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Abstract. A particle-filter-based inversion system is pre-
sented, which enables us to derive time- and altitude-resolved
volcanic ash emission fluxes along with its uncertainty. The
system assimilates observations of volcanic ash column mass
loading as retrieved from geostationary satellites. It aims to
estimate the temporally varying emission profile endowed
with error margins. In addition, we analyze the dependency
of our estimate on wind field characteristics, notably ver-
tical shear, within variable observation intervals. Thus, the
proposed system addresses the special challenge of analyz-
ing the vertical profile of volcanic ash clouds given only 2D
high temporal-resolution column mass loading data as re-
trieved by geostationary satellites. The underlying method
rests on a linear combination of height–time emission finite
elements of arbitrary resolution, each of which is assigned to
a model run subject to ensemble-based space–time source in-
version. Employing a modular concept, this setup builds the
Ensemble for Stochastic Integration of Atmospheric Simu-
lations (ESIAS-chem). It comprises a particle smoother in
combination with a discrete-grid ensemble extension of the
Nelder–Mead minimization method. The ensemble version
of the EURopean Air pollution Dispersion – Inverse Model
(EURAD-IM) is integrated into ESIAS-chem but can be re-
placed by other models. As initial validation of ESIAS-chem,
the system is applied to simulated artificial observations of
both ash-contaminated and ash-free atmospheric columns us-
ing identical-twin experiments. Thus, in this idealized initial
performance test the underlying meteorological uncertainty
is neglected. The inversion system is applied to two notional

sub-Plinian eruptions of the Eyjafjallajökull volcano, Ice-
land, with strong ash emission changes with time and injec-
tion heights. It demonstrates the ability of ESIAS-chem to re-
trieve the volcanic ash emission fluxes from the assimilation
of column mass loading data only. However, the analyzed
emission profiles strongly differ in their levels of accuracy
depending of the strength of wind shear conditions. While
the error is only 10 %–20 % for the estimated emission fluxes
under strong wind conditions, it increases up to 60 % under
weak wind shear conditions. In case of increasing wind shear,
the performance of the analysis may benefit from extending
the assimilation window, in which new observations poten-
tially contribute valuable information to the analysis system.
For our test cases using an artificial volcanic eruption, we
found an assimilation window length of 18 h, i.e., 10 h after
the eruption terminated, to be sufficient for analyzing the ex-
tent and location of the artificial ash cloud. In the performed
test cases, the analysis ensemble predicts the location of high
volcanic ash column mass loading in the atmosphere with a
very high probability of > 95 %. Additionally, the analysis
ensemble is able to provide a vertically resolved probability
map of high volcanic ash concentrations to a high accuracy
for both high and weak wind shear conditions.
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1 Introduction

Emission profiles of volcanic eruptions depend on multiple
parameters, such as crater size or exit velocity of the emit-
ted mass. Further, they depend on atmospheric stability and
wind profile at the volcano. Many of these parameters are un-
known or difficult to measure exactly. This renders the esti-
mation of emission profiles of volcanic eruptions challenging
for chemistry transport models in the context of data assim-
ilation and inverse modeling for source estimation. There-
fore, special methods for assessing the strength and vertical
distribution of volcanic emissions are necessary. As volcanic
eruptions contain enormous amounts of harmful trace gases
and particulate matter, not only is detailed knowledge about
the spatial and temporal variations in the emissions and their
strength needed but accurate information about the analysis
error of the emissions and the evolving volcanic ash cloud is
also required.

Typically, explosive volcanic eruptions occur as sequences
of emissions with highly varying ejection mass and height.
Only limited observations of volcanic ash emission parame-
ters are available (e.g., eruption plume heights retrieved from
radar measurements, Arason et al., 2011), which are affected
by their specific uncertainties and limitations, e.g., by oro-
graphic shielding in the case of radar observations. Thus,
eruption models are applied to simulate volcanic emissions.
These may be inferred from statistical data (e.g., Sparks
et al., 1997; Mastin et al., 2009) or physical processes (e.g.,
Woodhouse et al., 2013; Folch et al., 2016). Statistical mod-
els are based on observational data from historic volcanic
eruptions, which are sparse and show a large variance in
eruption rate for given plume heights. For example, Mastin
et al. (2009) calculated an uncertainty by a factor of 4 in es-
timating the emission rate for a plume height of 25 km us-
ing their statistical model. Physical plume-scale models re-
quire orographic details of the volcano (e.g., crater size) but
also meteorological fields and parameters (e.g., wind entrain-
ment coefficients), which are often poorly known and render
these models highly uncertain. Costa et al. (2016) identified
the wind entrainment coefficient as the main source of un-
certainty leading to up to 2 orders of magnitude differences
for the estimation of mass eruption rates for weak volcanic
eruptions. In their analysis of the eruptions of the Eyjafjal-
lajökull, Iceland, in 2010 and Grímsvötn, Iceland, in 2011,
Woodhouse et al. (2015) found a comparable range of un-
certainty depending on the choice of the wind entrainment
coefficients.

Another potential way to constrain volcanic ash emis-
sions is the use of observations of volcanic ash in the atmo-
sphere. Advanced numerical analysis techniques for quan-
titative and stochastic estimation of volcanic ash concen-
trations and emissions use mostly satellite observations of
column mass loading via data assimilation methods (e.g.,
Wilkins et al., 2016a). Column mass loading observations
as available from, for example, the Spinning Enhanced Vi-

sual and InfraRed Imager (SEVIRI) on board Meteosat Sec-
ond Generation (Schmetz et al., 2002) are beneficial for
source inversions as they provide measurements of the hor-
izontal extent of the volcanic ash cloud with a frequency
as high as 15 min, which is used for analyzing the tem-
poral evolution of the volcanic eruption column. How-
ever, in contrast to lidar observations, e.g., from the Cloud
Aerosol LIdar with Orthogonal Polarization (CALIOP) in-
strument on board the CALIPSO satellite (Winker et al.,
2009) or the ground (e.g., via the European Aerosol Research
Lidar Network, EARLINET https://www.earlinet.org/index.
php?id=earlinet_homepage, last access: 13 January 2021),
column mass loading observations rarely provide informa-
tion about the vertical distribution of volcanic ash and are
mostly limited to cloud top heights (e.g., Ventress, 2016; Pio-
ntek, 2021). Therefore, multiple data assimilation/source in-
version methods make assumptions about the vertical extent
of the volcanic ash cloud (e.g., Schmehl et al., 2012; Wilkins
et al., 2016b; Zidikheri et al., 2016). In addition to column
mass loading observations of volcanic ash clouds, Zidikheri
et al. (2017a) suggested using brightness temperature mea-
surements to distinguish regions with high mass load from
those with low mass load. All these observations are influ-
enced by water cloud cover, which limits the detection of
volcanic ash in the atmosphere.

First estimations of volcanic ash emissions from the 2010
Eyjafjallajökull eruption at a high temporal and vertical res-
olution were made by Stohl et al. (2011) and later by Kris-
tiansen et al. (2012, 2015). Their algorithm is based on the
inversion technique of Eckhardt et al. (2008), in which an
optimal combination of distinct emission packages is esti-
mated using a least squares method. The method was shown
to provide reliable a posteriori estimates of the time-varying
emission profiles. Stohl et al. (2011) include errors from a
priori estimates, retrieval errors, and model errors and dis-
cussed results in terms of relative error reduction subject to
assumptions made. Schmehl et al. (2012) initiate the volcanic
ash analysis using an ensemble of simulations with random
emission strengths and wind fields. Their best estimate of the
volcanic ash concentration is found iteratively using a “ge-
netic algorithm variational approach”. Herein, rather strong
assumptions on the emission profile are made: the emis-
sions are kept fixed for the simulation duration; emissions
are placed into a single model layer; wind fields are only
adjusted in the model layer containing volcanic ash emis-
sions. However, the method provides a quick and easy to im-
plement first estimate of the volcanic ash concentrations in
the atmosphere. Yet, the strong assumptions may render the
approach unfeasible for longer-lasting volcanic eruptions in
which the emissions vary more strongly. Another data assim-
ilation method for estimating the volcanic ash emissions was
proposed by Lu et al. (2016). They developed an adjoint-free,
ensemble-based four-dimensional variational data assimila-
tion (4D-var) method. The method showed reliable estimates
of the true emission profile in their experiments using syn-
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thetic, vertically integrated satellite observations. However,
they do not address the uncertainty estimate of their analysis.

Zidikheri et al. (2016) and later Zidikheri et al. (2017b)
developed an inversion system that aims to analyze the hor-
izontal distribution of volcanic ash column mass loading
rather than the emission strength. This study was extended
by Zidikheri et al. (2017a) to additionally estimate the height
and the particle size distribution of volcanic ash emissions
using a parameter refinement method. Here, an ensemble of
source parameter values has been applied. Using a proper
metric (in their case the pattern correlation coefficient) the
ensemble is evaluated against observations. The best fitted
ensemble member is taken as analysis. The method is easy
to implement for a fast analysis of a volcanic eruption as
only the upper and lower bounds of the considered source pa-
rameters need to be defined. However, the number of model
runs used to find the analysis increases exponentially with the
number of parameters. Rough estimates of the parameters’
uncertainty are provided by the spread of the top 2 % en-
semble members with respect to the metric (Zidikheri et al.,
2017b), which does not take uncertainties in the observed
quantities into account.

Wilkins et al. (2014) used the “data insertion” method,
in which observed volcanic ash column mass loadings act
as virtual sources for volcanic ash with a predefined ver-
tical distribution. The algorithm was successfully applied
to the eruptions of Eyjafjallajökull, Iceland, 2010 (Wilkins
et al., 2016b), and Grímsvötn, Iceland, 2011 (Wilkins et al.,
2016c). Given the lack of vertical information in column
mass loading retrievals of volcanic ash, the data insertion
method needs assumptions about the vertical distribution
of the volcanic ash content in the atmosphere. Thus, this
larger source of uncertainty for the volcanic ash analysis
is ignored. The data insertion scheme has also been imple-
mented as a first step towards an ensemble-based data as-
similation scheme in the FALL3D-8.0 atmospheric transport
model (Prata et al., 2021).

Fu et al. (2017) developed a mask-state algorithm for en-
semble Kalman filters to reduce the size of the state vector
to be optimized. More recent applications of the ensemble
Kalman filter and its variants are provided by Pardini et al.
(2020) and Osores et al. (2020). By estimating the source pa-
rameters of the volcanic eruption, the approaches using the
ensemble Kalman filter assume constant emission parame-
ters between two assimilation steps. This is a rather strong
assumption on the emissions especially if observational data
are sparse or far away from the volcano. However, keeping
this assumption in mind the ensemble Kalman filter method-
ology provides an estimate of the analysis uncertainty.

A general framework for calculating uncertainties of vol-
canic ash concentrations for constant volcanic ash emissions
given “any model and any observational data” was proposed
by Denlinger et al. (2012). Bursik et al. (2012) applied the
“polynomial chaos quadrature weighted estimate” (PCQWE)
method to volcanic ash emissions. This approach was further

extended by Stefanescu et al. (2014) to take uncertainties in
the wind fields into account as well. An extension of the poly-
nomial chaos quadrature method was proposed by Madankan
et al. (2014) to generate hazard maps of volcanic ash in the
atmosphere. The PCQWE method aims to map uncertainties
in the input parameters of a volcanic eruption onto the vol-
canic ash concentrations without accounting for constraining
volcanic ash observations. Additionally, Dare et al. (2016)
investigated the influence of meteorological ensemble fore-
casts on the dispersion of volcanic ash. They found that not
only the ensemble statistics should be evaluated but also the
single ensemble members, which may contribute significant
information to the distribution of volcanic ash.

Although these studies applied highly advanced data as-
similation and source inversion methods for analyzing the
emission strength and the uncertainty of volcanic ash disper-
sion forecasts, a joint assessment of both emission strength
and its uncertainty, in a high temporal and vertical resolution
has not yet been evaluated. Thus, this contribution aims to
fill this gap by providing such estimates of emission strength
and its uncertainty in a high temporal and spatial resolution
resulting in height-resolved probability maps of volcanic ash
concentrations.

Section 2 describes the full stochastic inversion system
ESIAS-chem and the methods applied. The potential and
limitations of ESIAS-chem are shown by identical-twin ex-
periments in Sect. 3. A discussion of the results and conclu-
sions will be given in Sect. 4.

2 Methodology

The Ensemble for Stochastic Integration of Atmospheric
Simulations (ESIAS) is designed to control simultaneous and
interactive runs of ultra-large ensembles of complex atmo-
spheric models. ESIAS comprises a meteorological (ESIAS-
met) and an atmospheric chemical part (ESIAS-chem). One
main feature of ESIAS is the potential to include data assim-
ilation and source inversion modules. The emphasis of this
paper is placed on ESIAS-chem for probabilistic atmospheric
chemistry-transport–diffusion simulations with data assimi-
lation. In the following, the main components of the ESIAS-
chem system are introduced, which include an ensemble of
emission packages, a modified version of the Nelder–Mead
minimization algorithm, and a particle filter and resampling
algorithm. Further, the full stochastic particle smoother algo-
rithm of ESIAS-chem for probabilistic volcanic ash analyses
is described. Finally, the metrics for analyzing the systems
performance are summarized. The reader is referred to Ta-
ble A1 for a summary of the variables used.
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2.1 Model description

2.1.1 Ensemble of emission packages

ESIAS-chem is initiated by simulating the dispersion of nor-
malized emissions from a set ofNemis pairwise distinct emis-
sion packages (emission scenarios in the terminology of
Stohl et al., 2011), each of which has a default mass of ash.
More specifically, the eruption plume is discretized into NT
time steps and Kmax vertical layers. The simulation is real-
ized by an ensemble, in which each ensemble member sim-
ulates the dispersion of one single emission package. Thus,
each emission package covers a unique time and height spot
in the emission profile. We refer to this ensemble as an en-
semble of emission packages. This approach accounts for
multiple maxima in the vertical distribution of volcanic ash
emissions. These may occur within discretized model time
steps if the emission strength varies quickly in strength and
plume height. Each member of the ensemble of emission
packages simulates the dispersion of volcanic ash concen-
trations released by a single emission package. A similar ap-
proach for estimating the volcanic ash column mass load-
ing was used by Stohl et al. (2011) and Kristiansen et al.
(2015) aiming to estimate the optimal emission profile. Con-
trary to their analysis, the focus of ESIAS-chem lies on the
predictability of volcanic ash emissions and the resulting vol-
canic ash concentrations.

In order to find the optimal emission profile, the cost func-
tion J (a),

a= argmin(J (a))= argmin
(
(Hx(a)− y)T R−1(Hx(a))− y)

)
= argmin

(Nemis∑
i=1

HM[aisi ] − y

)T
R−1

(
Nemis∑
i=1

HM[aisi ] − y

) , (1)

is to be minimized, with the source–receptor model M map-
ping the unique emissions si of member i of the ensem-
ble of emission packages onto the model state. Herein, si =

(0, . . .,0,c,0, . . .,0)T = c · ei is a Kmax ·NT =Nemis dimen-
sional vector with c = const the default mass of ash of each
emission package and ei the ith unit vector. Scalar ai is the
scaling factor for the ith emission package. For the optimiza-
tion, ai values are packed into vector a resulting in optimal
values a. Further, R is the observation error covariance ma-
trix and H denotes the observation operator for volcanic ash
column mass loading, which is given by

x̂l =Hx̂l(a)= 106
Kmax∑
k=1

xkl1zkl (2)

where xkl is the modeled concentration of volcanic ash in
[µgm−3] and 1zkl is the thickness of model layer k in [m]
at location l. Please note that the vertical and temporal res-
olution of the emissions can be varied by changing the pa-
rameters Kmax and NT , thus making them independent from
the vertical and temporal resolution of the model. Matrix R

accounts for the impact of retrieval errors of the volcanic
ash column mass loading and is considered diagonal. It can
be made spatially and temporally dependent, to account for
assumed increased retrieval errors due to water cloud influ-
ences, particularly thick umbrella ash clouds above or in the
vicinity of the volcano or interference of other aerosols or
mineral dust. In our study, we have made assumptions about
the observation error (including retrieval error). In applica-
tions to real volcanic eruptions, the use of retrieval errors
provided by the observations is highly encouraged. Starting
from a scalar column load value as an exclusive data source,
we considered estimation uncertainties of the derived height
profile presented here as an order of magnitude larger than
retrieval errors in this idealized experiment, especially if the
numberKmax determines some multiple of O(10) layers. The
observation error can also be incorporated in constructing
the ensemble, as in general any ensemble data assimilation
procedure can straightforwardly account for the retrieval un-
certainty by artificially perturbing retrievals of column mass
loading, where the random perturbation is scaled by the as-
sumed statistics of retrieval errors. Clearly, this must not be
the only means to generate the ensemble, as this accounts
only for a fraction of the overall uncertainty, resulting in
underdispersive ensembles. Although the algorithm is de-
signed for column mass loading observations, it is also ap-
plicable to observations of any volcanic-ash-related quantity,
e.g., brightness temperature as proposed by Zidikheri et al.
(2017a).

2.1.2 Nelder–Mead algorithm

The minimization problem posed by Eq. (1) is quadratic
within the limits of being bounded due to positive semi-
definiteness of all components. Quasi-Newton methods, in-
cluding a bounded variant proved less efficient, as a back-
ground state reasonably close to the “truth” for a tangent-
linear approximation to hold, is typically unknown. This
missing a priori knowledge cannot serve any preconditioning
requirements other than highly speculative inferences from
assumed eruption type and strengths scenarios. With an in-
creasing number of model levels with their (positive semi-
definite) concentrations to be attributed, while column values
as given data are single scalars only, the ill-conditioning of
the minimization problem increases drastically and a much
needed reasonable background information prior to the vol-
canic eruption is hardly available. Also simple smoothness
assumptions of the vertical profile are often invalid for ash
clouds, at least during early stages. As minimization tests
with the Nelder–Mead method clearly performed best, with-
out getting lost in drastically elongated minima as intro-
duced by underdetermined degrees of freedom through ver-
tical level concentrations, the algorithm by Nelder and Mead
(1965) was applied to the inversion problem. The Nelder–
Mead minimization algorithm is a combinatorial optimiza-
tion method without constraints and without the need to com-

Geosci. Model Dev., 15, 1037–1060, 2022 https://doi.org/10.5194/gmd-15-1037-2022



P. Franke et al.: ESIAS-chem 1041

pute the function derivatives. It has proven to be robust, es-
pecially in cases where the function to be minimized has
discontinuities or the function values are noisy (see McK-
innon, 1998). This is expected to be likely in highly vari-
able volcanic eruptions especially given highly uncertain,
and thus noisy, observations. Additionally, the Nelder–Mead
algorithm can easily account for bounded regions, in our
case positive semi-definite ash loads, and needs relatively
few function evaluations (mostly one to two function eval-
uations per iteration, Lagarias et al., 1998).

The idea of the algorithm is to move a simplex on the sur-
face of the cost function to find an improved model state in
a Nemis-dimensional space. The version of the Nelder–Mead
method used in this study follows Gao and Han (2012) and
utilizes adaptive parameters controlling the step size for each
iteration of the minimization. The version has been imple-
mented for parallel operation (Klein and Neira, 2014; Lee
and Wiswall, 2007). In our application, the Nelder–Mead al-
gorithm is used to find the optimal combination of the pair-
wise distinct emission packages. This is accomplished by as-
signing a factor ai , which needs to be scaled by the algorithm,
to each emission package.

Due to its simplicity, the Nelder–Mead algorithm is easy
to implement but it is likely to find a local rather than the
global minimum of the cost function (which is also a prob-
lem for least-square minimization techniques with poor ini-
tial guesses, as for volcanic eruptions). Thus, we have added
some adjustments to the algorithm. First, we perform the
minimization only for integers (including 0). Thus, only inte-
ger values are accepted for the scaling factors ai of the emis-
sion packages. By applying this constraint it is assumed that
the introduced errors are of lower order than the error intro-
duced by the temporal and vertical resolution of the emission
packages. Further, the minimization is restarted with larger
perturbations of the vertices (edges of the simplex) if the
algorithm is trapped in a local minimum. Finally, the min-
imization is started for an ensemble of Nelder–Mead analy-
ses. As perturbed observations are used as input to the min-
imization procedure, the solutions (here emission profiles)
produced by the analysis ensemble are assumed to map the
uncertainty given by the observations onto the emission rates
(see Sect. 2.1.4). Thus, the minimization algorithm is here-
after called the discrete-grid ensemble Nelder–Mead method
(DENM).

2.1.3 Particle filter

The particle filter methodology, also known as sequential im-
portance resampling, is used as a non-Gaussian data assim-
ilation method for large ensemble simulations of the atmo-
spheric state. Please note that the term ensemble in this sec-
tion defines a full model simulation and does not refer to the
ensemble of emission packages defined in Sect. 2.1.1. The
particle filter method was proposed by Gordon et al. (1993)
and further popularized in oceanography and meteorology by

van Leeuwen (2009). It develops from Bayes’ theorem:

p(x|y)=
p(y|x)p(x)∫
p(y|x)p(x)dx

, (3)

where p(·) denotes the probability density function (PDF), y

the observations, and x the model state. The a priori PDF is
approximated by an ensemble of Nens model runs:

p(x)=
1
Nens

Nens∑
i=1

δ(x− x(i)), (4)

where δ(·) denotes the Kronecker delta function and x(i) is
the model state of particle (ensemble member) i.

Applying Eq. (4) results in

p(x|y)=

Nens∑
i=1

p(y|x(i))∑Nens
j=1p(y|x

(j))
δ(x− x(i))

=

Nens∑
i=1

w(i)δ(x− x(i)), (5)

where an individual weight w(i) is applied to each ensem-
ble member. Thus, each ensemble member is weighted by
the normalized likelihood of its current model state. The en-
semble statistics can now be computed using the ensemble
member weights. For example, the ensemble mean is

x =

Nens∑
i=1

w(i)x(i).

It is noted that in the particle filter method no assumptions of
the statistical forecast error characteristics and the observa-
tion error were made (the errors do not need to be normally
distributed and the model state does not need to be unbiased
as other data assimilation methods require). Further, the par-
ticle filter method is directly applicable to nonlinear models.

In particle filters, filter degeneracy often occurs (see
Bengtsson et al., 2008; Snyder et al., 2008; Bickel et al.,
2008), especially in high-dimensional problems. Several
methods exist to reduce filter degeneracy (see, e.g., van
Leeuwen, 2009, for a review) and the reader is referred to the
original papers for more information. In ESIAS-chem, the
particle filtering and resampling steps are applied after the
ensemble of optimal emission profiles has been found by the
DENM algorithm. A weight w(i) is assigned to each optimal
emission profile. Residual resampling (Liu and Chen, 1998)
is used to replace emission profiles leading to small weights
by emission profiles with high weights (this step includes
perturbing duplicated emission profiles). After resampling,
the weights are normalized again (w(i) = 1/NEns). Thus, the
statistical informative value of the analysis ensemble is pre-
served. Qualitatively, the strategy of particle filtering applied
here can be expressed as follows: by replacing the valueless
ensemble members of the analysis (i.e., those with too lit-
tle weight) each ensemble member has comparable skill to
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match the observations. Hence, the probability of an event
(e.g., volcanic ash concentrations above a certain threshold)
can directly be extracted from the relative number of ensem-
ble members that simulate this event.

2.1.4 ESIAS-chem

ESIAS-chem is designed as a flexible analysis system for
quantitative volcanic ash assessments, along with an uncer-
tainty quantification of the analyzed emission flux profile.
ESIAS-chem is constructed such that it is applicable to other
scenarios of accidentally released matter and constituents,
given constraining observations are available. Further, it can
be coupled with ensembles of meteorological fields to ac-
count for additional uncertainties resulting from meteorolog-
ical forecasts. However, this idealized investigation focuses
on the ability of the system to reconstruct the emission profile
and its uncertainty under perfect meteorological conditions.
Thus, no meteorological ensemble is used at this stage.

The aerosol dynamics (nucleation, accumulation, deli-
quescence) and aerosol chemistry in EURAD-IM (EURo-
pean Air pollution Dispersion – Inverse Model), which poses
the model core of ESIAS-chem, are based on MADE (Modal
Aerosol Dynamics model for Europe, Ackermann et al.,
1998, with substantial update of the thermodynamical part
by Friese and Ebel, 2010) and have been switched off for
two reasons: numerical efficiency in an ensemble context and
specifics of volcanic ash properties cannot be expected to
be reasonably well featured by a general pollutant aerosol
module like MADE. Ideally, a full volcanic ash aerosol dy-
namics and chemistry model as proposed by Schmidt (2013)
would be in place, along with its non-existent adjoint. Yet we
consider the error to be negligible within the evolution time
frame addressed in our idealized study.

The workflow of the system is illustrated in Fig. 1.
Once a volcanic eruption is detected (t = t0), the system is
started by generating the ensemble of emission packages (see
Sect. 2.1.1) of the default mass of volcanic ash. As long as no
observations are available, this ensemble of emission pack-
ages serves as an estimation predictor of the maximum pos-
sible volcanic ash extent without providing quantitative vol-
canic ash estimates. Once new observations become avail-
able, the system is restarted at time t = t0. The previously
calculated ensemble of emission packages is reused, now in-
tegrated forward in time until the observation time (t = ti+1).
Further emission packages (i.e., members of the ensemble
of emission packages) are included to account for the latest
emissions in the interval [ti, ti+1].

The ensemble of emission packages is compared with the
observations to calculate Eq. (1), which is to be minimized
using the DENM method. As this algorithm is optimized for
the estimation of column integrated ash loading in a consid-
erably underdetermined control system, a regularization term

is added to the cost function Eq. (1), leading to

J (a)= aTB−1a+

(
Nemis∑
i=1

HM[aisi] − y

)T
R−1

(
Nemis∑
i=1

HM[aisi] − y

)
. (6)

This choice restricts the scaling factors a to vary too strongly.
In first tests without the regularization term, the emission
rates have partly increased to unrealistically high values.
Therefore, the B matrix was chosen in a sequence of sensitiv-
ity tests, in which the influence of the regularization term on
the emission profile was evaluated. Best results have been
found by choosing B as a diagonal matrix B= diag(10).
Please note that the chosen diagonal form of the B matrix led
to reasonable results for the artificial emission profile used in
this study. However, for realistic applications a more elabo-
rated evaluation of a properly chosen B matrix is required
and straightforwardly applicable. In this performance test,
the only purpose of the matrix is to restrict the scaling fac-
tors a not to vary too strongly. In addition, the regularization
term was chosen in order to maintain a suitable spread of the
analysis ensemble.

The minimization is initialized with a set of arbitrarily
varying scaling factors a for the pairwise distinct emission
packages. The algorithm was tested using a time-varying ini-
tial emission profile with an umbrella-shaped vertical mass
distribution. Due to the chosen true emission profile in this
idealized study (see Sect. 3), the minimization using the ini-
tial emission profile with an umbrella-shaped vertical mass
distribution shows larger errors. In the application of the
algorithm to a real volcanic eruption, the performance of
the analysis using an umbrella-shaped initial emission pro-
file may exceed the performance using an arbitrary emission
profile. Hence, ESIAS-chem is designed to adjust the initial
emission profile to the characteristics of the current volcanic
eruption. In addition, the observation errors are represented
by perturbed observations (see Houtekamer and Mitchell,
1998), which are assimilated by ESIAS-chem leading to
larger ensemble spreads.

Once an improved emission profile has been found by the
DENM minimization, a particle filter step is applied to the
analysis ensemble. The weights, which result from the filter-
ing step, are applied to the analyzed emission profiles. If new
observations become available, the assimilation window may
be lengthened to use the new observations for updating the
emissions within the whole assimilation window [t0, ti+1].

2.2 Metrics used for analyzing ESIAS-chem’s
performance

As ESIAS-chem is tested by identical-twin experiments
(see Sect. 3 for more details), results of the analysis are com-
pared to a “nature run”. In this experimental setting, the na-
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Figure 1. Schematic of the ESIAS-chem analysis workflow. The analysis is initiated at time t = t0 and restarted when new observations
become available (left side, see Sect. 2.1.1). Here, ti+1 corresponds to the observation time. Previously calculated simulations with emission
packages within the time interval t0− ti may be restored (upper blue box). Simulated volcanic ash is compared with perturbed observations
for the whole simulation (i.e., from t0 to ti+1; upper central blue box). The resulting volcanic ash concentrations are passed to the DENM
minimization algorithm that produces an ensemble of emission profile analyses (right blue box, see Sect. 2.1.2) by finding an optimal
combination of the pairwise distinct emission packages. This ensemble of emission profile analyses is evaluated by the particle filter and
resampling method to assign a weight to each emission profile according to the fit of the resulting volcanic ash to the observations. Emission
profiles are replaced if their corresponding volcanic ash content does not fit the observations well (lower blue box, see Sect. 2.1.3). Credits for
volcano image: NASA (https://www.nasa.gov/multimedia/imagegallery/image_feature_756.html, last access: 13 January, 2021; Cleveland
volcano, Aleutian Islands).

ture run is considered to represent the truth. Synthetic obser-
vations are simulated by extracting volcanic ash column mass
loading data from this nature run. These synthetic observa-
tions show only a small fraction of the data that are used to
validate the analysis ensemble. Thus, the following test pro-
cedures compare volcanic ash simulated by the analysis en-
semble with volcanic ash simulated by the nature run rather
than only with the extracted observations.

The results of the stochastic inversion method are vali-
dated using different measures on the ensemble mean. The
pattern correlation coefficient (pcc; see Zidikheri et al., 2016)
provides information about the accuracy of the horizontal
extent of the volcanic ash cloud. The pcc is defined by
(Zidikheri et al., 2016)

pcc=
< va′x,va′y >

|va′x ||va′y |
, (7)

with va′
= va−va. Herein, the entries of the binary volcanic

ash detection vector va for the ensemble mean (subscript
x) and observations (y) are equal to 1 if the grid column
contains volcanic ash above 0.2 gm−2, which is the detec-
tion limit of volcanic ash column mass loading observations
(Prata and Prata, 2012), and 0 otherwise. The averaged vol-
canic ash detection va is calculated by

va =< 1,va > / < 1,1>, (8)

where 1 denotes the vector with 1 on all entries and < ·, ·>
indicates the scalar product. The pattern correlation coeffi-
cient gives information about the compliance between the
simulated and observed horizontal distribution of volcanic
ash in the atmosphere. If the volcanic ash clouds, indicated
by the column mass loading, of the nature run and the en-
semble mean perfectly coincide, the pattern correlation co-
efficient equals 1. If ash cloud covers of the nature run and
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of the ensemble mean do not match anywhere, the pattern
correlation coefficient equals 0.

The inner-cloud distribution of volcanic ash of the analysis
ensemble mean is analyzed using the relative mean absolute
error (RMAE). The RMAE is defined by

RMAE= 100
1
Ny

Ny∑
j=1

∣∣∣∣xj − yjyj

∣∣∣∣ , (9)

where Ny is the number of grid columns in which volcanic
ash column mass loading of the nature run yj ≥ 0.2gm−2

and xj is the column mass load of the analysis ensem-
ble mean in grid cell j . The RMAE is also calculated
for volcanic ash concentrations, for which this threshold is
≥ 10 µgm−3. In this case, yj corresponds to the volcanic ash
concentration simulated by the nature run. The relatively low
threshold to calculate the RMAE was chosen in order to in-
crease the number of grid cells to be analyzed and to inves-
tigate the full volcanic ash cloud rather than only the area of
high concentrations. The RMAE measures the relative differ-
ence of column ash mass loads (or volcanic ash concentra-
tions) between nature run and the analysis ensemble mean,
averaged over all grid cells. Higher values of the RMAE are
a result of different height–time–mass emission patterns be-
tween the nature run and the analysis ensemble mean, given
the assumed perfect meteorology used in this study.

The probability estimate of the ensemble analysis is inves-
tigated using the Brier score:

BS=
1
Ny

r∑
j=1

Ny∑
i=1

(
pj,i −Ej,i

)2
, (10)

where r is the number of verification classes, pj,i is the
forecast probability of the ensemble for class j to predict
event i, and Ej,i is the respective observed probability. The
probability of the analysis ensemble to model volcanic ash
concentrations within eight verification classes is analyzed.
These classes are [10, 50 µgm−3], [50, 100 µgm−3], [100,
250 µgm−3], [250, 500 µgm−3], [500, 1000 µgm−3], [1000,
1500 µgm−3], [1500, 2000 µgm−3], and [2000 µgm−3,∞).
The observed probability is Ej,i = 1 if the nature run vol-
canic ash concentration is within a certain class and Ej,i = 0
otherwise. A perfect probabilistic forecast results in a Brier
score close to 0. The small threshold values are chosen to
see the performance of the ensemble for analyzing the full
volcanic ash cloud. Further, the number of grid cells with
large volcanic ash concentrations is limited, which renders
the Brier score inapplicable. Finally, the forecast probability
of the analysis ensemble is analyzed. The forecast probabil-
ity is computed as the relative number of ensemble mem-
bers predicting the event (i.e., the number of ensemble mem-
bers forecasting volcanic ash concentrations within a certain
class).

3 Validation of ESIAS-chem

The ability of ESIAS-chem to provide quantitative estimates
of the volcanic ash emission uncertainty is explored by
identical-twin experiments. Identical-twin experiments are
necessary, yet not sufficient standard test procedures for val-
idating spatiotemporal data assimilation and inverse model-
ing setups. They are idealized experiments as they rest on the
“perfect model assumption” and its analog for the data side:
exactly known accuracy and representativity. This provides a
total knowledge of the “synthetic truths” as given by simula-
tions with the same model and extraction of artificial “mea-
surements/soundings” thereof. The term identical twin refers
to the fact that observations and a priori knowledge are con-
structed from the same model and input data, in which only
the parameters to be optimized (emission profile in our case)
differ. Given the identical-twin assumption the experiment is
then to be made realistic in all other respects. Daley (1991)
concludes however that identical-twin experiments “err on
the optimistic side”. Yet, the applicability of ESIAS-chem to
real volcanic eruptions will be shown in a companion paper.

3.1 Experimental setup

In this study, ESIAS-chem is online coupled to the regional
air quality model EURAD-IM (EURopean Air pollution Dis-
persion – Inverse Model, Elbern et al., 2007). As we regard
the differences of feedbacks of the ash clouds on the mete-
orological evolution as not critical on the forecast timescale
in our idealized tests, the EURAD-IM is offline coupled with
the Weather Research and Forecasting (WRF) model version
3.7 (Skamarock et al., 2008, https://www2.mmm.ucar.edu/
wrf/users/download/get_sources.html#WRF-ARW, last ac-
cess: 18 January, 2022). Meteorological boundary conditions
are taken from the ECMWF (European Centre for Medium-
Range Weather Forecasts) analysis. The simulations have
been run on the JUQUEEN supercomputer (Jülich Super-
computing Centre, 2015).

The ESIAS-chem system is tested for notional volcanic
eruptions of the Eyjafjallajökull volcano, Iceland, on 15 and
29 April 2010. These dates were chosen as different mete-
orological conditions – with strong and weak winds at the
volcano – occurred. Column mass loading of volcanic ash
in [gm−2] is extracted as fictional observation data yi ev-
ery 6 h from a nature run, simulated by the forward model
of EURAD-IM. These data mimic cloud-free retrievals from
the Spinning Enhanced Visible and Infrared Imager (SE-
VIRI) onboard the geostationary Meteosat Second Genera-
tion satellite, with significantly larger time steps (6 h in this
analysis), however. The synthetic observations from the na-
ture run are extracted from the full domain including grid
cells containing volcanic ash and those without volcanic
ash. The information on ash-free areas is necessary in or-
der to avoid estimates of spurious emissions at false times
and heights in the analysis. Quasi-continuous data streams of
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Figure 2. Hovmöller-like plot of the volcanic ash emission profile
used in the nature run to generate the synthetic observations simu-
lating SEVIRI-like column mass loading data for the ESIAS-chem
system tests. Shown is the emission rate (colored) for a given time
(x axis) and height above the volcano (y axis).

emissions and observations, as available in real applications,
prohibit any attribution of time–height ash emissions to later
ash column retrievals for test purposes. In fact, while the re-
striction of the data flux to 6-hourly time intervals in our test
scenarios reduces the information used, it helps to attribute
column mass loading observations to older and recent emis-
sions within the chosen resolution. We found a 6 h interval
for column mass loading data supply practicable. For later
operational purposes the use of the full high-frequency data
supply is readily adaptable.

The uncertainty of volcanic ash column mass loading ob-
servations is about 40 % (Western et al., 2015; Clarisse and
Prata, 2016) or even higher (Wen and Rose, 1994; Kylling
et al., 2014). For the identical-twin experiments in this study,
the observation error needs a special treatment because a rel-
ative error overemphasizes the system to low observed val-
ues. Further, no relative error for observations of no volcanic
ash can be obtained. Therefore, the following expression for
the observation error σy i with a minimum error of 0.1 gm−2

is used:

σy i =max
[

(yi · 0.4)2

maxj (yj · 0.4)
,0.1

]
. (11)

With this choice of observation error, the impact of low vol-
canic ash values observed at the edge of the volcanic ash
cloud on the analysis is diminished. For applications to real
volcanic eruptions, the observation error provided by the
satellite retrieval per pixel should be considered.

The Hovmöller-like plot of the nature run emission pro-
file is shown in Fig. 2. It shows the variable emission rate by
a height–time graphic above the volcano. The selected sub-
Plinian eruption type (Bardintzeff and McBirney, 2000) is

Figure 3. Illustration of the varying assimilation window lengths for
the identical-twin experiment (filled bars). After each assimilation
window, a free forecast until 36 h after the start of the simulation
is appended (hatched bars). Color codes and experiment IDs corre-
spond to the annotations in the subsequent figures. The gray back-
ground area indicates the duration of the volcanic eruption from
hours 2 to 8.

characterized by two short explosive phases between 02:00–
04:00 and 06:00–08:00 UTC reaching a height of approx.
8 km above the volcano.

The length of the assimilation window influences the per-
formance of the inversion algorithm due to differences in ver-
tical and horizontal mixing and vertical wind shear. Hence,
the performance of ESIAS-chem is tested for different as-
similation window lengths. All assimilation windows start
at 00:00 UTC for the specific day and last for 6–36 h. Fig-
ure 3 illustrates the different assimilation window lengths,
which differ in length by multiples of 6 h. With increased res-
idence time in the atmosphere, the volcanic ash at different
heights becomes more horizontally split by wind shear. This
effect can be exploited by increasing the assimilation win-
dow length. Contrary to this, vertical and horizontal mixing
of volcanic ash may limit the benefit that is gained by increas-
ing the assimilation window length. For example, if volcanic
ash emitted by two different emission packages is mixed, it
is impossible to attribute the volcanic ash to one or the other
emission package. Once the volcanic ash emissions are opti-
mized, a forecast is appended until 36 h after the simulation
start (hatched areas in Fig. 3). Thus, beneficial impacts of the
inversion results for the analyses with differing assimilation
window lengths can be assessed.

The first real-weather test day to which ESIAS-chem is
applied is 15 April 2010, which was characterized by strong
west–northwesterly winds in Iceland. This is illustrated by
the wind profile at the volcano (Fig. 4a) for the whole simula-
tion length of 36 h and the wind field over Europe at 500 hPa
on 15 April 2010, 12:00 UTC (Fig. 4b). During this day, the
polar front and the polar jet stream are located above Iceland,
driving the volcanic ash to travel fast southeast towards conti-
nental Europe, with wind speeds of up to 60 ms−1 at heights
of 5–8 km above the volcano. Figure 4c shows a vertical
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cross section of pressure and temperature along the red line
in Fig. 4b at 12:00 UTC on 15 April 2010. As indicated by
the intersection of the isobars and isotherms, 15 April 2010
is characterized by substantial vertical wind shear above Ice-
land, which is expected to ease the distinction of volcanic ash
emitted at different heights as seen from above.

In addition to the synoptic scenario on 15 April 2010, a
second analysis of ESIAS-chem’s performance is made for a
hypothetical sub-Plinian eruption of the Eyjafjallajökull vol-
cano on 29 April 2010 (Fig. 5). A similar emission profile is
taken as depicted in Fig. 2, yet with slightly different emis-
sion rates. This day is characterized by weak winds of ap-
proximately 10 ms−1 in the vicinity of the volcano, which is
illustrated by Fig. 5. Thus, the emitted volcanic ash is only
slowly transported. Additionally, the vertical wind shear on
29 April 2010, 12:00 UTC, is low, as indicated by a higher
barotropicity above Iceland (Fig. 5c). The two dates were
chosen because of their different wind patterns and the real
eruption of the Eyjafjallajökull that occurred during these
days. Hence, the identical-twin experiment provides an opti-
mal case scenario for the application of ESIAS-chem to real
volcanic eruptions.

3.2 Evaluation of ESIAS-chem

3.2.1 Volcanic ash dispersion

The ability of the analysis ensemble mean to predict the vol-
canic ash dispersion is investigated using the pattern corre-
lation coefficient (pcc) and the relative mean absolute error
(RMAE) introduced in Sect. 2.2. The pattern correlation co-
efficient is shown in Fig. 6 for the 2 analysis days. The lines
in Fig. 6 indicate results for different assimilation window
lengths as illustrated by Fig. 3. Figure 6 shows a constantly
large pattern correlation coefficient > 0.95 after the artificial
eruption terminated at 08:00 UTC for both analysis days, ex-
cept for assimilation window lengths of 6 and 12 h. By apply-
ing an assimilation window of 6 h from the simulation start,
the artificial volcanic eruption has not terminated; thus, the
latest emissions from the nature run volcanic eruption are
not considered in the analysis. This leads to a reduced pcc
for the 6 h assimilation window test case. The assimilation
window of 12 h ends 4 h after the termination of the artifi-
cial volcanic eruption. The reduced pcc shows that this short
assimilation window is not sufficient in order to analyze the
correct emission profile. Thus, with increasing time after the
end of the assimilation window, the pcc decreases to approx.
0.88 on 15 April 2010 and approx. 0.92 on 29 April 2010.
The high pcc values indicate that the assimilation of column
mass loading to estimate volcanic ash emissions succeeds to
retrieve the horizontal extent of the volcanic ash cloud. How-
ever, the pattern correlation coefficient is a measure for vol-
canic ash column mass loading above and below the chosen
threshold. It does not measure differences in the strength of
volcanic ash column mass loading above the threshold.

Increasing the assimilation window length (i.e., taking
later observations into account) increases the pattern corre-
lation coefficient on both days. The analysis suggests that for
the respective test cases an assimilation window of 18 h, that
is 10 h after the artificial eruption terminated, is sufficient for
ESIAS-chem to analyze the exact location of the volcanic
ash cloud as observed from space leading to a pcc value that
remains high (> 0.95) throughout the full analysis time pe-
riod of 36 h. Figure 6 demonstrates that the inversion system
is able to accurately analyze the horizontal extent of the vol-
canic ash cloud.

Figure 7 shows the RMAE for volcanic ash column mass
loading on both days. The RMAE is relatively constant for
the duration of the simulations, except for the 12 h assimi-
lation window case in Fig. 7a. At the end of the simulation
time at 36 h, the test cases with longer assimilation windows
(≥ 18 h) show an RMAE of the order of 10 % for both days.
These low values show the good performance of the analy-
sis for these assimilation window lengths with respect to the
nature run. In principle, Fig. 7 corroborates the same find-
ings that are analyzed for the pattern correlation coefficient,
i.e., increasing the assimilation window length decreases the
error of the analysis ensemble mean. For both days and me-
teorological circulation patterns, an assimilation window of
18 h is sufficient to reduce the RMAE to a value of approx.
10 % for column mass loading values above 0.2 gm−2. On
15 April 2010, assimilation windows larger than 24 h result
in a slightly higher RMAE than the analysis using an as-
similation window of 18 h. This is a result of the conver-
gence of volcanic ash in the upper troposphere south of Nor-
way around 24 h after the simulation has started (not shown).
Thus, additional observations at later times do not contribute
significant information to the inversion system. In summary,
Fig. 7 proves that the inversion system is able to analyze the
distribution of volcanic ash column mass loading properly
for weak and strong wind conditions.

The above analysis focuses on the comparison of the na-
ture run and the ensemble mean with respect to column
mass loading of volcanic ash. Thus, it does not provide any
information about the vertical distribution of volcanic ash.
The ability of ESIAS-chem to infer vertical profiles of vol-
canic ash is given in Fig. 8, which displays the relative
mean absolute error of the volcanic ash concentrations above
10 µgm−3. The RMAE of the volcanic ash concentrations de-
creases by increasing the assimilation window length, which
is especially visible for 29 April 2010. On both days, an as-
similation window of only 6 h results in an RMAE larger than
100 %. Therefore, this test case is not shown in Fig. 8. The
RMAE for the 12 h assimilation window test case shows a
spike at 12:00 UTC. This results from the insufficient estima-
tion of the upper part of the eruption column in the second ex-
plosive phase of the eruption (see Fig. A2 in the Appendix).
This error was smoothed out in the subsequent hours of the
simulation. On average, the RMAE reduces to about 20 % on
both days for assimilation windows larger than 18 h, which
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Figure 4. Meteorological conditions on 15 April 2010. (a) Wind speed above the volcano for the whole simulation period. (b) Wind speed
at 500 hPa on 15 April 2010, 12:00 UTC, which corresponds to approx. 5 km above the volcano. (c) Vertical cross section of isobars in [hPa]
(red) and isotherms in [K] (gray) along the red line in (b) on 15 April 2010, 12:00 UTC.

Figure 5. Meteorological conditions on 29 April 2010. (a) Wind speed above the volcano for the whole simulation period. (b) Wind speed
at 500 hPa on 29 April 2010, 12:00 UTC, which corresponds to approx. 5 km above the volcano. (c) Vertical cross section of isobars in [hPa]
(red) and isotherms in [K] (gray) along the red line in (b) on 29 April 2010, 12:00 UTC.
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Figure 6. Pattern correlation coefficient defined by Eq. (7) for the eruption on (a) 15 April 2010 and on (b) 29 April 2010. The different lines
indicate different assimilation window lengths from 6 h (gray) to 36 h (magenta) as defined by Fig. 3.

Figure 7. Relative mean absolute error of column mass loading defined by Eq. (9) for the eruption on (a) 15 April 2010 and on (b) 29 April
2010. The different lines indicate different assimilation window lengths from 6 h (gray) to 36 h (magenta) as defined by Fig. 3.

shows the good performance of the ESIAS-chem analysis not
only in terms of column mass loading but also in terms of the
vertical distribution of the volcanic ash in the atmosphere.

3.2.2 Emission profile

As an example, the analysis results using an assimilation
window of 24 h are investigated in more detail. This test case
is chosen as the previous analysis showed the good perfor-
mance of the 24 h assimilation window experiments. Further,
an assimilation window of 24 h is a reasonable choice for ei-
ther analysis of longer-lasting volcanic eruptions or an opera-
tional use. The analyzed ensemble mean emission profiles for
other assimilation window lengths are shown in Appendix A
along with the relative error. Figures 9 and 10 display the
profile of (a) the nature run emissions, (b) the ensemble mean
emissions, (c) the relative error of the ensemble mean,

RE=
x− y

max(y)
, (12)

and (d) the relative ensemble standard deviation,

σrel =
σx

max(y)
, (13)

for the 24 h assimilation window experiments on 15 and
29 April 2010. Herein, x and y are the ensemble mean and
nature run emissions, respectively, and σx is the ensemble
standard deviation.

The total nature run emissions on both days (4.25× 108

and 4.30× 108 t on 15 April and 29 April, respectively) are
well captured by the analyzed total emissions with mean
emissions of 4.60× 108 and 4.10× 108 t, respectively, and
standard deviations of 3.67× 107 and 3.47× 107 t. The rela-
tive error of the total emitted volcanic ash is 7.7 % and 4.7 %,
respectively. On 15 April 2010, the analyzed emission pro-
file of the ensemble mean shows the two explosive eruptions
of the nature run emission profile with the correct height of
the maximum emissions at the right time (Fig. 9b). Even
though the ensemble mean shows a vertically and temporally
smoothed emission profile, the false emissions are low with
respect to the maximum emissions. The relative error of the
ensemble mean emissions is of the order of 10 %–20 % for
most emission times and heights (see Fig. 9c) and therefore,
the results are similar to the analysis presented before. The
relative ensemble standard deviation is of the same order as
the relative error of the ensemble mean emissions, indicating
a reasonable ensemble spread.
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Figure 8. Relative mean absolute error of the volcanic ash concentrations defined by Eq. (9) for the eruption on (a) 15 April 2010 and on
(b) 29 April 2010. The different lines indicate different assimilation window lengths from 12 h (red) to 36 h (magenta) as defined by Fig. 3.

Figure 9. Comparison of the emission profiles of the nature run and ensemble mean for 15 April 2010. The figure shows (a) the nature run
emission profile and (b) the ensemble mean emission profile. For comparison, (c) the relative error of the ensemble mean and (d) the relative
ensemble standard deviation are illustrated.

The analyzed emission profile of the ensemble mean on
29 April 2010 (Fig. 10b) however shows strong deviations
from the nature run emission profile (Fig. 10a). Although
the highest-level emissions of the nature run emission profile
at 8 km height are well captured by the ensemble mean, at
lower levels no distinction between the two explosive erup-
tions is obtained. In comparison to the analyzed emissions
on 15 April 2010, the analyzed emissions of the ensemble
mean on 29 April 2010 are more uniform in time and height.
Thus, large errors in both directions can be identified: neg-
ative errors during the explosive eruptions at around 03:00

and 07:00 UTC indicate an underestimation of the emissions,
while positive errors outside the two explosive eruptions in-
dicate an overestimation of the emissions. This diffusion ef-
fect reflects the typical challenge of solving ill-posed prob-
lems in reconstructing sharp spatial and temporal gradients.
Nonetheless, the height and final time of the eruption are well
analyzed by the ensemble mean on both days, which is basi-
cally a result of including no-volcanic-ash observations.

The analyzed emission profile on 29 April 2010 shows
the limits of the ESIAS-chem approach. While the volcanic
ash column mass loading have only low errors, the emis-
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Figure 10. Comparison of the emission profiles of the nature run and ensemble mean for 29 April 2010. The figure shows (a) the nature run
emission profile and (b) the ensemble mean emission profile. For comparison, (c) the relative error of the ensemble mean and(d) the relative
ensemble standard deviation are illustrated.

sion profile shows large deviations up to 60 % and more
(Fig. 10c). The ensemble standard deviation of the emission
profile (Fig. 10d) is lower than the relative error of the en-
semble mean and ranges around 20 %. The results indicate
that on 29 April 2010 the mixing of volcanic ash in the at-
mosphere is too effective, which prohibits a proper estimate
of volcanic ash emission profiles. However, the previous re-
sults show that even though the volcanic ash emission profile
could not be properly estimated by the system on 29 April
2010, the vertical and horizontal distribution of volcanic ash
in the atmosphere is fairly represented by the ensemble mean.

3.2.3 Probability analysis

The proper analysis of high volcanic ash concentrations in
the atmosphere as well as their forecast accuracy are of great
importance for air safety advisory services. Yet, only the abil-
ity of ESIAS-chem to provide reasonable estimates of verti-
cally resolved volcanic ash forecasts and analysis is shown.
Thus, in this section the probability estimate of the analy-
sis ensemble for the volcanic ash emissions and the resulting
concentrations remains to be discussed. Figure 11 shows the
histogram of the relative emission factor for different assim-
ilation window lengths for the test case on 15 April 2010 as
given by the analysis ensemble. The relative emission factor
is calculated for each time–height combination (t,k) of the
emission profile by dividing the emission rate of each mem-

ber of the analysis ensemble ER(i)t,k by the respective nature
run emission rate ERNR

t,k :

relEF(i)t,k =
ER(i)t,k
ERNR

t,k

. (14)

Thus, emissions in the analysis ensemble that are temporally
or vertically outside the nature run emission profile are not
considered. The calculation of the histogram in Fig. 11 in-
cludes all emissions and four different subsets of emission
strengths (the strongest 50 %, 25 %, and 10 % emissions).
The relative emission factors for the 12 h assimilation win-
dow test case tend to underestimate the emissions of the na-
ture run (Fig. 11a, d). By increasing the assimilation window
length, the histograms peak around factor 1, while the oc-
currences of underpredicting the nature run emission rates
diminish. A relative emission factor of 1 indicates a good
match of the analyzed and nature run emission rates. This
improvement by increasing the assimilation window length
is especially true for the top 10 % emission rates in Fig. 11d.

Figure 12 shows the histograms of the relative emission
factors for the analysis on 29 April 2010. In general, the anal-
ysis tends to underestimate the emission rates as was previ-
ously discussed in Sect. 3.2.2. This results in a bias toward
too small relative emission factors in the histograms. How-
ever, by increasing the assimilation window length, the un-
derestimation of the emission rates by the analysis ensemble
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Figure 11. Histogram of the relative emission factors for different assimilation window lengths for the test case on 15 April, 2010 with color
codes as in Fig. 3. The relative emission factor is calculated according to Eq. (14). The histograms are shown for (a) all emission rates, (b) the
top half, (c) the top 25 %, and (d) the top 10 % emission rate.

Figure 12. Histogram of the relative emission factors for different assimilation window lengths for the test case on 29 April 2010, with color
codes as in Fig. 3. The relative emission factor is calculated according to Eq. (14). The histograms are shown for (a) all emission rates, (b) the
top half, (c) the top 25 %, and (d) the top 10 % emission rate.

reduces. For the strongest 25 % of the emission rates, assimi-
lation windows longer than 18 h show a second maximum at
a relative emission factor of 1 (Fig. 12c). These test cases also
show a lower rate of underprediction for the top 10 % emis-
sion rates (Fig. 12d). Thus, the results suggest that the relia-
bility of the ensemble to analyze the strong emission rates in
the upper emission plumes increases with increasing assimi-

lation window length for both meteorological conditions, yet
with different significance.

The accuracy of the probabilistic prediction of volcanic
ash concentrations by the ensemble is measured by the Brier
score (see Sect. 2.2). The Brier score is shown in Fig. 13
for each hour and for all assimilation window lengths. The
Brier score for assimilation windows greater than or equal to
18 h shows a low value around 0.15 on both analysis days,

https://doi.org/10.5194/gmd-15-1037-2022 Geosci. Model Dev., 15, 1037–1060, 2022



1052 P. Franke et al.: ESIAS-chem

Figure 13. Brier score as calculated by Eq. (10) for each hour and all assimilation window lengths for (a) 15 April and (b) 29 April 2010.

which is constant over time. Shorter assimilation windows
have larger Brier score values that increase with simulation
lead time. This increase in the Brier score for short assim-
ilation windows is caused by insufficient estimates of the
volcanic ash emissions, which lead to errors in the resulting
volcanic ash concentrations as compared to the nature run.
Thus, with increasing forecast time, the volcanic ash concen-
trations are attributed more and more to different classes used
for the calculation of the Brier score. This reduces the under-
lying probability and increases the Brier score. With increas-
ing time after the volcanic eruption, the volcanic ash con-
centrations reduce due to dispersion and deposition. Lower
volcanic ash concentrations have larger errors (not shown)
meaning that ESIAS-chem is less able to predict these low
concentrations with high confidence. Especially for shorter
assimilation window lengths, ESIAS-chem is not able to es-
timate the emission profile properly. Thus, the corresponding
volcanic ash is emitted into false layers or at false times lead-
ing to larger errors in the probabilistic forecast.

As an example, the following analysis aims to assess the
confidence of the ensemble prediction of volcanic ash using
the 24 h assimilation window experiment. Fig. 14a compares
the probability of volcanic ash column mass loading exceed-
ing 2 gm−2 on 16 April 2010, 00:00 UTC. Additionally, the
nature run’s volcanic ash column mass loading contours for
0.5, 1, and 2 gm−2 are overlaid by blue lines. On 15 April
2010, wind conditions are favorable for volcanic ash to dis-
perse rapidly. Thus, the area containing high volcanic ash
column mass loading covers only a small region above south
Sweden. The ensemble predicts a probability of more than
90 % for high volcanic ash column mass loading in this area.
A small probability of about 20 %–30 % of volcanic ash col-
umn mass loading exceeding the threshold of 2 gm−2 is also
predicted above the North Sea, where nature run’s volcanic
ash column mass loading exceeds 1 gm−2.

Figure 14b shows the vertical cross section along the red
line in Fig. 14a, where the shading shows the probability
of volcanic ash exceeding 500 µgm−3. Nature run’s volcanic
ash concentrations are displayed by isolines of 250, 350, and

500 µgm−3. As the dispersion of volcanic ash leads to low
volcanic ash concentrations on 16 April 2010, 00:00 UTC,
the threshold of 500 µgm−3 for calculating the exceedance
probability was chosen instead of using the official threshold
of 2 mgm−3 (Prata and Prata, 2012, and references therein).
The nature run’s volcanic ash concentrations of more than
500 µgm−3 at about 7 km height are well represented by the
ensemble with a high probability (> 90 %). Two other loca-
tions in this vertical cross section show nature run’s volcanic
ash concentrations above 500 µgm−3 at approx. 4 km height
in the center of the vertical cross section and at approx. 5 km
height northeast of the center (i.e., to the right in Fig. 14b).
Even though the volcanic ash at 4 km height in the center of
the cross section is covered from above by the elevated vol-
canic ash at 7 km height, the ensemble predicts a 50 % chance
of volcanic ash exceeding the threshold at 4 km height. This
is remarkable, since only vertically integrated observations
of volcanic ash are assimilated. The volcanic ash northeast
of the center of the vertical cross section (i.e., to the right in
Fig. 14b) is predicted by only 20 %–30 % of the ensemble.
The ensemble predicts this volcanic ash in this vertical col-
umn to be at a height of 6–7 km by a chance of more than
70 %. This may be due to the lack of vertical wind shear that
prevents the distinction of volcanic ash emitted at different
height levels.

Figure 15a shows the probability of volcanic ash column
mass loading exceeding 2 gm−2 as predicted by the ensem-
ble on 30 April 2010, 12:00 UTC, i.e., 36 h after the simula-
tion start and 12 h after the end of the assimilation window.
Isolines of nature run’s volcanic ash column mass loading
for 0.5, 1, and 2 gm−2 are also given by blue lines. A vertical
cross section of the probability of volcanic ash concentration
exceeding 2 mgm−3 along the red line in Fig. 15a is shown
in Fig. 15b. Even though the emission profile on 29 April
2010 was not well analyzed, the ensemble predicts the high
volcanic ash concentration with a probability of more than
90 %. Figure 15b shows a vertically tilted volcanic ash cloud.
This suggests that only little vertical mixing occurred on
29 April 2010 in the displayed vertical cross section. Thus,
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Figure 14. Probability maps on 16 April 2010, 00:00 UTC, from the 24 h assimilation window test case. (a) Probability of the analysis
ensemble for volcanic ash column mass loading exceeding 2 gm−2 (shaded areas). Contour lines of nature run volcanic ash column mass
loading for 0.5, 1, and 2 mgm−2 are given by blue lines. (b) Vertical contours of the probability of the analysis ensemble of volcanic ash
concentration exceeding 500 µgm−3 along the red dashed line in (a). Contour lines of nature run volcanic ash concentrations for 250, 350,
and 500 µgm−3 are shown by blue lines.

the falsely emitted volcanic ash in the horizontally smoothed
analysis emission profile leads to similar volcanic ash con-
centrations, which suggests that horizontal mixing of vol-
canic ash happened. Hence, an exact estimation of the emis-
sion profile is generally impossible from column mass load-
ing observations as different emission packages lead to sim-
ilar volcanic ash concentrations and/or column mass load-
ings. However, the good performance in analyzing the ver-
tical structure of the volcanic ash cloud is partly due to the
perfect model and/or perfect meteorology assumption made
in this study. The reliable estimate of the emission profile for
the test case with strong wind shear suggest that the vertical
structure of the volcanic ash is also sufficiently estimated un-
der real conditions, where meteorological forecast uncertain-
ties impose a limiting factor to further improvements. This
needs to be proved in the application to real volcanic erup-
tions.

4 Discussion and conclusions

In this study, a new method for estimating volcanic ash emis-
sions and its uncertainty from column mass loading obser-
vations is developed. This new method is realized by the
atmospheric chemical part of the Ensemble for Stochas-
tic Integration of Atmospheric Simulations (ESIAS-chem).
The method comprises an ensemble-based particle smoother,
which extends the assimilation window to include the latest
observations available. The discrete-grid ensemble Nelder–
Mead method (DENM) is developed in order to efficiently
achieve a posterior ensemble representation of the time-
dependent emission profile. The particle smoother approach
enables us to use the latest observations for the estimation of
the emission profile within the whole assimilation window,

while consistency with all observations within the time inter-
val is enforced.

The system was applied in an idealized setup to a notional
eruption of the Eyjafjallajökull volcano, Iceland, on 15 April
and 29 April 2010 using a sub-Plinian-type eruption with two
short eruption plumes. Both days were characterized by dif-
ferent meteorological conditions. On 15 April 2010, strong
winds were present at the volcano, while on 29 April 2010,
winds were weak. In the identical-twin experiments, differ-
ent assimilation window lengths have been tested to investi-
gate the influence of increasing observation sequences on the
analysis quality. The main findings in this study are that

– the error of the analyzed column mass loading and vol-
canic ash concentrations by the ensemble mean is only
10 % on 15 April and 20 % on 29 April 2010,

– the total emitted mass of volcanic ash is reasonably well
estimated by the analysis ensemble on both days,

– by increasing the assimilation window length, the en-
semble performs increasingly better in analyzing the
emission rates, especially for high emission rates in the
upper part of the eruption column,

– on 15 April 2010, a second lower volcanic ash layer
covered from above by the main volcanic ash cloud was
predicted by about 50 % of the ensemble members.

Due to the identical-twin approach, the presented inves-
tigation acts as a best-case scenario for probabilistic vol-
canic ash assessments. The analysis is idealized in different
ways: the uncertainties in meteorological fields (especially in
winds) in model parameters (e.g., deposition velocity), and
parametrizations (e.g., clouds) have been neglected. Further,
the amount of observational data is exceptionally large, with
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Figure 15. Probability map on 30 April 2010, 12:00 UTC, from the 24 h assimilation window test case. (a) Probability of the analysis
ensemble for volcanic ash column mass loading exceeding 2 gm−2 (shaded areas). Contour lines of nature run volcanic ash column mass
loading for 0.5, 1, and 2 gm−2 are given by blue lines. (b) Vertical contours of the probability of the analysis ensemble of volcanic ash
concentrations exceeding 2 mgm−3 along the red dashed line in (a). Contour lines of nature run volcanic ash concentrations for 0.5, 1, and
2 mgm−3 are shown by blue lines.

observations of the full domain every 6 h. Thus, observations
of ash-free areas allow for removing volcanic ash emissions
from the analysis. The ability of ESIAS-chem to give reli-
able results for real volcanic eruptions using non-idealized
meteorology and incomplete observations will be addressed
in a follow-up study. Even though direct observations of vol-
canic ash columns were used in this study, ESIAS-chem is
extremely flexible in terms of observational data. All kinds
of data can be used to constrain the inversion method, such
as samples of tephra fall-out, if available.

ESIAS-chem is designed to account for additional infor-
mation on the emission profile, which may, for example, be
obtained from radar or webcam observations (e.g., Arason
et al., 2011). Thus, changes in the vertical or temporal reso-
lution of the emission profile are applicable if suggested by
observations without noteworthy modifications.

In this study, ESIAS-chem was challenged with highly
variable volcanic ash emissions. The analysis has shown that
ESIAS-chem is able to provide good estimates of the vol-
canic ash concentration in the atmosphere as well as its fore-
cast probability. Further, the emission profile was estimated
reasonably well at least for the strong wind test case for as-
similation window lengths greater than 18 h. However, the
ideal length of the assimilation window may depend on the
current meteorological situation, most notably the vertical
wind shear, and the availability of observational data. Thus,
in applications to real volcanic eruptions the assimilation
window should be as large as practicably possible to include
a large number of observations linking the eruption time of
particles with observation time.

The system shows a high probability in estimating the ver-
tical distribution of high volcanic ash concentration for both
test dates. Although the system lacks the ability to estimate
the true emission profile sufficiently well for weak wind con-
ditions, the analysis of the probability of volcanic ash showed
that its vertical distribution in the atmosphere is reliably pre-
dicted.

Besides volcanic ash eruptions, ESIAS-chem is appli-
cable to a variety of emission scenarios, especially unex-
pected emission events like forest fires and mineral dust
events. Therefore, it provides a fast and efficient model for
source term estimation including uncertainty representation.
In principle, the method can be adapted to multi-source emis-
sion scenarios. The enhanced need for compute resources of
ESIAS-chem can partly be compensated for by reducing the
resolution of the emission profile. For the analysis of real
volcanic ash emissions, it is intended to use a meteorologi-
cal ensemble to account for additional uncertainties in wind
fields, which is well applicable within the concept of ESIAS-
chem. It is noted that ESIAS-chem is flexible in integrating
other modules and is applicable to other atmospheric models
as well.
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Appendix A: Comparison of emission profiles for all
assimilation windows

Table A1. Nomenclature for variables used in this study.

NT number of time steps
Kmax number of vertical model layers
Nemis number of pairwise distinct emission packages (NEmis =NT ·Kmax)
s vector of pairwise distinct emission packages of default strength
a vector of scaling factors for the emission packages with

components ai (a: its optimal values)
H observation operator
M operator for the source–receptor model
R observation error covariance matrix
y observation vector
c default emitted mass of ash (constant)
ei ith unit vector
x modeled volcanic ash concentration
xk modeled volcanic ash concentration in model layer k
x̂ column mass loading of the model state
1zk thickness of layer k in meters
NN0 bulk of positive integers (including 0)
RN bulk of real numbers
p(·) probability density function
NEns size of the analysis ensemble (i.e., number of ensemble members)
(·)(i) superscript indicating ensemble member i
δ(·) Kronecker delta function
w(i) weight of ensemble member i according to the particle filter formulation
ti time step i
B estimated covariance matrix for the scaling factors a

σyi observation error for observation yi (diagonal elements of R)
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Figure A1. Emission profile of the ensemble mean (left panels) and its relative error to the nature run emission profile (right panels) for
different assimilation window lengths on 15 April 2010.
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Figure A2. Emission profile of the ensemble mean (left panels) and its relative error to the nature run emission profile (right panels) for
different assimilation window lengths on 29 April 2010.
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