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Abstract. Lossy compression has been applied to the data
compression of large-scale Earth system model data (ESMD)
due to its advantages of a high compression ratio. How-
ever, few lossy compression methods consider both global
and local multidimensional coupling correlations, which
could lead to information loss in data approximation of
lossy compression. Here, an adaptive lossy compression
method, adaptive hierarchical geospatial field data represen-
tation (Adaptive-HGFDR), is developed based on the foun-
dation of a stream compression method for geospatial data
called blocked hierarchical geospatial field data representa-
tion (Blocked-HGFDR). In addition, the original Blocked-
HGFDR method is also improved from the following per-
spectives. Firstly, the original data are divided into a series of
data blocks of a more balanced size to reduce the effect of the
dimensional unbalance of ESMD. Following this, based on
the mathematical relationship between the compression pa-
rameter and compression error in Blocked-HGFDR, the con-
trol mechanism is developed to determine the optimal com-
pression parameter for the given compression error. By as-
signing each data block an independent compression parame-
ter, Adaptive-HGFDR can capture the local variation of mul-
tidimensional coupling correlations to improve the approx-
imation accuracy. Experiments are carried out based on the
Community Earth System Model (CESM) data. The results
show that our method has higher compression ratio and more
uniform error distributions compared with ZFP and Blocked-
HGFDR. For the compression results among 22 climate vari-

ables, Adaptive-HGFDR can achieve good compression per-
formances for most flux variables with significant spatiotem-
poral heterogeneity and fast changing rate. This study pro-
vides a new potential method for the lossy compression of
the large-scale Earth system model data.

1 Introduction

Earth system model data (ESMD), which comprehensively
characterize the spatiotemporal changes of the Earth system
with multiple variables, are presented as multidimensional
arrays of floating-point numbers (Kuhn et al., 2016; Sim-
mons et al., 2016). With the rapid development of Earth sys-
tem models in finer computational grids and growing ensem-
bles of multi-scenario simulation experiments, ESMD have
shown an exponential increase in data volume (Nielsen et al.,
2017; Sudmanns et al., 2018). The huge data volume brings
considerable challenges to the data computation, storage, and
analysis on ordinary PCs, which will further limit the re-
search and application of ESMD. Lossy compression, which
focuses on saving large amounts of data space by approxi-
mating the original data, is considered an alternative solution
to meet the challenge of the large data volume (Baker et al.,
2016; Nathanael et al., 2013). However, ESMD, as a com-
prehensive interaction of Earth system variables at different
aspects of space, time, and attributes, show significant multi-
dimensional coupling correlations (Runge et al., 2019; Mash-
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hoodi et al., 2019; Shi et al., 2019). The mixture of different
coupling correlations then leads to complex structures, such
as uneven distribution, spatial nonhomogeneity, and tempo-
ral nonstationary, which increase the difficulties in accurately
approximating data in lossy compression. Thus, developing a
lossy compression method that could adequately explore the
multidimensional coupling correlations is an important way
to reduce the compression error (Moon et al., 2017).

Predictive and transform methods are two of the most
widely used lossy compression approaches in terms of how
the data are approximated. Predictive lossy compression pre-
dicts the data with parametric functions, and the compression
is achieved by typically retaining (and encoding) the residual
between the predicted and actual data value. For example,
NUMARCK learns emerging distributions of element-wise
change ratios and encodes them into an index table to be con-
cisely represented (Zheng et al., 2016). ISABELA applies
a preconditioner to seemingly random and noisy data along
spatial resolution to achieve an accurate fitting model for the
data compression (Lakshminarasimhan et al., 2013). In these
methods, the multidimensional ESMD are processed as se-
quences or series from low dimensions without considering
the multidimensional coupling correlations. SZ, one of the
most advanced lossy compression methods, features adaptive
error-controlled quantization and variable-length encoding to
achieve optimized compression (Ziv and Lempel, 2003). In
SZ, a set of adjacent quantization bins are used to convert
each original floating point data value to an integer along
the first dimension of the data based on its prediction error
(Di et al., 2019). With a well-designed error control mech-
anism, SZ can achieve uniform compression error distribu-
tion. However, SZ predicts the data point only along the first
dimension, and it is not designed to be used along the other
dimensions or use a dynamic selection mechanism for the di-
mension (Tao et al., 2017). This makes data inconsistency a
problem for SZ, where the same ESMD with different orga-
nization orders can capture different multidimensional cou-
pling correlations and further produce different compressed
data.

Transform methods reduce data volume by transforming
the original data to another space where the majority of the
generated data are small, such that data compression can be
achieved by storing a subset of the transform coefficients
with a certain loss in terms of the user’s required error (Dif-
fenderfer et al., 2019; Andrew et al, 2020). One example is
the image-based method, which slices ESMD from different
dimensions into separate images and each image is then com-
pressed by feature filtering with wavelet transformation or
discrete Fourier transform. As the compression is applied to
a single image slice, the coupling correlations among multi-
ple dimensions are not always well utilized. More advanced
methods like ZFP split the original data into small blocks
with an edge size of four along each dimension and compress
each block independently via a floating-point representation
with a single common exponent per block, an orthogonal

block transform, and embedded encoding (Tao et al., 2018).
In ZFP, the multidimensional coupling correlations are inte-
grated by treating all dimensions as a whole through multi-
dimensional blocking. In each block, ZFP converts the high
dimensional data into matrices, which flattens the data even
further and partially destroys the internal correlations among
multiple dimensions. Additionally, with only a single com-
mon exponent used in each block, it is inadequate to capture
the local variation of the correlations. Thus, the ZFP method
is extremely effective in terms of data reduction and accuracy
for smooth variables but is unsurprisingly challenged by vari-
ables with abrupt value changes and ranges spanning many
orders of magnitude, both of which are common in ESMD
outputs (Baker et al., 2014).

Most of the current existing lossy compression methods,
including predictive and transform lossy compression meth-
ods, integrate multidimensional coupling correlations into
the process of data approximation as a foundation for map-
ping multidimensional data into low dimensional vectors or
matrices (Wang et al., 2005). Few of these methods directly
process multidimensional ESMD as a whole. For instance,
current predictive methods usually split the original data into
a series of local low dimensional data and then predict lo-
cal data. In this way, the split data obtained by different split
strategies could capture the different coupling correlations,
which leads to further inconsistent compressed results for
the same data. Transform methods map the original data to
the small space by removing the redundant coupling corre-
lations. Most of these methods have already considered the
coupling correlations in the global region. However, each lo-
cal region still utilizes data splitting that destroys the local
coupling correlations, which results in a weak compression
performance for ESMD with strong local variations. There-
fore, constructing a lossy compression method that integrates
both global and local coupling correlations from the perspec-
tive of multiple dimensions is helpful for improving the per-
formance of lossy compression for ESMD.

Recently, tensor-based decomposition methods, such as
canonical polyadic (CP), Tucker, and hierarchical tensor de-
composition, have been introduced to the compression of the
multidimensional data (Bengua et al., 2016; Jing et al., 2014).
Tensor decomposition, which exploits the data features, as
well as each mode and the corresponding coupling relation-
ship, by considering the multidimensional data as a whole,
can estimate the intrinsic structure of ESMD ignored in the
metric model. The core motivation behind tensor-based de-
composition is to eliminate the inconsistent, uncertain, and
noisy data without destroying the intrinsic multidimensional
coupling correlation structures (Kuang et al., 2018; Du et al.,
2017). Among these methods, hierarchical tensor decompo-
sition could achieve a higher quality at a larger compression
ratio than traditional tensor methods through extracting data
features level by level (Wu et al., 2008). Yuan et al. (2015)
designed an improved hierarchical tensor method (blocked
hierarchical geospatial field data representation, Blocked-
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HGFDR) to compress geospatial data with a hierarchical tree
structure, showing obvious advantages in compression ac-
curacy and compression efficiency. This hierarchical tensor-
based method utilizes the multidimensional coupling corre-
lations to approximate the original data by treating all di-
mensions as a whole, which can largely reduce the informa-
tion loss in lossy compression. In Blocked-HGFDR, all local
data have the same compression parameter, and the global
average error is used to control the capture of the global mul-
tidimensional coupling correlation. Since ESMD are always
spatiotemporally heterogeneous while the coupling correla-
tions are varied in each local region, the same compression
parameter applied to local data results in insufficient captur-
ing of local coupling correlation. Although the global aver-
age error is relatively small, the obtained results tend to a
certain “average” within the local data, which may make the
local compression error very large and bring bias into the
data approximation.

In this paper, the lossy compression for ESMD is devel-
oped based on Blocked-HGFDR. We firstly construct a divi-
sion strategy that divides the original data into a series of data
blocks with relatively balanced dimensions. Following this,
the parameter control mechanism is designed to assign each
data block an independent compression parameter under the
given compression constraint. After that, Blocked-HGFDR is
applied to each data block to achieve lossy compression. Ex-
periments on a climate simulation data set with 22 variables
are carried out to evaluate the performance and applicability
of the methods in ESMD compression. The remainder of this
paper is organized as follows. Section 2 introduces the ba-
sic ideas for developing an adaptive hierarchical geospatial
field data representation (Adaptive-HGFDR) method. Sec-
tion 3 discusses the block mechanism, the relationship be-
tween the compression parameter and compression error, and
the fast search algorithm. Section 4 uses the temperature data
to verify that the method can obtain an adaptive rank under
the accuracy constraint. Section 5 discusses the effectiveness
and computational efficiency of the method, as well as the
results.

2 Basic idea

The lossy compression of ESMD should comprehensively
consider the characteristics of ESMD. Firstly, since ESMD
have multiple variables, the compression parameter of an
ideal lossy compression should be simple and able to be
flexibly adjusted according to the corresponding variables of
ESMD. Secondly, since the acceptable error of different vari-
ables in ESMD is different, for example, the error of wind
speed is very different from that of temperature, an ideal
lossy compression should be able to adaptively select com-
pression parameters for the acceptable error range of differ-
ent variables. Considering that Blocked-HGFDR has a sim-
ple compression parameter, it can be used for the lossy com-

pression of ESMD. Thirdly, since many variables of ESMD
are spatiotemporally heterogeneous, the corresponding cou-
pling correlations are variable within the local region. Thus,
the correlations in both global and local regions should be
well integrated in lossy compression to improve approxima-
tion accuracy.

In order to adequately integrate the multidimensional cou-
pling correlations and adaptively select the compression pa-
rameter in Blocked-HGFDR, there are two issues to be
considered. The first issue is the dimensional unbalance of
ESMD. For instance, the data accumulated in the temporal
dimension are typically longer than that in the spatial di-
mension for a spatiotemporal series with long observations.
Since the tensor decomposition method treats each dimen-
sion equally and ignores the dimensional unbalance, it is dif-
ficult to accurately approximate data with unbalanced dimen-
sions. Thus, it is better to split the original data into small lo-
cal data blocks with the more balanced dimension structure
and then apply the tensor decomposition to local data individ-
ually, which can reduce the approximation bias caused by the
dimensional unbalance. The second issue is parameter selec-
tion under the given compression constraints. Since the cou-
pling correlations of ESMD vary within local regions, for the
given compression constraints, such as the maximum com-
pression error, the compression parameter of different vari-
ables or data blocks should be selected flexibly according to
the corresponding data characteristic, as to accurately capture
the local variation of the coupling correlation and improve
the approximation accuracy. Therefore, based on the math-
ematical relationship between the compression error and the
compression parameter in Blocked-HGFDR, a control mech-
anism that can adjust the compression parameter according
to the accuracy demands should be developed.

Based on the above considerations, our method, Adaptive-
HGFDR, is developed according to the following three pro-
cedures (Fig. 1). Procedure 1 is the splitting of the original
ESMD into small data blocks. In this procedure, the dimen-
sion in which to split the data and the optimal size of the
data block are determined by conducting different combina-
tions of data blocking in terms of the dimension and block
counts. Procedure 2 consists of conducting the relationship
between compression error and compression parameter. In
order to obtain a uniform distribution of the compression er-
ror for each data block, an empirical relationship between
the compression error and the rank value is established, in
which the rank value of each data block can be adjusted at
any given compression error. Procedure 3 entails adaptive
searching for the optimal compression parameter. A binary
search method is used to search the optimal compression pa-
rameter, which is updated with a parameter control mecha-
nism until the compression error meets the given constraint.
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Figure 1. Overall framework of the basic idea.

3 Method

3.1 Block hierarchical tensor compression

ESMD are a multidimensional array. It can be seen as a ten-
sor with the spatiotemporal references and the associated at-
tributes. Without a loss of generality, a three-dimensional
tensor can be defined as Z ∈RI×J×K (Suiker and Chang,
2000), where I , J , and K are values that represent the num-
ber of grids along the dimensions of longitude, latitude, and
time (or height), respectively. These dimensions are always
unbalanced due to the different spatial and temporal resolu-
tions. Thus, the data block is introduced to reduce the impact
of dimension unbalance on the data compression.

Definition 1: data block

The spatiotemporal data, Z ∈RI×J×K , can be considered
to be composed of a series of local data with the same spa-
tiotemporal reference. Here, local data are defined as a data
block as follows:

part(Z,n)= {C1,C2, · · ·,Cn}. (1)

Here, part( ) is the function that divides the original tensor
Z into a series of data blocks {Ci}mi=1, each data block Ci
includes local spatial and temporal information, and n is the
number of data blocks. Compared with the original data, the
dimensions of these data blocks are smaller and more bal-
anced. For the divided data blocks, in order to adequately
capture the multidimensional coupling correlation, the key
point is how the compression parameter is determined ac-
cording to the given compression error.

Definition 2: Blocked-HGFDR

Based on the divided data blocks, Yuan et al. (2015) proposed
the Blocked-HGFDR method based on the hierarchical ten-
sor compression. In this method, the hierarchical tensor com-
pression is applied to each block, and then the hierarchical
tensor compression of each data block is obtained by select-
ing the prominent feature components and filtering out the
residual structure. This method utilizes the hierarchical struc-
ture of data features, greatly reducing data redundancy and

thereby achieving the efficient compression of the amount of
spatiotemporal data (Yuan et al., 2015). The overall compres-
sion of Blocked-HGFDR can be formulated as follows:
H(A)=

(UR ⊗UR−1⊗ ·· ·⊗U1)B̃LB̃L−1· · ·B̃1B12···R + res
B̃j = BpLj

⊗ ·· ·⊗BpL j = {1,2, . . .,L} .
(2)

Similar to the prominent components obtained by singular
value decomposition (SVD) for two-dimensional data (Yan
et al., 2019), the matrix UR and the sparse transfer tensor
BR are considered to be the rth component of a third-order
tensor in each dimension, where R denotes the number of
multi-domain features. The residual tensor, res, in Eq. (2)
denotes the information not captured by the decomposition
model, and (UR ⊗UR−1⊗ ·· ·⊗U1)B̃LB̃L−1· · ·B̃1B12···R in
Eq. (2) is the reconstructed rth core tensor and feature matrix
(Grasedyck, 2010; Song et al., 2013).

3.2 Adaptive selection of parameters and solutions

Considering that the distribution characteristic of each di-
vided data block is different, the key to adequately captur-
ing the multidimensional coupling correlations in Blocked-
HGFDR is to adaptively select the compression parameter
for local data individually according to the given compres-
sion error. So the key step is to construct controlling mecha-
nism based on the relationship between the compression er-
ror and compression parameter. Thus, the following terms are
defined.

Definition 3: the controlling mechanism

In Blocked-HGFDR, the relationship between the compres-
sion error and compression parameter (Rank) is given as
ε = αRank−β (Yuan et al., 2015); thus, the controlling mech-
anism to determine the compression parameter of each data
block should be the rank value closest to the given compres-
sion error as follows:

ε = αRank−β ≤ εGiven, (3)

where εGiven is the given compression error that depends on
different application scenarios, and α and β are the coeffi-
cients that depend on the structure and complexity of the
data, which can be obtained by the simulation experiment
for actual data.

In Blocked-HGFDR, the relationship between the com-
pression ratio (ϕ) and compression parameter (Rank) is given
as follows:

ϕ =
datasize

aRank3
+ bRank2

+ cRank+ d
. (4)

As shown in Eqs. (2), (3), and (4), when the rank decreases
in Blocked-HGFDR, the compression ratio and the compres-
sion error increase. In Blocked-HGFDR, the rank value of
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different blocks is fixed, which results in the fluctuation of
the compression error in the specific dimension. Since the
structure of each block is different, the compression param-
eter of each data block should be determined independently
according to the given compression error. Considering that
the actual compression error may not strictly satisfy the given
value, the optimal parameter is selected as the minimum rank
in which the obtained compression error is close to the given
one.

To find the optimal parameter for data block Ci with the
above constructed controlling mechanism, a binary search al-
gorithm based on dichotomy is constructed. This means that
before adjusting the rank each time, the optimal rank corre-
sponding to the given compression error is constantly broken
in half by reducing the selection interval by half of the rank.
The algorithm is implemented as follows.

During the whole algorithm, the function EvalErr(Ci, r)
is the computing-intensive function that could be the
performance bottleneck. If we consider a calculation of
EvalErr(Ci, r) as one meta-calculation, the complexity of the
traditional traversal method is O(n). When introducing the
dichotomy optimization, the complexity can be reduced to
O(logn) (Cai et al., 2012).

4 Case study

4.1 Data description and experimental configuration

In this paper, data produced by Community Earth System
Model (CESM) are used as the experimental data to eval-
uate the compression performance of Adaptive-HGFDR;
these data can be obtained from the Open Science Data

Cloud in NetCDF (network common data form) format
(https://doi.org/10.5281/zenodo.3997216). The data set in-
cludes air temperature data (T ) stored as a 1024× 512× 26
(latitude × longitude × height) tensor and 22 other vari-
ables stored as a 1024× 512× 221 (latitude × longitude ×
time) tensor from January 1980 to May 1998. When read-
ing the NetCDF data, a total of 48 GB memory will be oc-
cupied. The original data we used are double-precision data,
we first process the data into single precision, and then the
existing methods (SZ, ZFP, Blocked-HGFDR) and the pro-
posed method are applied to compare the compression per-
formances. Research experiments were performed by the
MATLAB R2017a environment on a Windows 10 worksta-
tion (HP Compaq Elite 8380 MT) with Intel Core i7-3770
(3.4 GHz) processors and 8 GB of RAM.

The following experiments were performed. (1) In order
to transform the original data to data blocks with the bal-
anced dimension, the dimensions of these data blocks are
better if they are of the same size. Thus, the optimal counts
of data blocks should be determined. For the given com-
pression error, we randomly divide the original data into a
series of data blocks with different block counts; Adaptive-
HGFDR is then applied to these data blocks, and the cor-
responding compression ratios are calculated. The optimal
block count is achieved at the largest compression ratio. (2)
Since ESMD have multiple dimensions and these dimensions
may have different organization orders, to verify that the pro-
posed compression method is unrelated with the data organi-
zation order, different variables are selected and organized
with different orders. Then the advanced prediction method
SZ and the proposed method are applied to these reorga-
nized data to realize the lossy compression, and the dimen-
sional distributions of compression errors are used to explore
the relevance of the method with the data organization or-
der. (3) To verify the advantages of the proposed method
for ESMD, the proposed method was compared with the ad-
vanced transform method ZFP and Blocked-HGFDR. (4) To
show the applicability and the advantages of the proposed
method for data with different characteristics, we select 22
variables in ESMD, and then the proposed method, ZFP, and
the Blocked-HGFDR are applied to compare the compres-
sion performances. In these experiments, two key indices are
used to benchmark the performances: the compression error
and compression ratio. The compression error is calculated
as follows:

ε =

∥∥TOriginal− TReconstruction
∥∥2∥∥TOriginal

∥∥2 . (5)

Here the ‖ ‖2 is the F norm. TOriginal is the original tensor
data, TReconstruction is the compressed tensor data.

The compression ratio φ is calculated as follows:

φ =
Doriginal

Dcompression
. (6)
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Figure 2. The relationship between the block count and the com-
pression ratio.

HereDoriginal is the memory size of original data before com-
pression and Dcompression is the memory size of the com-
pressed reconstructed data.

4.2 Optimal block count selection

The selection of the optimal block count is carried out using
the temperature data (T ). Here, block counts with a power of
2 will be the best for use as the near-balanced data blocking.
Therefore, a series of block counts of 4, 16, 64, 128, and 256
are generated as the potential block counts. For the compres-
sion constraint, 10−4 is used as an initial given compression
error. The relationships between the block count (BC) and
the compression ratio are shown in Fig. 2.

Clearly, the highest compression ratio is reached when the
block count equals 16 (BC= 16). Hence, the optimum block
count is 16, and the corresponding block size is 256× 128×
26. It is interesting to find that the overall compression ra-
tio presents a downward trend with block count in the range
16 and 64. When block count is larger than 64, the data vol-
ume of each block becomes smaller, the number of feature
components required to achieve the same compression error
significantly decreases, and the data volume of each block af-
ter compression significantly decreases. Although the num-
ber of blocks is increased (BC= 128 and BC= 256), the
significant reduction of local data block volume makes the
overall compression ratio show an upward trend. Aside from
this, the relationship between the block count and the com-
pression ratio is related to the structure and complexity of
the data itself, which is different for the data with different
distribution characteristics. For the temperature data (T ), the
compression ratio reaches a maximum when the block count
is equal to 16.

Figure 3 shows the original data and the compressed data
with different block counts. It can be seen that there is no sig-
nificant difference between the original data (Fig. 3a) and the
compressed data (Fig. 3b–f) and that the distribution char-

acteristics of the compressed data (Fig. 3b–f) are consistent
with the original data (Fig. 3a). This may be because the
prominent feature components are gradually added to ap-
proximate the original data and affect the compression error;
no matter how many blocks there are, the proposed method
can approach the given compression error by controlling the
rank value to provide accurate compression results.

4.3 Comparison with traditional methods

4.3.1 Comparison with SZ

In order to verify that the proposed compression method is
unrelated with the data organization order, we select three
variables {SOLIN, TREFMXAV, FSNTC} ∈ R1024×512×221

in ESMD (SOLIN stands for solar insolation, TRE-
FMXAV stands for average of TREFHT daily min-
imum, and FSNTC stands for clear-sky net solar
flux at top of model). For each variable, we or-
ganize the data with different orders as follows:
{221× 512× 1024,512× 1024× 221,1024× 512× 221}.
Following this, the SZ and the proposed method are applied
to the data to realize the lossy compression. The error distri-
butions of different compression results in the corresponding
dimension are shown in Fig. 4.

Figure 4 shows that the dimensional distribution of the
compression error in SZ is quite different when using dif-
ferent organization orders of data. This may be because the
SZ predicts the data point only along the first dimension but
not along the other dimensions, and thus the compression re-
sult varies depending on the order of organization. Since the
same ESMD may have the different organization orders, this
creates a critical data inconsistency problem of SZ. Because
the proposed method processes the multidimensional data as
a whole, the error distribution is independent of the data or-
ganization order, and thus the dimensional distribution of the
error remains consistent.

4.3.2 Comparison with ZFP and Blocked-HGFDR

To verify the advantage of the proposed method for ESMD,
we compare Adaptive-HGFDR with the Blocked-HGFDR
and the ZFP method for the given compression error. With-
out a loss of generality, the relative compression error ratios
are set to 10−5, 5× 10−5, 10−4, 5× 10−4, and 10−3. Here,
the block count in the proposed method and the Blocked-
HGFDR method are both set to 16, and the rank of Blocked-
HGFDR is selected as the average of the adaptive rank in
each divided data block. In ZFP, the key parameter is the tol-
erance. For the compression errors given above, we conduct
the simulation experiments with many random tolerances
and then find the ideal tolerances; in these cases the corre-
sponding compression errors are close to the given compres-
sion errors. Thus, the tolerance parameters are 0.05, 0.3, 0.5,
3.8, and 10. The compression ratios of different compression
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Figure 3. Original data and compressed data with different block counts: (a) the original data, (b) the compressed data when the data count
is 4, (c) the compressed data when the data count is 16, (d) the compressed data when the data count is 64, (e) the compressed data when the
data count is 128, and (f) the compressed data when the data count is 256.

Figure 4. The compression error distribution along different dimensions. (a) The compression error distribution along latitude for SOLIN.
(b) The compression error distribution along latitude for TREFMXAV. (c) The compression error distribution along latitude for FSNTC.

methods under the conditions of different compression errors
are calculated and shown in Fig. 5.

Figure 5 shows that as the compression error ratio grows,
the compression ratio of all three methods becomes larger
and larger. However, the growth rate of ZFP is much slower
than that of Blocked-HGFDR and Adaptive-HGFDR. When
the compression error is less than 0.0001, the compression
ratio of ZFP is a little higher than that of Adaptive-HGFDR
and Blocked-HGFDR. This may be because approximat-
ing the original data with high accuracy requires a higher
rank, which limits the improvement of compression ratio.
When the compression error is 0.001, which is also accept-
able for most ESMD applications, the compression ratio of
Adaptive-HGFDR increases to 68.16, which means that the
compressed data size is 68.16 times smaller than that of the
original data. At a compression error of 0.001, the compres-

sion ratio of Adaptive-HGFDR, ZFP, and Blocked-HGFDR
are 68.16, 13.42, and 50.78, respectively. The compression
ratio of Adaptive-HGFDR is 5.07 times and 1.34 times larger
than that of ZFP and Blocked-HGFDR, respectively. This
may be because that the Adaptive-HGFDR can adaptively
adjust the compression parameter (rank value) according to
the actual data complexity and thus better capture data fea-
tures to improve the compression ratio.

We summarize the error distribution along the longitude
dimension of each method in Fig. 6. It is clearly seen that
the error distributions of both Adaptive-HGFDR and ZFP
are nearly uniform among different longitude dimensions.
However, the Blocked-HGFDR method shows four signifi-
cant segments of abrupt changes at different longitude slices.
The oscillation characteristics of the three methods are dif-
ferent. For Adaptive-HGFDR, the error distribution is char-
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Figure 5. The relationship between the compression error and com-
pression ratio for different methods.

acterized more by low-frequency fluctuations, while ZFP
method is characterized more as higher-frequency fluctua-
tions. The Blocked-HGFDR method has very different fluc-
tuation characteristics. For the first 230 longitude slices, the
error distribution of Blocked-HGFDR is of high-frequency
fluctuations with relatively high frequency, which is similar
to ZFP, while in the other three segments it has a low ampli-
tude that has similar fluctuations to that Adaptive-HGFDR.
For the comparison of the mean value and standard devia-
tion of the error distribution among the three methods, the
Adaptive-HGFDR has much a smaller standard deviation
(6.89× 10−6) compared to ZFP (2.94× 10−5) and Blocked-
HGFDR (2.80× 10−5). The Blocked-HGFDR method has
the smallest mean compression error (9.35×10−5), which is
slightly lower than Adaptive-HGFDR (9.83× 10−5), while
ZFP has the largest mean compression error (1.29× 10−4).

Both Blocked-HGFDR and Adaptive-HGFDR show the
small differences between the adjacent slices and the big
differences among the different local data blocks. Due to
the spatiotemporal heterogeneity, the feature distributions of
each local ESMD are significantly different, but the fea-
ture distributions of adjacent slices have a small differ-
ence because of their spatiotemporal similarity. Meanwhile,
since the adjacent compressed slice data have similar char-
acteristics, the error fluctuation of these slices is small. In
contrast, the structure difference of each compressed lo-
cal data block is large, and the error fluctuation is also
large. In Blocked-HGFDR, the compression parameter of
each block is fixed, and the characteristic difference between
data in each block is ignored. This weakness is improved in
Adaptive-HGFDR by adjusting the compression parameter
of each block adaptively according to the compression er-
ror to achieve the balanced distribution of error. Although
Blocked-HGFDR performs substantially better for several
slice numbers, Adaptive-HGFDR shows fewer variations.

To better reveal the characteristics of the compression er-
ror distributions, the distributions of the spatial error for three
random spatial pieces (height 2, 8 and 16) are depicted in
Fig. 7. From Fig. 7 we can see that the spatial structure of the
data is different at different heights and that there are both
continuous and abrupt structure changes at different levels.
Specifically, the compression error in the Blocked-HGFDR
method and the ZFP method fluctuates dramatically, forming
multiple peaks and valleys. The error distributions of ZFP
suggest that there are high-frequency stripes. There are ir-
regular spatial patterns for Blocked-HGFDR. The Adaptive-
HGFDR method is more stable where the error distribution
is nearly random.

4.4 Evaluation with multiple variables

For a comprehensive comparison of the different methods,
22 monthly climate variables were used as the experimental
data. Here, we focus on the variables with flux information
and fast changing rate. Among these variables, there are vari-
ables with weak spatiotemporal heterogeneity, such as the
temperature, and variables with strong spatiotemporal het-
erogeneity, which will help us to better investigate the appli-
cability of the method. The dimensions of the experimental
data are 1024× 512× 221. Here, considering that the com-
pression error and compression performance of each variable
can be comparable, the compression error should not be too
big or too small for all of the 22 variables, the given error is
0.01, the block size is 256×128×26, and the block count is
144. For the tolerance parameter settings in ZFP, we conduct
the simulation experiments with many random tolerances,
then find the ideal tolerances in these cases the corresponding
compression errors are close to the given compression errors.
A detailed description of the variables is shown in Table 1.

The Adaptive-HGFDR, Blocked-HGFDR, and ZFP meth-
ods were applied to the 22 variables. The compression ratio,
time, and standard deviation of the slice error were calcu-
lated and are shown in Fig. 8. From Fig. 8a it can be seen
that compared with the other two methods, the compression
ratio of Adaptive-HGFDR is the largest. This may be be-
cause Adaptive-HGFDR considers the coupling relationship
among the spatial and temporal dimensions and searches for
the optimal compression parameter at each data block. This
not only makes the number of features required by each data
block small but also reduces the effect of data heterogene-
ity on the compression ratio. Adaptive-HGFDR captures the
data features more accurately than the other two methods.
The adaptive adjustment of the parameter makes Adaptive-
HGFDR yield the uniform error distribution for the multiple
variables shown in Fig. 8c. In summary, Adaptive-HGFDR
provides good adaptability for ESMD.

Additionally, Fig. 8a also shows that the tensor-
based compression methods (Adaptive-HGFDR, Blocked-
HGFDR) have high compression ratios for some variables.
This may be because during tensor-based compression the

Geosci. Model Dev., 14, 875–887, 2021 https://doi.org/10.5194/gmd-14-875-2021



Z. Yu et al.: Lossy compression of Earth system model data based on hierarchical tensor 883

Figure 6. The distributions of compression error along the longitudinal slices (the slice means the partial data that are divided along specific
dimensions).

Figure 7. The spatial distribution of compression error of different compression methods: (a) the spatial distribution of compression error
with height set to 2 in ZFP, (b) the spatial distribution of compression error with height set to 8 in ZFP, (c) the spatial distribution of
compression error with height set to 16 in ZFP, (d) the spatial distribution of compression error with height set to 2 in Blocked-HGFDR, (e)
the spatial distribution of compression error with height set to 8 in Blocked-HGFDR, (f) the spatial distribution of compression error with
height set to 16 in Blocked-HGFDR, (g) the spatial distribution of compression error with height set to 2 in Adaptive-HGFDR, (h) the spatial
distribution of compression error with height set to 8 in Adaptive-HGFDR, and (i) the spatial distribution of compression error with height
set to 16 in Adaptive-HGFDR.

relationship between data volume and dimensions is trans-
formed from exponential growth to nearly linear growth by
defining the tensor product of tensors, which is essentially
the displacement of space by calculating time, and thus the
compression ratio is very high. In addition, we can see that

with the given compression error the compression rates of
different variables are significantly different. It may be be-
cause different climate model variables have different distri-
bution features. Generally speaking, for the variables with
weak spatiotemporal heterogeneity, a small number of fea-
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Table 1. Descriptions of the 22 climate model data variables.

Variable name Variable description Variable name Variable description

FLDS Downwelling longwave flux at the surface PCONVT Convection top pressure
FLDSC Clear-sky downwelling longwave flux at sur-

face
RHREFHT Reference height relative humidity

FLNSC Clear-sky net longwave flux at surface SOLIN Solar insolation
FLNT Net longwave flux at top of model SRFRAD Net radiative flux at surface
FLNTC Clear-sky net longwave flux at top of model TMQ Total (vertically integrated) precipitable water
FLUT Upwelling longwave flux at top of model TREFHT Reference height temperature
FLUTC Clear-sky upwelling longwave flux at top of

model
TREFMNAV Average of TREFHT daily minimum

FSDSC Clear-sky downwelling solar flux at surface TREFMXAV Average of TREFHT daily maximum
FSNSC Clear-sky net solar flux at surface TS Surface temperature (radiative)
FSNTC Clear-sky net solar flux at top of model TSMN Minimum surface temperature over output pe-

riod
FSNTOAC Clear-sky net solar flux at top of atmosphere TSMX Maximum surface temperature over output pe-

riod

ture components can achieve an accurate approximation that
has a high compression rate. However, the variables with
strong spatiotemporal heterogeneity may need a large num-
ber of feature components that have a low compression rate.
Due to the continuous adjustment of compression parameter
to search for the optimal rank, Adaptive-HGFDR is the most
time-consuming method (Fig. 8b). Despite this, some opti-
mization strategies, such as the spatiotemporal indexes and
the unbalanced block split, can help improve the efficiency
of Adaptive-HGFDR.

5 Conclusions

In this study, we propose a lossy compression method,
Adaptive-HGFDR, for ESMD based on blocked hierarchical
tensor decomposition via integrating multidimensional cou-
pling correlations. In Adaptive-HGFDR, to achieve the lossy
compression, ESMD are divided into nearly balanced data
blocks, which are then approximated by the hierarchical ten-
sor decomposition. This compression method is applied to
all the dimensions of the data blocks, rather than mapping the
data into low dimensions, to avoid the destruction of coupling
correlations among different dimensions. This also avoids
the possible data inconsistency of compression methods like
SZ, when the data are extracted and analyzed with different
input–output (IO) orders. Thus, this method provides the po-
tential advantage in multidimensional data inspection and ex-
ploration. Additionally, the compression parameter is simple
and adaptively calculated for each data block independently
for a given compression error. Therefore, the compression
captures both the global and local variation of the coupling
correlations well, which improves the approximation accu-
racy. The simulated experiments demonstrated that the pro-
posed method has a higher compression ratio and more uni-
form error distributions than ZFP and Blocked-HGFDR un-

der the same conditions and can support lossy compression
of ESMD on ordinary PCs both in terms of memory occu-
pation and compression time. In addition, the comparison
results among 22 climate variables show that the proposed
method can achieve good compression performance for the
variables with significant spatiotemporal heterogeneity and
fast changing rate.

The application of the hierarchical tensor in this paper
provides several new potential avenues for developing more
advanced lossy compression methods. With the hierarchi-
cal tensor, both the representation model and computational
model can support complex multidimensional computation
and analysis (Kressner and Tobler, 2014). For example, com-
monly used signal analysis methods like singular value de-
composition (SVD) and fast Fourier transform (FFT) can
achieve efficient stream computing with the hierarchical
tensor representation and thus can inherently support effi-
cient on-the-fly computation and analysis. Another interest-
ing topic focusing on the tensor-based compression would
be the compression of unstructured data or extremely sparse
data (Li et al., 2020). Moreover, comprehensive tensor meth-
ods for finding the hierarchical tensor like the partial differ-
ential equation (PDE) have also recently been introduced.
Thus, it is even possible to integrate some dynamic models
of Earth systems directly into the compressed data. With the
rapid development of tensor theory and its applications, more
and more potential methods for tensor-based spatiotemporal
data compression may be provided for modeling and analyz-
ing ESMD.

Multiple dimensionality and heterogeneity are the natu-
ral attributes of ESMD. In ESMD, there are various spa-
tiotemporal structures with gradual or sudden change and fast
or slow changes, which also illustrates the significant reg-
ularity or randomness of the data. From the perspective of
the rules of ESMD distribution, constructing the data com-
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Figure 8. Comparison results of compression ratio, compression time, and standard deviation: (a) the comparison results of compression
ratio, (b) the comparison results of compression time, (c) the comparison results of standard deviation.

pression method based on multidimensional coupling cor-
relations may be the key to improving ESMD compression
performance in the future. For example, for static or slow-
varying variables, a large block and small rank can be used
to achieve large compression, while for fast-changing vari-
ables a small block and large rank may be needed. The data-
coupling correlations obtained by dynamically adjusting the
block count and rank not only can be used for data compres-
sion but are also helpful for performing data organization and
creating compressed storage based on the data characteris-
tics. Additionally, in the large-scale simulation experiment
with a long time sequence and multi-mode integration, this
characteristic-based data organization and storage of multidi-
mensional ESMD makes it possible to only retain the promi-
nent components in order to achieve efficient comparison of
large-scale data, which can help improve the capability of
the ESMD application service. For instance, for major nat-
ural disasters this multidimensional tensor compression can
support progressive transmission with a limited bandwidth
by using only the prominent components, which can help to
promote the depth and breadth of ESMD applications.

Code and data availability. The Adaptive-HGFDR lossy compres-
sion algorithm proposed in this paper was conducted in MAT-
LAB R2017a. The exact version of Adaptive-HGFDR and ex-
perimental data used in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.3997216, Zhang, 2020b). The ex-

perimental data are large-scale data analysis and visualization sym-
posium data obtained from the Open Science Data Cloud (OSDC).
This data set consists of files from a series of global climate dynam-
ics simulations run on the Titan supercomputer at Oak Ridge Na-
tional Laboratory in 2013 by postdoctoral researcher Abigail Gad-
dis. The simulations were performed at approximately 0.33 ◦ spatial
resolution. We downloaded these simulation data in the common
NetCDF (network Common Data Form) format in 2016 from https:
//www.opensciencedatacloud.org/ (last access: 16 March 2016).
The code of the all algorithms and comparative tests are provided
and can be download from https://doi.org/10.5281/zenodo.4384627
(Zhang, 2020a).
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