community processes and the geoscience subdiscipline of
interest. Along with their disciplinary expertise, researchers
who work with computational models also need a strong
foundation in programming, advanced computing, and data
analytics (Atkins et al., 2011).

Traditional Earth science education does not usually equip
students with skills to use modern cyber-infrastructure and
computing resources efficiently or to become model devel-
opers (Campbell et al., 2013). The Earth surface processes
community critically needs a platform to teach modern pro-
gramming practices and high-performance computing meth-
ods to develop innovative models that can be used to under-
stand and predict how the Earth’s surface responds to en-
vironmental change and human influence. The practice of

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1429

Table 4. Simulation movies created with Landlab-HyLands.

Scenario Description Link

No landslides topography https://youtu.be/c5d7T8eehxw
location of longest river https://youtu.be/GqokukWi9cs
river profile https://youtu.be/A_JZ9POfJ54
sediment thickness https://youtu.be/t0_tel5fhbM

Landslides topography https://youtu.be/1K_ceKYt9Nw
location of longest river https://youtu.be/YkmbUTN7zlI
river profile https://youtu.be/jyWgKTcMe74
sediment thickness https://youtu.be/rwEBqGtHZs0
landslide erosion and deposition https://youtu.be/_xoSm7p4ZxI

Last access date for all URLs: 11 February 2022

Figure 12. Snapshot of prototype integrated numerical model of
landscape and sedimentary basin evolution. Domain size is 250 by
250 km. Simulation shows a hypothetical micro-continent with an
active NNE-oriented extensional fault. Sea level varies stochasti-
cally; this particular snapshot captures a period of rising sea level
after a brief low stand. Model was constructed using Landlab com-
ponents for flow routing (FlowAccumulator, FlowDirectorSteepest,
LakeMapperBarnes), fluvial processes (ErosionDeposition), marine
sediment transport (SimpleSubmarineDiffuser), lithosphere flexure
in response to loading and unloading (Flexure), and extensional
faulting (ListricKinematicExtender). Color map designed by Thyng
et al. (2016).

modeling lies at the core of predictive Earth surface sci-
ences, and educators should engage students in building, test-
ing, and applying models (Hestenes, 1996; Manduca et al.,
2008), but we found from a review of course catalogs that
in practice the undergraduate curricula of more traditional
discipline-focused departments do not include this compo-
nent (Campbell et al., 2013). This issue is not entirely unique
to Earth surface sciences. The geosciences today are inten-
sively quantitative, and there is an urgent need for a work-
force with strong STEM skills (Singer et al., 2012). The
United States’ National Science Foundation (NSF) recog-
nizes as one of its “10 Big Ideas” that pathways are needed

for educators to create a 21st-century workforce capable of
effectively dealing with data (King and South, 2017). More-
over, an agile STEM workforce is considered a national pri-
ority (Atkins et al., 2011). Realizing this, CSDMS provides
hands-on training opportunities during meetings. Some ef-
forts are meant to build foundation – for example, via short
courses that equip graduate students with skills in best pro-
gramming practices. Other outreach efforts consist of short
clinics, targeted to give potential users of cyber-infrastructure
an active feel for certain models or computational techniques
or to provide an update to experts on new developments.
More extensive separately organized hackathons bring to-
gether small science teams to work on solutions for more
specific outstanding research problems. In 2020, CSDMS in-
augurated an immersive Earth Surface Processes Summer In-
stitute for students and early career scientists, focused on ca-
pacity building for Earth surface processes modeling.

8 Discussion and conclusions

In May 2020, the US National Science Foundation re-
leased a special report, prepared by the National Academy,
on research opportunities in the Earth sciences (NRC,
2020). The report highlighted three unique types of re-
search infrastructure: instrumentation, human infrastructure,
and cyber-infrastructure. The report’s recognition of cyber-
infrastructure as a distinct form of research infrastructure is
one indication of the critical role that computing now plays in
the Earth and environmental sciences. Environmental model-
ing, and the software and culture-of-practice that support it,
constitutes a key part of that cyber-infrastructure. Research
software is infrastructure and is deserving of the same care
and attention as a laboratory or field station. This is also true
of the professional research software engineers who devote
their expertise to helping the community do computational
work more efficiently, effectively, and sustainably.

The research enterprise benefits when modeling software
and tools are shared, coordinated, and interoperable, such

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022

https://youtu.be/c5d7T8eehxw
https://youtu.be/GqokukWi9cs
https://youtu.be/A_JZ9POfJ54
https://youtu.be/t0_tel5fhbM
https://youtu.be/1K_ceKYt9Nw
https://youtu.be/YkmbUTN7zlI
https://youtu.be/jyWgKTcMe74
https://youtu.be/rwEBqGtHZs0
https://youtu.be/_xoSm7p4ZxI


1430 G. E. Tucker et al.: CSDMS

Figure 13. Illustration of HyLands model component. (a) Time slices showing evolution of the landscape to steady state without landsliding.
The blue lines represent the plan-view locations of rivers plotted in the right-hand column. Column (b) is the same as column (a) but with
landsliding. (c) Sediment accumulation and the formation of alluvial fans (with landsliding). (d) Landslide activity during the depicted time
step. Red colors represent the logarithm of the landslide erosion depth; blue colors represent deposition. Column (e) shows the topographic
and bedrock elevation (red and black line, respectively) and the sediment thickness (orange line). The sediment flux is plotted against the
right-hand y axis (blue line). Note that during landsliding both pure landslide dams (red bumps on the profile) and irregularities in the bedrock
profile (grey bumps) arise. The latter originate from the river being redirected after landsliding, forming epigenetic gorges.

that the six model operation tasks listed in Fig. 2 can be done
efficiently and effectively. For the Earth surface sciences, the
CSDMS Model Repository provides a community platform
for finding and sharing model codes and related tools. In ad-
dition to acting as a valuable community resource, the Repos-
itory provides a solution to the growing mandate from jour-
nals and funding agencies to make research software openly
available. The provision of standardized metadata and bibli-
ographic information helps those who are looking for models
to compare and evaluate the alternatives.

Simply providing source code and metadata is not enough,
however. In order for Earth and environmental models to
function as community resources, they must be usable, and

one of the key dimensions of usability is interoperability.
The BMI standard promotes interoperability by reducing the
learning curve for executing and querying models, and by
greatly simplifying the process of linking (one way) or cou-
pling (two way) models. A model program equipped with a
BMI becomes an interoperable, standardized component: an
element of an integrated system, rather than an idiosyncratic
standalone product. One of the key abilities offered by a
BMI-enabled model is run-time control, query, and modifica-
tion. Because BMI supports step-wise execution, a user can
effectively pause a model mid-run to inspect its state vari-
ables and modify parameters or data. This capability allows
iterative, loop-based coupling of models using simple scripts.

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1431

Figure 14. Magnitude–frequency relationship of the landslides sim-
ulated with Landlab-HyLands (red dots) and illustrated in Fig. 13.
The inset shows a scatter density plot showing the simulated area–
volume relationship.

Figure 15. CSDMS Working Groups and Focus Research Groups
(EKT stands for Education and Knowledge Transfer).

The ability to query and modify values also enables tighter
coupling. For example, if component models are treated as
representing individual terms in a governing equation, a cou-
pling script can use BMI functions to query each compo-
nent’s derivatives, construct a matrix, solve it, and then pass
the updated state variables back to the individual compo-
nents.

One advantage of BMI is that it is language agnostic and
can in principle be implemented in nearly any programming
language. It can, for example, accommodate legacy codes
written in Fortran. The disadvantage of language flexibility
is that BMI addresses the least common denominator, and
therefore does not take advantage of the more advanced fea-
tures available in some languages, such as object-oriented ca-
pabilities. To some extent this disadvantage can be addressed
by building more specialized, language-specific interfaces
in parallel with a BMI. For example, Landlab compo-
nents, which are implemented as classes, use a lightweight,
Python-specific interface that takes advantage of that lan-
guage’s object-oriented capabilities, advanced data types,

and parameter-passing syntax. At the same time, Landlab
also includes functionality to translate any of its components
into a standard BMI component so that they can be integrated
with components written in other languages.

The flexibility that BMI offers has led to its adoption in
a variety of different applications, including US Geological
Survey rainfall-runoff models (Markstrom et al., 2015; Re-
gan et al., 2018, 2019), hydrodynamic modeling (including
flagship models developed by Deltares and the Netherlands
eScience Center, Hoch and Trigg, 2019; Hoch et al., 2019),
delta and coastline evolution modeling (Ratliff et al., 2018),
and modeling of methane emissions (Fox et al., 2020). One
disadvantage of a standard interface like BMI is the extra up-
front investment in program development. Researchers may
not perceive value in adding a standard interface to a legacy
code or writing it into a new code. However, for codes whose
scope merits repeated reuse, this effort usually more than
pays for itself. Code written to a standard like BMI tends to
be more modular and therefore easier to maintain. Existing
templates for common languages in the Earth and environ-
mental sciences make the process of providing a BMI to a
new program relatively painless, i.e., just a matter of filling
in a set of predefined function names and signatures (Hut-
ton et al., 2020a). Adding a BMI to an existing legacy model
can be a bit more involved, depending on how the program
code is structured, because it often requires some degree of
refactoring. Even in that case, we find that adding a BMI to
a legacy model often makes that code more understandable
and adaptable.

The variety of different programming languages used in
the Earth and environmental sciences community presents
a barrier to interoperability. The majority of models and
tools in the CSDMS Repository are written in C, C++, For-
tran, Python, and MATLAB (Fig. 4). Other languages used
in CSDMS constituent communities include R (especially
in ecosystem dynamics) and NetLogo’s java-based script-
ing language (for agent-based modeling). Julia, a relatively
new high-level language oriented toward numerical comput-
ing, also seems to be growing in popularity in the science
community. Crossing the language barrier requires language-
bridging tools. Translating the existing wealth of legacy code
into a single, common language would be impractical, even
if the community could agree on which language to use.
A more effective solution is to librarize models and tools
(Brown et al., 2014) as components that can be accessed
and executed through a high-level scripting language. In CS-
DMS’ case, the Babelizer tool provides this capability for
codes written in C, C++, and Fortran by using Python as the
bridging language.

Librarization can also be applied to tools that access
datasets. The CSDMS Workbench accomplishes this with
data components that provide function–call access to vari-
ous datasets. Using the BMI syntax for data access removes
the need to worry about data formats and makes it easier to
swap between datasets and models (for example, data versus

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022



1432 G. E. Tucker et al.: CSDMS

model of ocean wave properties) as components in a linked
system. In this case, the BMI does not replace the more so-
phisticated data-access capabilities of a language-specific li-
brary like xarray, but it has the advantage of providing a con-
sistent interface across multiple languages.

For building and modifying numerical models, the CS-
DMS Workbench provides Landlab as a Python-specific
solution for 2D, grid-based applications. Experience with
Landlab since its introduction has shown that a library of
model “building blocks” can greatly reduce barriers on the
software side of model creation. One indicator of the suc-
cess of this approach is the growing number of Landlab-built
models created by doctoral students as part of a larger body
of dissertation research (e.g., Adams et al., 2017; Gray et al.,
2017; Shobe et al., 2017; Lai and Anders, 2018; Langston
and Tucker, 2018; Schmid et al., 2018; Strauch et al., 2018;
Glade et al., 2019; Reitman et al., 2019; Carriere et al., 2020;
Litwin et al., 2020). The ability to assemble models out of
reusable “process components” allows for rapid construc-
tion of complete, multi-element models. One example of the
value of rapid model assembly is a recent comparative test-
ing and calibration study of long-term landform evolution
models (Barnhart et al., 2020b, c). The study authors used
Landlab to develop a Python package for multi-model anal-
ysis of drainage basin evolution (Barnhart et al., 2019). The
package allowed for the exploration and testing of more than
30 mathematically distinct models as alternative hypotheses
– a feat that would not have been possible with a traditional
monolithic modeling code. This example illustrates how flex-
ible, component-based modeling software promotes hypoth-
esis testing.

Experience with BMI, pymt, and Landlab highlights the
critical importance of documentation, consistent with the
findings of Lawrence et al. (2015). Tutorial examples in par-
ticular provide a starting point that users can build on. Em-
bedding tutorials in Jupyter Notebooks provides an effective
way to combine descriptive text, program code, plots, and
formatted mathematics. For reference-level documentation,
document generator tools like Sphinx and doxygen translate
internal documentation (comment blocks inside source code)
into nicely formatted, web-accessible reference material.

One limitation in the current pantheon of community Earth
surface dynamics software is the unevenness of software test-
ing. In the context of numerical models, Clune and Rood
(2011) define two very different forms of testing: confirming
consistency between a model and the natural or engineered
system it is meant to represent (which they term valida-
tion) and verifying that the code reproduces an independently
known or calculated solution to its algorithms. The first is an
intrinsic part of the scientific method, and often the motiva-
tion for developing models in the first place. The second –
verification testing – is a quality-control practice that guards
against software bugs that could otherwise misdirect the sci-
ence. As noted in Sect. 2, formal verification testing in re-
search software seems to be under-used in research software.

In the CSDMS Model Repository, relatively few community-
contributed standalone codes come equipped with formal
tests as part of their software package. Yet our own expe-
rience has proven the value of weaving unit tests and other
types of test into a software package. The Landlab Toolkit,
for example, includes unit tests that collectively exercise
about 85 % of the entire source code. Requiring these tests
to pass before merging changes has proven to be a powerful
(though not foolproof) method for screening out bugs and un-
intended side effects. Tutorial-style documentation can also
provide an opportunity for testing: we have found that sim-
ply checking for run-time errors in Jupyter notebook tutorials
provides an additional level of screening that encompasses
more complex use cases than most unit tests cover. We have
also found that test-driven development can be an effective
and efficient way to write modeling software, with the added
benefit that tests become incorporated from the start as part
of the development process (Nanthaamornphong and Carver,
2017, 2018). Increasing the use of techniques like test-driven
development and unit testing among the geoscience commu-
nity will require a combination of educational opportunities
and guided community development.

A successful community cyber-infrastructure for numeri-
cal modeling requires more than just technology. It also takes
community building and coordination. In the case of CS-
DMS, the community centers around common interest in a
broader theme (Earth surface processes) and a common ap-
proach (modeling). Activities such as meetings, workshops,
hackathons, and webinars can help draw attention to new
tools and methods, provide education in their use, and con-
tribute to building a culture of resource sharing.

One of the biggest challenges to a fully functional commu-
nity software ecosystem in Earth and environmental model-
ing is a lack of formal training in computational skills. Most
geoscientists are self-taught programmers and generally un-
aware of practices and tools that would make their work more
efficient and sustainable. CSDMS and other community fa-
cilities have had some success in addressing this need with
workshops, webinars, and summer schools, but there remains
a need to scale up these efforts. Geoscience researchers
should not need the equivalent of a computer science degree
to perform computational research, yet in our experience
there is a basic set of skills that can make a big difference
but that relatively few geoscientists possess. The taxonomy
of model-related tasks in Fig. 2 could potentially serve as a
guidepost for defining learning goals. For example, in prac-
tice most of the task levels in Fig. 2 require the ability to oper-
ate a command shell. Most of the levels also require the abil-
ity to manipulate input and output data, and the higher lev-
els require familiarity both with programming and with nu-
merical methods. Potential approaches to instructional deliv-
ery range from regular university-based geoscience-oriented
courses, to focused community-led summer courses, to fully
online self-paced courses. Questions of credit and funding

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022



G. E. Tucker et al.: CSDMS 1433

inevitably arise, as does the issue of how to squeeze more
material into already-packed curricula.

Another challenge revolves around incentives. The com-
munity as a whole clearly benefits from a FAIR and sus-
tainable research software ecosystem. As noted above, the
advent of software journals and peer-reviewed repositories
(such as CoMSES Net and pyOpenSci) provides one mech-
anism to encourage the creation of lasting digital products.
The reproducibility movement provides another useful push
and has led journals and funding agencies to raise their stan-
dards for sharing and accessibility of software and other dig-
ital products. To take advantage of this momentum, hiring
and promotion committees at universities and research or-
ganizations need to acknowledge the value of contributions
to high-quality research software. Professional societies can
contribute by offering awards that recognize contributions to
cyber-infrastructure.

The third major challenge is support. Our experience
with CSDMS demonstrates that a modest investment in
community-oriented computing can have a substantial pos-
itive impact on research productivity. By investing in sta-
ble community repositories, interoperability standards, and
software libraries and frameworks, a funding agency can in-
crease the impact of its portfolio by incentivizing a shared,
reusable, and ever-improving community infrastructure of
models, tools, and expertise. A key to making this approach
scalable, in addition to incentives, is to provide sufficient
documentation and consulting support to enable community
members to create research cybertools that are findable, ac-
cessible, interoperable, and reusable. We have found from
our own experience that consulting support is an especially
important piece. Projects that include a professional research
software engineer in their team – even if it is just at the level
of general design advice, informal education, or to help over-
coming technical obstacles – tend to be much more likely
to produce robust, flexible, sustainable software as a lasting
broader impact of a project.

Computational modeling in the Earth and environmental
sciences has come a long way in the first 2 decades of the 21st
century. The possibilities of a coordinated, community-wide
cyber-ecosystem are starting to emerge. Fully achieving this
vision will require a combination of education, incentives,
and support. Universities, research agencies, and individual
researchers all have a role to play.

Code availability. The current versions of the various elements
in the CSDMS Workbench software suite are available under the
MIT license. As of this writing, Landlab code, documentation, and
tutorials are available in a Git version-control repository on the
GitHub hosting site at https://github.com/landlab/landlab (last ac-
cess: 11 February 2022). Documentation can be accessed at https://
landlab.github.io (last access: 11 February 2022). The Landlab ver-
sion discussed here is 2.0 (“Mrs. Weasley”), available via Zenodo
at https://doi.org/10.5281/zenodo.3776837 (Hutton et al., 2020b).

Current versions of software, technical specifications, documenta-
tion, and other resources for other Workbench elements (BMI, ba-
belizer, pymt, model, and data components) are managed on GitHub
under the CSDMS organization (https://github.com/csdms, last ac-
cess: 11 February 2022). Online documentation for BMI, pymt,
and babelizer is presently hosted on the Read the Docs platform
(for example, https://bmi.readthedocs.io, (last access: 11 Febru-
ary 2022). The BMI version presented in this paper is 2.0, avail-
able via JOSS and Zenodo at https://doi.org/10.21105/joss.02317
(Hutton et al., 2020a). Babelizer version 0.3.8 can be found
at https://doi.org/10.5281/zenodo.4985181 (Hutton and Piper,
2021). Version 1.3.1 of the Python Modeling Toolkit (pymt)
can be accessed at https://doi.org/10.5281/zenodo.4985222 (Hut-
ton et al., 2021). The simulation shown in Fig. 12 is con-
tained and described in two Jupyter Notebooks available at
https://doi.org/10.5281/zenodo.6049847 (Tucker, 2022).

Data availability. Data on CSDMS membership, as shown in
Fig. 15, are openly available at https://csdms.colorado.edu/wiki/
CSDMS_members_by_numbers (Kettner, 2022).

Author contributions. CSDMS is the outcome of a community-
wide effort, with contributions from numerous community members
to governance, workshops, software, educational resources, and
ideas. In terms of this particular manuscript, primary author con-
tributions by section were as follows: Sects. 1–4 were contributed
by GET; Sect. 5 was contributed by AJK; Sect. 6 was contributed
by MDP, EWHH, TG, BC, KRB, GET, and SDP; Sect. 7 was con-
tributed by IO and LM; and Sect. 8 was contributed by GET. JS
founded CSDMS and led it for 10 years. All authors contributed to
editing the manuscript.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We are grateful for the feedback and helpful
suggestions from two anonymous reviewers and for the work of the
editorial team. The Community Surface Dynamics Modeling Sys-
tem (CSDMS) is supported by the US National Science Foundation
(NSF) (1831623). Initial development of Landlab was supported
by the NSF SI2 program (1450409). Additional sources of support
include EarthCube (2026951), NSF OPP (1503559), NSF-CISE
(1924259, 2104102), and an NSF postdoctoral fellowship (1725774
to Katherine R. Barnhart). The authors gratefully acknowledge the
contributions of numerous CSDMS members, whose service on
committees, sharing of codes, teaching of clinics, and other efforts
have created a vibrant community of practice.

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022

https://github.com/landlab/landlab
https://landlab.github.io
https://landlab.github.io
https://doi.org/10.5281/zenodo.3776837
https://github.com/csdms
https://bmi.readthedocs.io
https://doi.org/10.21105/joss.02317
https://doi.org/10.5281/zenodo.4985181
https://doi.org/10.5281/zenodo.4985222
https://doi.org/10.5281/zenodo.6049847
https://csdms.colorado.edu/wiki/CSDMS_members_by_numbers
https://csdms.colorado.edu/wiki/CSDMS_members_by_numbers


1434 G. E. Tucker et al.: CSDMS

Financial support. This research has been supported by the Na-
tional Science Foundation (grant nos. 2104102, 2026951, 1924259,
1831623, 1725774, 1503559, and 1450409).

Review statement. This paper was edited by Andrew Wickert and
reviewed by two anonymous referees.

References

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G.
E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu,
E.: The Landlab v1.0 OverlandFlow component: a Python tool
for computing shallow-water flow across watersheds, Geosci.
Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-
1645-2017, 2017.

Addor, N. and Melsen, L.: Legacy, rather than adequacy, drives the
selection of hydrological models, Water Resour. Res., 55, 378–
390, https://doi.org/10.1029/2018WR022958, 2019.

Adorf, C. S., Ramasubramani, V., Anderson, J. A., and Glotzer,
S. C.: How to professionally develop reusable scientific software
– And when not to, Comput. Sci. Eng., 21, 66–79, 2018.

Ahalt, S., Band, L., Christopherson, L., Idaszak, R., Lenhardt, C.,
Minsker, B., Palmer, M., Shelley, M., Tiemann, M., and Zim-
merman, A.: Water Science Software Institute: Agile and open
source scientific software development, Comput. Sci. Eng., 16,
18–26, 2014.

AlNoamany, Y. and Borghi, J. A.: Towards computational repro-
ducibility: researcher perspectives on the use and sharing of soft-
ware, PeerJ Comput. Sci., 4, e163, https://doi.org/10.7717/peerj-
cs.163, 2018.

Anderson, R. S., Dietrich, W. E., Furbish, D., Hanes, D., Howard,
A., Paola, C., Pelletier, J., Slingerland, R., Stallard, B., Syvitski,
J., Vorosmarty, C., and Wiberg, P.: Community Surface Dynam-
ics Modeling System Science Plan, Tech. rep., CSDMS Work-
ing Group, https://csdms.colorado.edu/wiki/CSDMS_docs (last
access: 11 February 2022), 2004.

Arndt, D., Bangerth, W., Blais, B., Fehling, M., Gassmöller, R.,
Heister, T., Heltai, L., Köcher, U., Kronbichler, M., Maier, M.,
Munch, P., Pelteret, J.-P., Proell, S., Simon, K., Turcksin, B.,
Wells, D., and Zhang, J.: The deal.II Library, Version 9.3, J.
Numer. Math., 29, 171–186, https://doi.org/10.1515/jnma-2021-
0081, 2021a.

Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai,
L., Kronbichler, M., Maier, M., Pelteret, J.-P., Turcksin, B.,
and Wells, D.: The deal.II finite element library: Design,
features, and insights, Comput. Math. Appl., 81, 407–422,
https://doi.org/10.1016/j.camwa.2020.02.022, 2021b.

Atkins, D., Hey, T., and Hedstrom, M.: National Science Foundation
Advisory Committee for Cyberinfrastructure Task Force on Data
and Visualization Final Report, US government report, National
Science Foundation, 2011.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient
Management of Parallelism in Object Oriented Numerical Soft-
ware Libraries, in: Modern Software Tools in Scientific Comput-
ing, edited by: Arge, E., Bruaset, A. M., and Langtangen, H. P.,
Birkhäuser Press, 163–202, 1997.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik,
D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F.,
Zampini, S., and Zhang, H.: PETSc Users Manual, Tech. Rep.
ANL-95/11 – Revision 3.6, Argonne National Laboratory, http:
//www.mcs.anl.gov/petsc (last access: 11 February 2022), 2015a.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik,
D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F.,
Zampini, S., and Zhang, H.: PETSc Web page, http://www.mcs.
anl.gov/petsc (last access: 11 February 2022), 2015b.

Bangerth, W. and Heister, T.: What makes computational open
source software libraries successful?, Comput. Sci. Discovery, 6,
015010, https://doi.org/10.1088/1749-4699/6/1/015010, 2013.

Barba, L. A.: The hard road to reproducibility, Science, 354, 142–
142, 2016.

Barnes, N.: Publish your computer code: it is good enough, Nature,
467, 753–753, 2010.

Barnes, R.: RichDEM: Terrain Analysis Software, http://github.
com/r-barnes/richdem (last access: 11 February 2022), 2016.

Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.:
Terrainbento 1.0: a Python package for multi-model analysis
in long-term drainage basin evolution, Geosci. Model Dev., 12,
1267–1297, https://doi.org/10.5194/gmd-12-1267-2019, 2019.

Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N.
M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouch-
ene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda,
C.: Short communication: Landlab v2.0: a software package
for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397,
https://doi.org/10.5194/esurf-8-379-2020, 2020.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C.,
Rossi, M. W., and Hill, M. C.: Inverting topography for land-
scape evolution model process representation: Part 1, conceptu-
alization and sensitivity analysis, J. Geophys. Res.-Earth, 125,
e2018JF004961, https://doi.org/10.1029/2018JF004961 2020b.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C.,
Rossi, M. W., and Hill, M. C.: Inverting topography for land-
scape evolution model process representation: Part 2, calibration
and validation, J. Geophys. Res.-Earth, 125, e2018JF004963,
https://doi.org/10.1029/2018JF004963, 2020c.

Basili, V. R., Carver, J. C., Cruzes, D., Hochstein, L. M.,
Hollingsworth, J. K., Shull, F., and Zelkowitz, M. V.: Under-
standing the high-performance-computing community: A soft-
ware engineer’s perspective, IEEE Software, 25, 29–36, 2008.

Baxter, R., Hong, N. C., Gorissen, D., Hetherington, J., and
Todorov, I.: The research software engineer, in: Digital Research
Conference, Oxford, 2012.

Benureau, F. C. and Rougier, N. P.: Re-run, repeat, reproduce, reuse,
replicate: transforming code into scientific contributions, Front.
Neuroinf., 11, 69, https://doi.org/10.3389/fninf.2017.00069,
2018.

Bras, R., Tucker, G., and Teles, V.: Six myths about mathematical
modeling in geomorphology, in: Prediction in Geomorphology,
edited by: Wilcock, P. and Iverson, R., American Geophysical
Union, 63–79, https://doi.org/10.1029/135GM06, 2003.

Brown, J., Knepley, M. G., and Smith, B. F.: Run-time extensibility
and librarization of simulation software, Comput. Sci. Eng., 17,
38–45, 2014.

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022

https://doi.org/10.5194/gmd-10-1645-2017
https://doi.org/10.5194/gmd-10-1645-2017
https://doi.org/10.1029/2018WR022958
https://doi.org/10.7717/peerj-cs.163
https://doi.org/10.7717/peerj-cs.163
https://csdms.colorado.edu/wiki/CSDMS_docs
https://doi.org/10.1515/jnma-2021-0081
https://doi.org/10.1515/jnma-2021-0081
https://doi.org/10.1016/j.camwa.2020.02.022
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://doi.org/10.1088/1749-4699/6/1/015010
http://github.com/r-barnes/richdem
http://github.com/r-barnes/richdem
https://doi.org/10.5194/gmd-12-1267-2019
https://doi.org/10.5194/esurf-8-379-2020
https://doi.org/10.1029/2018JF004961
https://doi.org/10.1029/2018JF004963
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.1029/135GM06


G. E. Tucker et al.: CSDMS 1435

Bryan, J.: Excuse me, do you have a moment to talk about version
control?, Am. Stat., 72, 20–27, 2018.

Campbell, K., Overeem, I., and Berlin, M.: Taking it to the streets:
the case for modeling in the geosciences undergraduate curricu-
lum, Comput. Geosci., 53, 123–128, 2013.

Campforts, B., Shobe, C. M., Steer, P., Vanmaercke, M., Lague, D.,
and Braun, J.: HyLands 1.0: a hybrid landscape evolution model
to simulate the impact of landslides and landslide-derived sed-
iment on landscape evolution, Geosci. Model Dev., 13, 3863–
3886, https://doi.org/10.5194/gmd-13-3863-2020, 2020.

Carriere, A., Le Bouteiller, C., Tucker, G. E., Klotz, S., and Naaim,
M.: Impact of vegetation on erosion: Insights from the calibra-
tion and test of a landscape evolution model in alpine badland
catchments, Earth Surf. Proc. Land., 45, 1085–1099, 2020.

Chen, X., Dallmeier-Tiessen, S., Dasler, R., Feger, S., Fokianos,
P., Gonzalez, J. B., Hirvonsalo, H., Kousidis, D., Lavasa, A.,
Mele, S., Rodriguez, D. R., Šimko, T., Smith, T., Trisovic, A.,
Trzcinska, A., Tsanaktsidis, I., Zimmermann, M., Cranmer, K.,
Heinrich, L., Watts, G., Hildreth, M., Lloret Iglesias, L., Lassila-
Perini, K., and Neubert, S.: Open is not enough, Nature Phys.,
15, 113–119, 2019.

Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A.-L., Mar-
tinez, C., Psomopoulos, F.E., Harrow, J., Castro, L.J., Gruen-
peter, M., Martinez, P. A., Honeyman, T., Struck, A., Lee, A.,
Loewe, A., van Werkhove, B., Jones, C., Garijo, D., Plomp,
E., Genova, F., Shanahan, H., Leng, J., Hellström, M., Sand-
ström, M., Sinha, M., Kuzak, M., Herterich, P., Zhang, Q., Is-
lam, S., Sansone, S.-A., Pollard, T., Atmojo, U.D., Williams,
A., Czerniak, A., Niehues, A., Fouilloux, A.C., Desinghu, B.,
Goble, C., Richard, C., Gray, C., Erdmann, C., Nüst, D., Tar-
tarini, D., Ranguelova, E., Anzt, H., Todorov, I., McNally,
J., Moldon, J., Burnett, J., Garrido-Sánchez, J., Belhajjame,
K., Sesink, L., Hwang, L., Tovani-Palone, M. R., Wilkinson,
M.D., Servillat, M., Liffers, M., Fox, M., Miljković, N., Lynch,
N., Martinez Lavanchy, P., Gesing, S., Stevens, S., Martinez
Cuesta, S., Peroni, S., Soiland-Reyes, S., Bakker, T., Rabem-
anantsoa, T., Sochat, V., and Yehudi, Y.: FAIR principles for re-
search software (FAIR4RS principles), Research Data Alliance,
https://doi.org/10.15497/RDA00065, 2021.

Clune, T. and Rood, R.: Software testing and verification in climate
model development, IEEE Software, 28, 49–55, 2011.

Eghbal, N.: Roads and Bridges: The Unseen labor behind our digital
infrastructure, Tech. rep., Ford Foundation, 143 pp., 2016.

Epperly, T. G., Kumfert, G., Dahlgren, T., Ebner, D., Leek, J.,
Prantl, A., and Kohn, S.: High-performance language interoper-
ability for scientific computing through Babel, Int. J. High Per-
form. C., 26, 260–274, 2012.

ESMF Joint Specification Team: Earth System Modeling Frame-
work ESMF Reference Manual for Fortran, Version 8.2.0, Earth
System Modeling Framework, https://earthsystemmodeling.org/
docs/release/latest/ESMF_refdoc/ (last access: 11 February
2022), 2021.

Fan, X., Scaringi, G., Korup, O., West, A. J., Westen, C. J., Tanyas,
H., Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E.,
Zhang, L., Evans, S. G., Xu, C., Li, G., Pei, X., Xu, Q., and
Huang, R.: Earthquake-Induced Chains of Geologic Hazards:
Patterns, Mechanisms, and Impacts, Rev. Geophys., 57, 421–
503, https://doi.org/10.1029/2018RG000626, 2019.

Faulk, S., Loh, E., Van De Vanter, M. L., Squires, S., and Votta,
L. G.: Scientific computing’s productivity gridlock: How soft-
ware engineering can help, Comput. Sci. Eng., 11, 30–39, 2009.

Fomel, S. and Claerbout, J. F.: Reproducible research, Comput. Sci.
Eng., 11, 5–7, 2009.

Fox, T. A., Gao, M., Barchyn, T. E., Jamin, Y. L., and
Hugenholtz, C. H.: An agent-based model for esti-
mating emissions reduction equivalence among leak
https://doi.org/10.1016/j.jclepro.2020.125237, 2020.

Glade, R. C., Shobe, C. M., Anderson, R. S., and Tucker, G. E.:
Canyon shape and erosion dynamics governed by channel-
hillslope feedbacks, Geology, 47, 650–654, 2019.

Gray, H. J., Shobe, C. M., Hobley, D. E., Tucker, G. E., Duvall,
A. R., Harbert, S. A., and Owen, L. A.: Off-fault deforma-
tion rate along the southern San Andreas fault at Mecca Hills,
southern California, inferred from landscape modeling of curved
drainages, Geology, 46, 59–62, 2017.

Groenenberg, R. M., Hodgson, D. M., Prelat, A., Luthi, S. M., and
Flint, S. S.: Flow–deposit interaction in submarine lobes: Insights
from outcrop observations and realizations of a process-based
numerical model, J. Sediment. Res., 80, 252–267, 2010.

Guest, O. and Martin, A. E.: How computational modeling can force
theory building in psychological science, Perspect. Psychol. Sci.,
16, 789–802, https://doi.org/10.1177/1745691620970585, 2020.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl,
D., and Wilson, G.: How do scientists develop and use scientific
software?, in: 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, 1–8, 2009.

Harpham, Q., Hughes, A., and Moore, R.: Introductory
overview: The OpenMI 2.0 standard for integrating nu-
merical models, Environ. Modell. Softw., 122, 104549,
https://doi.org/10.1016/j.envsoft.2019.104549, 2019.

Hastings, J., Haug, K., and Steinbeck, C.: Ten recommenda-
tions for software engineering in research, GigaScience, 3, 31,
https://doi.org/10.1186/2047-217X-3-31, 2014.

Hatton, L.: The T-experiments: errors in scientific software, in:
Quality of Numerical Software, edited by: Boisvert, R. F.,
IFIP Advances in Information and Communication Technol-
ogy. Springer, Boston, MA, 12–31, https://doi.org/10.1007/978-
1-5041-2940-4_2, 1997.

Hatton, L.: The chimera of software quality, Computer, 40, 104–
103, 2007.

Heaton, D. and Carver, J. C.: Claims about the use of software
engineering practices in science: A systematic literature review,
Comm. Com. Inf. Sc., 67, 207–219, 2015.

Hestenes, D.: Modeling Methodology for Physics Teachers: Pro-
ceedings of the International Conference on Undergraduate
Physics Education, College Park, August 1996.

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W.
H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Cre-
ative computing with Landlab: an open-source toolkit for build-
ing, coupling, and exploring two-dimensional numerical mod-
els of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46,
https://doi.org/10.5194/esurf-5-21-2017, 2017.

Hoch, J. M. and Trigg, M. A.: Advancing global flood hazard sim-
ulations by improving comparability, benchmarking, and inte-
gration of global flood models, Environ. Res. Lett., 14, 034001,
https://doi.org/10.1088/1748-9326/aaf3d3, 2019.

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022

https://doi.org/10.5194/gmd-13-3863-2020
https://doi.org/10.15497/RDA00065
https://earthsystemmodeling.org/docs/release/latest/ESMF_refdoc/
https://earthsystemmodeling.org/docs/release/latest/ESMF_refdoc/
https://doi.org/10.1029/2018RG000626
https://doi.org/10.1016/j.jclepro.2020.125237
https://doi.org/10.1177/1745691620970585
https://doi.org/10.1016/j.envsoft.2019.104549
https://doi.org/10.1186/2047-217X-3-31
https://doi.org/10.1007/978-1-5041-2940-4_2
https://doi.org/10.1007/978-1-5041-2940-4_2
https://doi.org/10.5194/esurf-5-21-2017
https://doi.org/10.1088/1748-9326/aaf3d3


1436 G. E. Tucker et al.: CSDMS

Hoch, J. M., Eilander, D., Ikeuchi, H., Baart, F., and Winsemius,
H. C.: Evaluating the impact of model complexity on flood
wave propagation and inundation extent with a hydrologic–
hydrodynamic model coupling framework, Nat. Hazards Earth
Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-
1723-2019, 2019.

Howison, J. and Herbsleb, J. D.: Scientific software production: in-
centives and collaboration, in: Proceedings of the ACM 2011
conference on Computer supported cooperative work, 513–522,
2011.

Hsu, L., Martin, R. L., McElroy, B., Litwin-Miller, K., and Kim,
W.: Data management, sharing, and reuse in experimental geo-
morphology: Challenges, strategies, and scientific opportunities,
Geomorphology, 244, 180–189, 2015.

Hut, R., Drost, N., van de Giesen, N., van Werkhoven, B., Abdol-
lahi, B., Aerts, J., Albers, T., Alidoost, F., Andela, B., Camphui-
jsen, J., Dzigan, Y., van Haren, R., Hutton, E., Kalverla, P., van
Meersbergen, M., van den Oord, G., Pelupessy, I., Smeets, S.,
Verhoeven, S., de Vos, M., and Weel, B.: The eWaterCycle plat-
form for Open and FAIR Hydrological collaboration, Geosci.
Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-
2021-344, in review, 2021.

Hutton, E. and Piper, M.: csdms/babelizer: (v0.3.8), Zenodo [code],
https://doi.org/10.5281/zenodo.4985181, 2021.

Hutton, E. W. and Syvitski, J. P.: Sedflux 2.0: An advanced process-
response model that generates three-dimensional stratigraphy,
Comput. Geosci., 34, 1319–1337, 2008.

Hutton, E. W., Piper, M. D., and Tucker, G. E.: The Basic
Model Interface 2.0: A standard interface for coupling numeri-
cal models in the geosciences, J. Open Source Softw., 5, 2317,
https://doi.org/10.21105/joss.02317, 2020.

Hutton, E., Barnhart, K., Hobley, D., Tucker, G., Nudurupati,
S. S., Adams, J., Gasparini, N. M., Shobe, C., Strauch, R.,
Knuth, J., Mouchene, M., Lyons, N., Litwin, D., Glade, R.,
Cipolla, G., Manaster, A., alangston, Thyng, K., and Rengers,
F.: landlab/landlab: Mrs. Weasley (v2.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.3776837, 2020b.

Hutton, E., Piper, M., Gan, T., Kettner, A. J., and
Drost, N.: csdms/pymt: (v1.3.1), Zenodo [code],
https://doi.org/10.5281/zenodo.4985222, 2021.

Hwang, L., Fish, A., Soito, L., Smith, M., and Kellogg, L. H.: Soft-
ware and the scientist: Coding and citation practices in geody-
namics, Earth pace Sci., 4, 670–680, 2017.

Istanbulluoglu, E. and Bras, R. L.: Vegetation-modulated land-
scape evolution: Effects of vegetation on landscape processes,
drainage density, and topography, J. Geophys. Res., 110, F02012,
https://doi.org/10.1029/2004JF000249, 2005.

Jacobs, C. T., Gorman, G. J., Rees, H. E., and Craig, L. E.: Expe-
riences with efficient methodologies for teaching computer pro-
gramming to geoscientists, J. Geosci. Educ., 64, 183–198, 2016.

Johanson, A. and Hasselbring, W.: Software engineering for com-
putational science: Past, present, future, Comput. Sci. Eng., 20,
90–109, https://doi.org/10.1109/MCSE.2018.021651343, 2018.

Kanewala, U. and Bieman, J. M.: Testing scientific software: A sys-
tematic literature review, Inform. Softw. Tech., 56, 1219–1232,
2014.

Katz, D. S., Gruenpeter, M., and Honeyman, T.: Taking a
fresh look at FAIR for research software, Patterns, 2, 3,
https://doi.org/10.1016/j.patter.2021.100222, 2021.

Kellogg, L. H., Hwang, L. J., Gassmöller, R., Bangerth, W.,
and Heister, T.: The role of scientific communities in creating
reusable software: Lessons from geophysics, Comput. Sci. Eng.,
21, 25–35, 2018.

Kelly, D. F.: A software chasm: Software engineering and scientific
computing, IEEE Software, 24, 120–119, 2007.

Kettner, A. J.: CSDMS by the numbers, https://csdms.colorado.edu/
wiki/CSDMS_in_numbers, last access: 14 February 2022.

King, J. and South, J.: Reimagining the role of technology in higher
education: A supplement to the national education technology
plan, US Department of Education, Office of Educational Tech-
nology, 2017.

Krafczyk, M., Shi, A., Bhaskar, A., Marinov, D., and Stodden,
V.: Scientific Tests and Continuous Integration Strategies to En-
hance Reproducibility in the Scientific Software Context, in: Pro-
ceedings of the 2nd International Workshop on Practical Repro-
ducible Evaluation of Computer Systems, 23–28, 2019.

Kuehl, S. A., Alexander, C. R., Blair, N. E., Harris, C. K., Marsaglia,
K. M., Ogston, A. S., Orpin, A. R., Roering, J. J., Bever, A. J.,
Bilderback, E. L., Carter, L., Cerovski-Darriau, C., Childress, L.
B., Corbett, D. R., Hale, R. P., Leithold, E. L., Litchfield, N., Mo-
riarty, J. M., Page, M. J., Pierce, L. E. R., Upton, P., and Walsh,
J. P.: A source-to-sink perspective of the Waipaoa River margin,
Earth-Sci. Rev., 153, 301–334, 2016.

Lai, J. and Anders, A. M.: Modeled postglacial landscape evolution
at the southern margin of the Laurentide Ice Sheet: hydrological
connection of uplands controls the pace and style of fluvial net-
work expansion, J. Geophys. Res.-Earth, 123, 967–984, 2018.

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R.,
Martin Del Pico, E., Dominguez Del Angel, V., Van De Sandt,
S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Har-
row, J., Psomopoulos, F., Gelpi, J. L., Chue Hong, N., Goble, C.,
and Capella-Gutierrez, S.: Towards FAIR principles for research
software, Data Science, 3, 37–59, 2020.

Langston, A. L. and Tucker, G. E.: Developing and exploring
a theory for the lateral erosion of bedrock channels for use
in landscape evolution models, Earth Surf. Dynam., 6, 1–27,
https://doi.org/10.5194/esurf-6-1-2018, 2018.

Lathrop, S., Folk, M., Katz, D. S., McInnes, L. C., and Terrel, A.:
Introduction to Accelerating Scientific Discovery With Reusable
Software, Comput. Sci. Eng., 21, 5–7, 2019.

Lawrence, K. A., Zentner, M., Wilkins-Diehr, N., Wernert, J. A.,
Pierce, M., Marru, S., and Michael, S.: Science gateways today
and tomorrow: positive perspectives of nearly 5000 members of
the research community, Concurr. Comp.-Pract. E., 27, 4252–
4268, 2015.

Leavesley, G., Lichty, R., Troutman, B., and Saindon, L.:
Precipitation-runoff modeling system: User’s manual, Vol. 83,
U.S. Department of the Interior, 1983.

Leavesley, G., Restrepo, P. J., Markstrom, S., Dixon, M., and Stan-
nard, L.: The modular modeling system (MMS): User’s manual,
US Geological Survey Open-File Report, 96, 1996.

LeVeque, R. J.: Python tools for reproducible research on hyper-
bolic problems, Comput. Sci. Eng., 11, 19–27, 2009.

LeVeque, R. J.: Top ten reasons to not share your code (and why
you should anyway), Siam News, 46, 2013.

Litwin, D. G., Tucker, G. E., Barnhart, K. R., and Har-
man, C. J.: GroundwaterDupuitPercolator: A Landlab compo-

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022

https://doi.org/10.5194/nhess-19-1723-2019
https://doi.org/10.5194/nhess-19-1723-2019
https://doi.org/10.5194/gmd-2021-344
https://doi.org/10.5194/gmd-2021-344
https://doi.org/10.5281/zenodo.4985181
https://doi.org/10.21105/joss.02317
https://doi.org/10.5281/zenodo.3776837
https://doi.org/10.5281/zenodo.4985222
https://doi.org/10.1029/2004JF000249
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.1016/j.patter.2021.100222
https://csdms.colorado.edu/wiki/CSDMS_in_numbers
https://csdms.colorado.edu/wiki/CSDMS_in_numbers
https://doi.org/10.5194/esurf-6-1-2018


G. E. Tucker et al.: CSDMS 1437

nent for groundwater flow, J. Open Source Softw., 5, 1935,
https://doi.org/10.21105/joss.01935, 2020.

Luettich, R. A., Westerink, J. J., Scheffner, N. W.: ADCIRC: an ad-
vanced three-dimensional circulation model for shelves, coasts,
and estuaries, Report 1, Theory and methodology of ADCIRC-
2DD1 and ADCIRC-3DL, Technical Report, Coastal Engineer-
ing and Research Center and Engineer Research and Develop-
ment Center, US Army Corps of Engineers, 1992.

Lyons, N., Albert, J., and Gasparini, N.: SpeciesEvolver: A Landlab
component to evolve life in simulated landscapes, J. Open Source
Softw., 5, 2066, https://doi.org/10.21105/joss.02066, 2020.

Manduca, C. A., Baer, E., Hancock, G., Macdonald, R. H., Pat-
terson, S., Savina, M., and Wenner, J.: Making undergraduate
geoscience quantitative, Eos T. Am. Geophys. Un., 89, 149–150,
2008.

Mariotti, G.: Marsh channel morphological response to sea level
rise and sediment supply, Estuar. Coast. Shelf S., 209, 89–101,
2018.

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb,
R. M., Payn, R. A., and LaFontaine, J. H.: PRMS-IV, the
precipitation-runoff modeling system, version 4, US Geologi-
cal Survey Techniques and Methods, book 6, chap. B7, 158 pp.,
https://doi.org/10.3133/tm6B7, ISSN 2328-7055, 2015.

Miller, G.: A scientist’s nightmare: Software problem
leads to five retractions, Science, 314, 1856–1857,
https://doi.org/10.1126/science.314.5807.1856, 2006.

Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D.,
and Sliz, P.: Shining light into black boxes, Science, 336, 159–
160, 2012.

Nanthaamornphong, A. and Carver, J. C.: Test-Driven Development
in scientific software: a survey, Software Qual. J., 25, 343–372,
2017.

Nanthaamornphong, A. and Carver, J. C.: Test-Driven Development
in HPC Science: A Case Study, Comput. Sci. Eng., 20, 98–113,
2018.

Nasr-Azadani, M., Hall, B., and Meiburg, E.: Polydisperse turbid-
ity currents propagating over complex topography: comparison
of experimental and depth-resolved simulation results, Comput.
Geosci., 53, 141–153, 2013.

Nguyen-Hoan, L., Flint, S., and Sankaranarayana, R.: A survey
of scientific software development, in: Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software En-
gineering and Measurement, 1–10, 2010.

NRC: A Visioin for NSF Earth Sciences 2020–2030: Earth in Time,
The National Academies Press, https://doi.org/10.17226/25761,
2020.

Overeem, I., Berlin, M. M., and Syvitski, J. P.: Strategies for inte-
grated modeling: The Community Surface Dynamics Modeling
System example, Environ. Modell. Softw., 39, 314–321, 2013.

Peckham, S. D., Hutton, E. W., and Norris, B.: A component-based
approach to integrated modeling in the geosciences: The design
of CSDMS, Comput. Geosci., 53, 3–12, 2013.

Pelletier, J. D., Barron-Gafford, G. A., Guttierez-Jurado, H., Hinck-
ley, E.-L. S., Istanbulluoglu, E., McGuire, L. A., Niu, G.-
Y., Poulos, M. J., Rasmussen, C., Richardson, P., Swetnam,
T. L., and Tucker, G. E.: Which way do you lean? Us-
ing slope aspect variations to understand Critical Zone pro-
cesses and feedbacks, Earth Surf. Proc. Land., 43, 1133–1154,
https://doi.org/10.1002/esp.4306, 2017.

Peng, R. D.: Reproducible research in computational science, Sci-
ence, 334, 1226–1227, 2011.

Pfeiffer, A. M., Barnhart, K. R., Czuba, J. A., and Hutton, E.
W. H.: NetworkSedimentTransporter: A Landlab component for
bed material transport through river networks, J. Open Source
Softw., 5, 2341, https://doi.org/10.21105/joss.02341, 2020.

Pinto, G., Wiese, I., and Dias, L. F.: How do scientists develop
scientific software? an external replication, in: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), 582–591, 2018.

Pipitone, J. and Easterbrook, S.: Assessing climate model software
quality: a defect density analysis of three models, Geosci. Model
Dev., 5, 1009–1022, https://doi.org/10.5194/gmd-5-1009-2012,
2012.

Poisot, T.: Best publishing practices to improve user confidence
in scientific software, Ideas in Ecology and Evolution, 8, 50–
54,https://doi.org/10.4033/iee.2015.8.8.f, 2015.

Post, D.: The changing face of scientific and engineering comput-
ing, Comput. Sci. Eng., 15, 4–6, 2013.

Post, D. E. and Votta, L. G.: Computational science demands a new
paradigm, Phys. Today, 58, 35–41, 2005.

Prabhu, P., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P., Zoufaly,
M., Raman, A., Liu, F., Walker, D., Zhang, Y., Ghosh, S., Au-
gust, D. I., Huang, J., and Beard, S.: A survey of the practice of
computational science, in: SC’11: Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis, 1–12, 2011.

Ratliff, K. M., Hutton, E. H., and Murray, A. B.: Exploring Wave
and Sea-Level Rise Effects on Delta Morphodynamics With
a Coupled River-Ocean Model, J. Geophys. Res.-Earth, 123,
2887–2900, 2018.

Reed, D. A., Bajcsy, R., Fernandez, M. A., Griffiths, J.-M., Mott,
R. D., Dongarra, J., Johnson, C. R., Inouye, A. S., Miner, W.,
Matzke, M. K., and Ponick, T. L.: Computational Science: Ensur-
ing America’s Competitiveness, President’s Information Tech-
nology Advisory Committee, National Coordination Office for
Information Technology Research & Development, US govern-
ment technical report, 2005.

Regan, R. S., Markstrom, S. L., Hay, L. E., Viger, R. J., Norton,
P. A., Driscoll, J. M., and LaFontaine, J. H.: Description of the
national hydrologic model for use with the precipitation-runoff
modeling system (PRMS), Tech. rep., US Geological Survey,
2018.

Regan, R. S., Juracek, K. E., Hay, L. E., Markstrom, S., Viger, R. J.,
Driscoll, J. M., LaFontaine, J., and Norton, P. A.: The US Geo-
logical Survey National Hydrologic Model infrastructure: Ratio-
nale, description, and application of a watershed-scale model for
the conterminous United States, Environ. Modell. Softw., 111,
192–203, 2019.

Reitman, N. G., Mueller, K. J., Tucker, G. E., Gold, R. D., Briggs,
R. W., and Barnhart, K. R.: Offset Channels May Not Accurately
Record Strike-Slip Fault Displacement: Evidence From Land-
scape Evolution Models, J. Geophys. Res.-Sol. Ea., 124, 13427–
13451, 2019.

Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Bar-
ton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O’Neill,
B. C., Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell,
M., Syvitski, J. P., Ullah, I., and Verburg, P. H.: Modelling feed-
backs between human and natural processes in the land system,

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022

https://doi.org/10.21105/joss.01935
https://doi.org/10.21105/joss.02066
https://doi.org/10.3133/tm6B7
https://doi.org/10.1126/science.314.5807.1856
https://doi.org/10.17226/25761
https://doi.org/10.1002/esp.4306
https://doi.org/10.21105/joss.02341
https://doi.org/10.5194/gmd-5-1009-2012
https://doi.org/10.4033/iee.2015.8.8.f


1438 G. E. Tucker et al.: CSDMS

Earth Syst. Dynam., 9, 895–914, https://doi.org/10.5194/esd-9-
895-2018, 2018.

Roy, S., Koons, P., Upton, P., and Tucker, G.: Dynamic links among
rock damage, erosion, and strain during orogenesis, Geology, 44,
583–586, 2016.

Schmid, M., Ehlers, T. A., Werner, C., Hickler, T., and Fuentes-
Espoz, J.-P.: Effect of changing vegetation and precipita-
tion on denudation – Part 2: Predicted landscape response
to transient climate and vegetation cover over millennial
to million-year timescales, Earth Surf. Dynam., 6, 859–881,
https://doi.org/10.5194/esurf-6-859-2018, 2018.

Schwab, M., Karrenbach, N., and Claerbout, J.: Making scientific
computations reproducible, Comput. Sci. Eng., 2, 61–67, 2000.

Scott, S.: ESIP Software Assessment Guidelines, Earth Science In-
formation Partners, 53 pp., 2017.

Shchepetkin, A. F. and McWilliams, J. C.: The regional
oceanic modeling system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Mod-
ell., 9, 347–404, 2005.

Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0
model: a Landlab component for 2-D calculation of sediment
transport, bedrock erosion, and landscape evolution, Geosci.
Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-
4577-2017, 2017.

Singer, S. R., Nielsen, N. R., and Schweingruber, H. A. (Eds.):
Discipline-based education research: Understanding and improv-
ing learning in undergraduate science and engineering, National
Academies Press, 2012.

Singh Chawla, D.: The unsung heroes of scientific software, Nature
News, 529, 115–116, 2016.

Smith, A. M., Niemeyer, K. E., Katz, D. S., Barba, L. A., Githinji,
G., Gymrek, M., Huff, K. D., Madan, C. R., Mayes, A. C., Mo-
erman, K. M., Prins, P., Ram, K., Rokem, A., Teal, T. K., Valls
Guimera, R., and Vanderplas, J. T.: Journal of Open Source Soft-
ware (JOSS): design and first-year review, PeerJ Comput. Sci., 4,
e147, https://doi.org/10.7717/peerj-cs.147, 2018.

Steckler, M. S., Hutton, E., Ologan, D., Tucker, G. E., Grall, C.,
and Gurcay, S.: Developing Sequence Stratigraphic Modeling in
Landlab to improve understanding of the tectonics in the Gulf of
Kusadasi, Turkey, AGUFM, 2019, EP21D–2227, 2019.

Stodden, V., Borwein, J., and Bailey, D. H.: Setting the default to
reproducible, computational science research, SIAM News, 46,
4–6, 2013.

Stodden, V., Krafczyk, M. S., and Bhaskar, A.: Enabling the verifi-
cation of computational results: An empirical evaluation of com-
putational reproducibility, in: Proceedings of the First Interna-
tional Workshop on Practical Reproducible Evaluation of Com-
puter Systems, 1–5, 2018.

Stoica, M.: Scientific Variables Ontology and Associated Tools,
https://github.com/mariutzica/ScientificVariablesOntology (last
access: 11 February 2022), 2020.

Stoica, M. and Peckham, S. D.: An Ontology Blueprint for Con-
structing Qualitative and Quantitative Scientific Variables, in: In-
ternational Semantic Web Conference (P&D/Industry/BlueSky),
2018.

Stoica, M. and Peckham, S.: Incorporating New Concepts Into the
Scientific Variables Ontology, in: 2019 15th International Con-
ference on eScience (eScience), 539–540, 2019a.

Stoica, M. and Peckham, S.: The Scientific Variables Ontology: A
blueprint for custom manual and automated creation and align-
ment of machine-interpretable qualitative and quantitative vari-
able concepts, http://pittmodelingconference.sci.pitt.edu (last ac-
cess: 11 February 2022), 2019b.

Strauch, R., Istanbulluoglu, E., Nudurupati, S. S., Bandaragoda, C.,
Gasparini, N. M., and Tucker, G. E.: A hydroclimatological ap-
proach to predicting regional landslide probability using Land-
lab, Earth Surf. Dynam., 6, 49–75, https://doi.org/10.5194/esurf-
6-49-2018, 2018.

SVO: Scientific Variables Ontology, http://geoscienceontology.org,
last access: 26 October 2020.

Taschuk, M. and Wilson, G.: Ten simple rules for making re-
search software more robust, PLoS Comput. Biol., 13, e1005412,
https://doi.org/10.1371/journal.pcbi.1005412. 2017.

Thyng, K. M., Greene, C. A., Zimmerle, H. M., and DiMarco,
S. F.: True Colors of Oceanography: Guidelines for Effective
and Accurate Colormap Selection, Oceanography, 29, 9–13,
https://doi.org/10.5670/oceanog.2016.66, 2016.

Tucker, G. E.: Python code and documentation
for island simulation example, Zenodo [code],
https://doi.org/10.5281/zenodo.6049847, 2022.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras,
R. L.: The Channel-Hillslope Integrated Landscape Development
Model (CHILD), in: Landscape Erosion and Evolution Model-
ing, edited by: Harmon, R. S. and Doe, W. W., Kluwer Press,
Dordrecht, 349–388, 2001.

Turk, M. J.: Scaling a code in the human dimension, in: Proceedings
of the Conference on Extreme Science and Engineering Discov-
ery Environment: Gateway to Discovery, 1–7, 2013.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jar-
rod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E.,
Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore,
E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and
SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020.

Voinov, A., Fitz, C., Boumans, R., and Costanza, R.: Modular
ecosystem modeling, Environ. Modell. Softw., 19, 285–304,
2004.

W3C Working Group: Best Practice Recipes for Publishing RDF
Vocabularies, https://www.w3.org/TR/swbp-vocab-pub/ (last ac-
cess: 26 October 2020), 2008.

Wiese, I. S., Polato, I., and Pinto, G.: Naming the Pain in Develop-
ing Scientific Software, IEEE Software, 37, 75–82, 2019.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva San-
tos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark,
T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T.,
Finkers, R., Gonzalez-Beltran, A., Gray, Alasdair, J. G., Groth,
P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft,
R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E.,
Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M.,
van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater,
T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van

Geosci. Model Dev., 15, 1413–1439, 2022 https://doi.org/10.5194/gmd-15-1413-2022

https://doi.org/10.5194/esd-9-895-2018
https://doi.org/10.5194/esd-9-895-2018
https://doi.org/10.5194/esurf-6-859-2018
https://doi.org/10.5194/gmd-10-4577-2017
https://doi.org/10.5194/gmd-10-4577-2017
https://doi.org/10.7717/peerj-cs.147
https://github.com/mariutzica/ScientificVariablesOntology
http://pittmodelingconference.sci.pitt.edu
https://doi.org/10.5194/esurf-6-49-2018
https://doi.org/10.5194/esurf-6-49-2018
http://geoscienceontology.org
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.5670/oceanog.2016.66
https://doi.org/10.5281/zenodo.6049847
https://doi.org/10.1038/s41592-019-0686-2
https://www.w3.org/TR/swbp-vocab-pub/


G. E. Tucker et al.: CSDMS 1439

Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wol-
stencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Princi-
ples for scientific data management and stewardship, Sci. Data,
3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis,
M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M.,
Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P.: Best
practices for scientific computing, PLoS biology, 12, e1001745,
https://doi.org/10.1371/journal.pbio.1001745, 2014.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt,
L., and Teal, T. K.: Good enough practices in scien-
tific computing, PLoS Comput. Biol., 13, e1005510,
https://doi.org/10.1371/journal.pcbi.1005510, 2017.

Wilson, G. V.: Where’s the real bottleneck in scientific computing?,
Am. Sci., 94, 5–6, 2006.

https://doi.org/10.5194/gmd-15-1413-2022 Geosci. Model Dev., 15, 1413–1439, 2022

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005510

	Abstract
	Introduction
	Background
	Scientific computing is here to stay
	Growing pains
	New community practices

	A community-based modeling system for Earth surface processes
	A taxonomy of model operation
	Reproducing
	Applying
	Linking
	Modifying
	Coupling
	Building

	The CSDMS model repository: a platform for sharing and archiving software resources
	The CSDMS Workbench
	The Basic Model Interface (BMI) standard
	Language interoperability: the babelizer
	Execution and coupling framework: pymt
	Data components
	Creating new models: Landlab
	HyLands: an example of a component-based integrated model

	Standard Names

	Community engagement
	Discussion and conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

