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Abstract. An interpolation programme coded in Fortran for
irregular N -dimensional cases is presented and freely avail-
able. The need for interpolation procedures over irregular
meshes or matrixes with interdependent input data dimen-
sions is frequent in geophysical models. Also, these models
often embed look-up tables of physics or chemistry mod-
ules. Fortran is a fast and powerful language and is highly
portable. It is easy to interface models written in Fortran
with each other. Our programme does not need any libraries;
it is written in standard Fortran and tested with two usual
compilers. The programme is fast and competitive compared
to current Python libraries. A normalization option parame-
ter is provided when considering different types of units on
each dimension. Some tests and examples are provided and
available in the code package. Moreover, a geophysical appli-
cation embedding this interpolation programme is provided
and discussed; it consists in determining back trajectories us-
ing chemistry-transport or mesoscale meteorological model
outputs, respectively, from the widely used CHIMERE and
Weather Research and Forecasting (WRF) models.

1 Introduction

Interpolation is commonly used in geophysical sciences for
post-treatment processing to evaluate model performance

against ground station observations. The NetCDF Operators
(NCO) library (Zender, 2008) is commonly used in its recent
version (v4.9.2) for horizontal and vertical interpolations to
manage climate model outputs. The most frequent need is
to interpolate in 3-D spatial dimension and time, and there-
fore in four dimensions. Fortran is extensively used for atmo-
sphere modelling software (Sun and Grimmond, 2019; e.g.
the Weather Research and Forecasting model – WRF, Ska-
marock et al., 2008; the Geophysical Fluid Dynamics Lab-
oratory atmospheric component version 3 – GFDL AM3,
Donner et al., 2011). More generally, geophysical models can
use look-up tables of complex modules instead of a full cou-
pling strategy between these modules, which is the case of
the CHIMERE model (Mailler et al., 2017) with the embed-
ded ISORROPIA module dealing with chemistry and ther-
modynamics (Nenes et al., 1998, 1999). In such a case, the
look-up table can easily exceed five dimensions to approxi-
mate the model. In parallel, artificial intelligence methods are
developed and can explore the behaviour of complex model
outputs that requires fast interpolation methods. While more
recent modern languages like Python are used in the scien-
tific community, Fortran remains widely used in the geo-
physics and engineering community and is known as one
of the faster languages in time execution, performing well
on array handling, parallelization and, above all, portability.
Some benchmarks are available on website to evaluate the
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performance of languages on simple to complex operations
(Kouatchou, 2018).

The parameterization techniques proposed to manage
aerosol–droplet microphysical schemes (Rap et al., 2009)
can employ either the modified Shepard interpolation method
(Shepard, 1968) or the Hardy multiquadric interpolation
method (Hardy, 1971, 1990), and the numerical results ob-
tained show that both methods provide realistic results for a
wide range of aerosol mass loadings. For the climate com-
munity, a comparison of six methods for the interpolation
of daily European climate data is proposed by Hofstra et al.
(2008); some of these methods use kriging-like methods with
the capability to use co-predictors like the topography.

A Python procedure called scipy.interpolate.griddata is
freely available (Scipy, 2014). Unfortunately, this pro-
gramme is not really adapted to our problem; it could be not
enough optimized for our objective as it can manage fully
unstructured datasets. The goal of this paper is to present a
programme to interpolate in a grid or a matrix which can be
irregular (varying intervals) but structured, with the possibil-
ity to have interdependent dimensions (e.g. longitude inter-
val edges which depend on longitude, latitude, altitude and
time). We think this type of programme can be easily imple-
mented within models or to manage model outputs for post-
treatment issues. In short, the novelty of this programme is to
fill the gap of interpolation issues between the treatment of
very complex unstructured meshes and simple regular grids
for a general dimension N .

In order to quantify the impact of such a new interpola-
tion programme and show examples of its use, it is imple-
mented in the Backplumes back-trajectory model, developed
by the same team as the CHIMERE model (Mailler et al.,
2017). This host model is well fit for this implementation,
because the most important part of its calculation is an in-
terpolation of a point in a model grid box. This paper de-
scribes (i) the methodology and the content of the interpo-
lation programme package NterGeo and (ii) an application
of this programme embedded in the new back-trajectory pro-
gramme, Backplumes. These two codes are freely avail-
able (see code availability section).

2 Development of the interpolation programme

The NterGeo programme is fit for exploring irregular but
structured grids or look-up tables defined by a unique size
for each dimension, which of course can be different from
one to another dimension. The space intervals can vary along
a dimension and the grid interval edges in each dimension
can depend on other dimensions. Two versions have been de-
veloped: (i) a version for “regular” arrays with independent
dimensions and (ii) a “general” version for possible interde-
pendent dimensions, e.g. to handle 3-D meshes which have
time-varying spatial coordinates. The code does not need any
libraries and is written in standard Fortran. Our interpolation

Figure 1. Description of variables for N = 3 with a regular grid
case.

code was tested with gfortran (GNU Fortran project) and
ifort (Intel). Since our programme does not include spe-
cific options and is not function compiler dependent, there is
no reason to have limitations or errors with other compilers.
The top shell calling script in the package provides two sets
of options for “production” and “debugging” modes. Assum-
ing the X array, the result of the function f transforming X
to Y array in R can be expressed as

Y (x1, . . .,xN )= f (X(x1, . . .,xN )). (1)

N is the dimension of the array, and xi is the coordinates at
dimension i ∈ [1,N ] of the point X that we want to interpo-
late.

2.1 The programme for regular grids

A programme (interpolation_regular.F90) for
regular grids (i.e. with independent dimensions) is available.
To handle this type of grid, a classical multilinear interpo-
lation is performed. Figure 1 shows the variables for N = 3
defined hereafter in the section.

For the particular case of a regular grid with independent
dimensions, the result Ỹ of the multilinear interpolation of
the 2N identified neighbours can be expressed as
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with δi the binary digit equal to 0 or 1, and the weights wδii
for i ∈ [1,N ] defined as

w0
i =

θ1
i − xi

θ1
i − θ

0
i

w1
i = 1−w0

i . (3)

Variable 2i is the list of interval edges on each dimension
i and does not depend on other dimensions. θ δii indicates the
bottom (δi = 0) and top (δi = 1) edges on each dimension i ∈
[1. . .N ] so that xi ∈]θ0

i ,θ
1
i ]. Yk is a one-dimensional array

with 2N elements storing the value Y of the function at the
identified neighbours 9 on each dimension:

Yk(δN . . .δi . . .δ1)= f
(
9(θ

δN
N , . . .,θ

δi
i , . . .,θ

δ1
1 )
)
, (4)

with k ∈ [0,2N − 1].
The tuple (δN . . .δi . . .δ1) is the binary transformation of

integer k defined as
∑N−1
i=0 (δi × 2i). The coefficients 0k =

w
δN
N . . .w

δi
i . . .w

δ1
1 as a product of weighting factors on each

direction can be seen as a binary suite that is convenient
to handle in a compacted and optimized Fortran program-
ming strategy for the regular grid version of the code (Ap-
pendix B).

2.2 The general programme

Considering the general programme called
interpolation_general.F90, the coordinates
of edge points are stored in a one-dimensional array of
n=

∏N
i=1Ii elements with Ii the number of edges on each

dimension i. The tuple of coordinates (j1, . . ., jN ) of an
interval edge θ ik , with ji the indexed coordinate on dimension
i, is transformed in a one-dimensional array indexed on
k ∈ [1,n] by

k =

N∑
j=1

((
ij − 1

) j−1∏
l=0

Il

)
+ 1, (5)

with I0 = 1 for initialization.
Once the nearest neighbour is found, the result Ỹ of the in-

terpolation is a weighting procedure of the 2N closest vertex
using a Shepard interpolation (Shepard, 1968) based on the
inverse distance calculations:

Ỹ =

2N−1∑
k=0

(0k ×Yk), (6)

with Yk = f (ϒk) the value of the function f at neighbourϒk
of coordinates (θ1

k , . . .,θ
N
k ) and

0k =
1/dk∑2N−1

k=0 (1/dk)
. (7)

The distance dk between the point of interest of coordinates
(x1, . . .,xN ) to the neighbour k ∈ [1,n] is calculated as

dk =

(
N∑
i=1
| xi − θ

i
k|
p

) 1
p

. (8)

The previous formulas are valid for dk 6= 0; in the case of
dk = 0, the procedure stops and exits, returning the exact
value of the corresponding data of the nearest neighbour.
For a distorted mesh or matrix, or dimensions with differ-
ent units (e.g. mixing time with length), a hard-coded option
(norm=.true. or .false.) is also available to normalize the in-
tervals with an average interval 1i value for the calculation
of distances, so that

dk =

(
N∑
i=1

(
| xi − θ

i
k |

|1i |

)p) 1
p

. (9)

3 Computation strategy for the general programme

The list of input/output arguments is provided in Ap-
pendix C. In the main programme, calling the subroutine the
key point is to transform first the N -dimension matrix into
a 1-D array. An example of a main programme calling the
subroutine is provided in the code package. The computa-
tion strategy in the subroutine can be broken down into the
sequential steps as follows:

i. Find the nearest neighbour of the input data by minimiz-
ing a distance with a simple incremental method step-
ping every ±1 coordinates on each dimension (detailed
later in this section).

ii. Scan the surroundings of the nearest point within the
matrix on ±1 step on each dimension and store the cor-
responding block of input data to be tested. The size of
the block is therefore (1+ 2× 1)N but can be extended
to (1+ 2× 2)N if we increase the scanning process to
±2 on each dimension (hard-coded option iconf of 1 or
2 in the declaration block).

iii. Calculate the distance to the previously selected input
data. A p-distance concept is adopted (hard-coded op-
tion pnum in the declaration block). The pnum value
p should be greater than or equal to 1 to verify the
Minkowski inequality and be considered as a metric.

iv. Sort the previous block of data in ascending order and
stop the sorting process when the first 2N point is se-
lected. The code offers the possibility to use only the
first N + 1 neighbour (hard-coded option neighb in the
declaration block) that is sufficient and faster in most
cases.

v. Calculate the weights and then the final result.

The first step consisting in finding the first neighbour is the
trickiest and is broken down into several steps. Figure 2 dis-
plays an example in 2-D of the step-by-step procedure to find
the nearest neighbour.
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i. The procedure initializes the process starting from the
first point of the input data grid or taken from the last
closest point if given in an argument as a non-null value.

ii. A delta of coordinates is applied based on an average
delta on each dimension to improve the initialization.
This computation step of delta is externalized as it can
be time consuming and should be done once for all tar-
get points at which we want to interpolate.

iii. A test between the target value and the input data grid
point coordinates determines the ±1 steps to add on
each dimension (see Fig. 2 for an example in 2-D).

iv. If the grid point falls on the edges or outside the borders,
the closest coordinates within the matrix are selected.

v. A test on the p-distance computation between the run-
ning point and the target is performed so that if the dis-
tance calculated at iteration Nit is equal to the distance
at iteration Nit − 2 the closest point is found.

vi. If the distance is larger than the characteristic distance
of the cell, the point is considered to be outside the bor-
ders of the input data grid. Therefore, the code allows a
slight extrapolation if the target point is not too far from
the borders.

vii. At this stage, the procedure can stop if the distance to
the closest vertex is 0, returning to the main programme
with the exact value of the input data grid.

4 Visual example in 2-D for a regular grid

As an example to visualize the capacity of the general pro-
gramme, the 2-D function used in Scipy (2014) is used to test
our procedure. The function is

Y = f (X)= x1× (1− x1)× cos(4πx1)× sin(4πx2
2)

2, (10)

with x1,x2 ∈ [0,1].
Our input data grid is a regular grid with regular intervals

of 0.02 from 0 to 1 for x1 and x2 with therefore 51 points on
each dimension. We propose to interpolate on a finer regular
grid with n= 100×100, 200×200 and 300×300 points on
each dimension. For these three interpolation cases, a nor-
malized mean square error (NMSE) of the result Ỹj for the
full grid point number j can be calculated against the true
value Yj of the function as

NMSE=

1
n

n∑
j=1

(
Ỹj −Yj

)2

1
n−1

n∑
j=1

(
Yj −Yj

)2 , (11)

with Yj the mean value Yj as 1
n

∑n
j=1Yj .

Table 1. Performance for each case with p = 1.

Case 100× 100 200× 200 300× 300

NMSE (%) 0.324 0.319 0.319
CPU time (s) 0.45 1.84 4.1

Table 2. Performance for the 5-D (N = 5) case with p = 2.

Number of neighbours 2N N + 1

NMSE (%) 1.570 0.870
CPU time (s) 17.32 6.00

For the three cases, the CPU time for the interpolation
is evaluated and displayed in Table 1 for Machine 1 (Ap-
pendix E). As expected, the time consumption is obviously
proportional to the number of points in which to interpolate.
Figure 3 displays the evolution of the NMSE with the param-
eter p of the p-distance definition. There is a discontinuity of
the NMSE from p = 1 to p = 1+ with a slight increase with
p in an asymptotic way (Fig. 4). The NMSE decreases with
the number of points but a slight increase is observed from
200× 200 to 300× 300.

5 Example in 5-D for a regular grid

Still using the general programme, an example in 5-D (N =
5) is proposed using the function

Y = f (X)=x1× (1− x1)× cos(4πx1)× sin(4πx2)

× cos(4πx3)× sin(4πx4)× cos(4πx5), (12)

with x1,x2,x3,x4,x5 ∈ [0,1]. The input data grid is a regu-
lar grid of Ii = 35 interval edges on each dimension i ∈ [1,5]
with 355

= 52521875 grid points. The goal is to find the re-
sults on a coarse grid of nine elements on each dimension
with 95

= 59049 grid points. This case is an opportunity to
test the influence of the number of neighbours in calculating
the result. In our case, the parameter p of the p distance is
set to p = 2. The interpolation seems to provide better per-
formance of the NMSE for our function with less neighbours
(case N+1) and obviously with a lower CPU time (Table 2).
This could certainly depend on the type of function to inter-
polate.

Another test with the 5-D case is performed to test the in-
fluence of the normalization as defined in Eq. (9) (flag norm)
by defining an irregular grid still with 355

= 52521875 input
data points but with (i) random intervals values and (ii) one
dimension depending on another. The definition of the input
grid is defined in Appendix D and provided in the code pack-
age. With a similar order of magnitude of consumed CPU
time, the normalization norm=.True. produces a NMSE of
0.499 % compared to the NMSE of 0.822 % for norm=.False.
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Figure 2. Real example in 2-D of the step-by-step procedure to find the nearest neighbour of a target point for an irregular but structured
5×5 grid (a) when starting the process from the first point of the grid on the lowest left corner and (b) when starting with a first guess based
on an average delta computed for each dimension.

There is then an added value of using such a normalization
with comparable CPU time consumption (rising from 2.68 to
3.44 s for our case).

6 Comparison with Python for a regular grid

The code has been tested against the Python proce-
dure scipy.interpolate.griddata, freely available from Scipy
(2014), for the following function:

Y = f (X)= x1× (1− x1)× cos(4πx1)

× sin(4πx2)× cos(4πx3), (13)

with x1,x2,x3 ∈ [0,1].
The input data grid is a regular grid of Ii = 35 interval

edges on each dimension i ∈ [1,5] with 353
= 42875 grid

points. The goal is to find the results on a coarse grid of nine
elements on each dimension with 93

= 729 grid points. A
case in 3-D has been used for this test because the Python li-
brary was not able to work with very large datasets (overflow
error), while our programme could work perfectly. Here,
scipy.interpolate.griddata is used with the bilinear interpo-
lation option, while our method is configured with p = 2.

Table 3 clearly shows how the Fortran code is faster com-
pared to the Python library. However, the bilinear interpo-
lation method seems to provide a higher accuracy than the
inverse distance method embedded in our programme. Nev-
ertheless, the error produced by our method looks acceptable.

Table 3. Comparison of performance between our code for a 3-
D case with the grid data Python library. Machine 2 is used (Ap-
pendix F).

Our code with Our code with
N + 1 neighbours 2N neighbours Python

NMSE (%) 0.627 1.03 0.326
CPU time (s) 0.04 0.04 19.49

7 Geophysics application

7.1 The Backplumes model

In order to test this new interpolation programme, it is im-
plemented in a back-trajectory model called Backplumes.
This model was already used in some studies such as Mailler
et al. (2016) and Flamant et al. (2018). Backplumes is open
source and is available on the CHIMERE website. Back-
plumes calculates back trajectories from a starting point and
a starting date. It is different from other back-trajectory mod-
els, such as the Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) (Stein et al., 2015), Stochastic Time-
Inverted Lagrangian Transport (STILT) (Lin et al., 2003;
Nehrkorn et al., 2010) and FLEXible PARTicle dispersion
model (FLEXPART) (Pisso et al., 2019), because it launches
hundreds of particles and plots all trajectories as outputs.
Thus, the answer is complementary compared to the other
models: the output result is all possible trajectories and not
only the most likely.
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Figure 3. Interpolation results for the three cases. Figures were generated with the Generic Mapping Tools (Wessel et al., 2019).

An advantage of Backplumes for the WRF and CHIMERE
users is that the code is dedicated to directly read output re-
sults of these models. Being developed by the CHIMERE
developer teams, the code is completely homogeneous with
CHIMERE in terms of numerical libraries. Another advan-
tage is that the code is very fast and calculates hundreds of
trajectories in a few minutes. Using the wind fields of WRF
or CHIMERE, and running on the same grid, the results of
back trajectories are fully consistent with the simulations
done by the models.

Backplumes is dedicated to calculate transport but not
chemistry: only passive air particles (or tracers) are released.
But a distinction could be made between gaseous or partic-
ulate tracers: for the latter, a settling velocity is calculated
to have a more realistic trajectory. The model is easy to use
and light because a small set of meteorological parameters is
required. These meteorological parameters are described in
Table G1 for WRF and CHIMERE.

The first step of the calculation is to choose a target lo-
cation as a starting point. The user must select a date, lon-
gitude, latitude and altitude, obviously included in the mod-

elled domain and during the modelled period. From this start-
ing point, the model will calculate trajectories back in time.
The number of trajectories is up to the user and may vary
from one to several hundreds of tracers.

At each time step and for each trajectory, the position of
the air mass is estimated by subtracting its pathway travelled
as longitude 1λ, latitude 1φ and altitude 1z to the current
position. To do so, all necessary variables are interpolated
with the NterGeo.v2020a interpolation programme described
in the previous section. The calculation is described in Ap-
pendix G.

In order to respect the Courant–Friedrichs–Lewy (CFL)
number, a sub-time step may be calculated. If the input data
are provided hourly (as in many regional models), the meteo-
rological variables are interpolated between the two consec-
utive hours to obtain refined input data.

The goal of Backplumes is to estimate all possible back
trajectories. Then, starting from one unique point, it is neces-
sary to add a pseudo-turbulence in the calculation of the al-
titude. Depending on the vertical position of the tracer, sev-
eral hypotheses are made. Two parameters are checked for
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Figure 4. Evolution of performance based on the NMSE for the
three cases as a function of the parameter p of the p-distance com-
putation.

each tracer and each time step: (i) the boundary layer height
enables us to know if the tracer is in the boundary layer or
above in the free troposphere, (ii) the surface sensible heat
fluxes enable to know if the atmosphere is stable or unstable.

When the tracer is diagnosed in the boundary layer, there
are two cases: the boundary layer is stable or unstable. If
the boundary layer is stable, Q0 < 0, the tracer stays in the
boundary layer at the same altitude. The new vertical position
of the tracer is

zt−1 = zt . (14)

If the boundary layer is unstable,Q0 > 0, the tracer is con-
sidered in the convective boundary layer and may be located
at every level in this boundary layer for the time before this.
Therefore, a random function is applied to reproduce a po-
tential vertical mixing.

zt−1 = Rand×h (15)

The random function “Rand” calculates a coefficient be-
tween 0 and 1 to represent stochastic vertical transport of the
tracer.

It is considered that 15 mn is representative of a well-
mixed convective layer (Stull, 1988). If the time step is larger
than 15 mn, the random function is applied. But if the time
step is less than 15 mn, the vertical mixing is reduced to the
vicinity of the current position of the tracer. In this case, we
have

zt−1 = Rand×1z×[zt ], (16)

where 1z= 1
2

(
zk−1
t + zk+1

t

)
and k is the vertical model

level corresponding to zt .
In the free troposphere, the evolution of the tracer is con-

sidered to be influenced by the vertical wind component. A
random function is applied to estimate its possible vertical
motion with values between 0 and w/2 m s−1, representative
of all possible values of vertical wind speed in the tropo-
sphere, Stull (1988). The vertical variability of the tracer’s
position in the free troposphere is calculated by diagnosing
the vertical velocity as

zt−1 = zt − (0.5+Rand)w
3600
1t

. (17)

7.2 Examples of back-trajectory computations

An example is presented for the same case and the WRF and
CHIMERE models. The difference between the two mod-
els is the number of vertical levels (35 for WRF and 20 for
CHIMERE, from the surface to 200 hPa). The online mod-
elling system WRF-CHIMERE is used, meaning that the hor-
izontal grid is the same (a large domain including Europe
and Africa and with 1x =1y = 60 km). The wind field is
the same for both models: CHIMERE directly uses the wind
field calculated by WRF. The boundary layer height is differ-
ent between the two models, with WRF using the Hong et al.
(2006) schemes and CHIMERE using the Troen and Mahrt
(1986) scheme. The surface sensible heat flux is the same
between the two models, with CHIMERE using the flux cal-
culated by WRF. WRF has more vertical model levels than
CHIMERE; thus, meteorological fields are interpolated from
WRF to CHIMERE. It impacts the horizontal and vertical
wind fields.

Figure 5 presents the results of back trajectories launched
on 10 August 2013 at 12:00 UTC. The location is at longi-
tude 10◦ E and latitude 25◦ N, with an altitude of 0 m a.g.l.
This location is of no scientific interest but is in the mid-
dle of the domain, in order to have the longer trajectories.
The complete duration of trajectories represents 10 d back in
time. Overall, 120 trajectories are launched at the same posi-
tion and time. They are randomly mixed when they are in the
boundary layer to represent the mixing and the diffusion.

The most important part of the plume comes from the
north of the starting point. For this main plume, the calcu-
lation is similar between the two models. Another large part
of Backplumes is modelled at the east of the starting point.
However, this fraction is mainly modelled with WRF but not
with CHIMERE, where only a few trajectories are diagnosed.
One possible explanation may be found by analysing the ver-
tical transport of the trajectories.

Figure 6 presents all plumes displayed in the previous fig-
ure but projected along the same time–altitude axis. The dif-
ferences between the two Backplumes results are mainly due
to the calculation of the boundary layer height. When WRF
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Figure 5. Back trajectories calculated using CHIMERE and WRF
modelled meteorological fields. The starting point is at longitude
10◦ E and latitude 25◦ N, with an altitude of 0 m a.g.l. on 10 Au-
gust 2013 at 12:00 UTC. It corresponds to a case studied during the
Chemistry-Aerosol Mediterranean Experiment (ChArMEx) cam-
paign (Menut et al., 2015).

diagnoses an altitude of ≈ 3000 m, CHIMERE diagnoses
≈ 2000 m, leading to different direction and wind speed.
Then, this implies a split of the plumes with WRF but not
with CHIMERE. This illustrates the sensitivity of the result
to the driver model. But, in both cases, the answer in our case
is clearly that the main contributions of the air masses located
at the starting point are mainly coming from the north-east,
crossing Tunisia and then the Mediterranean Sea and Europe.
The main difference between the two calculations is the east-
ern part of the plume, which is more intense with WRF than
CHIMERE.

Figure 6. Projection of all back trajectories on a single time–altitude
axis.

8 Conclusions

A new interpolation programme written in Fortran has been
developed to interpolate on N -dimensional matrices. It has
been evaluated for several dimension cases up to N = 5. The
code is fast compared to similar Python routines and highly
portable in existing geophysical codes. The interpolation pro-
gramme works for any dimension N above 2 and is designed
to work with irregular but structured grids (characterized by
a size for each dimension) or look-up tables. Already used in
its “regular” version in CHIMERE, the “general” programme
has been tested on a new real application which calculates
air mass back trajectories from two widely used atmospheric
models: CHIMERE and WRF. This interpolation programme
can be used for any application in geophysics and engineer-
ing sciences and also to explore large structured matrices.
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Appendix A: List of frequently used abbreviations

AGL Above ground level
CFL Courant–Friedrichs–Lewy number
CHIMERE National French CTM
CTM Chemistry-transport model
CPU Central processing unit
NMSE Normalized mean square error
PBL Planetary boundary layer
PSFC Surface pressure
WRF Weather Research and Forecasting model

Appendix B: Binary strategy

This piece of code shows the strategy to optimize the
computation of weights for the “regular case”. The idea
is to minimize the number of operations to benefit from
the calculation at each dimension. A non-optimized loop
would require 2N − 1 multiplications, while the optimized
loop requires only 2N+1

− 4 multiplications for the weight
calculations. Then, for large values of N � 2, the ratio
of required operations between the non-optimized and the
optimized loop is ≈ (N − 1)/2.
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Appendix C: Code design

Note that avedelta and maxdelta arrays have been exter-
nalized to optimize the calculations. In the code package,
an independent programme is available to calculate these
arrays to be implemented in the user’s main programme. The
programme is written in Fortran double precision ingesting
the following arguments:

Some hard-coded variables can be tested by the user to
improve the results. They have been tested and some results
are described in this paper. A recompilation is necessary if
the user changes these values.
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Table C1. Description of subroutine arguments.

Variable Type Description Array dimension

ndim Integer Dimension N > 1 nd
maxdim Integer Total number of elements of the input table n=

∏N
i=1Ii with Ii the

number of elements in each dimension i
nd

kdim Integer 1-D array Array of the number of elements Ii on each dimension i (0 :N)
vect Real 2-D array Array storing the list of edges on each dimension in a one-

dimensional array
(1 :N,1 : n)

vtable Real 1-D array Coordinate values of the point at which to interpolate data (1 :N)
table Real 1-D array Values for the list of known points vect (input grid data) (1 : n)
avedelta Real 1-D array Inverse of average intervals on each dimension N (N)

maxdelta Real 1-D array Maximum intervals on each dimension N (N)

resu Real Result of interpolation for vtable nd
inei Integer Number of neighbours nd
neighbours Real 2-D array Array of neighbour coordinates (1 : 2N ,1 : n)
weights Real 1-D array Weight for each neighbour (1 : 2N )
found Logical Returns true or false, respectively, if the result is found or not found

if the point is outside the bounds
nd
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Appendix D: Irregular structured grid example in 5-D

Below is an example of a 5-D array input grid data with
irregular intervals with the last dimension (5) depending on
dimension (1).
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Appendix E: Characteristics of Machine 1

– Architecture: x86_64

– CPU op-mode(s): 32-bit, 64-bit

– Byte order: Little Endian

– CPU(s): 64

– Online CPU(s) list: 0–63

– Thread(s) per core: 2

– Core(s) per socket: 8

– Socket(s): 4

– NUMA node(s): 8

– Vendor ID: AuthenticAMD

– CPU family: 21

– Model: 1

– Model name: AMD Opteron Processor 6276

– Stepping: 2

– CPU MHz: 2300.000

– CPU max MHz: 2300.0000

– CPU min MHz: 1400.0000

– BogoMIPS: 4599.83

– Virtualization: AMD-V

– L1d cache: 16 KB

– L1i cache: 64 KB

– L2 cache: 2048 KB

– L3 cache: 6144 KB

– Memory block size: 128 MB

– Total online memory: 128 GB

– Total offline memory: 0 B

– Linux version 3.10.0-1062.12.1.el7.x86_64 (mock-
build@kbuilder.bsys.centos.org) (gcc version 4.8.5
20150623 (Red Hat 4.8.5-39)

Appendix F: Characteristics of Machine 2

– Architecture: x86_64

– CPU op-mode(s): 32-bit, 64-bit

– Byte order: Little Endian

– CPU(s): 96

– Online CPU(s) list: 0–47

– Offline CPU(s) list: 48–95

– Thread(s) per core: 1

– Core(s) per socket: 24

– Socket(s): 2

– NUMA node(s): 2

– Vendor ID: GenuineIntel

– CPU family: 6

– Model: 85

– Model name: Intel Xeon Platinum 8168 CPU at
2.70 GHz

– Stepping: 4

– CPU MHz: 2701.000

– CPU max MHz: 2701.0000

– CPU min MHz: 1200.0000

– BogoMIPS: 5400.00

– Virtualization: VT-x

– L1d cache: 32 KB

– L1i cache: 32 KB

– L2 cache: 1024 KB

– L3 cache: 33 792 KB

– NUMA node0 CPU(s): 0–23

– NUMA node1 CPU(s): 24–47

– Memory block size: 128 MB

– Total online memory: 190.8 GB

– Linux version 3.10.0-957.41.1.el7.x86_64
(mockbuild@x86-vm-26.build.eng.bos.redhat.com)
(gcc version 4.8.5 20150623 (Red Hat 4.8.5-36)
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Appendix G: The WRF and CHIMERE model
parameters used

Parameters are the three-dimensional wind components, the
boundary layer height h, the surface sensible heat flux Q0
and the altitude of each model layer. The wind components
are used for the horizontal and vertical transport. The bound-
ary layer height is used to define the vertical extent of the
possible mixing, and the surface sensible heat flux is used
to know if the current modelled hour corresponds to a stable
or unstable surface layer (for when the tracer is close to the
surface).

Backplumes calculates the back trajectories using longi-
tude, latitude and altitude in metres. In the case of input data
with vertical levels in pressure coordinates, the altitude is cal-
culated from pressure levels (Pielke, 1984). This is the case
of the WRF model and the calculation is done as follows.

The altitude is computed as

p∗ = psurf−ptop, (G1)

where psurf (PSFC) is the surface pressure and ptop is the top
pressure of the model domain. If ptop is constant over the
whole domain, psurf and thus p∗ are dependent on the first
level grid.

z0 =
8(1)+8′(1)

g
, (G2)

where 8 is the geopotential (PHB) and 8′ (PH) its pertur-
bation at vertical level k. g is the acceleration of gravity,
g = 9.81 m s−2. For each vertical level k, the layer thickness
1z and the cell top altitude zk are estimated as

dm = log
(
p∗ηM −ptop

p∗ηM +ptop

)
du = log

(
p∗ηM −ptop

p∗ηF +ptop

)
z1 =

8(k)+8′(k)

g

z2 =
8(k+ 1)+8′(k+ 1)

g

1z= (z2− z1)
du

dm

z(k)= z1+1z− z0, (G3)

where ηM is its value on full (w) levels (ZNW) and ηF is the
η value on half (mass) levels (ZNU). The layer thicknesses
are space and time dependent; this calculation is performed
for all trajectories and all time steps.

Table G1. List of parameters read by the Backplumes programme
to calculate trajectories.

Parameter Model variable name

WRF model

Longitude, latitude XLONG, XLAT
Parameters for altitude P_TOP, ZNU, ZNW, P, PB

PH, PHB, PSFC
Wind components U , V , W
Q0 HFX
h PBLH

CHIMERE model

Longitude, latitude lon, lat
Altitude hlay
Wind winz, winm, winw
Q0 sshf
h hght

The new position of a tracer back in time is calculated as
follows:

φrad = φ
π

180

1x = u
3600
1t

1y = v
3600
1t

1λ=
1x

R cos(φrad)

180
π

1φ =
1y

R

180
π
, (G4)

with the wind speed is provided in m s−1 on an hourly basis,
andR is the Earth’s radius asR = 6371 km. The new position
for one tracer is thus

λt−1 = λt −1λ

φt−1 = φt −1φ. (G5)

Geosci. Model Dev., 14, 91–106, 2021 https://doi.org/10.5194/gmd-14-91-2021



B. Bessagnet et al.: N -dimensional interpolator 105

Code availability. The current versions of the models are freely
available. The exact version of the model used to produce the re-
sults used in this paper is archived on Zenodo for NterGeo at
https://doi.org/10.5281/zenodo.3733278 (Bessagnet, 2020) under
the GNU General Public License v3.0 or later, as are input data
and scripts to run the model and produce the plots for all the simu-
lations presented in this paper. The Backplumes model is an open-
source code and is available on the CHIMERE model website: https:
//www.lmd.polytechnique.fr/~menut/backplumes.php (last access:
21 December 2020, Menut, 2020).
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