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Abstract. The improved and updated Coupled Arctic Predic-
tion System (CAPS) is evaluated using a set of Pan-Arctic
prediction experiments for the year 2018. CAPS is built on
the Weather Research and Forecasting model (WRF), the Re-
gional Ocean Modeling System (ROMS), the Community Ice
CodE (CICE), and a data assimilation based on the local er-
ror subspace transform Kalman filter. We analyze physical
processes linking improved and changed physical parameter-
izations in WRF, ROMS, and CICE to changes in the simu-
lated Arctic sea ice state. Our results show that the improved
convection and boundary layer schemes in WRF result in an
improved simulation of downward radiative fluxes and near-
surface air temperature, which influences the predicted ice
thickness. The changed tracer advection and vertical mixing
schemes in ROMS reduce the bias in sea surface temperature
and change ocean temperature and salinity structure in the
surface layer, leading to improved evolution of the predicted
ice extent (particularly correcting the late ice recovery issue
in the previous CAPS). The improved sea ice thermodynam-
ics in CICE have noticeable influences on the predicted ice
thickness. The updated CAPS can better predict the evolution
of Arctic sea ice during the melting season compared with its
predecessor, though the prediction still has some biases at the
regional scale. We further show that the updated CAPS can
remain skillful beyond the melting season, which may have
a potential value for stakeholders to make decisions for so-
cioeconomic activities in the Arctic.

1 Introduction

Over the past few decades, the extent of Arctic sea ice has de-
creased rapidly and entered a thinner and younger regime as-
sociated with global climate change (e.g., Kwok, 2018; Ser-
reze and Meier, 2019). The dramatic changes in the prop-
erties of Arctic sea ice have gained increasing attentions by
a wide range of stakeholders, such as trans-Arctic shipping,
natural resource exploration, and activities of coastal com-
munities relying on sea ice (e.g., Newton et al., 2016). This
leads to increasing demands on skillful Arctic sea ice pre-
diction, particularly at seasonal timescales (e.g., Jung et al.,
2016; Liu et al., 2019; Stroeve et al., 2014). However, Arctic
sea ice predictions based on different approaches (e.g., statis-
tical method and dynamical model) submitted to the Sea Ice
Outlook, a community effort managed by the Sea Ice Predic-
tion Network (SIPN, https://www.arcus.org/sipn, last access:
27 June 2021), show substantial biases in the predicted sea-
sonal minimum of Arctic sea ice extent compared to the ob-
servations for most years since 2008 (Liu et al., 2019; Stroeve
et al., 2014).

Recently, we have developed an atmosphere–ocean–sea
ice regional coupled modeling system for seasonal Arctic sea
ice prediction (Yang et al., 2020, hereafter Y20), in which the
Community Ice CodE (CICE) is coupled with the Weather
Research and Forecasting Model (WRF) and the Regional
Ocean Modeling System (ROMS), hereafter called Coupled
Arctic Prediction System (CAPS). To improve the accuracy
of initial sea ice conditions, CAPS employs an ensemble-
based data assimilation system to assimilate satellite-based
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sea ice observations. Seasonal Pan-Arctic sea ice predictions
with improved initial sea ice conditions conducted in Y20
have shown that CAPS has the potential to provide skillful
Arctic sea ice prediction at seasonal timescale.

We know that the changes of sea ice variables (e.g., ice
extent, ice concentration, ice thickness, ice drift) are mainly
driven by forcings from the atmosphere and the ocean. Atmo-
spheric cloudiness and related radiation influence surface ice
melting (Huang et al., 2019; Kapsch et al., 2016; Kay et al.,
2008) and the energy stored in the surface mixed layer that
determines the seasonal ice melt and growth (e.g., Perovich
et al., 2011, 2014). Atmospheric circulation is the primary
driver for the transportation of sea ice and partly responsible
for the variability of Arctic sea ice (e.g., Mallett et al., 2021;
Ogi et al., 2010; Zhang et al., 2008). Olonscheck et al. (2019)
suggested that atmospheric temperature fluctuations explain
a majority of Arctic sea ice variability while other drivers
(e.g., surface winds and poleward heat transport) account for
about 25 % of Arctic sea ice variability. The oceanic heat in-
puts (as well as salt inputs) into the Arctic Ocean include
the Atlantic Water (AW; Aagaard, 1989; McLaughlin et al.,
2009) through the Barents Sea and the Pacific Water (PW;
Itoh et al., 2013; Woodgate et al., 2005) from the Bering
Strait. The oceanic heat inputs from AW and PW are not
directly available for sea ice since they are separated from
a cold and fresh layer underlying sea ice (e.g., Carmack et
al., 2015, Fig. 2). Vertical mixing by the internal wave (e.g.,
Fer, 2014) and double diffusion (e.g., Padman and Dillon,
1987; Turner, 1973) are the principal processes for upward
heat transport from the subsurface layer (i.e., AW and PW) to
the surface mixed layer in the Arctic Ocean. Sea ice thermo-
dynamics determine how thermal properties of sea ice (e.g.,
temperature, salinity) change. These changes then influence
the thermal structure of underlying ocean through interfacial
fluxes (i.e., heat, salt and freshwater fluxes; DuVivier et al.,
2021; Kirkman and Bitz, 2011) and ice thickness (e.g., Bai-
ley et al., 2020).

CAPS is configured for the Arctic with sufficient flexi-
bility. That means each model component of CAPS (WRF,
ROMS, and CICE) has different physics options for us to
choose and capability to integrate ongoing improvements in
physical parameterizations. Recently, the WRF model has
adapted improved convection and boundary layer schemes in
the Rapid Refresh (RAP) model operational at the National
Centers for Environmental Prediction (NCEP, Benjamin et
al., 2016). The first question we want to answer in this pa-
per is to what extent these modifications can improve atmo-
spheric simulations in the Arctic (i.e., radiation, temperature,
humidity, and wind) and then benefit seasonal Arctic sea ice
simulation and prediction. The ROMS model provides sev-
eral options for tracer advection schemes. These advection
schemes can have different degrees of oscillatory behavior
(e.g., Shchepetkin and McWilliams, 1998). The oscillatory
behavior can have impacts on sea ice simulation through ice–
ocean interactions (e.g., Naughten et al., 2017). The second

question we want to answer in this paper is to what extent dif-
ferent advection schemes can change the simulation of upper
ocean thermal structure and then Arctic sea ice prediction.
Several recent efforts have incorporated prognostic salinity
into sea ice models. The CICE model has a new mushy-
layer thermodynamics parameterization that includes prog-
nostic salinity and treats sea ice as a two-phase mushy layer
(Turner et al., 2013). Bailey et al. (2020) showed that the
mushy-layer physics has noticeable impacts on Arctic sea ice
simulation within the Community Earth System Model ver-
sion 2. The third question we want to answer in this paper is
whether the mushy-layer scheme can produce a noticeable
influence on seasonal Arctic sea ice prediction. Currently,
SIPN focuses on Arctic sea ice predictions during the melt-
ing season, particularly the seasonal minimum. It is not clear
that how predictive skills of dynamical models participating
in SIPN may change for longer period, i.e., extending into the
freezing-up period, which also have significance for socioe-
conomic aspects. The assessment of the skills of global cli-
mate models (GCMs) in predicting Pan-Arctic sea ice extent
with suites of hindcasts suggested that GCMs may have skills
at lead times of 1–6 months (e.g., Blanchard-Wrigglesworth
et al., 2015; Chevallier et al., 2013; Guemas et al., 2016;
Merryfield et al., 2013; Msadek et al., 2014; Peterson et al.,
2015; Sigmond et al., 2013; Wang et al., 2013; Zampieri et
al., 2018). Moreover, some studies using a “perfect model”
approach, which treats one member of an ensemble as the
truth (i.e., assuming the model is prefect without bias) and
analyzes the skill of other members in predicting the re-
sponse of the “truth” member (e.g., IPCC, 2007), suggested
that Arctic sea ice cover can be potentially predictable up
to 2 years in advance (e.g., Blanchard-Wrigglesworth et al.,
2011; Blanchard-Wrigglesworth and Bushuk, 2018; Day et
al., 2016; Germe et al., 2014; Tietsche et al., 2014). The last
question we want to answer in this paper is whether CAPS
has predictive skill for longer periods (up to 7 months).

This paper is structured as follows. Section 2 provides a
brief overview of CAPS, including model configurations and
data assimilation procedures. Section 3 describes the designs
of the prediction experiments for the year 2018 based on
major improvements and changes in the model components
compared to its predecessor described in Y20, examines the
performance of the updated CAPS, and offers physical links
between Arctic sea ice changes and improved and changed
physical parameterizations. Section 4 discusses the predic-
tive skill of CAPS at longer timescales. Discussions and con-
cluding remarks are given in Sect. 5.

2 Coupled Arctic Prediction System (CAPS)

As described in Y20, CAPS has been developed by cou-
pling the Community Ice CodE (CICE) with the Weather
Research and Forecasting Model (WRF) and the Regional
Ocean Modeling System (ROMS) based on the framework of
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the Coupled Ocean-Atmosphere-Wave-Sediment Transport
(COAWST) (Warner et al., 2010). The general description
of each model component in CAPS is referred to Y20. The
advantage of CAPS is its model components have a variety
of physics for us to choose and capability to integrate follow-
up improvements of physical parameterizations. With recent
achievements of community efforts, we update CAPS based
on newly released WRF, ROMS, and CICE models. During
this update, we focus on the Rapid Refresh (RAP) physics
in the WRF model, the oceanic tracer advection scheme in
the ROMS model, and sea ice thermodynamics in the CICE
model (see details in Sect. 3), and investigate physical pro-
cesses linking them to Arctic sea ice simulation and predic-
tion. The same physical parameterizations described in Y20
are used here for the control simulation (see Table 1). Major
changes in physical parameterizations as well as the model
infrastructure in the WRF, ROMS, and CICE models are de-
scribed in Sect. 3.

As described in Y20, the Parallel Data Assimilation
Framework (PDAF, Nerger and Hiller, 2013) was imple-
mented in CAPS, which provides a variety of optimized
ensemble-based Kalman filters. The local error subspace
transform Kalman filter (LESTKF; Nerger et al., 2012) is
used to assimilate satellite-observed sea ice parameters. The
LESTKF projects the ensemble onto the error subspace and
then directly computes the ensemble transformation in the er-
ror subspace. This results in better assimilation performance
and higher computational efficiency compared to the other
filters as discussed in Nerger et al. (2012).

The initial ensembles are generated by applying the
second-order exact sampling (Pham, 2001) to simulated sea
ice state vectors (ice concentration and thickness) from a
1-month free run, and then assimilating sea ice observa-
tions, including (1) the near-real-time daily Arctic sea ice
concentration processed by the National Aeronautics and
Space Administration (NASA) team algorithm (Maslanik
and Stroeve, 1999) obtained from the National Snow and Ice
Data Center (NSIDC) (https://nsidc.org/data/NSIDC-0081/,
last access: 27 June 2021) and (2) a combined monthly
sea ice thickness derived from the CryoSat-2 (Laxon et al.,
2013; obtained from http://data.seaiceportal.de, last access:
27 June 2021), and daily sea ice thickness derived from
the Soil Moisture and Ocean Salinity (SMOS; Kaleschke
et al., 2012; Tian-Kunze et al., 2014; obtained from https:
//icdc.cen.uni-hamburg.de/en/l3c-smos-sit.html, last access:
27 June 2021). To address the issue that sea ice thicknesses
derived from CryoSat-2 and SMOS are unavailable during
the melting season, the melting season ice thickness is es-
timated based on the seasonal cycle of the Pan-Arctic Ice
Ocean Modeling and Assimilation System (PIOMAS) daily
sea ice thickness (Zhang and Rothrock, 2003).

Different from Y20, in this study, we change the local-
ization radius from two to six grids during the assimilation
procedures to reduce some instability during initial Arctic
sea ice simulations associated with two localization radii. As

shown in Fig. S1 in the Supplement, the ice thickness with
two localization radii and 1.5 m uncertainty (used in Y20)
shows some discontinuous features (Fig. S1a), which tend to
result in numerical instability during the initial integration.
Such discontinuous features are obviously corrected with six
localization radii and 0.75 m uncertainty (Fig. S1b). Follow-
ing Y20, here we test the 2018 prediction experiment with
six localization radii for the data assimilation, which shows
very similar temporal evolution of the total Arctic sea ice ex-
tent for the July experiment relative to that of Y20, although
it (red solid line) predicts slightly less ice extent than that
of Y20 (blue line) (Supplement Fig. S2). In this study, this
configuration is designated as the reference for the following
assessment of the updated CAPS (hereafter Y20_MOD).

For the evaluation of Arctic sea ice prediction, the Sea
Ice Index (Fetterer et al., 2017; obtained from https://nsidc.
org/data/G02135, last access: 27 June 2021) is used as the
observed total sea ice extent, and the NSIDC sea ice con-
centration (SIC) derived from Special Sensor Microwave
Imager/Sounder (SSMIS) with the NASA team algorithm
(Cavalieri et al., 1996; obtained from https://nsidc.org/data/
nsidc-0051, last access: 27 June 2021) is also used. For
the assessment of the simulated atmospheric and oceanic
variables, the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis version 5 (ERA5; Hersbach
et al., 2020; obtained from https://cds.climate.copernicus.
eu, last access: 27 June 2021) and National Oceanic and
Atmospheric Administration (NOAA) Optimum Interpola-
tion (OI) Sea Surface Temperature (SST) (Reynolds et al.,
2007; obtained from https://psl.noaa.gov/data/gridded/data.
noaa.oisst.v2.highres.html, last access: 27 June 2021) are uti-
lized. For the comparison of spatial distribution, SIC, ERA5,
and OISST are interpolated to the model grid.

3 Evaluation of updated CAPS

3.1 Experiment designs and methodology

The model domain includes 319 (449) x (y) grid points with
a ∼ 24 km grid spacing for all model components (see Fig. 2
in Y20). The WRF model uses 50 vertical levels, the ROMS
model uses 40 vertical levels, and the CICE model uses 7
ice layers, 1 snow layer, and 5 categories of sea ice thick-
ness. The coupling frequency across all model components
is 30 min. Initial and boundary conditions for the WRF and
ROMS models are generated from the Climate Forecast Sys-
tem version 2 (CFSv2, Saha et al., 2014) operational fore-
cast archived at NCEP (http://nomads.ncep.noaa.gov/pub/
data/nccf/com/cfs/prod/, last access: 27 June 2021). Sea ice
initial conditions are generated from the data assimilation
described in Sect. 2. Ensemble predictions with eight mem-
bers are conducted. A set of numerical experiments for the
Pan-Arctic seasonal sea ice prediction with different physics,
starting from 1 July to 1 October for the year of 2018, has
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Table 1. The summary of physic parameterizations used in the Y21_CRTL experiment.

WRF physics

Cumulus parameterization Grell–Freitas (Freitas et al., 2018; improved from Y20)
Microphysics parameterization Morrison two-moment scheme (Morrison et al., 2009; same as Y20)
Longwave radiation parameterization CAM spectral band scheme (Collins et al., 2004; same as Y20)
Shortwave radiation parameterization CAM spectral band scheme (Collins et al., 2004; same as Y20)
Boundary layer physics MYNN2 (Nakanishi and Niino, 2006; improved from Y20)
Land surface physics Unified Noah LSM (Chen and Dudhia, 2001; improved from Y20)

ROMS physics

Tracer advection scheme MPDATA (Smolarkiewicz, 2006; same as Y20)
Tracer vertical mixing scheme GLS (Umlauf and Burchard, 2003; same as Y20)
Bottom drag scheme Quadratic bottom friction (QDRAG; same as Y20)

CICE physics

Ice dynamics EVP (Hunke and Dukowicz, 1997; improved from Y20)
Ice thermodynamics Bitz and Lipscomb (1999; same as Y20)
Shortwave albedo Delta–Eddington (Briegleb and Light, 2007; same as Y20)

been conducted. Table 2 provides the details of these exper-
iments that allow us to examine physical processes linking
improved and changed physical parameterizations in the up-
dated CAPS to Arctic sea ice simulation and prediction.

In this study, sea ice extent is calculated as the sum of area
of all grid cells with ice concentration greater than 15 %. Be-
sides the total Arctic sea ice extent, we also calculate the
ice extent for the following subregions: (1) Beaufort and
Chukchi seas (60–80◦ N, 120–180◦W), (2) East Siberian and
Laptev seas (60–80◦ N, 180–90◦ E), and (3) Barents, Kara,
and Greenland seas (60–80◦ N, 90◦ E–30◦W). To further as-
sess the predictive skill of Arctic sea ice predictions, we show
the climatology prediction (CLIM, the period of 1998–2017)
and the damped anomaly persistence prediction (DAMP).
Following Van den Dool (2006), the DAMP prediction is
generated from the initial sea ice extent anomaly (relative
to the 1998–2017 climatology) scaled by the autocorrelation
and the ratio of standard deviation between different lead
times and initial times (see the DAMP equation in Y20).

In order to understand physical contributors that drive the
evolution of Arctic sea ice state (the standard variables of the
ice concentration and thickness), the mass budget of Arctic
sea ice for all experiments is analyzed in this study as defined
in Notz et al. (2016, Appendix E), including

– sea ice growth in supercooled open water (frazil),

– sea ice growth at the bottom of the ice (basal growth),

– sea ice growth due to transformation of snow to sea ice
(snowice),

– sea ice melt at the air–ice interface (top melt),

– sea ice melt at the bottom of the ice (basal melt),

– sea ice melt at the sides of the ice (lateral melt), and

– sea ice mass change due to dynamics-related processes
(e.g., advection) (dynamics).

These diagnostic variables are determined by saving the ice
mass tendency of above processes separately every time step
and integrated to output the daily mean value.

3.2 Impacts of the RAP physics in the WRF model

To examine the performance of the upgrades of physi-
cal parameterization in component models in CAPS one
step at a time compared to its predecessor in Y20, we
define the Y21_CTRL experiment that uses the RAP
physics in the WRF model (see Table 2 for differences be-
tween Y21_CTRL and Y20_MOD). Recently, the Rapid
Refresh (RAP) model, a high-frequency weather predic-
tion/assimilation modeling system operational at the Na-
tional Centers for Environmental Prediction (NCEP), has
made some improvements in the WRF model physics (Ben-
jamin et al., 2016), including improved Grell–Freitas con-
vection scheme (GF) and Mellor–Yamada–Nakanishi–Niino
planetary boundary layer scheme (MYNN). For the GF
scheme, the major improvements relative to the original
scheme (Grell and Freitas, 2014) include (1) a beta probabil-
ity density function used as the normalized mass flux profile
for representing height-dependent entrainment/detrainment
rates within statistical-averaged deep convective plumes,
which is given as

Zu,d (rk)= cr
α
k − (1− rk)

β
− 1,

where Zu,d is the mass flux profiles for updrafts and down-
drafts, c is a normalization constant, rk is the location of
the mass flux maximum, and α and β determine the skew-
ness of the beta probability density function, and (2) the
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Table 2. The summary of the prediction experiments and details of experiment designs. Note that all experiments use the CFS operational
forecasts as initial and boundary conditions. VT: vertical transformation function; VS: vertical stretching function; SH94: stretching function
of Song and Haidvogel (1994); S10: stretching function of Shchepetkin (2010).

Experiment Physics Assimilation ROMS vertical Simulation period
coordinate (YYYY.MM.DD)

Y20_MOD Physics (old version) listed
in Table 1

Six localization radii
SSMIS SIC;
simply merged CryoSat-
2/SMOS SIT

VT 1 VS SH94 hc 10 m 2018.07.01–2018.10.01

Y21_CTRL Physics (new version) listed
in Table 1

Six localization radii
SSMIS SIC;
simply merged CryoSat-
2/SMOS SIT

VT 1 VS SH94 hc 10 m 2018.07.01–2018.10.01

Y21_VT Physics (new version) listed
in Table 1

Six localization radii
SSMIS SIC;
simply merged CryoSat-
2/SMOS SIT

VT 2 VS S10 hc 300 m 2018.07.01–2018.10.01

Y21_RP Advection: U3H/C4V Six localization radii
SSMIS SIC;
simply merged CryoSat-
2/SMOS SIT

VT 2 VS S10 hc 300 m 2018.07.01–2018.10.01

Y21_MUSHY Same physics as Y21_RP
CICE: mushy-layer
thermodynamics

Six localization radii
SSMIS SIC;
simply merged CryoSat-
2/SMOS SIT

VT 2 VS S10 hc 300 m 2018.07.01–2018.10.01

Y21_SIT Same physics as Y21_RP Six localization radii
SSMIS SIC;
OI-merged
CryoSat-2/SMOS
SIT

VT 2 VS S10 hc 300 m 2018.07.01–2018.10.01

Y21_EXT-7 Same physics as Y21_RP Six localization radii
SSMIS SIC;
OI-merged
CryoSat-2/SMOS
SIT

VT 2 VS S10 hc 300 m 2018.07.01–2019.01.31

ECMWF approach used for momentum transport due to con-
vection (Biswas et al., 2020; Freitas et al., 2018, 2021). For
the MYNN scheme, the RAP model improves the mixing-
length formulation, which is designed as

1
lm
=

1
ls
+

1
lt
+

1
lb
,

where lm is the mixing length, ls is the surface length, lt is the
turbulent length, and lb is the buoyancy length. Compared to
the original scheme, the RAP model changed coefficients in
the formulation of ls, lt, and lb for reducing the near-surface
turbulent mixing and the diffusivity of the scheme. The RAP
model also removes numerical deficiencies to better repre-
sent subgrid-scale cloudiness (Benjamin et al., 2016; see Ap-
pendix B) compared to the original scheme (Nakanishi and
Nino, 2009). In addition, some minor issues in the Noah land

surface model (LSM) (Chen and Dudhia, 2001) have been
fixed, including discontinuous behavior for soil ice melting,
negative moisture fluxes over glacial areas, and those associ-
ated with snow melting.

Apparently, the above RAP physics can have influence
on the behavior of simulated atmospheric thermodynamics
(i.e., radiation, temperature). Figures 1 and 2 show the spa-
tial distribution of the ERA5 surface downward solar and
thermal radiation (SWDN and LWDN), the prediction er-
rors (ensemble mean minus ERA5) of Y20_MOD, and the
difference between Y21_CTRL and Y20_MOD. For July,
Y20_MOD (Fig. 1d) results in less SWDN over most of the
ocean basins, as well as Alaska and the northeast US, west-
ern Siberia, and eastern Europe, but more SWDN over south-
ern and eastern Siberia compared with ERA5. For August
and September (Fig. 1e–f), the spatial distribution is gen-
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erally similar to that of July, except in eastern Siberia (less
SWDN) and northern Canada (more SWDN) in August. It
appears that the magnitude of the prediction errors tends to
decrease over the areas with large prediction errors as the pre-
diction time increases (i.e., July vs. September). Compared
with Y20_MOD, the RAP physics in Y21_CTRL results in
large areas with smaller prediction errors in July (e.g., the
positive difference between Y21_CTRL and Y20_MOD re-
duces the negative prediction errors in Y20_MOD), except
in the north Pacific (especially the Sea of Okhotsk) and north
Canada (Fig. 1g). For August and September (Fig. 1h, i), en-
couragingly, there are more areas with smaller prediction er-
rors.

In contrast to SWDN, the prediction errors of LWDN
in Y20_MOD have a much smaller magnitude (up to
100 W m−2 in SWDN vs. 50 W m−2 in LWDN) for the entire
prediction period (Fig. 2d–f). For July, Y20_MOD (Fig. 2d)
simulates less LWDN over most of the model domain com-
pared with ERA5, except the Atlantic sector and north
Greenland. For August, the areas with negative prediction er-
rors expand and the magnitude of prediction errors increases
(particularly in southeastern Siberia and the northeast US)
compared to that of July (Fig. 2e). For September (Fig. 2f),
the spatial distribution of LWDN is mostly similar to that
of July, except that north Canada and Canadian Archipelago
show positive prediction errors. The Y21_CTRL experiment
with the RAP physics tends to reduce the prediction er-
rors in Y20_MOD, especially over eastern Siberia and the
Atlantic sector in July to September (Fig. 2g–i). However,
Y21_CTRL results in larger bias in the central northern At-
lantic in August than that of Y20_MOD (Fig. 2h).

Figure 3 shows the spatial distribution of the ERA5
2 m air temperature, the prediction errors of Y20_MOD,
and the difference between Y21_CTRL and Y20_MOD.
For Y20_MOD, the predicted air temperature in July has
small cold prediction errors over all ocean basins, small-to-
moderate cold prediction errors (∼ 3–5 ◦C) over Canada and
Siberia, and moderate-to-large cold prediction errors (∼ 6–
9 ◦C) over eastern Europe (Fig. 3d). In August (Fig. 3e), the
cold prediction errors over most of the model domain are
increased; in particular, a very large cold prediction error
(over 10 ◦C) is located over east Siberia. In September, these
cold prediction errors are decreased relatively, and some
warm prediction errors are found in the north of Greenland
(Fig. 3f). With the adaptation of the RAP physics in the WRF
model, Y21_CTRL, in general, produces a warmer state in
most of the model domain compared to that of Y20_MOD
during the entire prediction period. For July (Fig. 3g), the
predicted air temperature is slightly warmer over the Arctic
Ocean, the Pacific, and Atlantic sectors, moderately warmer
(∼ 1–2 ◦C) over central and eastern Siberia and the Canadian
Archipelago but the slightly colder over northern Canada
than that of Y20_MOD. For August and September (Fig. 3h),
most of the model domain is warmer in Y21_CTRL than
that of Y20_MOD, in particular excessive cold prediction er-

rors shown in Y20_MOD over Siberia are reduced notably
(∼ 2.5–4 ◦C). We notice that the RAP physics does not have
significant impacts on atmospheric circulations, given that
Y21_CTRL and Y20_MOD have very similar wind patterns
(not shown).

Figure 4 shows the temporal evolution of the ensemble
mean of the predicted Arctic sea ice extent along with the
NSIDC observations. In terms of total ice extent, compared
to the Y20_MOD experiment (blue line), the Y21_CTRL ex-
periment (yellow line) produces ∼ 0.5 million km2 more ice
extent at the initial. Note that the difference in the initial
ice extent is related to that sea ice fields in Y20_MOD and
Y21_CTRL (as well as other experiments listed in Table 2)
are initialized based on 1-month free runs (Sect. 2), which
use different physical configurations listed in Table 2. These
1-month free runs do not have the same evolution in sea ice
fields and result in different initial ice fields after data assim-
ilation. The ice extent in Y21_CTRL decreases faster than
Y20_MOD during the first 2-week integration. After that,
they track each other closely and predict nearly the same
minimum ice extent (∼ 4.3 million km2). Like Y20_MOD,
Y21_CTRL still has a delayed ice recovery in late Septem-
ber compared to the observations. Compared with the CLIM
and DAMP predictions (dashed and dotted black lines), both
Y20_MOD and Y21_CTRL have smaller prediction errors in
August but comparable prediction errors after early Septem-
ber.

The difference in sea ice extent becomes larger at regional
scales; in the East Siberian–Laptev seas, Y21_CTRL shows
faster ice decline after mid-July than that of Y20_MOD,
whereas in the Beaufort–Chukchi seas, Y21_CTRL predicts
slower ice retreat after late July than that of Y20_MOD
(Fig. 4a, b). They are consistent with Y21_CTRL pre-
dicting warmer (relatively colder) temperature than that of
Y20_MOD in the East Siberian–Laptev (Beaufort–Chukchi)
seas. Both Y20_MOD and Y21_CTRL agree well with the
observations in the Barents–Kara–Greenland seas (Fig. 4c).
Compared with the observations, Y20_MOD performs rela-
tively better in regional ice extent than Y21_CTRL. Figure 5
shows the spatial distribution of the NSIDC sea ice concen-
tration and the difference between the predicted ice concen-
tration and the observations for all grid cells such that the
predictions and the observations both have at least 15 % ice
concentration. The vertical and horizontal lining areas repre-
sent the difference of the ice edge location. Like regional ice
extent shown in Fig. 4, Y21_CTRL predicts lower (higher)
ice concentration along the East Siberian–Laptev (Beaufort–
Chukchi) seas (Fig. 5e1–e3). Y21_CTRL also predicts less
ice in the central Arctic Ocean in August and September,
which is consistent with warmer temperature in Y21_CTRL
relative to Y20_MOD.

Figure 6 shows the evolution of sea ice mass budget
terms of Y20_MOD and Y21_CTRL, averaged with cell-
area weighting over the entire model domain. During the en-
tire prediction period, most of the ice loss in Y20_MOD and
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Figure 1. ERA5 monthly mean of downward shortwave radiation at the surface for (a) July, (b) August, and (c) September, the difference be-
tween Y20_MOD and ERA5 for (d) July, (e) August, and (f) September, and the difference between Y21_CTRL (changes in the atmospheric
physics) and Y20_MOD (the original CAPS) for (g) July, (h) August, and (i) September.

Y21_CTRL is caused by basal melting. The surface melting
has a relatively small contribution in the total ice loss and
mainly occurs in July. However, compared with Y20_MOD
(Fig. 6a), Y21_CTRL (Fig. 6b) shows much larger magni-
tude for basal and surface melt. In a fully coupled predic-
tive model, the changes of sea ice are determined by the
fluxes from the atmosphere above and the ocean below. As-
sociated with the increased downward radiation of the above
RAP physics, Y21_CTRL absorbs more shortwave radiation

(SWABS, Fig. 7a) and allows more penetrating solar radia-
tion into the upper ocean below sea ice (SWTHRU, Fig. 7b)
than that of Y20_MOD, especially in July. This explains why
Y21_CTRL has larger magnitude of surface and basal melt-
ing terms. Although Y21_CTRL show larger magnitude in
surface and basal melting than that of Y20_MOD, the ice ex-
tent in Y21_CTRL and Y20_MOD shown in Fig. 4 shows
a similar evolution. The effect of larger surface and basal
melting in Y21_CTRL is largely reflected in the ice thick-
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Figure 2. Same as Fig. 1 but for downward thermal radiation at the surface.

ness change. As shown in Fig. S3, Y21_CTRL has thinner
ice thickness than that of Y20_MOD, in the East Siberian–
Laptev seas in July and in much of central Arctic Ocean in
August and September.

3.3 Impacts of the tracer advection in ROMS model

Currently, the ROMS model that uses a generalized
topography-following coordinate has two vertical coordinate
transformation options:

z(x,y,σ, t)= S (x,y,σ )+ ζ (x,y, t)
[
1+ S(x,y,σ )

h(x,y)

]
S (x,y,σ )= hcσ +

[
h(x,y)−hc

]
C (σ)

or (1)

z(x,y,σ, t)= ζ (x,y, t)+
[
ζ (x,y, t)+h(x,y)

]
S (x,y,σ )

S (x,y,σ )=
hcσ+h(x,y)C(σ)

hc+h(x,y)
,

(2)

where S (x,y,σ ) is a nonlinear vertical transformation func-
tion, ζ (x,y, t) is the free surface, h(x,y) is the unperturbed
water column thickness, C (σ) is the non-dimensional,
monotonic vertical stretching function, and hc controls the
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Figure 3. Same as Fig. 1 but for near-surface air temperature.

behavior of the vertical stretching. In Y20, we used the trans-
formation (1) and the vertical stretching function introduced
by Song and Haidvogel (1994). However, the vertical trans-
formation (1) has an inherent limitation for the value of hc
(expected to be the thermocline depth), which must be less
than or equal to the minimum value in h(x,y). As a result,
hc was chosen as 10 m due to the limitation of the minimum
value in h(x,y) in Y20. This limitation is removed with the
vertical transformation (2) and hc can be any positive value.
Here, the Y21_VT experiment is conducted to examine the
impact of the vertical transformation in the ROMS model

on seasonal Arctic sea ice simulation and prediction, which
uses the vertical transformation (2), the Shchepetkin verti-
cal stretching function (a function introduced in a research
version of ROMS at University of California, Los Angeles),
and 300 m for hc. As shown in Supplement Figs. S4–S5,
compared to Y21_CTRL, Y21_VT is less sensitive to the
bathymetry and its layers are more evenly distributed in the
upper 300 m. With the changes of vertical layers of the up-
per ocean, the Y21_VT experiment has minor SST changes
relative to Y21_CTRL. The simulated temporal evolution of
total ice extent of Y21_VT (Fig. 4, red line) resembles that
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Figure 4. (a) Time series of Arctic sea ice extent for the observations (black line) and the ensemble mean of Y20_MOD (blue line, the
original CAPS), Y21_CTRL (yellow line, changes in the atmospheric physics), Y21_VT (red line, changes in the ocean vertical coordinate),
Y21_RP (green line, changes in the oceanic advection), and Y21_MUSHY (pink line, changes in sea ice thermodynamics). Dashed and
dotted lines are the climatology and the damped anomaly persistence predictions. Bottom panel: time series of the observed (black line) and
the ensemble mean of regional sea ice extents for Y20_MOD (blue line), Y21_CTRL (yellow line), Y21_VT (red line), Y21_RP (green line),
and Y21_MUSHY (pink line) for the (a) Beaufort–Chukchi seas, (b) East Siberian–Laptev seas, and (c) Barents–Kara–Greenland seas.

of Y21_CTRL (Fig. 4, yellow line), although some differ-
ences are seen at the regional scale in the areas with shallow
water (e.g., East Siberian, Laptev, Barents, and Kara seas).
The configuration of Y21_VT is used in the following exper-
iments.

It has been recognized that the tracer advection and the
vertical mixing schemes have important effects on ocean and
sea ice simulation (e.g., Liang and Losch, 2018; Naughten
et al., 2017). Here, the Y21_RP experiment is designated to
explore the influence of different advection schemes in the
ROMS model. Specifically, the tracer advection scheme is
changed from the multidimensional positive definite advec-
tion transport algorithm (MPDATA; Smolarkiewicz, 2006) to
the third-order upwind horizontal advection (U3H; Rasch,

1994; Shchepetkin and McWilliams, 2005) and the fourth-
order centered vertical advection schemes (C4V; Shchep-
etkin and McWilliams, 1998, 2005). The MPDATA scheme
applied in Y20_MOD, Y21_CTRL, and Y21_VT is a non-
oscillatory scheme but a sign-preserving scheme (Smo-
larkiewicz, 2006). This means MPDATA is not suitable for
tracer fields having both positive and negative values (i.e.,
temperature with degrees Celsius in the ROMS model). The
upwind third-order (U3H) scheme used in Y21_RP is an os-
cillatory scheme but it significantly reduces oscillations com-
pared to other centered schemes (e.g., Hecht et al., 2000;
Naughten et al., 2017) available in the ROMS model.

Figure 8 shows the spatial distribution of the SST changes
of Y21_VT and Y21_RP relative to Y21_CTRL (as well
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Figure 5. Monthly mean of sea ice concentration for (a) July, (b) August, and (c) September of the NSIDC observations, and the differ-
ence between the all prediction experiments and the observations for (d1–g1) July, (d2–g2) August, and (d3–g3) September. Vertical- and
horizontal-line areas represent the difference of ice edge location (15 % concentration).

as the OISST and the difference between Y21_CTRL and
OISST). In general, Y21_CTRL shows cold prediction errors
in the North Pacific (∼ 2 ◦C) and the Atlantic (∼ 3 ◦C) com-
pared to those of OISST in July, and these cold prediction er-
rors are enhanced as the prediction time increases (to 3–5 ◦C,
Fig. 8d–f). With the U3H and C4V tracer advection schemes
in Y21_RP, cold prediction errors shown in Y21_CTRL are
reduced significantly in the North Pacific and Atlantic, but
SST under sea ice in much of the Arctic Ocean is slightly
colder than that of Y21_CTRL (Fig. 8j–l).

Y21_RP (Fig. 4, green line) shows a comparable tempo-
ral evolution of the ice extent as Y21_CTRL (as well as
Y21_VT) until near the end of July. After that, the ice melt-
ing slows down (closer to the observations) and the ice extent
begins to recover earlier (after the first week of September)
in Y21_RP compared to that of Y21_CRTL. This leads to

much smaller prediction error in seasonal minimum ice ex-
tent relative to the observation. Y21_RP also shows better
predictive skill after late August compared with the CLIM
and DAMP predictions (dashed and dotted black lines). This
suggests the delayed ice recovery in late September shown
in Y20_MOD, Y21_CTRL, and Y21_VT is in part due to
the choice of ocean advection and vertical mixing schemes,
which change the behavior of ocean state. At the regional
scale, the slower ice decline after July and earlier recovery
of the ice extent in September mainly occur in the Beaufort–
Chukchi and Barents–Kara–Greenland seas compared to that
of Y21_CTRL (Fig. 4a, c). With the U3H and C4V schemes,
the Y21_RP experiment simulates higher sea ice concentra-
tion than that of Y21_VT (Fig. 5f1–f3). For September, the
Y21_RP experiment better predicts the ice edge location in
the Atlantic sector of the Arctic (i.e., smaller areas with hor-
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Figure 6. Time series of sea ice mass budget terms for (a) Y20_MOD (the original CAPS) and (b) Y21_CTRL (changes in the atmospheric
physics).

Figure 7. Time series of (a) shortwave radiation absorbed by ice surface and (b) penetrating shortwave radiation to the upper ocean averaged
over ice-covered grid cells for Y20_MOD (blue line, the original CAPS) and Y21_CTRL (red line, changes in the atmospheric physics).

izontal and vertical linings) compared to the experiments de-
scribed above (not shown).

Figure 9 shows the evolution of sea ice mass budget terms
of Y21_VT and Y21_RP. Relative to Y21_VT, Y21_RP
(with U3H and C4V schemes) results in increased frazil
ice formation in July, which is partly compensated by in-
creased surface melting. Y21_RP also leads to increased
basal growth in mid- and late September (Fig. 9a, b).

Figure 10 shows the difference in the vertical profile of
ocean temperature and salinity in the upper 150 m averaged
for the central Arctic Ocean between Y21_RP and Y21_VT.
The ocean temperature in the surface layer of Y21_RP is
slightly colder during the prediction period compared to that
of Y21_VT (Fig. 10a), especially in August and Septem-
ber. Moreover, the water in the surface layer (0–20 m) of
Y21_RP is fresher than that of Y21_VT (Fig. 10b). It reduces
the freezing temperature and favors frazil ice formation. In
CAPS, frazil ice formation is determined by the freezing po-
tential, which is the vertical integral of the difference be-

tween temperature in upper ocean layer and the freezing tem-
perature in the upper 5 m layer. The temperature of super-
cooled water is adjusted based on the freezing potential to
form new ice and rejects brine into the ocean that leads to
saltier water between 20–50 m in Fig. 10. It should be noted
that the increased frazil ice formation in July in Y21_RP
might also be the result of model adjustment and/or numeri-
cal error. The oscillatory behavior of U3H scheme can make
the temperature fall below the freezing point and then instan-
taneously form new ice (as well as temperature and salinity
adjustments).

3.4 Impacts of sea ice thermodynamics in the CICE
model

In Y20, we used sea ice thermodynamics introduced by Bitz
and Lipscomb (1999; hereafter BL99) as the setup of CAPS,
which assumes a fixed vertical salinity profile based on ob-
servations. The new CICE model includes a mushy-layer ice
thermodynamics introduced by Turner et al. (2013), which
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Figure 8. First column: monthly mean of sea surface temperature for (a) July, (b) August, and (c) September of the OI SST. Second column:
the difference between Y21_CTRL and the OI SST for (d) July, (e) August, and (f) September. Right panel: monthly mean of sea surface
temperature difference between Y21_VT/Y21_RP and Y21_CTRL for (g) July, (h) August, and (i) September of Y21_VT, and (j) July,
(k) August, and (l) September of Y21_RP.

simulates vertically and time-varying prognostic salinity and
associated effects on thermodynamic properties of sea ice.
In the Y21_MUSHY experiment, we change the ice ther-
modynamics from BL99 to MUSHY (Table 2) to examine
whether improved ice thermodynamics has noticeable influ-
ence on Arctic sea ice simulation and prediction at seasonal
timescale. Compared to Y21_RP, Y21_MUSHY (Fig. 4, pink

line) produces a very similar evolution of total ice extent.
However, it simulates relatively larger ice extent near the end
of September, which is also reflected by the basin-wide in-
creased ice cover shown in Fig. 5h3. At the regional scale,
compared to Y21_RP, Y21_MUSHY predicts less ice in Au-
gust in the Beaufort–Chukchi seas. The opposite is the case
for the East Siberian–Laptev seas (Fig. 4a, b).
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Figure 9. Same as Fig. 6 but for (a) Y21_VT (changes in the ocean vertical coordinate) and (b) Y21_RP (changes in the oceanic advection).

Figure 10. (a) The average temperature profile of upper 150 m under ice-covered areas for the difference between Y21_RP and Y21_VT.
Panel (b) is the same as (a) but for the salinity profile.

Figure 11 shows the difference of the ensemble mean
of the predicted ice thickness between Y21_MUSHY and
Y21_RP. Compared with Y21_RP, Y21_MUSHY simulates
thicker ice (from ∼ 0.2 m in July to over 0.4 m in Septem-
ber) extending from the Canadian Arctic, through the cen-
tral Arctic Ocean, to the Laptev Sea (Fig. 11a–c). This
seems to be consistent with previous studies, which show that
the mushy-layer thermodynamics simulates thicker ice than
BL99 thermodynamics in both standalone CICE (Turner and
Hunke, 2015) and the fully coupled (Bailey et al., 2020), but
Y21_MUSHY shows thinner ice (∼ 0.2 m) in an arc extend-
ing from the north of Alaska to the north of eastern Siberia
compared to Bailey et al. (2020). Note that Y21_MUSHY
focuses the effects of mushy thermodynamics on a seasonal
timescale, while the results in Bailey et al. (2020) are based
on 50-year simulations.

Compared to Y21_RP, the mass budget of Y21_MUSHY
(Fig. S6) shows that both surface melting and frazil ice for-
mation terms are increased. This compensation between sur-

face melting and frazil ice formation from the mushy-layer
thermodynamics in CAPS leads to relatively unchanged total
ice extent between Y21_MUSHY and Y21_RP (Fig. 4 green
and pink lines).

4 Prediction skill of CAPS at longer timescales

The design of Arctic sea ice prediction experiments de-
scribed above follow the protocol of SIPN, in which the out-
look start from 1 June, 1 July, and 1 August to predict sea-
sonal minimum of the ice extent in September. It is not clear
that how predictive skills of dynamical models participating
in SIPN may change for longer periods. Here, we conduct
two more experiments to investigate the predictive capability
of CAPS beyond the SIPN prediction period. For the predic-
tion experiments discussed above, we use a simple approach
to merge CryoSat-2 and SMOS ice thickness by replacing ice
thickness less than 1 m in CryoSat-2 data with SMOS data
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Figure 11. Monthly mean of sea ice thickness difference between Y21_MUSHY (changes in sea ice thermodynamics) and Y21_RP for
(a) July, (b) August, and (c) September.

for ice thickness assimilation. Ricker et al. (2017) presented
a new ice thickness product (CS2SMOS) based on the opti-
mal interpolation to statistically merge CryoSat-2 and SMOS
data. Here, we utilize the configuration of Y21_RP but use
CS2SMOS SIT for the assimilation (Y21_SIT; Table 2). The
predicted total ice extent is almost identical to Y21_RP in
July but has a slightly larger total extent after July than that of
Y21_RP (not shown). The configuration of Y21_SIT is used
in the following experiments. Taking advantage of the en-
tire prediction period provided by CFS forecasts (7 months),
the Y21_EXT-7 experiment is designed to extend the predic-
tion period to the end of January next year (Table 2). Fig-
ure 12 shows the temporal evolution of the ensemble mean
of the predicted total Arctic sea ice extent (as well as regional
ice extent) for Y21_EXT-7. Total ice extent of Y21_EXT-7
exhibits reasonable evolution in terms of seasonal minimum
and timing of recovery compared with the observations until
late November. Y21_EXT-7 also performs better than that of
the CLIM and DAMP predictions (dashed and dotted black
lines) until mid-to-late November. After that, Y21_EXT-7
overestimates total ice extent relative to the observations, and
such overestimation is largely contributed by more extensive
sea ice in the Barents–Kara–Greenland seas (Fig. 12c), which
is a result of a sharp increase in the basal growth term after
mid-to-late November (not shown).

5 Conclusions and discussions

This paper presents and evaluates the updated Coupled Arc-
tic Prediction System (CAPS) designated for Arctic sea ice
prediction through a case study for the year of 2018. A
set of Pan-Arctic prediction experiments with improved and
changed physical parameterizations as well as different con-

figurations starting from 1 July to the end of September
is performed for 2018 to assess their impacts of the up-
dated CAPS on the predictive skill of Arctic sea ice at sea-
sonal timescales. Specifically, we focus on the Rapid Refresh
(RAP) physics in the WRF model, the oceanic tracer advec-
tion scheme in the ROMS model, and sea ice thermodynam-
ics in the CICE model, and investigate physical processes
linking them to Arctic sea ice simulation and prediction.

The results show that the updated CAPS with improved
physical parameterizations can better predict the evolution
of total ice extent compared with its predecessor described in
Yang et al. (2020), though the predictions exhibit some pre-
diction errors in regional ice extent. The key improvements
of WRF, including cumulus, boundary layer, and land sur-
face schemes, result in improved simulations in downward
radiative fluxes and near-surface air temperature. These im-
provements mainly influence the predicted ice thickness in-
stead of total ice extent. The difference in the predicted ice
thickness can have potential impacts on the icebreakers plan-
ning their routes across the ice-covered regions. The major
changes of ROMS, including tracer advection and vertical
mixing schemes, reduce the prediction errors in sea surface
temperature and change ocean temperature and salinity struc-
ture in the surface layer, leading to improved evolution of the
predicted total ice extent (particularly correcting the late ice
recovery issue in the previous CAPS). The changes of CICE,
including improved ice thermodynamics, have noticeable in-
fluences on the predicted ice thickness.

We demonstrate that CAPS can remain skillful beyond
the designated period of Sea Ice Prediction Network (SIPN),
which has a potential value for stakeholders to make de-
cisions regarding the socioeconomic activities in the Arc-
tic. Although CAPS shows extended predictive skill to
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Figure 12. Same as Fig. 4 but for Y21_EXT-7.

the freeze-up period, the prediction produces extensive ice
through the basal growth near the end of prediction. The
excessive basal growth may be partly due to the fact that
the bias of the CFS data propagates into the model domain
through lateral boundary conditions and its accumulated ef-
fect influences Arctic sea ice simulation during the freeze-up
period.

Keen et al. (2021) analyzed the Arctic mass budget of 15
models participated in phase 6 of the Coupled Model Inter-
comparison Project (CMIP6). We notice that, first, the top
melting and the basal melting terms in CMIP6 models have
comparable contributions in July, while the top melting term
only has ∼ 50 % contribution relative to the basal melting
term in CAPS. The updated CAPS with the RAP physics im-
proves the performance of shortwave and longwave radiation
at the surface (Figs. 1 and 2). The net flux at the ice surface,
however, may still be underestimated in the updated CAPS.
Besides, the surface property of sea ice (i.e., the amount of

melt ponds, bare ice, and snow) is a factor that influences sur-
face albedo and thus the absorbed shortwave radiation (e.g.,
Nicolaus et al., 2012; Nicolaus and Katlein, 2013). The pre-
diction experiments starting on 1 July in this study do not
consider the initialization of melt ponds (i.e., zero melt pond
coverage at the initial). However, melt ponds start to develop
in early May based on the satellite observations (e.g., Liu et
al., 2015, Fig. 1). The initialization of melt pond based on the
observations (e.g., Ding et al., 2020) in CAPS is a direction to
improve the representation of the ice surface properties. Sec-
ond, the mass budget analysis by both Keen et al. (2021) and
this study show that the contribution of a lateral melting term
is relatively small, which might be due to the fact that CMIP6
models and CAPS assume constant floe size (i.e., 300 m in
CICE), which is a critical value to determine the strength
of lateral melting (e.g., Horvat et al., 2016; Steele, 1992).
Recently, several studies have proposed floe size distribu-
tion models (e.g., Bateson et al., 2020; Bennetts et al., 2017;
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Boutin et al., 2020; Horvat and Tziperman, 2015; Roach et
al., 2018, 2019; Zhang et al., 2015, 2016). Incorporating a
floe size distribution model in CAPS and understanding its
impacts on seasonal Arctic sea ice prediction will be a fu-
ture direction of developing CAPS. Lastly, the prediction ex-
periments with the upwind advection scheme (i.e., Y21_RP,
Y21_EXT-7) show spurious large frazil ice formation, partic-
ularity in July, which is different from the analysis shown in
Keen et al. (2021). An approach for reducing spurious frazil
ice formation is proposed by Naughten et al. (2017), who
implemented an upwind flux limiter (Leonard and Mokhtari,
1990) in the U3H scheme to further reduce the oscillations.
Naughten et al. (2018) also suggested that the oscillatory be-
haviors can be smoothed out by applying the Akima fourth-
order tracer advection scheme combined with Laplacian hor-
izontal diffusion at a level strong enough. Besides the os-
cillatory behaviors of the advection scheme, the ice–ocean
heat flux may also play a role in the spurious frazil ice for-
mation. As discussed in Sect. 3.3, the freezing and melting
potential not only determines the amount of newly formed
ice but also limits the amount of energy that can be extracted
from the ocean surface layer to melt sea ice. This implies
that the ocean surface layer will be close to the freezing tem-
perature if the ice–ocean heat fluxes reach the limit imposed
by the melting potential. Shi et al. (2021) discussed the im-
pacts of different ice–ocean heat flux parameterizations on
sea ice simulations. Their results suggest that Arctic sea ice
will be thicker and ocean temperature will warmer beneath
high-concentration ice with a complex approach proposed by
Schmidt et al. (2004) which limits melt rates (heat fluxes) of
sea ice through considering a fresh water layer underlying
the sea ice. The warmer ocean temperature under sea ice with
a more complex approach in parameterizing ice–ocean heat
flux may be the solution to reduce the occurrence of local
temperature falling below freezing temperature with oscilla-
tory advection schemes.

Based on the prediction experiments discussed in this
paper, the configuration with the RAP physics, the U3H
and C4V ocean advection, BL99 ice thermodynamics, and
CS2SMOS ice thickness assimilation (Table 2, Y21_SIT)
is assigned as the finalized CAPS (version 1.0). Improving
the representation of physical processes in CAPS version 1.0
for further reducing the model bias will remain the main fo-
cus for the development of CAPS. Since CAPS is a regional
modeling system, it relies on the forecasts form global cli-
mate models as initial and lateral boundary conditions. That
is, biases that existed in GCM simulations (here the CFS
forecast) can be propagated into and affect the entire area-
limited domain (e.g., Bruyère et al., 2014; Rocheta et al.,
2020; Wu et al., 2005). This issue can be a potential source
that influences the predictive capability of CAPS for longer
timescales. Studies have applied bias correction techniques
with different complexities for improving the performance of
regional modeling systems (e.g., Bruyère et al., 2014; Colette
et al., 2012; Rocheta et al., 2017, 2020). Further investigation

is needed to address biases inherited from GCM predictions
through lateral boundaries for improving the predictive capa-
bility of CAPS.

Code and data availability. The COAWST and CICE models
are open source and can be downloaded from their devel-
opers at https://github.com/jcwarner-usgs/COAWST (Warner
et al., 2010) and https://github.com/CICE-Consortium/CICE
(https://doi.org/10.5281/zenodo.1900639, Craig et al., 2021), re-
spectively. PDAF can be obtained from https://pdaf.awi.de/trac/wiki
(Nerger et al., 2020). CAPS v1.0, described in this paper, is perma-
nently archived at https://doi.org/10.5281/zenodo.5842668 (Yang
et al., 2022a). The prediction data analyzed in this paper can be
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