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Abstract. Mean radiant temperature (Tmrt) is a frequently
used measure of outdoor radiant heat conditions. Excessive
Tmrt, linked especially to clear and warm days, has a neg-
ative effect on human wellbeing. The highest Tmrt on such
days is found in sunlit areas, whereas shaded areas have sig-
nificantly lower values. One way of alleviating high Tmrt is
by planting trees to provide shade in exposed areas. Achiev-
ing the most efficient mitigation of excessive Tmrt by tree
shade with multiple trees requires optimized positioning of
the trees, which is a computationally extensive procedure.
By utilizing metaheuristics, the number of calculations can
be reduced. Here, we present TreePlanter v1.0, which ap-
plies a metaheuristic hill-climbing algorithm on input raster
data of Tmrt and shadow patterns to position trees in com-
plex urban areas. The hill-climbing algorithm enables dy-
namic exploration of the input data to position trees, com-
pared with very computationally demanding brute-force cal-
culations. The hill-climbing algorithm has been evaluated
with a static greedy algorithm that positions trees one at a
time based on ranking and is expected to always find relevant
locations for trees. The results show that the hill-climbing al-
gorithm, in relatively low model runtime, can find positions
for several trees simultaneously, which lowers Tmrt substan-
tially. TreePlanter, with its two algorithms, can assist in opti-
mization of tree planting in urban areas to decrease thermal
discomfort.

1 Introduction

The increased risk of exposure to excessive heat in urban ar-
eas during extreme events as an effect of a modified urban
climate can lead to excess mortality and morbidity (Dousset
et al., 2010; Gabriel and Endlicher, 2011). The modified and
generally warmer urban climate is a result of several factors,
such as density of building stock, street orientation, color of
materials, absence of permeable surfaces, anthropogenic heat
and lack of vegetation (Arnfield, 2003). Mean radiant tem-
perature (Tmrt, ◦C) is an important meteorological variable in
the human energy balance and outdoor human thermal com-
fort, especially during clear and warm weather (Mayer and
Höppe, 1987; Höppe, 1992; Mayer et al., 2008). Tmrt is the
sum of all short- and longwave radiation fluxes (both direct
and reflected) to which the human body is exposed, defined
by ASHRAE (2001) as the “uniform temperature of an imag-
inary enclosure in which radiant heat transfer from the hu-
man body equals the radiant heat transfer in the actual non-
uniform enclosure”. High Tmrt has negative effects on human
health (Mayer et al., 2008). Thorsson et al. (2014) showed
that there is a higher correlation between Tmrt and mortal-
ity compared than between air temperature and mortality on
hot days. High daytime Tmrt correlated with heat related mor-
tality among people aged 80+, whereas high nighttime Tmrt
correlated with heat related mortality among peopled aged
45–79.

Lateral longwave irradiance from surroundings is the
largest component of Tmrt (Lindberg et al., 2014), and al-
though this component does increase on clear days, high val-
ues of outdoor Tmrt only occur in sunlit areas exposed to di-
rect shortwave irradiance from the Sun (Lindberg and Grim-
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mond, 2011a). Tmrt peaks around noon and early afternoon
when the Sun is at its highest position during the day. Areas
in front of sunlit south-facing walls (Northern Hemisphere)
are exposed to high radiant load (Lindberg et al., 2016; Wal-
lenberg et al., 2020), due to high amount of shortwave irra-
diance from the Sun, but also reflected shortwave irradiance
from adjacent walls, as well as emitted longwave irradiance
from nearby warm surfaces (Lindberg et al., 2016; Thorsson
et al., 2017). A proven method to tackle the issue of high
daytime Tmrt on clear days is through shading by, e.g., build-
ings or vegetation (Lindberg and Grimmond, 2011b; Srivanit
and Jareemit, 2020). Buildings are static and their geome-
tries challenging to modify, whereas increasing the fraction
of vegetation is a favored heat-mitigating strategy (Konarska
et al., 2014; Norton et al., 2015; Lindberg et al., 2016).

Reducing solar radiation (e.g., Bajsanski et al., 2016; Sto-
jakovic et al., 2020) and Tmrt (e.g., Konarska et al., 2014;
Lindberg et al., 2016; Zhao et al., 2018; Abdi et al., 2020;
Lee et al., 2020; Lee and Mayer, 2021; HosseiniHaghighi et
al., 2020) with tree shade has been extensively studied. Stud-
ies of the effects of vegetation on thermal comfort often fo-
cus on either vegetation in general or more specifically on
the positioning of trees. Zhao et al. (2018) studied the effects
of trees on a neighborhood in Phoenix (Arizona, USA) and
showed that two trees with equal distance had a higher effect
on thermal comfort compared to two dispersed trees. Lee et
al. (2020) analyzed the distance between trees in combina-
tion with tree canopy size and showed that the shading effect
of trees increases with a lower aspect ratio (height /width ra-
tio, H/W ) of surrounding buildings. They also showed that
a larger tree canopy in combination with an increased dis-
tance between the trees had a larger positive effect on thermal
comfort on the northern sidewalk in an east–west-oriented
street canyon, compared to the southern sidewalk. This ef-
fect was mainly attributable to a decrease in Tmrt. Trees had,
on the other hand, little effect on air temperature regardless
of whether the position was sunlit or shaded.

A common denominator within the topic of trees as a mit-
igating tool, regardless of whether the focus is on distance
between trees or tree size, is that the tree or trees are located
without knowledge of how they optimally should be placed
with respect to reducing radiant load. The locations of the
tree or trees have an effect on the thermal comfort (Abdi et
al., 2020; Lee et al., 2020; Srivanit and Jareemit, 2020), and
therefore optimized positioning could enhance the mitigating
effect. One way of addressing this issue is to calculate the
optimal positions of the trees using spatial information (in-
solation and shadow patterns) and the possible locations for
the trees (i.e., where there are no buildings or other obstruct-
ing structures). However, brute-force calculations for optimal
positions increase exponentially with an increase in num-
ber of trees and quickly become extremely computationally
demanding. A different, less demanding method of finding
optimal locations for trees is by exploiting metaheuristic al-
gorithms. Examples of metaheuristic algorithms are genetic

or evolutionary algorithms. Such algorithms inherit “genes”,
e.g., coordinates of positions of trees, from previous “popu-
lations”, e.g., an iteration in an algorithm for positioning the
trees. Stojakovic et al. (2020) utilized an evolutionary algo-
rithm for positioning trees to mitigate insolation in a rect-
angular city block in Belgrade, Serbia, and clearly showed
that locations differ depending on prerequisites like height
of surrounding buildings. Chen et al. (2008) and Ooka et
al. (2008) exploited genetic algorithms to study optimal po-
sitions for trees and tree arrangements using computational
fluid dynamics simulations in a hypothetical urban block in
Tokyo. Another example of a metaheuristic algorithm is the
greedy algorithm, utilized by Zhao et al. (2017), to optimize
tree locations to study shading effects and shade coverage on
building facades. This algorithm finds the optimal position
for one tree at a time, which means that once the position
for the first tree is established it cannot be adjusted. A hill-
climbing algorithm (Luke, 2013) is an additional example
where neighboring positions of a tree are explored to iden-
tify a better position concerning, e.g., shading and reduction
of radiant load.

Here, we present TreePlanter, a model for optimization of
tree positions to mitigate heat stress by reducing outdoor ra-
diant load in urban settings. The optimization of tree posi-
tions is achieved by utilizing a metaheuristic hill-climbing
algorithm to reduce Tmrt. TreePlanter is incorporated in the
Urban Multi-Scale Environmental Predictor climate service
tool (UMEP; Lindberg et al., 2018) to facilitate usage by
other researchers and practitioners such as urban planners
and landscape architects (http://umep-docs.readthedocs.io/,
last access: 1 February 2022).

2 Methods

TreePlanter make use of output data generated by the SOlar
and LongWave Environmental Irradiance Geometry (SOL-
WEIG) model (Lindberg et al., 2008). SOLWEIG is a 2.5-
D model able to estimate spatial variations of Tmrt using
commonly available meteorological forcing data (incoming
shortwave radiation, air temperature and relative humidity)
and surface information such as a digital surface model
(DSM) including the elevation of buildings and ground
(e.g., Fig. 3b). Developments in SOLWEIG enable inclusion
of 3-D vegetation data (Lindberg and Grimmond, 2011b) and
variations in ground surface cover (Lindberg et al., 2016).
SOLWEIG has been subject of evaluation in several stud-
ies (e.g., Lindberg and Grimmond, 2011b; Lindberg et al.,
2016; Lau et al., 2016; Chen et al., 2016; Kántor et al., 2018;
Gál and Kantor, 2020). Furthermore, SOLWEIG is a pop-
ular radiation model, utilized extensively in applied studies
(e.g., Lindberg et al., 2014; Lau et al., 2015; Jänicke et al.,
2016; Thom et al., 2016; HosseiniHaghighi et al., 2020).

TreePlanter uses the gridded Tmrt and shadow patterns out-
put from SOLWEIG, as well as information on the locations
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of buildings, and the meteorological forcing data used by
SOLWEIG. Example outputs from SOLWEIG are shown in
Fig. 3c and d. The figures show output of Tmrt and shadow
patterns, respectively, for 17:00 LST on 22 June 1983. By
comparing Tmrt with shadow patterns, it is evident that radi-
ant load in shaded areas is substantially lower compared to
sunlit areas. Output data from SOLWEIG are crucial for run-
ning the particular model described here. However, in theory,
any raster data of Tmrt and shadow patterns could be used.

A planting area (study area) is defined inside the spatial
extent of the output data from SOLWEIG. This planting area
can cover either the entire spatial extent of the output data
or be delimited to a smaller area to confine positioning of
trees to areas within the model domain that are not occupied
by buildings or existing trees. Furthermore, it is not possible
to position trees within one radian of the tree canopy diam-
eter from buildings or other trees. See Sect. 5.2 for further
description.

2.1 Model pre-processing

A general and simplified flowchart of the model pre-
processing is shown in Fig. 1a. First, a general 3-D tree form
is designed from input tree morphology data: tree type (de-
ciduous or conifer), tree height, trunk zone height (height
from ground to canopy, i.e., bare trunk) and canopy diameter.
The meteorological forcing data (same as for the SOLWEIG
run) are used to estimate Tmrt for a point that is shaded by a
tree with a transmissivity (τ ) to shortwave radiation for spec-
ified time steps (specified by the meteorological data). Addi-
tionally, the specified time steps from the meteorological data
are used to generate corresponding shadows in a fictitious flat
environment (i.e., no buildings or trees), using the general 3-
D tree shape produced from the input tree morphology data
(hereafter referred to as shadowstree).

With the generated shadowstree and calculated Tmrt for a
point shaded by a tree for each time step, Tmrt in the tree
shadows for each time step can be estimated (hereafter re-
ferred to as Tmrt.tree). By iterating over every position in the
planting area where a tree can potentially be located and
moving only one tree, it is possible to estimate the difference
in Tmrt between Tmrt.tree and sunlit conditions in the output
from SOLWEIG (hereafter referred to as Tmrt.solweig) for each
position for each time step. The comparison take into account
shadows from surrounding buildings and existing vegetation
(hereafter referred to as shadowssolweig) and their physical
structures, i.e., pixels in Tmrt.tree are removed where there are
shadows from existing buildings or vegetation. In short, only
sunlit pixels in Tmrt.solweig that can be shaded by the gen-
erated tree for a given position are used in the comparison.
The product from the comparison between Tmrt.solweig and
Tmrt.tree is a new raster with an estimated difference in Tmrt
between sunlit and tree shade (hereafter referred to as1Tmrt)
for every position in the study area where it is possible to lo-
cate a tree. This raster gives a potential decrease in Tmrt and

is estimated from simply one tree, which means that the esti-
mated potential decrease in Tmrt for each position is without
any interference of tree shadows from any of the other trees,
i.e., combination of several trees if the model is used to locate
optimal positions for more than one tree. The output 1Tmrt
raster from the model initialization is used subsequently in
the model to find optimal positions for several trees. To avoid
possible spatial boundary effects, 5 % of the y extent and x
extent are removed at all sides in the input data from SOL-
WEIG (Tmrt.solweig and shadowssolweig).

2.2 Algorithms in the model

In the model initialization, described in Sect. 2.1, only one
tree is used to calculate 1Tmrt for every possible location.
In theory, it would be possible to calculate 1Tmrt for any
number of trees for all possible combinations of locations.
However, brute-force calculations with more than one tree
would substantially increase the computational time as the
number of combinations would increase exponentially. One
way to avoid brute-force calculations, but still find suitable
solutions within limited time or with limited computational
power, is the use of metaheuristic algorithms (Luke, 2013).
Metaheuristic algorithms are not guaranteed to find the best
solution, but nevertheless, they are helpful when brute-force
calculations are too extensive and, with a given number of it-
erations or amount of time, metaheuristic algorithms can lead
to a satisfactory result to an optimization problem. The model
described in this paper utilizes a hill-climbing algorithm
(Luke, 2013) to find optimal positions, in combination with
two ways of assigning starting positions for new trees: ran-
dom and genetic (random and genetic starting positions are
described in Sect. 2.2.2). The basic principle in TreePlanter,
with a hill-climbing algorithm, is that the 1Tmrt raster is ex-
plored stepwise for better positions, and if shadowstree of two
or more trees overlap, adjustments are applied. This means
that the1Tmrt raster can be explored freely, and the estimated
difference in Tmrt at each position applies, only to be adjusted
if there is an interference, i.e., overlapping tree shadows. In
this way, the number of calculations is significantly reduced
compared to the brute-force approach. The exploration of the
1Tmrt raster is conducted until no better positions can be es-
tablished for the trees, which means that the trees are in their
local optimal positions based on their starting positions. Af-
ter this, the model restarts a new iteration. The model is set to
restart for i number of iterations. The iterations are necessary
to initiate new starting positions for the trees. In this way,
the trees can avoid finding the same local optimums. Here,
a local optimum is defined as a position for a tree, where
if it were in any of its neighboring positions, it would have
a less mitigating effect on Tmrt (described in more detail in
Sect. 2.2.1). Local optimums are, however, not necessarily
the best positions in the 1Tmrt raster, as there can be many
local optimums within this raster. A large number of itera-
tions will increase the number of unique starting positions
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Figure 1. Flowchart of the model (a) showing the model pre-processing and (b) showing the optimization of tree locations. The flowchart
consists of tables (e.g., tree morphology and meteorological data), processes (e.g., GENERATE TREE, which is an algorithm that generates
a general 3-D tree form from input tree morphology table data) and raster grids. Some grids can have more than one layer, where each layer
represents one time step (e.g., TREE SHADOW, where each layer represents shadow pattern for a specific time step). The end product is a
table with the positions of the trees.

and combinations of starting positions by several trees. This
in turn means that more of the 1Tmrt raster and its local op-
timums will be explored.

The following is an example of how the hill-climbing al-
gorithm can decrease number of calculations compared to
brute-force calculations. An area with n= 500 possible lo-
cations for trees, where optimal positions for k = 5 trees are
studied, would require n!

(n−k)!k!
= 2.5× 1011 brute-force cal-

culations, considering all possible combinations. Using the
hill-climbing algorithm, it is possible to run the model for a
given number of iterations. Running it with, e.g., i = 5000
iterations, where in every iteration each tree would move
imaginablym= 100 times, would estimate to approximately
k ·m · i = 2.5×106 calculations, which is substantially faster
in comparison to the 2.5×1011 required with brute-force cal-
culations.

A flowchart of the second part of the model, the tree lo-
cator, is shown in Fig. 1b. Input data to the model are the
1Tmrt(1Tmrt in Fig. 1b), Tmrt.tree and shadowstree rasters
from the model initialization, as well as Tmrt.solweig and
shadowsolweig rasters from SOLWEIG. Pseudocode for the
algorithms in Sect. 2.2 is presented in Fig. 2. The model is
run for i number of iterations as stated in line 4. Starting po-
sitions are determined in line 5 (see Sect. 2.2.2). The 1Tmrt

raster is then explored until all trees are in their local opti-
mums. In line 11, total potential decrease in Tmrt in the area
shaded by the moving trees, integrated over all time steps
used, is estimated. The tree locations will continue to change
as long as Tmrt mitigation continues to increase in efficiency,
as seen in lines 12–14. When there are no better locations
for the trees and all are in local optimums the iteration stops,
tree locations with corresponding decrease in Tmrt are saved
(line 15–17), and a new iteration commences (line 4). When
the model has finished all iterations, it returns the locations
of the trees from the iterations with largest decrease in Tmrt
(line 18).

2.2.1 An iteration of the hill-climbing algorithm

The fundamental procedure of the hill-climbing algorithm is
that the model begins with k number of starting positions for
k number of trees, and then cycles through these trees re-
peatedly to attempt to move trees to a better position. For
each tree, the algorithm searches the adjacent eight pixels for
a higher difference in Tmrt compared to the tree’s current po-
sition and potentially moves the tree one pixel, and then per-
forms the search for the next tree. When the search (and po-
tential move) has been performed for all trees, the algorithm
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Figure 2. Pseudocode of the tree locator algorithm in the model.

cycles over all trees again. In this way, the raster is explored
until local optimums are determined for each tree in relation
to the other moving trees. If two trees are in such a proxim-
ity to each other that their shadows overlap, the overlap is
adjusted for; i.e., the decrease in Tmrt is counted only once.
This means that shadows can overlap if this would provide
a more favorable shading effect. When all trees have found
their optimal positions for an iteration of the hill-climbing
algorithm, it saves the positions and the corresponding de-
crease in Tmrt. A new iteration of the hill-climbing algorithm
then commences with new starting positions (Sect. 2.2.2),
and the model continues for i number of iterations. In the
end of the model run, the iteration with greatest decrease in
Tmrt is determined and the corresponding tree positions will
be used as output.

If two or more tree shadows overlap, an adjustment of the
decrease in Tmrt is necessary, or the decrease in the overlap-
ping shadows would be accounted for more than once. Test-
ing for potential overlaps is conducted in different ways in
TreePlanter. A first test is executed by comparing distances
between the trees, where large distances can rule out any pos-
sible overlap. Here, large distance is defined as the largest
shadow created from a tree within the modeled time span. If
distances, on the other hand, are close enough for potential
overlap, additional calculations are executed to determine the
exact number of overlapping pixels, from which adjustments
of reduction in Tmrt are estimated.

Another functionality in the model, connected to adjust-
ment, is nudging. Nudging is initiated if two or more shad-
ows are overlapping or next to each other, creating a large
continuous shadow. When initiated, it will try to move the

trees simultaneously in the same direction, to see if there are
better positions in their vicinity. For example, if two trees
have a combined continuous shadow, it will search their ad-
jacent west pixels simultaneously, then search the northwest
pixels, etc., until all eight adjacent directions have been ex-
plored. This is to prevent trees from occupying a position,
when there are potentially better positions for them if one of
them is relocated.

2.2.2 Starting positions for iterations

Two methods to derive starting positions are available in the
model: random and genetic. Depending on the size of the
model domain, number of starting positions can be extensive.
For example, a 100× 100 planting area would have 10 000
possible locations, and thus same amount of possible starting
positions for the trees. Building shadows would largely in-
fluence the Tmrt for some pixels. Pixels where the decrease in
Tmrt is zero, i.e., pixels that are already shaded, are excluded.
Furthermore, trees cannot be within one tree canopy diam-
eter of each other when they start, as this would mean that
their canopies would be overlapping.

In the random algorithm for starting positions, each tree is
assigned a random starting position in the 1Tmrt raster at the
beginning of each iteration. That is, if the model is executed
with 3000 iterations, the trees will start with new random po-
sitions in each individual iteration. The algorithm for random
starting positions was evaluated against a genetic algorithm
for starting positions. Compared to the random starting algo-
rithm, the genetic algorithm inherits starting positions from
local optimums of the previous population. This means that
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starting positions of the next model iteration will be based on
the best positions of the previous iteration. In the first itera-
tion, each tree is assigned a random starting position based
on the1Tmrt raster. In the second iteration, the positions will
be determined randomly from the y and x coordinates of the
local optimal positions (local optimums) in the previous iter-
ations. Here, a tree can have its y coordinate from one tree
and x coordinate from another tree. Mutation of either the y
or the x position will occur if trees have reached positions
without improvement in decrease in Tmrt for three consecu-
tive iterations. In this sense, mutation means that the y or the
x position (randomly decided which one that will mutate) is
set to a random position in the planting area. Mutation can
also occur if the starting positions for the trees are too close
to each other; i.e., the trees have converged to a very confined
area and the starting position for a tree is within one diameter
of the other trees 50 times in a row.

2.3 Summary of the model

This section gives a short summary of the model in chrono-
logical order:

1. SOLWEIG is executed for a given number of time
steps based on meteorological data (incoming short-
wave irradiance, air temperature and relative humidity)
and other necessary gridded input data to simulate Tmrt
(Tmrt.solweig) and shadow (shadowssolweig).

2. A planting area is determined within the spatial extent
of the output data from SOLWEIG, e.g., a square in an
urban area.

3. A tree form is generated based on tree height, canopy
diameter and trunk zone height (height between ground
and canopy).

4. The effect of the tree form in step 2 on radiant load is
calculated (Tmrt.tree and shadowstree) based on the same
meteorological data as in step 1. This is determined for
a flat unobstructed area.

5. Based on the Tmrt and shadow patterns from step 1
(Tmrt.solweig and shadowssolweig) and step 3 (Tmrt.tree and
shadowstree) a difference in Tmrt is estimated (1Tmrt) for
each position in the planting area.

6. The user decides the number of trees (k) to optimize
locations for, with respect to Tmrt mitigation.

7. Give each tree a random starting position in the gridded
planting area.

8. Execute hill-climbing algorithm. Adjust for potential
overlap by any of the k trees.

9. Save optimal positions of trees and corresponding de-
crease in Tmrt.

10. Repeat from step 7 for i number of iterations, with ei-
ther the random or genetic starting algorithm, where i
number of iterations is set by the user.

11. Review the output of tree positions for iteration with
greatest decrease in Tmrt.

2.4 Greedy algorithm

As explained in Sect. 2.2, the best solution cannot be
known unless brute-force calculations are applied. There-
fore, the hill-climbing algorithm has been evaluated against
a “greedy” algorithm. Zhao et al. (2017) used a greedy
algorithm for strategic tree placement for optimized tree
shade coverage to decrease solar exposure on facades and
in turn lower building energy use. The results by Zhao et
al. (2017) showed that the greedy algorithm determined loca-
tions where tree shade coverage was optimized, while simul-
taneously had low negative effect of tree shade on rooftop
solar panels. The greedy algorithm is elemental in that opti-
mal positions for trees are determined one at a time, based
on the 1Tmrt raster described in Sect. 2.1. When a position
is determined for a tree, this position and the pixels cover-
ing the canopy and a surrounding buffer of one radian of
the tree canopy are occupied. Furthermore, spatial patterns
of Tmrt.solweig and shadowssolweig are updated to include spa-
tial Tmrt and shadow patterns of the newly added tree, which
means that a tree shade of a subsequent tree will not have
a mitigating effect in those areas. The greedy algorithm can
be described as ranking positions, where the first tree will be
located in the position where the highest potential decrease
in Tmrt can be achieved, the second tree in the second rank-
ing position (taking into account the shading from the first
tree), etc. Tree locations determined by a greedy algorithm
for mitigation of Tmrt are used here to evaluate tree locations
determined by the hill-climbing algorithm, as the greedy al-
gorithm is expected to always find tree locations with high
potential decrease in Tmrt.

A short summary of the greedy algorithm is as follows:

1. Run steps 1–5 in Sect. 2.3.

2. Determine best position in 1Tmrt for one tree.

3. Update Tmrt.solweig and shadowssolweig to include
Tmrt.tree and shadowstree based on the position in step 2.
Remove all positions within one canopy diameter of the
tree location as a future possible location for a tree.

4. Recalculate 1Tmrt with the updated Tmrt.solweig and
shadowssolweig.

5. Repeat from step 2 for k trees.
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Table 1. Table with different tree sizes used for model evaluation.

Tree Tree Canopy Trunk zone Transmissivity
size height diameter height (τ )

(m) (m) (m)

Small 5 3 2 0.03
Medium 8 5 2 0.03
Large 12 7 3 0.03

3 Model evaluation

3.1 Model domain and forcing data

The case study area is located in Gothenburg, Sweden, cen-
tered on the square Järntorget (Fig. 3), a hub for public trans-
port (latitude 57.6997◦, longitude 11.9530◦). It is a hub for
public transport with surrounding blocks occupied by restau-
rants and small shops, thus making it one of the busiest areas
in Gothenburg. The southern part of the square was selected
for the model evaluation. The square is intersected by tram
tracks seen in the northern and western parts of Fig. 3a, with
bike lanes in the eastern part. Within the potential planting
area, there is a fountain, which is excluded as a possible lo-
cation for new trees. The input geodata consist of a DSM,
a DEM (digital elevation model) including ground heights
and a CDSM (canopy digital surface model) including veg-
etation height. Only vegetation higher than 2 m is present
in the CDSM (Fig. 3b). All gridded geodata have a pixel
resolution of 1 m. The geodata originate from the Building
and Planning Office in Gothenburg. Hourly meteorological
data (shortwave radiation, air temperature and relative hu-
midity) used were from the nearby Swedish Meteorologi-
cal and Hydrological Institute’s weather station no. 92513
(WMO 2513). The meteorological data represent a typical
clear summer day in Sweden close to the summer solstice
(22 June 1983).

3.2 Tree locations generated by TreePlanter

The model was evaluated for 09:00–16:00 LST and 13:00–
16:00 LST for three different tree sizes (see Table 1 for de-
scription of tree sizes), as well as an evaluation with four,
five and six trees with tree size large (Table 1). The first
period (09:00–16:00 LST) is used to test the model over a
longer time span with solar azimuth shifting from east to
west. The second period (13:00–16:00 LST) covers a time
interval when excessive radiant load and heat stress is in
general most pronounced, when solar radiation potentially is
high, and surrounding heated surfaces emit large amounts of
longwave radiation.

The positions of the trees were determined using the ge-
netic algorithm and 20 000 iterations. Running the model
with 20 000 iterations ensures that tree locations are satisfac-
tory (see Sect. 4). The rasters with mean Tmrt were produced

by running SOLWEIG but with an updated CDSM contain-
ing the optimized tree locations as well as updated sky-view
factors (SVFs). The difference maps were produced by com-
paring SOLWEIG outputs of Tmrt with and without the op-
timized trees, i.e., before (sunlit) and after (shaded). In ad-
dition, summary statistics have been calculated by running
SOLWEIG with updated SVF and CDSM including the trees
established by TreePlanter.

3.2.1 Optimal locations for trees with different sizes
during 09:00–16:00 LST

Figure 4a shows the location of five small trees over the pe-
riod 09:00–16:00 LST. TreePlanter locates the trees close to
the west building. Since the south-facing facade of the west
building is sunlit most of the time steps during the studied
time period, this is where the model identifies optimal po-
sitions for the trees. The relatively small trees also cast rel-
atively small shadows, which allow the trees to be located
close to each other, as well as close to the building. This re-
sults in approximately evenly spaced trees aligned along the
south- and east-facing facades, where their shade allows for
a decrease in average Tmrt of up to 23 ◦C (Fig. 4b).

Locations for medium trees (Table 1) are shown in Fig. 4c.
Here, the trees are more scattered, and optimal positions are
established between the two buildings. The area in front of
the south-facing facade of the west building is now shaded
by only one tree, compared to the previous example, where
this area was shaded by two to three trees. Continuing, the
area in front of the east-facing facade is now less shaded than
in the previous example. On the other hand, there is now an
increased shaded area extending to the east building, because
of the greater tree size with their corresponding increased
tree shades (Fig. 4d).

When tree size is increased further (large, Table 1), the
trees are dispersed even more (Fig. 4e). The area in front
of the south-facing facade of the west building is now less
shaded than in previous examples, and the area in front of
the east-facing facade is barely shaded at all. Furthermore,
two trees are at the northern border, shading areas outside
the planting area. Another two trees are shading parts of the
fountain. This results in a mitigating effect outside the plant-
ing area (Fig. 4f).

3.2.2 Optimal locations for trees with different sizes
during 13:00–16:00 LST

The model was also run for 13:00–16:00 LST, with same tree
sizes as in Fig. 4, to study the tree locations during this time
period. The corresponding results are presented in Fig. 5.

The results from the model run with small trees (Table 1)
are shown in Fig. 5a. One striking difference compared to
Fig. 4a is that all trees except one are concentrated around
the east building instead of the west building. One tree ended
up shading the area in front of the south-facing facade of the
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Figure 3. Map of case study area with (a) Orthophoto RGB 0.25 m © Lantmäteriet (2018), where the dashed black line determines the
planting area for possible tree locations and (b) DSM and CDSM. Panels (c) and (d) show examples of output from SOLWEIG, where
panel (c) indicates Tmrt and (d) indicates the shadow pattern for 17:00 LST on 22 June 1983.

west building. In Fig. 5b, it is possible to see a decrease in
average Tmrt of up to 26 ◦C for almost all areas shaded by the
trees.

When tree size is increased to medium, all trees end up
in the eastern part of the study area (Fig. 5c). The locations
established by the model provide shade around the entire pre-
viously sunlit area of the east building, and a large decrease
in Tmrt, as seen in Fig. 5d.

In the last example, using large tree size (Fig. 5e), the trees
are more or less in the same locations as in Fig. 5c, and
similar assumptions can be made as in the previous exam-
ple. However, they are now positioned slightly further south,
as their shadows extend further because of the higher tree
height. It is also visible that they are farther apart, as the di-
ameter of the tree canopy is larger, and thus the tree shade
increases in width as well. In this example, however, the area
shaded by the trees is now continuous for all trees (Fig. 5f),
compared to Fig. 5d. That is, the area where the tree shadows
have an effect covers almost all areas along the southern and
western sides of the east building.

3.2.3 Optimal locations depending on number of trees

One aim with TreePlanter and the hill-climbing algorithm is
to see if the combined and continuous shadow of several trees
could influence the positioning of trees. In other words, can,
e.g., the combined and continuous shadow of two trees shade

an area equivalent to that shaded by one tree but from differ-
ent positions? To investigate this, the model was executed
with varying number of trees (four, five and six) with the
large tree size (Table 1). The results from the model run with
four trees (Fig. 6a) show that the tree shading the area in front
of the southwest-facing corner in Fig. 5e is now missing. Fur-
thermore, the westernmost tree is located slightly more south.
Other than that, no large difference is visible. The missing
tree, of course, has an effect on the amount of area with a de-
crease in Tmrt, as seen in Fig. 6b. When increasing the num-
ber of trees to six, it is possible to see that the three trees
shading the south- and west-facing facades (Fig. 6c) are in
same positions as in Fig. 5e. However, when comparing with
Fig. 6a, only one tree is in the same position (the central one
in Fig. 5a, shading the south-facing facade). All other trees
are in different positions. The trees in the western part, along
the border of the planting area, are now located further south
and only the very north part of this border is still sunlit. For
all model runs, it is possible to see a large decrease in Tmrt
(Figs. 5f, 6b and d).

4 Model performance

The model performance and runtime are dependent on a
combination of spatial extent and the pixel resolution of the
study area, i.e., the number of model grid points within a

Geosci. Model Dev., 15, 1107–1128, 2022 https://doi.org/10.5194/gmd-15-1107-2022



N. Wallenberg et al.: Introducing TreePlanter v1.0 1115

Figure 4. Mean Tmrt for 09:00–16:00 LST on 22 June 1983, with locations of (a) five small trees, (c) five medium trees and (e) five large
trees in green (see Table 1). Panels (b), (d) and (f) show corresponding differences in Tmrt between tree shade and sunlit areas for panels (a),
(c) and (e), respectively. The positions are determined with the genetic starting algorithm and 20 000 iterations.

domain. Factors such as tree size, number of trees and time
steps also affect model performance. The model was exe-
cuted with the same model domain and forcing data as in
Sect. 3.1, but with varying tree size, number of trees, time
steps, model iterations and domain pixel resolution, to inves-
tigate these dependencies. In the performance analysis, a ra-
tio of the potential decrease in Tmrt between the hill-climbing
algorithm and the greedy algorithm was used to quantify
the mitigation benefits of the hill-climbing algorithm. The
model performance tests were executed on an Intel Core i7-
7700 CPU at 3.60 GHz with 16 GB RAM at 2400 MHz. Fig-
ure captions include number of potential locations for trees,
which differs depending on tree size due to the fact that a tall
tree generates a more extensive ground shadow compared to
a short tree. Mean model runtimes (s) for all model perfor-

mance tests are presented in Table 2. Initialization time is
excluded and disk I/O is negligible.

4.1 Tree size

All three tree sizes in Table 1 were used for the performance
analysis on tree size. The model was run with five trees for
each tree size, and both starting algorithms (random and ge-
netic) and 10, 100, 500, 1000, 2000, 3000, 10 000 and 20 000
iterations.

The results from the performance analysis on tree size
for seven hourly time steps (09:00–16:00) LST are shown in
Fig. 7. The results indicate that the hill-climbing algorithm
had established positions with high mitigating potential al-
ready after five iterations. After 100 iterations, all trees are
at positions similar to or better than the greedy algorithm,
regardless of starting algorithm. However, some divergence
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Figure 5. Mean Tmrt for 13:00–16:00 LST on 22 June 1983, with locations of (a) five small trees, (c) five medium trees and (e) five large
trees in green (Table 1). Panels (b), (d) and (f) show corresponding differences in Tmrt between tree shade and sunlit areas for panels (a), (c)
and (e), respectively. The positions are determined with the genetic starting algorithm and 20 000 iterations.

can be seen, for example, for tree size small and 3000 itera-
tions.

It is noticeable in Table 2 that a larger tree size decreases
the speed of the model, but with five trees the genetic start-
ing algorithm is faster compared to the random starting al-
gorithm. The difference in model runtime between the two
starting algorithms also increases with tree size, from−9.7 %
with small trees to −33.3 % with large trees.

4.2 Number of trees

An increase in number of trees increases the complexity of
the model and influences the performance and speed as the
probability of overlapping tree shadows would increase, re-
gardless of tree size. The model was executed with two,
three, four, five, six, seven and eight trees with tree size large
(Table 1), with three time steps (13:00–16:00 LST), with cor-

responding results presented in Fig. 8. As illustrated, the po-
tential decrease in Tmrt is high after 5–10 iterations, and after
500 iterations mitigation benefits for position with the ge-
netic starting algorithm always exceed those from the greedy
algorithm. There is also a tendency for a higher ratio with a
higher number of trees.

Model speed decreases with an increase in number of trees
for both random and genetic conditions, as shown in Table 2.
The speed performance of the genetic algorithm outcompetes
the random algorithm for all runs except those with six, seven
and eight trees. With six, seven and eight trees model run-
time increases, for eight trees quite extensively with a differ-
ence of around 150 % between the random and genetic with
20 000 iterations.
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Figure 6. Mean Tmrt for 13:00–16:00 LST on 22 June 1983, with locations of (a) four large trees and (c) six large trees in green (see Table 1
for detailed tree sizes). Panels (b) and (d) show corresponding differences in Tmrt between tree shade and sunlit areas for panels (a) and (c).
The positions are determined with the genetic starting algorithm and 20 000 iterations.

Table 2. Table showing mean model runtime (s) for 100 iterations for two starting algorithms (random and genetic) with different time
periods, number of trees and tree sizes. The difference in model runtime (%) corresponds to a change in model runtime with the genetic
starting algorithm compared to the random algorithm. A negative (positive) value corresponds to a decrease (increase) in model runtime with
the genetic starting algorithm.

Time period (LST) Trees Tree size Random (s) Genetic (s) Difference (%)

09:00–10:00 5 Small 8.4 4.9 −42.1 %
09:00–10:00 5 Large 10.0 7.7 −23.3 %
13:00–16:00 5 Small 9.7 6.1 −36.9 %
13:00–16:00 5 Medium 11.6 8.3 −28.7 %
13:00–16:00 5 Large 11.8 9.6 −19.1 %
09:00–16:00 5 Small 14.1 12.7 −9.7 %
09:00–16:00 5 Medium 26.5 19.3 −27.0 %
09:00–16:00 5 Large 38.8 25.9 −33.3 %
13:00–16:00 2 Large 1.7 1.0 −40.5 %
13:00–16:00 3 Large 4.1 2.7 −34.1 %
13:00–16:00 4 Large 7.6 5.3 −30.2 %
13:00–16:00 5 Large 11.8 9.6 −19.1 %
13:00–16:00 6 Large 16.7 17.7 6.5 %
13:00–16:00 7 Large 22.0 36.0 63.9 %
13:00–16:00 8 Large 29.0 72.7 150.6 %

4.3 Time steps

The model was also tested for different time steps –
one (09:00–10:00 LST), three (13:00–16:00 LST) and seven

(09:00–16:00 LST) – to analyze performance and speed, with
two different tree sizes: small and large (Table 1).

The time-step performance analysis for small trees
(Fig. 9a), similar to previous examples, found positions with
high potential decrease in Tmrt relatively fast, after 100–500
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Figure 7. Heat map showing the ratio of potential decrease in Tmrt between the hill-climbing algorithm and the greedy algorithm for the three
different tree sizes (small, medium and large; see Table 1) for different numbers of model iterations, for 09:00–16:00 LST on 22 June 1983.
Two starting algorithms were used: random and genetic. Each model run was executed with five trees. There are 1709 potential locations for
small trees, 1603 for medium trees and 1481 for large trees. A ratio > 1 indicates a larger Tmrt decrease with the hill-climbing algorithm.
Note the cell color where ratios ∼ 1.0 is determined using an extended number of decimal places.

Figure 8. Heat map showing the ratio of potential decrease in Tmrt between the hill-climbing algorithm and the greedy algorithm for two,
three, four, five, six, seven and eight large (Table 1) trees for different numbers of model iterations, for 13:00–16:00 LST on 22 June 1983.
Two starting algorithms were used: random and genetic. There are 1481 potential locations for trees. A ratio > 1 indicates a larger potential
decrease with the hill-climbing algorithm.
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iterations, and with the genetic starting algorithm, positions
are always better compared to the greedy algorithm after
500 iterations (ratio > 1.0), with the exception of 3000 itera-
tions at 09:00–16:00 LST. For the random starting algorithm,
however, some anomalies were found for 09:00–10:00 and
09:00–16:00 LST and 2000 and 3000 iterations.

Considering speed with the small tree size, there is a large
increase in model runtime for the longer time period (09:00–
16:00 LST) compared to the two other model runs as seen in
Table 2 (09:00–10:00 and 13:00–16:00 LST). Furthermore,
differences in speed between genetic and random algorithms
are highest with one time step (−42.2 %).

The time-step performance analysis for large trees
(Fig. 9b) found adequate positions after 100 iterations, but
similarly to the small trees, there are some anomalies with
the random starting positions, e.g., for 100 iterations at
09:00–10:00 LST and 100, 500 and 1000 iterations at 13:00–
16:00 LST.

When analyzing model runtime, it is clear that this in-
creases with number of time steps, similar to that of small
trees. However, the largest difference between starting algo-
rithms is with seven time steps (09:00–16:00 LST,−33.3 %).

4.4 Model domain size

Model performance analysis was conducted with special at-
tention to model domain size, here represented by changing
pixel resolution. Four different pixel resolutions were evalu-
ated: 2, 1, 0.5 and 0.25 m. The pixel resolution was tested for
three trees with tree height = 10 m, canopy diameter = 5 m
and trunk zone height = 3 m. As expected with a 2-D mod-
eling approach, the model runtime increased exponentially
with higher pixel resolution, from 17 s with a 2 m pixel res-
olution to 44, 185 and 1290 s for 1, 0.5 and 0.25 m, respec-
tively.

4.5 Tree locations – hill-climbing algorithm vs. greedy
algorithm

As shown in the results for the performance analysis, the hill-
climbing algorithm, with a high number of iterations, gives
an equal or marginally higher potential decrease in Tmrt com-
pared to the greedy algorithm. This suggests that the result-
ing locations for trees are different in the two algorithms.
This is illustrated in Fig. 10. The examples from the hill-
climbing algorithm are with 20 000 iterations, for which the
hill-climbing algorithm always determined positions that had
higher potential decrease in Tmrt than the greedy algorithm.

In all cases, some trees are in the same locations for both
the hill-climbing and greedy algorithms, but the hill-climbing
algorithm clusters the trees more closely together than the
greedy algorithm. In Fig. 10a, the locations for the two west-
ern trees are the same, two central trees are only slightly dif-
ferent, but the greedy algorithm places a tree near the east
building rather than near the western building. Similar ob-

servations can be made in Fig. 10b–d, with some locations
the same, some similar, and one tree placed differently. In
Fig. 10d, the most interesting difference is in the eastern part
of the planting area. Here, the greedy algorithm finds an op-
timal position in between the two trees found by the hill-
climbing algorithm and places a tree by the west building in-
stead. Comparable results are visible in Fig. 10e, where one
of the tree locations by the greedy algorithm is at the very
northwest corner of the planting area.

A summary of statistics for the different model runs is pre-
sented in Table 3. Here, SVF has been recalculated using a
CDSM including the new trees, after which the simulation of
Tmrt has been repeated. This simulation is compared to the
previous simulation where new trees are excluded, i.e., the
original simulation. The results from the model runs (Figs. 7–
9) indicated that the hill-climbing algorithm, with 20 000 it-
erations, had higher potential decrease in Tmrt compared to
the greedy algorithm in all cases. Here, on the other hand,
results are different. Comparing the results of the greedy al-
gorithm with the results of the hill-climbing algorithm, the
tree shade for locations based on the hill-climbing algo-
rithm has a larger decrease in average Tmrt in its shaded area
(1◦C in shadow; ◦C) with small trees for 09:00–16:00 LST,
small trees for 13:00–16:00 LST and large trees for 13:00–
16:00 LST. However, locations found with the hill-climbing
algorithm always have a larger average decrease per shaded
area (1◦C shadow area−1; ◦C m−2) as a result of fewer pixels
shaded but with a similar decrease in its shaded area as that of
the trees positioned with the greedy algorithm. Total change
in average Tmrt for the entire raster (raster1◦C; ◦C) between
simulations differs marginally when locations are based on
the hill-climbing versus greedy algorithm. This difference,
which is always larger compared to the difference calculated
exclusively for the shaded area, is the result of changes in
SVF in the vicinity of the new trees and has an effect on ra-
diation. Examining the total change in average Tmrt for the
entire raster per canopy area (1◦C canopy area−1; ◦C m−2),
it is evident that the decrease in Tmrt is very similar regardless
of tree size.

4.6 Occurrences of tree positions

Occurrence maps, showing where trees were located after
each iteration in a model run with the random starting al-
gorithm and 20 000 iterations, are shown in Fig. 11. The pre-
ferred positions are relatively warm, where mitigation from
tree shade is high. The general pattern is that preferred po-
sitions lie in arcs around one tree diameter from buildings,
along the northern and eastern borders of the planting area,
or close to a fountain. Within these regions, there are a few
highly preferred pixels. Furthermore, south of the buildings,
two rows of preferred positions can be seen in almost all fig-
ures. The highest occurrence is for small trees in front of the
west building (72.6 %).
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Figure 9. Heat maps showing the ratio of potential decrease in Tmrt between the hill-climbing algorithm and the greedy algorithm for (a) five
small trees with different time steps and (b) five large trees with different time steps, on 22 June 1983 (see Table 1 for detailed tree sizes).
Two starting algorithms were used: random and genetic. There are 1709 potential locations for small trees and 1481 for large trees. A ratio
> 1 indicates a larger potential decrease with the hill-climbing algorithm.

Table 3. Table showing difference in average Tmrt (◦C) between the SOLWEIG simulation without new trees and the SOLWEIG simulation
with new trees and recalculated SVF for the two algorithms, different tree sizes, different time periods and number of trees. The differences
in Tmrt are for the shaded area (m2) of the new trees (◦C) with corresponding shadow area (m2) and decrease per shaded pixel, and decrease
for the entire raster (◦C) with corresponding canopy area (m2) and decrease per canopy area (◦C m−2).

Algorithm Time period Trees Tree 1◦C in Shadow 1◦C shadow Raster Canopy 1◦C canopy
size shadow area area−1 1◦C area area−1

(◦C) (m2) (◦C m−2) (◦C) (m2) (◦C m−2)

Greedy 09:00–16:00 5 Small −1412.10 138 −10.23 −1745.94 45 −38.80
Hill-climbing 09:00–16:00 5 Small – 1534.11 132 – 11.62 – 1743.59 45 – 38.75
Greedy 09:00–16:00 5 Medium −4040.68 380 −10.63 −4427.87 105 −42.17
Hill-climbing 09:00–16:00 5 Medium – 3899.84 351 – 11.11 – 4457.12 105 – 42.45
Greedy 09:00–16:00 5 Large −7670.51 875 −8.77 −7933.23 185 −42.88
Hill-climbing 09:00–16:00 5 Large – 7388.42 794 – 9.31 – 7898.14 185 – 42.69

Greedy 13:00–16:00 5 Small −1358.92 81 −16.78 −1648.90 45 −36.64
Hill-climbing 13:00–16:00 5 Small – 1371.81 76 – 18.05 – 1643.54 45 – 36.52
Greedy 13:00–16:00 5 Medium −3788.00 236 −16.05 −4138.16 105 −39.41
Hill-climbing 13:00–16:00 5 Medium – 3767.56 225 – 16.74 – 4114.40 105 – 39.18
Greedy 13:00–16:00 5 Large −6892.36 453 −15.21 −7310.08 185 −39.51
Hill-climbing 13:00–16:00 5 Large – 6922.94 434 – 15.95 – 7271.21 185 – 39.30

Hill-climbing 13:00–16:00 4 Large −5492.64 361 −15.22 −5836.44 148 −39.44
Hill-climbing 13:00–16:00 6 Large −8327.50 526 −15.83 −8748.15 222 −39.41

5 Discussion

The aim of the TreePlanter is to find locations for the trees
where they would have optimal potential to reduce Tmrt.
Trees end up, e.g., shading areas in front of sunlit walls,
areas which are known to be exposed to high radiant load

(Thorsson et al., 2011; Lindberg et al., 2016; Wallenberg
et al., 2020). During the hottest time of the day in the case
study, Tmrt under the trees dropped by as much as 26 ◦C from
optimized positioning of trees (13:00–16:00 LST, Fig. 5).
Such a sharp drop can have a profound effect on thermal
(dis)comfort, making an area available to pedestrians, with
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Figure 10. Locations for trees from the hill-climbing algorithm with the genetic starting algorithm and 20 000 iterations, and the greedy
algorithm. The left column (a, c, e) and the right column (b, d, f) are for 09:00–16:00 and 13:00–16:00 LST, respectively, on 22 June 1983.
Panels (a) and (b) are with small trees, (c) and (d) with medium trees and (e) and (f) with large trees. The underlying map shows mean Tmrt
for the respective time periods from which the locations were determined.

fewer negative health effects on warm and clear summer
days.

However, some differences in tree locations were found,
depending on time of day, tree size and number of trees. An-
alyzing time of day, it possible to see that trees are, in gen-
eral, located in the western part of the planting area during
the longer time period (09:00–16:00 LST) in Fig. 4, whereas
they end up in the eastern part during the shorter time period
(13:00–16:00 LST) in Fig. 5. The differences in locations for
trees are explained by spatial Tmrt patterns. The hours before
noon would increase the amount of sunlit areas in front of
west-facing facades integrated into TreePlanter. Thus, miti-
gation in these areas becomes more important. This shows
the importance of timescale for planning of tree locations,
and in this sense, season could also be an interesting aspect.
Konarska et al. (2014), for example, discussed the impor-

tance of deciduous trees for mitigation of high radiant load in
summer, as deciduous trees would allow higher transmissiv-
ity of solar irradiance in winter when leaves have dropped.
Nevertheless, deciduous trees would block approximately
50 % of the incoming shortwave irradiance without leaves
(Konarska et al., 2014). This means that optimized locations
for trees in summer could have negative effect on thermal
comfort in winter.

Tree size was also found to influence tree locations. The
main finding is that, when tree size and hence shadow size
were increased, the trees were dispersed as the model strives
for the largest mitigating effect, which is mainly achieved
by utilizing the entire tree shadows. This is most evident
in Fig. 4 (09:00–16:00 LST), where small trees are aligned
along the west building, but medium and large trees are dis-
persed, covering areas between the buildings. This leads to

https://doi.org/10.5194/gmd-15-1107-2022 Geosci. Model Dev., 15, 1107–1128, 2022



1122 N. Wallenberg et al.: Introducing TreePlanter v1.0

Figure 11. Occurrence maps showing percentage of times pixels were found to be an optimal tree position based on model runs with five
trees, the random starting algorithm and 20 000 iterations. Gray indicates zero occurrences. Maps in panels (a) and (b) are for small trees, (c)
and (d) are for medium trees and (e) and (f) are for large trees. The left column (a, c, e) is for 09:00–16:00 LST and the right column (b, d,
f) is for 13:00–16:00 LST.

two trees, with tree size large, mitigating radiant load out-
side the planting area, where there in reality are tram tracks
(Fig. 4e–f). The effects of tree size on tree locations is also
visible in Fig. 5 (13:00–16:00 LST). In this case, however,
it is rather that the shadow has a higher effect in a different
location depending on tree size. One of the small trees was
positioned in front of the west building. When tree size was
increased to medium or large, tree shadows of all five trees
have enhanced effect at the east building. This suggests that
a larger tree shade, as in Fig. 5c, is more beneficial in dif-
ferent locations compared to smaller tree shades, and smaller
exposed areas can remain exposed. Thus, tree size can be
an important factor when optimized mitigation of high radi-
ant load is desired. Tree size in this sense can also resemble
stages in the tree’s life, i.e., juvenile or mature. Thus, it can
be important for planners and others to keep in mind that an

optimal position for a tree might differ depending on the age
(size) of the tree.

Tree locations also changed depending on the number of
trees. This is in clear contrast to the greedy algorithm, where
tree positions are fixed when a new tree is added. TreePlanter
enables tree locations to be influenced by each other, which
means that none of the locations are fixed while the hill-
climbing algorithm is still cycling through the trees, even if
a single tree has reached an optimal position. This is real-
ized with the nudging effect, which will enable two or more
trees to explore if their combined and continuous shadow can
find a more favorable and efficient mitigation of Tmrt. An ex-
ample of this is apparent in Fig. 5e–f and Fig. 6, where the
trees (at the east border of the planting area) have different
locations with four (Fig. 6a and b) and five (Fig. 5e and f)
trees compared to six trees (Fig. 6c and d). Another exam-
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ple of how nudging and non-static locations are important
when optimizing positions for trees is when comparing po-
sitions between the hill-climbing algorithm and the greedy
algorithm, shown in Fig. 10. Here, it is evident that static
locations, as with the greedy algorithm, can result in scat-
tered tree locations. Even though locations established with
the greedy algorithm are very efficient for mitigation of high
Tmrt, they are inherently different compared to those estab-
lished with the hill-climbing algorithm. The locations estab-
lished with the hill-climbing algorithm had higher Tmrt mit-
igation (although the difference was small). However, when
Tmrt was recalculated in SOLWEIG with updated SVF in-
cluding the new trees, the tree locations established with the
greedy algorithm in some few cases had higher mitigating ef-
fect compared to those established with the hill-climbing al-
gorithm. This can to some extent be explained by changes in
SVF near a tree, which influences radiation patterns in these
areas in addition to the shaded area. Furthermore, shading
patterns were different and tree shade from trees positioned
with the greedy algorithm had larger tree shadows, which
logically results in a larger total decrease in Tmrt. The average
decrease in Tmrt in one pixel can be as large as 26 ◦C. There-
fore, only a few extra shaded pixels can result in a larger
total decrease in Tmrt with tree locations established with the
greedy algorithm. On the other hand, the tree locations de-
termined by the hill-climbing algorithm provided more effi-
cient Tmrt mitigation per shaded area. Still, importantly, tree
locations found by the hill-climbing algorithm are closer to-
gether. The occurrence map in Fig. 11 shows that the loca-
tions established with the greedy algorithm were also found
by the hill-climbing algorithm. However, with the nudging
function, allowing a continuous shadow of several trees to
explore the 1Tmrt raster, space is used more efficiently. In
conclusion, from a planning perspective, it can be notewor-
thy that these two algorithms (hill-climbing and greedy) can
result in considerably different tree locations. For this reason,
they could potentially complement each other, serving as two
alternatives.

In the model performance analysis, in Sect. 4, potential
decrease in Tmrt with the hill-climbing algorithm and its
two starting algorithms was evaluated against potential de-
crease in Tmrt with the greedy algorithm. The greedy algo-
rithm was expected to always find tree locations that pro-
vided high (even if not optimal) Tmrt mitigation. This expec-
tation was supported by the results presented here, for exam-
ple, in Fig. 10, where tree locations determined by the greedy
algorithm were always in areas exposed to high radiant load.
Zhao et al. (2017), similarly, demonstrated optimized tree
shade coverage with a greedy algorithm but used the algo-
rithm to decrease solar exposure on facades. Thus, the ra-
tio between the hill-climbing and greedy algorithms gives a
good measure of the performance of the hill-climbing algo-
rithm. From the results in Figs. 7–9, it is evident that the hill-
climbing algorithm finds acceptable locations already after
one iteration as none of the results show a ratio lower than

0.9. After 100–500 iterations, tree locations established by
the hill-climbing algorithm show an equal or higher poten-
tial mitigating effect than the greedy algorithm, in almost all
cases. There are, however, some exceptions, especially with
the random starting algorithm. Running the hill-climbing al-
gorithm with the genetic algorithm, on the other hand, re-
sults in tree locations with a potential mitigating effect equal
to, or higher than, the greedy algorithm after 500 iterations
for all cases except 09:00–16:00 LST with small trees with
3000 iterations. Running the model with 20 000 iterations,
on the other hand, always resulted in tree locations with equal
or higher potential mitigating effect compared to the greedy
algorithm, regardless of starting algorithm. The exceptions,
seen for example in Fig. 7 with small trees and 3000 itera-
tions, are an example of the fact that, as explained in Sect. 2,
metaheuristics are not guaranteed to find an absolutely op-
timal solution to a problem. Adding to this, it is not possi-
ble to prove that any of the locations established by the hill-
climbing algorithm are absolutely optimal, unless extensive
and computationally demanding brute-force calculations are
performed.

The results from the comparison between the genetic and
random starting algorithms are in line with those by Sto-
jakovic et al. (2020). Although their approach was different
from the one presented in this paper in that they did not use a
hill-climbing algorithm, they did use a genetic algorithm. In
their method, tree locations were determined from tree loca-
tions from a previous iteration. Their results showed that tree
locations with the genetic algorithm had a higher mitigating
effect compared to randomly positioned trees. This can be
compared to the results found in this paper, where tree lo-
cations with a high potential mitigating effect are sometimes
found with fewer iterations with the genetic algorithm com-
pared to the random algorithm. Adding to this, Stojakovic et
al. (2020) found convergence after approximately 3000 itera-
tions. Here, some of the examples show convergence already
after 500 iterations, indicating that exploration with the hill-
climbing algorithm in combination with a genetic algorithm
for starting positions could be a beneficial approach.

When model runtime was evaluated, it was quite clear that
when time steps, tree size or number of trees increased, so
did model runtime (Table 2). When time step was increased,
the number of necessary calculations increased, mainly when
tree shadows overlapped. This was further reinforced when
tree size was increased. An increase in tree size increases the
area shadowed by the tree, regardless of time of day, as long
as the solar elevation is above the horizon. A larger shadow
increases the possibility of tree shadows overlapping, and
overlapping shadows need adjustment to find optimal loca-
tions. Increasing the number of trees also adds to the proba-
bility of overlapping shadows. Increasing model domain size
(by changing pixel resolution) resulted in an exponential in-
crease in model runtime, from very fast for low resolution
(2 m) to relatively long model runtime with a high resolu-
tion (0.25 m). As model pixels become smaller, the number
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of possible locations for trees increases substantially, lead-
ing to increased model runtime. The four factors described
above all influence the model complexity and computational
time. The largest influence comes from the number of time
steps. The increase in computational time is considered to be
an effect of overlapping tree shadows that need adjustment.
Increasing tree size and the number of trees further increases
the possibility of overlapping shadows. Additionally, an in-
crease in the number of time steps would increase the time
to adjust, as well as a larger shadow of integrated time steps.
Moreover, larger model domains can substantially increase
model runtime.

When evaluating and comparing the two starting algo-
rithms, the genetic algorithm improved model runtime in all
cases except when the number of trees was increased to six,
seven and eight, for which model runtime increased. On the
other hand, the genetic algorithm determined optimal posi-
tions at an earlier stage compared to the random algorithm.
This, however, needs further testing, but the enhanced speed
of the genetic algorithm can reasonably be explained by two
factors. One factor is that warm areas, i.e., local optimums
with high Tmrt, are in close proximity to each other, mean-
ing that subsequent generations (iterations) potentially start
closer to local optimums compared to random starting posi-
tions. The other factor could be the geometry of the urban
setting studied here, where sunlit areas follow the x axis or
the y axis. As an example, the two small buildings inside
the study area are at approximately same y positions, with
the right-hand one being located at a slightly higher position.
The area in between the buildings is located at approximately
the same x position. Thus, if a tree inherits the y position
from a tree that in the prior run ended up in front of one these
buildings, it would probably not have to explore too many
pixels in order to a find a new local optimum. Likewise, if a
tree inherits its x position from a tree with a local optimum
between the two buildings, it would not have to move far to
find an optimal position. The random starting algorithm, on
the other hand, could have trees starting in positions where
exploration of the 1Tmrt raster would take longer in order
to find a local optimum. These factors can possibly also ex-
plain the decrease in model runtime with the genetic starting
algorithm when number of trees was set to seven or eight.
The trees would start closer to each other, and the chance of
overlapping shadows increases.

As described above, model runtime differs depending on
tree size, the numbers of trees and time steps, and the size
of the model domain. With the genetic starting algorithm,
for five small trees giving 1709 possible locations, and seven
time steps (09:00–16:00 LST), each iteration takes approxi-
mately 0.13 s. Using same setup, but with the large tree size
and 1481 possible locations, each iteration takes approxi-
mately 0.26 s. For comparison, Stojakovic et al. (2020) uti-
lized Rhinoceros 3D (CAD modeling software), Grasshopper
(add-on to Rhinoceros 3D), and an evolutionary algorithm
(inheritance) from Galapagos (a plugin for Grasshopper with

generic solvers; Rutten, 2013). With their setup, for five trees
(two sizes simultaneously, three with a canopy diameter of
8 m and two with 17 m), 10 time steps and 625 possible loca-
tions for trees, they had a mean iteration runtime of around
9 s. This suggests that the 0.26 s for five large trees and seven
time steps in the model presented in this paper are highly
efficient.

Genetic algorithms have been used successfully in previ-
ous research on optimization problems, e.g., locations for
hospitals in Hong Kong (Li and Yeh, 2005), locations for
train stations in Leicester, UK (Ahmed et al., 2020), spatial
land use allocation planning in Guitiriz, Spain (Porta et al.,
2013), and tree locations (Stojakovic et al., 2020). The re-
sults presented in this paper show how random starting posi-
tions and a genetic algorithm to determine starting positions
can be used together with a hill-climbing algorithm for op-
timizing tree locations. The benefit of using a hill-climbing
algorithm is that it enables thorough exploration of potential
tree locations and at the same time simplifies any potential
adjustment for potentially overlapping tree shadows. Using
the genetic algorithm to determine starting positions, in most
cases, improved model runtime and convergence compared
to randomly determined starting positions.

Even if model runtime is relatively fast, it needs improve-
ment for the hill-climbing algorithm to become a generic
tree-location-finding tool. Real-world applications will likely
have more trees and larger areas of interest than this study.
This will require an increase in the number of iterations,
as the number of possible locations would increase. Run-
ning TreePlanter with many iterations, several trees and in
a large area is time consuming. The examples shown here
are relatively fast. However, as seen with the genetic algo-
rithm and six, seven or eight trees, model runtime increases
quite extensively. A greedy algorithm, as an alternative to the
hill-climbing algorithm, is included in TreePlanter to support
larger studies (see Sect. 5.2). A thorough evaluation of the al-
gorithms included in the model as well as their pros and cons
are aspects for future studies. How do their results compare?
Under what circumstances are the different algorithms appli-
cable?

5.1 Model limitation and potential

In SOLWEIG, as well as TreePlanter presented in this pa-
per, there is no option for individual tree parameterization.
For example, transmissivity is set to one general value for all
trees. The default in SOLWEIG is 3 % for summer (Konarska
et al., 2014). Continuing, the model and the examples pre-
sented in this paper only include radiant load. However, there
are other factors that can be affected from adding more trees,
e.g., wind and evapotranspiration, which are not included.
While evapotranspiration from trees has been shown to have
a negligible effect on the thermal comfort, trees affecting
pedestrian-level wind can have a large effect on outdoor ther-
mal comfort (Lee and Mayer, 2021). There are also other fac-
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Figure 12. Graphical user interface of the TreePlanter 1.0 in QGIS.

tors, connected to plant physiology, that need consideration
when planting a tree in an urban area, such as root spacing,
soil conditions, climatic growing conditions and water avail-
ability (Vogt et al., 2017), which are not examined here.

Not included in the current version of TreePlanter is a re-
calculation of SVF between iterations. Omitting recalcula-
tion of SVFs has a minor effect on the total radiant condi-
tions under the tree as well as the influence on the radiant
conditions in the surrounding environment, when the moving
trees block parts of the sky. View factors influence, e.g., the
amount of diffuse shortwave irradiance reaching an area as
well as influencing the longwave irradiance under and around
the trees. However, these effects are relatively small, whereas
including recalculations in the model would increase runtime
considerably. We thus do not foresee including SVF recalcu-

lations in the model. See Lindberg and Grimmond (2011a)
for a more detailed discussion.

Speak et al. (2020) studied the shading effect of single
trees in Bolzano, Italy. They found that leaf area density and
canopy diameter are key in mitigating surface temperatures
and concluded that strategic planting of urban trees with cau-
tious selection of species can help mitigate surface tempera-
tures. Antoniadis et al. (2020), similarly, discussed strategic
planting and positioning of trees, to alleviate heat stress in ur-
ban schoolyards. The model presented in this paper can aid
in the strategic planting of trees based on Tmrt, as it enables
the possibility of positioning trees and changing canopy di-
ameters, tree height and trunk zone height. The possibility of
changing transmissivity of shortwave irradiance through the
canopy can be used as an analogy for leaf area density. Fur-
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thermore, it allows for analysis of days with different meteo-
rological data, and even a possibility of combining days from
different seasons. Moreover, with modifications, the method-
ology described in this paper could be used for other opti-
mization purposes, e.g., mitigation of incoming solar irradi-
ance with respect to harmful UV.

Future possible developments include the possibility to po-
sition trees of different sizes simultaneously. Furthermore,
studies on the effects of locations during different weather
conditions and seasons are expected, as well as evaluating if
locations are feasible with respect to root spacing, pipes, etc.

5.2 Tool accessibility

To facilitate use and accessibility to other researchers and
service providers, TreePlanter is available as a tool as part of
the UMEP climate service tool in the open-source geograph-
ical information system QGIS (https://qgis.org, last access:
1 February 2022). The graphical user interface (GUI) from
the Processing Toolbox in QGIS is presented in Fig. 12. For
simplification, the pre-processed input data required from
SOLWEIG for TreePlanter will be provided through a tick
box in the SOLWEIG GUI.

Moreover, a vector polygon layer that determines a plant-
ing area where it is possible to plant trees within the extent
of the SOLWEIG output is required (see first paragraph in
Sect. 2). This option can be used to avoid roads, statues, wa-
ter bodies or other obstructing objects that are not shown
in the building raster and would prevent trees from being
planted in such locations. The extent of the planting area can
be set to the same size as the extent of the output data from
SOLWEIG. In this case, a buffer zone will be enforced to
avoid edge effects. Another alternative in the tool will be to
disable shading outside of the study area.

Optional settings can be set under “Advanced Parameters”.
These include options to use either the random or the genetic
starting algorithms, as well as number of iterations. Further-
more, an option to use a greedy algorithm, instead of the
hill-climbing algorithm, is included. The greedy algorithm
is faster, which can be useful when requesting positions for a
larger number of trees in extensive model domains. However,
as shown in the results and mentioned in the discussion, tree
locations can differ considerably between the hill-climbing
algorithm and the greedy algorithm.

The output from the TreePlanter is an updated raster
CDSM and a vector point file with the positions of the new
trees.

6 Concluding remarks

The TreePlanter model presented in this paper has several
advantages for future studies of mitigation of Tmrt and anal-
ysis of shadow patterns in urban areas. Conclusions from the

model performance analysis and the case study are as fol-
lows:

– Modeling and optimization of positioning of trees with
respect to mitigation of Tmrt are very complex and com-
putationally extensive. TreePlanter and its metaheuristic
hill-climbing and greedy algorithms can give guidance
in this issue.

– Both algorithms investigated (hill-climbing and greedy)
find tree locations that result in substantial decrease in
Tmrt and thus increase thermal comfort in exposed areas
on clear, hot days. The locations, however, can differ
considerably between the two algorithms.

– Tree locations depend primarily on tree size and time
of day. Tree size indicates that juvenile and mature trees
have different optimal positions, which can be important
in, e.g., urban planning.

– The hill-climbing algorithm incorporates the combined
shading effects of several trees simultaneously, which
are not addressed in the greedy algorithm.

– The model presented in this paper can give advice to
urban planners and others in mitigating and improving
thermal comfort in outdoor urban settings.

Code and data availability. The model code is available from
https://doi.org/10.5281/zenodo.4616761 (Wallenberg and Lind-
berg, 2021a).

The test dataset is available from
https://doi.org/10.5281/zenodo.4616770 (Wallenberg and Lind-
berg, 2021b).

A tutorial on how to install the model code in QGIS from the zip
file, information on how to run the model and a description of the
model are available from https://doi.org/10.5281/zenodo.4767387
(Wallenberg and Lindberg, 2021c).
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