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Abstract. This paper presents Shyft, a novel hydrologic
modeling software for streamflow forecasting targeted for
use in hydropower production environments and research.
The software enables rapid development and implementa-
tion in operational settings and the capability to perform dis-
tributed hydrologic modeling with multiple model and forc-
ing configurations. Multiple models may be built up through
the creation of hydrologic algorithms from a library of well-
known routines or through the creation of new routines, each
defined for processes such as evapotranspiration, snow accu-
mulation and melt, and soil water response. Key to the de-
sign of Shyft is an application programming interface (API)
that provides access to all components of the framework
(including the individual hydrologic routines) via Python,
while maintaining high computational performance as the
algorithms are implemented in modern C++. The API al-
lows for rapid exploration of different model configurations
and selection of an optimal forecast model. Several differ-
ent methods may be aggregated and composed, allowing di-
rect intercomparison of models and algorithms. In order to
provide enterprise-level software, strong focus is given to
computational efficiency, code quality, documentation, and
test coverage. Shyft is released open-source under the GNU
Lesser General Public License v3.0 and available at https:
//gitlab.com/shyft-os (last access: 22 November 2020), facil-
itating effective cooperation between core developers, indus-
try, and research institutions.

1 Introduction

Operational hydrologic modeling is fundamental to several
critical domains within our society. For the purposes of flood
prediction and water resource planning, the societal benefits
are clear. Many nations have hydrological services that pro-
vide water-related data and information in a routine manner.
The World Meteorological Organization gives an overview
of the responsibilities of these services and the products they
provide to society, including monitoring of hydrologic pro-
cesses, provision of data, water-related information includ-
ing seasonal trends and forecasts, and, importantly, decision
support services (World Meteorological Organization, 2006).

Despite the abundantly clear importance of such opera-
tional systems, implementation of robust systems that are
able to fully incorporate recent advances in remote sensing,
distributed data acquisition technologies, high-resolution
weather model inputs, and ensembles of forecasts remains
a challenge. Pagano et al. (2014) provide an extensive review
of these challenges, as well as the potential benefits afforded
by overcoming some relatively simple barriers. The Hydro-
logic Ensemble Prediction EXperiment (https://hepex.irstea.
fr/, last access: 22 November 2020) is an activity that has
been ongoing since 2004, and there is extensive research on
the importance of the role of ensemble forecasting to reduce
uncertainty in operational environments (e.g., Pappenberger
et al., 2016; Wu et al., 2020).

As most operational hydrological services are within the
public service, government policies and guidelines influence
the area of focus. Recent trends show efforts towards increas-
ing commitment to sustainable water resource management,
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disaster avoidance and mitigation, and the need for integrated
water resource management as climatic and societal changes
are stressing resources.

For hydropower production planning, operational hydro-
logic modeling provides the foundation for energy market
forecasting and reservoir management, addressing the inter-
ests of both power plant operators and governmental reg-
ulations. Hydropower production accounts for 16 % of the
world’s electricity generation and is the leading renewable
source for electricity (non-hydro-renewable and waste sum
up to about 7 %). Between 2007 and 2015, the global hy-
dropower capacity increased by more than 30 % (World En-
ergy Council, 2016). In many regions around the globe, hy-
dropower is therefore playing a dominant role in the regional
energy supply. In addition, as energy production from renew-
able sources with limited managing possibilities (e.g., from
wind and solar) grows rapidly, hydropower production sites
equipped with pump storage systems provide the possibility
to store energy efficiently at times when total energy produc-
tion surpasses demands. Increasingly critical to the growth
of energy demand is the proper accounting of water use and
information to enable water resource planning (Grubert and
Sanders, 2018).

Great advances in hydrologic modeling are being made
in several facets: new observations are becoming available
through novel sensors (McCabe et al., 2017), numerical
weather prediction (NWP) and reanalysis data are increas-
ingly reliable (Berg et al., 2018), detailed estimates of quan-
titative precipitation estimates (QPEs) are available as model
inputs (Moreno et al., 2012, 2014; Vivoni et al., 2007; Ger-
mann et al., 2009; Liechti et al., 2013), there are improved al-
gorithms and parameterizations of physical processes (Kirch-
ner, 2006), and, perhaps most significantly, we have greatly
advanced in our understanding of uncertainty and the quan-
tification of uncertainty within hydrologic models (West-
erberg and McMillan, 2015; Teweldebrhan et al., 2018b).
Anghileri et al. (2016) evaluated the forecast value of long-
term inflow forecasts for reservoir operations using ensemble
streamflow prediction (ESP) (Day, 1985). Their results show
that the value of a forecast using ESP varies significantly as a
function of the seasonality, hydrologic conditions, and reser-
voir operation protocols. Regardless, having a robust ESP
system in place allows operational decisions that will create
value. In a follow-on study, Anghileri et al. (2019) showed
that preprocessing of meteorological input variables can also
significantly benefit the forecast process.

A significant challenge remains, however, in environments
that have operational requirements. In such an environment,
24/7 up-time operations, security issues, and requirements
from information technology departments often challenge
introducing new or “innovative” approaches to modeling.
Furthermore, there is generally a requirement to maintain
an existing model configuration while exploring new possi-
bilities. Often, the implementation of two parallel systems
is daunting and presents a technical roadblock. An exam-

ple of the scale of the challenge is well-defined in Zappa
et al. (2008) in which the authors’ contributions to the re-
sults of the Demonstration of Probabilistic Hydrological and
Atmospheric Simulation of flood Events in the Alpine re-
gion (D-PHASE) project under the Mesoscale Alpine Pro-
gramme (MAP) of the WMO World Weather Research Pro-
gram (WWRP) are highlighted. In particular, they had the
goal to operationally implement and demonstrate a new gen-
eration of flood warning systems in which each catchment
had one or more hydrological models implemented. How-
ever, following the “demonstration” period, “no MAP D-
PHASE contributor was obviously able to implement its hy-
drological model in all basins and couple it with all avail-
able deterministic and ensemble numerical weather predic-
tion (NWP) models”. This presumably resulted from the
complexity of the configurations required to run multiple
models with differing domain configurations, input file for-
mats, operating system requirements, and so forth.

There is an awareness in the hydrologic community re-
garding the nearly profligate abundance of hydrologic mod-
els. Recent efforts have proposed the development of a
community-based hydrologic model (Weiler and Beven,
2015). The WRF-Hydro platform (Gochis et al., 2018) is a
first possible step in that direction, along with the Structure
for Unifying Multiple Modelling Alternatives (SUMMA)
(Clark et al., 2015a), a highly configurable and flexible plat-
form for the exploration of structural model uncertainty.
However, the WRF-Hydro platform is computationally ex-
cessive for many operational requirements, and SUMMA
was designed with different objectives in mind than what
has been developed within Shyft. For various reasons (see
Sect. 1.2) the development of Shyft was initiated to fill a gap
in operational hydrologic modeling.

Shyft is a modern cross-platform open-source toolbox that
provides a computation framework for spatially distributed
hydrologic models suitable for inflow forecasting for hy-
dropower production. The software is developed by Statkraft
AS, Norway’s largest hydropower company and Europe’s
largest generator of renewable energy, in cooperation with
the research community. The overall goal for the toolbox
is to provide Python-enabled high-performance components
with industrial quality and use in operational environments.
Purpose-built for production planning in a hydropower envi-
ronment, Shyft provides tools and libraries that also aim for
domains other than hydrologic modeling, including model-
ing energy markets and high-performance time series calcu-
lations, which will not be discussed herein.

In order to target hydrologic modeling, the software allows
the creation of model stacks from a library of well-known hy-
drologic routines. Each of the individual routines are devel-
oped within Shyft as a module and are defined for processes
such as evapotranspiration, snow accumulation and melt, and
soil water response. Shyft is highly extensible, allowing oth-
ers to contribute or develop their own routines. Other mod-
ules can be included in the model stack for improved han-
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dling of snowmelt or to preprocess and interpolate point in-
put time series of temperature and precipitation (for example)
to the geographic region. Several different methods may be
easily aggregated and composed, allowing direct intercom-
parison of algorithms. The method stacks operate on a one-
dimensional geo-located “cell”, or a collection of cells may
be constructed to create catchments and regions within a do-
main of interest. Calibration of the methods can be conducted
at the cell, catchment, or region level.

The objectives of Shyft are to (i) provide a flexible hy-
drologic forecasting toolbox built for operational environ-
ments, (ii) enable computationally efficient calculations of
hydrologic response at the regional scale, (iii) allow for using
the multiple working hypothesis to quantify forecast uncer-
tainties, (iv) provide the ability to conduct hydrologic sim-
ulations with multiple forcing configurations, and (v) fos-
ter rapid implementation into operational modeling improve-
ments identified through research activities.

To address the first and second objectives, computa-
tional efficiency and well-test-covered software have been
paramount. Shyft is inspired by research software developed
for testing the multiple working hypothesis (Clark et al.,
2011). However, the developers felt that more modern cod-
ing standards and paradigms could provide significant im-
provements in computational efficiency and flexibility. Using
the latest C++ standards, a templated code concept was cho-
sen in order to provide flexible software for use in business-
critical applications. As Shyft is based on advanced tem-
plated C++ concepts, the code is highly efficient and able to
take advantage of modern-day compiler functionality, min-
imizing risk of faulty code and memory leaks. To address
the latter two objectives, the templated language functional-
ity allows for the development of different algorithms that are
then easily implemented into the framework. An application
programming interface (API) is provided for accessing and
assembling different components of the framework, includ-
ing the individual hydrologic routines. The API is exposed
to both the C++ and Python languages, allowing for rapid
exploration of different model configurations and selection
of an optimal forecast model. Multiple use cases are enabled
through the API. For instance, one may choose to explore the
parameter sensitivity of an individual routine directly, or one
may be interested purely in optimized hydrologic prediction,
in which case one of the predefined and optimized model
stacks, a sequence of routines forming a hydrologic model,
would be of interest.

The goal of this paper is two-fold: to introduce Shyft and
to demonstrate some recent applications that have used het-
erogeneous data to configure and evaluate the fidelity of sim-
ulation. First, we present the core philosophical design deci-
sions in Sect. 2 and provide and overview of the architecture
in Sect. 3. The model formulation and hydrologic routines
are discussed in Sects. 4 and 5. Secondly, we provide a re-
view of several recent applications that have addressed issues

of uncertainty, evaluated satellite data forcing, and explored
data assimilation routines for snow.

1.1 Other frameworks

To date, a large number of hydrological models exist, each
differing in the input data requirements, level of details in
process representation, flexibility in the computational sub-
unit structure, and availability of code and licensing. In the
following we provide a brief summary of several models that
have garnered attention and a user community but were ul-
timately found not optimal for the purposes of operational
hydrologic forecasting at Statkraft.

Originally aiming for incorporation in general circula-
tion models, the Variable Infiltration Capacity (VIC) model
(Liang et al., 1994; Hamman et al., 2018) has been used
to address topics ranging from water resources management
to land–atmosphere interactions and climate change. In the
course of its development history of over 20 years, VIC has
served as both a hydrologic model and land surface scheme.
The VIC model is characterized by a grid-based representa-
tion of the model domain, statistical representation of sub-
grid vegetation heterogeneity, and multiple soil layers with
variable infiltration and nonlinear base flow. Inclusion of to-
pography allows for orographic precipitation and tempera-
ture lapse rates. Adaptations of VIC allow the representation
of water management effects and reservoir operation (Hadde-
land et al., 2006a, b, 2007). Routing effects are typically ac-
counted for within a separate model during post-processing.

Directed towards use in cold and seasonally snow-covered
small- to medium-sized basins, the Cold Regions Hydro-
logical Model (CRHM) is a flexible object-oriented soft-
ware system. CRHM provides a framework that allows the
integration of physically based parameterizations of hydro-
logical processes. Current implementations consider cold-
region-specific processes such as blowing snow, snow in-
terception in forest canopies, sublimation, snowmelt, infil-
tration into frozen soils, and hillslope water movement over
permafrost (Pomeroy et al., 2007). CRHM supports both spa-
tially distributed and aggregated model approaches. Due to
the object-oriented structure, CRHM is used as both a re-
search and predictive tool that allows rapid incorporation of
new process algorithms. New and already existing imple-
mentations can be linked together to form a complete hy-
drological model. Model results can either be exported to a
text file, ESRI ArcGIS, or a Microsoft Excel spreadsheet.

The Structure for Unifying Multiple Modelling Alterna-
tives (SUMMA) (Clark et al., 2015a, b) is a hydrologic
modeling approach that is characterized by a common set
of conservation equations and a common numerical solver.
SUMMA constitutes a framework that allows users to test,
apply, and compare a wide range of algorithmic alternatives
for certain aspects of the hydrological cycle. Models can
be applied to a range of spatial configurations (e.g., nested
multi-scale grids and hydrologic response units). By enabling
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model intercomparison in a controlled setting, SUMMA is
designed to explore the strengths and weaknesses of certain
model approaches and provides a basis for future model de-
velopment.

While all these models provide functionality similar to
(and beyond) Shyft’s model structure, such as flexibility in
the computational subunit structure, allowing for using the
multiple working hypothesis, and statistical representation
of sub-grid land type representation, the philosophy behind
Shyft is fundamentally different from the existing model
frameworks. These differences form the basis of the decision
to develop a new framework, as outlined in the following sec-
tion.

1.2 Why build a new hydrologic framework?

Given the abundance of hydrologic models and modeling
systems, the question must be asked as to why there is a
need to develop a new framework. Shyft is a distributed mod-
eling environment intended to provide operational forecasts
for hydropower production. We include the capability of the
exploration of multiple hydrologic model configurations, but
the framework is somewhat more restricted and limited from
other tools addressing the multiple model working hypoth-
esis. As discussed in Sect. 1.1, several such software solu-
tions exist; however, for different reasons these were found
not suitable for deployment. The key criteria we sought when
evaluating other software included the following:

– open-source license and clear license description;

– readily accessible software (e.g., not trial- or
registration-based);

– high-quality code that is

– well-commented,
– has modern standards,
– is API-based and not a graphical user interface

(GUI), and
– is highly configurable using object-oriented stan-

dards;

– well-documented software.

As we started the development of Shyft, we were unable
to find a suitable alternative based on the existing packages
at the time. In some cases the software is simply not read-
ily available or suitably licensed. In others, documentation
and test coverage were not sufficient. Most prior implementa-
tions of the multiple working hypothesis have a focus on the
exploration of model uncertainty or provide more complex-
ity than required, therefore adding data requirements. While
Shyft provides some mechanisms for such investigation, we
have further extended the paradigm to enable efficient eval-
uation of multiple forcing datasets in addition to model con-
figurations, as this is found to drive a significant component
of the variability.

Notable complications arise in continuously operating en-
vironments. Current IT practices in the industry impose se-
vere constraints upon any changes in the production systems
in order to ensure required availability and integrity. This
challenges the introduction of new modeling approaches, as
service level and security are forcedly prioritized above in-
novation. To keep the pace of research, the operational re-
quirements are embedded into automated testing of Shyft.
Comprehensive unit test coverage provides proof for all lev-
els of the implementation, whilst system and integration tests
give objective means to validate the expected service behav-
ior as a whole, including validation of known security con-
siderations. Continuous integration aligned with agile (iter-
ative) development cycle minimize human effort for the ap-
propriate quality level. Thus, adoption of the modern prac-
tices balances tough IT demands with motivation for rapid
progress. Furthermore, C++ was chosen as a programming
language for the core functionality. In spite of a steeper learn-
ing curve, templated code provides long-term advantages for
reflecting the target architecture in a sustainable way, and the
detailed documentation gives a comprehensive explanation
of the possible entry points for the new routines.

One of the key objectives was to create a well-defined API,
allowing for an interactive configuration and development
from the command line. In order to provide the flexibility
needed to address the variety of problems met in operational
hydrologic forecasting, flexible design of workflows is criti-
cal. By providing a Python/C++ API, we provide access to
Shyft functionality via the interpreted high-level program-
ming language Python. This concept allows a Shyft user to
design workflows by writing Python scripts rather than re-
quiring user input via a graphical user interface (GUI). The
latter is standard in many software products targeted toward
hydropower forecasting but was not desired. Shyft develop-
ment is conducted by writing code in either Python or C++
and is readily scripted and configurable for conducting sim-
ulations programmatically.

2 Design principles

Shyft is a toolbox that has been purpose-developed for op-
erational, regional-scale hydropower inflow forecasting. It
was inspired from previous implementations of the multi-
ple working hypothesis approach to provide the opportunity
to explore multiple model realizations and gain insight into
forecast uncertainty (Kolberg and Bruland, 2014; Clark et al.,
2015b). However, key design decisions have been taken to-
ward the requirement to provide a tool suitable for opera-
tional environments which vary from what may be priori-
tized in a pure research environment. In order to obtain the
level of code quality and efficiency required for use in the hy-
dropower market, we adhered to the following design princi-
ples.
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2.1 Enterprise-level software

Large organizations often have strict requirements regarding
software security, testing, and code quality. Shyft follows the
latest code standards and provides well-documented source
code. It is released as open-source software and maintained at
https://gitlab.com/shyft-os (last access: 22 November 2020).
All changes to the source code are tracked, and changes are
run through a test suite, greatly reducing the risk of errors
in the code. This process is standard operation for software
development but remains less common for research software.
Test coverage is maintained at greater than 90 % of the whole
C++ code base. Python coverage is about 60 % overall, in-
cluding user interface, which is difficult to test. The hydrol-
ogy part has Python test coverage of more than 70 % on av-
erage and is constantly validated via research activities.

2.2 Direct connection to data stores

A central philosophy of Shyft is that “data should live at
the source!”. In operational environments, a natural chal-
lenge exists between providing a forecast as rapidly as pos-
sible and conducting sufficient quality assurance and control
(QA/QC). As the QA/QC process is often ongoing, there may
be changes to source datasets. For this reason, intermediate
data files should be excluded, and Shyft is developed with
this concept in mind. Users are encouraged to create their
own “repositories” that connect directly to their source data,
regardless of the format (see Sect. 4).

2.3 Efficient integration of new knowledge

Research and development (R&D) are critical for organiza-
tions to maintain competitive positions. There are two pre-
vailing pathways for organizations to conduct R&D: through
internal divisions or through external partnerships. The chal-
lenge of either of these approaches is that often the results
from the research – or “project deliveries” – are difficult to
implement efficiently in an existing framework. Shyft pro-
vides a robust operational hydrologic modeling environment,
while providing flexible “entry points” for novel algorithms,
and the ability to test the algorithms in parallel with opera-
tional runs.

2.4 Flexible method application

Aligning with the principle of enabling rapid implementation
of new knowledge, it is critical to develop a framework that
enables flexible, exploratory research. The ability to quantify
uncertainty is highly sought. One is able to explore epistemic
uncertainty (Beven, 2006) introduced through the choice of
hydrologic algorithm. Additionally, mechanisms are in place
to enable selection of alternative forcing datasets (including
point vs. distributed) and to explore variability resulting from
these data.

2.5 Hot service

Perhaps the most ambitious principle is to develop a tool that
may be implemented as a hot service. The concept is that
rather than model results being saved to a database for later
analysis and visualization, a practitioner may request simu-
lation results for a certain region at a given time by running
the model on the fly without writing results to file. Further-
more, perhaps one would like to explore slight adjustments
to some model parameters, requiring recomputation, in real
time. This vision will only be actualized through the devel-
opment of extremely fast and computationally efficient algo-
rithms.

The adherence to a set of design principles creates
a software framework that is consistently developed and
easily integrated into environments requiring tested, well-
commented, well-documented, and secure code.

3 Architecture and structure

Shyft is distributed in three separate code repositories and a
“docker” repository as described in Sect. 7.

Shyft utilizes two different code bases (see overview given
in Fig. 1). Basic data structures, hydrologic algorithms, and
models are defined in Shyft’s core, which is written in C++
in order to provide high computational efficiency. In addi-
tion, an API exposes the data types defined in the core to
Python. Model instantiation and configuration can therefore
be utilized from pure Python code. In addition, Shyft pro-
vides functionalities that facilitate the configuration and real-
ization of hydrologic forecasts in operational environments.
These functionalities are provided in Shyft’s orchestration
and are part of the Python code base. As one of Shyft’s de-
sign principles is that data should live at the source rather
than Shyft requiring a certain input data format, data repos-
itories written in Python provide access to data sources. In
order to provide robust software, automatic unit tests cover
large parts of both code bases. In the following section, de-
tails to each on the architectural constructs are given.

3.1 Core

The C++ core contains several separate code folders: core
– for handling framework-related functionality, like serial-
ization and multithreading; time series – aimed at operating
with generic time series and hydrology; and all the hydro-
logic algorithms, including structures and methods to manip-
ulate with spatial information.1 The design and implemen-
tation of models aim for multicore operations to ensure uti-
lization of all computational resources available. At the same

1The core also contains dtss (time series handling services, en-
ergy_market) algorithms related to energy market modeling and
web_api (web services), which are out of scope of this introductory
paper.
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time, design considerations ensure the system may be run on
multiple nodes. The core algorithms utilize third-party, high-
performance, multithreaded libraries. These include the stan-
dard C++ (latest version), boost (Demming et al., 2010), ar-
madillo (Sanderson and Curtin, 2016), and dlib (King, 2009)
libraries, altogether leading to efficient code.

The Shyft core itself is written using C++ templates from
the abovementioned libraries and also provides templated al-
gorithms that consume template arguments as input param-
eters. The algorithms also return templates in some cases.
This allows for high flexibility and simplicity without sacri-
ficing performance. In general, templates and static dispatch
are used over class hierarchies and inheritance. The goal to-
ward faster algorithms is achieved via optimizing the com-
position, enabling multithreading, and the ability to scale out
to multiple nodes.

3.2 Shyft API

The Shyft API exposes all relevant Shyft core implemen-
tations that are required to configure and utilize models to
Python. The API is therefore the central part of the Shyft ar-
chitecture that a Shyft user is encouraged to focus on. An
overview of fundamental Shyft API types and how they can
be used to initialize and apply a model is shown in Fig. 2.

A user aiming to simulate hydrological models can do this
by writing pure Python code without ever being exposed to
the C++ code base. Using Python, a user can configure and
run a model and access data at various levels such as model
input variables, model parameters, and model state and out-
put variables. It is of central importance to mention that as
long as a model instance is initiated, all of these data are kept
in the random access memory of the computer, which allows
a user to communicate with a Shyft model and its underlying
data structures using an interactive Python command shell
such as the Interactive Python (IPython; Fig. 3). In this man-
ner, a user could, for instance, interactively configure a Shyft
model, feed forcing data to it, run the model, and extract and
plot result variables. Afterwards, as the model object is still
instantiated in the interactive shell, a user could change the
model configuration, e.g., by updating certain model param-
eters, rerun the model, and extract the updated model results.
Exposing all relevant Shyft core types to an interpreted pro-
gramming language provides a considerable level of flexibil-
ity at the user level that facilitates the realization of a large
number of different operational setups. Furthermore, using
Python offers a Shyft user access to a programming language
with intuitive and easy-to-learn syntax, wide support through
a large and growing user community, over 300 standard li-
brary modules that contain modules and classes for a wide
variety of programming tasks, and cross-platform availabil-
ity.

All Shyft classes and methods available through the API
follow the documentation standards introduced in the guide

to NumPy and SciPy documentation.2 Here we will try
to give an overview of the types typically used in ad-
vanced simulations via API (the comprehensive set of exam-
ples is available at https://gitlab.com/shyft-os/shyft-doc/tree/
master/notebooks/api, last access: 22 November 2020).

shyft.time_series provides mathematical and statistical op-
erations and functionality for time series. A time series can
be an expression or a concrete point time series. All time
series do have a time axis (TimeAxis – a set of ordered non-
overlapping periods), values (api.DoubleVector), and a point
interpretation policy (point_interpretation_policy). The time
series can provide a value for all the intervals, and the point
interpretation policy defines how the values should be inter-
preted: (a) the point instant value is valid at the start of the
period, linear between points, extends flat from the last point
to +∞, and undefined before the first value; it is typical for
state variables, like water level and temperature, measured
at 12:00 local time. (b) The point average value represents
an average or constant value over the period; it is typical for
model input and results, like precipitation and discharge. The
TimeSeries functionality includes the following: resampling
– average, accumulate, time_shift; statistics – min–max, cor-
relation by Nash–Sutcliffe, Kling–Gupta; filtering – convo-
lution, average, derivative; quality and correction – min–max
limits, replace by linear interpolation or replacement time se-
ries; partitioning and percentiles.

api.GeoCellData represents common constant cell proper-
ties across several possible models and cell assemblies. The
idea is that most of our algorithms use one or more of these
properties, so we provide a common aspect that keeps this
together. Currently it keeps the mid-point api.GeoPoint, the
Area, api.LandTypeFractions (forest, lake, reservoir, glacier,
and unspecified), Catchment ID, and routing information.

Cell is a container of GeoCellData and TimeSeries of
model forcings (api.GeoPointSource). The cell is also spe-
cific to the Model selected, so api.pt_ss_k.PTSSKCellAll ac-
tually represents cells of a Priestley–Taylor–Skaugen–Snow–
Kirchner (PTSSK) type, related to the stack selected (de-
scribed in Sect. 5.2). The structure collects all the necessary
information, including cell state, cell parameters, and simu-
lation results. Cell Vector (api.pt_ss_k.PTSSKCellAllVector)
is a container for the cells.

Region Model (api.pt_ss_k.PTSSKModel) contains
all the Cells and also Model Parameters at region and
catchment level (api.pt_ss_k.PTSSKParameter). Ev-
erything is vectorized, so, for example, Model State
vector in the form of api.pt_ss_k.PTSSKStateVector col-
lects together the states of each model cell. The region
model is a provider of all functionality available: ini-
tialization (Model.initialize_cell_env(...)), interpolation
(Model.interpolate(...)), simulation (Model.run_cells(...)),
and calibration (Optimizer.optimize(...)), wherein the op-

2https://docs.scipy.org/doc/numpy-1.15.0/docs/howto_
document.html (last access: 22 November 2020)
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Figure 1. Architecture of Shyft.

timizer is api.pt_ss_k.PTSSKOptimizer – also a construct
within the model purposed specifically for the calibration. It
is in the optimizer, where the Target Specification resides.
To guide the model calibration we have a GoalFunction that
we try to minimize based on the TargetSpecification.

The Region Model is separated from Region Environ-
ment (api.ARegionEnvironment), which is a container for all
Source vectors of certain types, like temperature and precip-
itation, in the form of api.GeoPointSourceVector.

Details on the main components of Fig. 2 are pro-
vided in following sections. Via API the user can interact
with the system at any possible step, so the frame-
work gives flexibility at any stage of simulation, but the
implementation resides in the C++ part, keeping the effi-
ciency at the highest possible levels. The documentation
page at https://gitlab.com/shyft-os/shyft-doc/blob/master/
notebooks/shyft-intro-course-master/run_api_model.ipynb
(last access: 22 November 2020) provides a simple single-
cell example of Shyft simulation via API, which extensively
explains each step.

3.3 Repositories

Data required to conduct simulations are dependent on the
hydrological model selected. However, at present the avail-
able routines require at a minimum temperature and precipi-
tation, and most also use wind speed, relative humidity, and
radiation. More details regarding the requirements of these
data are given in Sect. 5.

Shyft accesses data required to run simulations through
repositories (Fowler, 2002). The use of repositories is driven
by the aforementioned design principle to have a “direct con-
nection to the data store”. Each type of repository has a spe-
cific responsibility, a well-defined interface, and may have a
multitude of implementations of these interfaces. The data
accessed by repositories usually originate from a relational
database or file formats that are well-known. In practice, data
are never accessed in any way other than through these inter-
faces, and the intention is that data are never converted into a
particular format for Shyft. In order to keep code in the Shyft
orchestration at a minimum, repositories are obliged to return
Shyft API types. Shyft provides interfaces for the following
repositories.

Region model repository. The responsibility is to pro-
vide a configured region model, hiding away any
implementation-specific details regarding how the
model configuration and data are stored (e.g., in a
NetCDF database, a geographical information system).

Geo-located time series repository. The responsibility is to
provide all meteorology- and hydrology-relevant types
of geo-located time series needed to run or calibrate
the region model (e.g., data from station observations,
weather forecasts, climate models).

Interpolation parameter repository. The responsibility is to
provide parameters for the interpolation method used in
the simulation.
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Figure 2. Description of the main Shyft API types and how they are used in order to construct a model. API types used for running
simulations are shown to the left of the dashed line; additional types used for model calibration are to the right of it. ∗ Different API types
exist for different Shyft models dependent on the choice of the model. For this explanatory figure we use a PTSSK stack, which is an
acronym for Priestley–Taylor–Skaugen–Snow–Kirchner. ∗∗ Different API types exist for different types of input variables (e.g., temperature,
precipitation, relative humidity, wind speed, radiation).

State repository. The responsibility is to provide model
states for the region model and store model states for
later use.

Shyft provides implementations of the region model repos-
itory interface and the geo-located time series repository in-
terface for several datasets available in NetCDF formats.
These are mostly used for documentation and testing and can
likewise be utilized by a Shyft user. Users aiming for an op-
erational implementation of Shyft are encouraged to write
their own repositories following the provided interfaces and
examples rather than converting data to the expectations of
the provided NetCDF repositories.

3.4 Orchestration

We define “orchestration” as the composition of the simula-
tion configuration. This included defining the model domain,
selection of forcing datasets and model algorithms, and pre-
sentation of the results. In order to facilitate the realization
of simple hydrologic simulation and calibration tasks, Shyft
provides an additional layer of Python code. The Shyft or-
chestration layer is built on top of the API functionalities and

provides a collection of utilities that allow users to configure,
run, and post-process simulations. Orchestration provides for
two main objectives.

The first is to offer an easy entry point for modelers seek-
ing to use Shyft. By using the orchestration, users require
only a minimum of Python scripting experience in order to
configure and run simulations. However, the Shyft orches-
tration gives only limited functionality, and users might find
it limiting to their ambitions. For this reason, Shyft users are
strongly encouraged to learn how to effectively use Shyft API
functionality in order to be able to enjoy the full spectrum of
opportunities that the Shyft framework offers for hydrologic
modeling.

Secondly, and importantly, it is through the orchestration
that full functionality can be utilized in operational environ-
ments. However, as different operational environments have
different objectives, it is likely that an operator of an op-
erational service wants to extend the current functionalities
of the orchestration or design a completely new one from
scratch suitable to the needs the operator defines. The orches-
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Figure 3. Simplified example showing how a Shyft user can configure a Shyft model using the Shyft API (from shyft import api)
and (interactive) Python scripting. In line 2, the model to be used is chosen. In line 3 a model cell suitable to the model is initiated. In line 4 a
cell vector, which acts as a container for all model cells, is initiated and the cell is appended to the vector (line 5). In line 6, a parameter object
is initiated that provides default model parameters for the model domain. Based on the information contained in the cell vector (defining
the model domain), the model parameters, and the model itself, the region model can be initiated (line 7) and, after some intermediate steps
not shown in this example, stepped forward in time (line n). The example is simplified in that it gives a rough overview of how to use
the Shyft API but does not provide a real working example. The functionality shown herein provides a small subset of the functionalities
provided by the Shyft API. For more complete examples we recommend the Shyft documentation (https://shyft.readthedocs.io, last access:
22 November 2020).

tration provided in Shyft then rather serves as an introductory
example.

4 Conceptual model

The design principles of Shyft led to the development of a
framework that attempts to strictly separate the model do-
main (region) from the model forcing data (region environ-
ment) and the model algorithms in order to provide a high
degree of flexibility in the choice of each of these three ele-
ments. In this section how a model domain is constructed in
Shyft is described and how it is combined with a set of mete-
orological forcing data and a hydrological algorithm in order
to generate an object that is central to Shyft, the so-called
region model. For corresponding Shyft API types, see Fig. 2.

4.1 Region: the model domain

In Shyft, a model domain is defined by a collection of geo-
located subunits called cells. Each cell has certain properties
such as land type fractions, area, geographic location, and a
unique identifier specifying to which catchment the cell be-
longs (the catchment ID). Cells with the same catchment ID
are assigned to the same catchment and each catchment is
defined by a set of catchment IDs (see Fig. 4). The Shyft

model domain is composed of a user-defined number of cells
and catchments and is called a region. A Shyft region thus
specifies the geographical properties required in a hydrologic
simulation.

For computations, the cells are vectorized rather than rep-
resented on a grid, as is typical for spatially distributed mod-
els. This aspect of Shyft provides significant flexibility and
efficiency in computation.

4.2 Region environment

Model forcing data are organized in a construct called a re-
gion environment. The region environment provides contain-
ers for each variable type required as input to a model. Me-
teorological forcing variables currently supported are tem-
perature, precipitation, radiation, relative humidity, and wind
speed. Each variable container can be fed a collection of geo-
located time series, referred to as sources, each providing
the time series data for the variables coupled with methods
that provide information about the geographical location for
which the data are valid. The collections of sources in the
region environment can originate from, e.g., station observa-
tions, gridded observations, gridded numerical weather fore-
casts, or climate simulations (see Fig. 4). The time series of
these sources are usually presented in the original time reso-
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Figure 4. A Shyft model domain consisting of a collection of cells. Each cell is mapped to a catchment using a catchment ID. The default cell
shape in this example is square; however, note that at the boundaries cells are not square but instead follow the basin boundary polygon. The
red line indicates a catchment that could be defined by a subset of catchment IDs. The framework would allow for using the full region, but
simulating only within this catchment. The blue circles mark the geographical location of meteorological data sources, which are provided
by the region environment.

lution as available in the database from which they originate.
That is, the region environment typically provides meteoro-
logical raw data, with no assumption on spatial properties of
the model cells or the model time step used for simulation.

4.3 Model

The model approach used to simulate hydrological processes
is defined by the user and is independent of the choice of
the region and region environment configurations. In Shyft,
a model defines a sequence of algorithms, each of which de-
scribes a method to represent certain processes of the hydro-
logical cycle. Such processes might be evapotranspiration,
snow accumulation and melt processes, or soil response. The
respective algorithms are compiled into model stacks, and
different model stacks differ in at least one method. Cur-
rently, Shyft provides four different model stacks, described
in more detail in Sect. 5.2.

4.4 Region model

Once a user has defined the region representing the model
domain, the region environment providing the meteorolog-
ical model forcing, and the model defining the algorithmic
representation of hydrologic processes, these three objects
can be combined to create a region model, an object that is
central to Shyft.

The region model provides the following key functionali-
ties that allow us to simulate the hydrology of a region.

– Interpolation of meteorological forcing data from the
source locations to the cells using a user-defined inter-
polation method and interpolation from the source time
resolution to the simulation time resolution. A construct
named cell environment, a property of each cell, acts as
a container for the interpolated time series of forcing
variables. Available interpolation routines are descried
in Sect. 5.1.

– Running the model forward in time. Once the interpo-
lation step is performed, the region model is provided
with all data required to predict the temporal evolution
of hydrologic variables. This step is done through cell-
by-cell execution of the model stack. This step is com-
putationally highly efficient due to enabled multithread-
ing that allows parallel execution on a multiprocessing
system by utilizing all central processing units (CPUs)
unless otherwise specified.

– Providing access to all data related to region and model.
All data that are required as input to the model and gen-
erated during a model run are stored in memory and can
be accessed through the region model. This applies to
model forcing data at source and cell level, model pa-
rameters at region and catchment level, static cell data,
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and time series of model state result variables. The lat-
ter two are not necessarily stored by default in order to
achieve high computational efficiency, but collection of
those can be enabled prior to a model run.

A simplified example of how to use the Shyft
API to configure a Shyft region model is shown
in Fig. 3, or one can consult the documentation:
https://gitlab.com/shyft-os/shyft-doc/blob/master/
notebooks/shyft-intro-course-master/run_api_model.ipynb
(last access: 22 November 2020).

4.5 Targets

Shyft provides functionality to estimate model parameters by
providing implementation of several optimization algorithms
and goal functions. Shyft utilizes optimization algorithms
from dlib (http://www.dlib.net/optimization.html#find_min_
bobyqa, last access: 22 November 2020): Bound Optimiza-
tion BY Quadratic Approximation (BOBYQA), which is
a derivative-free optimization algorithm and global func-
tion search algorithm explained in Powell (2009) (http://
dlib.net/optimization.html#global_function_search, last ac-
cess: 22 November 2020) that performs global optimization
of a function, subject to bound constraints.

In order to optimize model parameters, model results are
evaluated against one or several target specifications (Gupta
et al., 1998). Most commonly, simulated discharge is evalu-
ated with observed discharge; however, Shyft supports fur-
ther variables such as mean catchment snow water equiv-
alence (SWE) and snow-covered area (SCA) to estimate
model parameters. This enables a refined condition of the
parameter set for variables for which a more physical model
may be used and high-quality data are available. This ap-
proach is being increasingly employed in snow-dominated
catchments (e.g., Teweldebrhan et al., 2018a; Riboust et al.,
2019). An arbitrary number of target time series can be eval-
uated during a calibration run, each representing a different
part of the region and/or time interval and step. The over-
all evaluation metric is calculated from a weighted average
of the metric of each target specification. To evaluate perfor-
mance users can specify Nash–Sutcliffe (Nash and Sutcliffe,
1970), Kling–Gupta (Gupta et al., 1998), or absolute differ-
ence or root mean square error (RMSE) functions. The user
can specify which model parameters to optimize, giving a
search range for each of the parameters. In order to provide
maximum speed, the optimized models are used during cali-
bration so that the CPU and memory footprints are minimal.

5 Hydrologic modeling

Modeling the hydrology of a region with Shyft is typi-
cally done by first interpolating the model forcing data from
the source locations (e.g., atmospheric model grid points or
weather stations) to the Shyft cell location and then running

a model stack cell by cell. This section gives an overview of
the methods implemented for interpolation and hydrologic
modeling.

5.1 Interpolation

In order to interpolate model forcing data from the source
locations to the cell locations, Shyft provides two different
interpolation algorithms: interpolation via inverse distance
weighting and Bayesian kriging. However, it is important to
mention that Shyft users are not forced to use the internally
provided interpolation methods. Instead, the provided inter-
polation step can be skipped and input data can be fed di-
rectly to cells, leaving it up to the Shyft user how to interpo-
late and/or downscale model input data from source locations
to the cell domain.

5.1.1 Inverse distance weighting

Inverse distance weighting (IDW) (Shepard, 1968) is the pri-
mary method used to distribute model forcing time series to
the cells. The implementation of IDW allows a high degree of
flexibility in the approach of a choice of models for different
variables.

5.1.2 Bayesian temperature kriging

As described in Sect. 5.1.1 we provide functionality to use a
height-gradient-based approach to reduce the systematic er-
ror when estimating the local air temperature based on re-
gional observations. The gradient value may either be calcu-
lated from the data or set manually by the user.

In many cases, this simplistic approach is suitable for the
purposes of optimizing the calibration. However, if one is
interested in greater physical constraints on the simulation,
we recognize that the gradient is often more complicated and
varies both seasonally and with local weather. There may be
situations in which insufficient observations are available to
properly calculate the temperature gradient, or potentially the
local forcing at the observation stations is actually represen-
tative of entirely different processes than the one for which
the temperature is being estimated. An alternative approach
has therefore been implemented in Shyft that enables apply-
ing a method that would buffer the most severe local effects
in such cases.

The application of Bayes’ theorem is suitable for such
weighting of measurement data against prior information.
Shyft provides a method that estimates a regional height gra-
dient and sea level temperature for the entire region, which
together with elevation data subsequently model a surface
temperature.

5.1.3 Generalization

The IDW in Shyft is generalized and adapted to the practi-
calities using available grid forecasts:
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1. selecting the neighbors that should participate in the
IDW individually for each destination point;

– The Z scale allows the selection to discriminate
neighbors that are of different height (e.g., precipi-
tation, relative humidity, prefer same heights);

– the number of neighbors that should be chosen for
any given interpolation point; and

– excluding neighbors with distances larger than a
specified limit.

2. Given the neighbors selected according to (1), a trans-
formation technique or method adapted to the signal
type is applied to project the signal from its source po-
sition into the destination position. The weight scaling
factor is 1/pow(distance,distance_scale_factor).

– Temperature has several options available.

– The temperature lapse rate is computed us-
ing the nearest neighbors with sufficient and/or
maximized vertical distance.

– The full 3D temperature flux vector is derived
from the selected points, and then the vertical
component is used.

– For precipitation,
(scale_factor)(z distance in meters/100.0), the scale
factor specified in the parameter, and the z distance
as the source–destination distance.

– Radiation: allows for slope and factor adjustment
on the destination cell.

5.2 Model stacks

In Shyft, a hydrologic model is a sequence of hydrologic
methods and a called model stack. Each method of the model
stack describes a certain hydrologic process, and the model
stack typically provides a complete rainfall–runoff model.
In the current state, the model stacks provided in Shyft dif-
fer mostly in the representation of snow accumulation and
melt processes due to the predominant importance of snow
in the hydropower production environments of Nordic coun-
tries, where the model was operationalized first. These model
stacks provide sufficient performance in the catchments for
which the model has been evaluated; however, it is expected
that for some environments with different climatic condi-
tions more advanced hydrologic routines will be required,
and therefore new model stacks are in active development.
Furthermore, applying Shyft in renewable energy production
environments other than hydropower (e.g., wind power) is
realizable but will not be discussed herein.

Currently, there are four model stacks available that un-
dergo permanent development. With the exception of the
HBV (Hydrologiska Byråns Vattenbalansavdeling) (Lind-
ström et al., 1997) model stack, the distinction for the re-
maining three model options is the snow routine used in the

Table 1. Input data requirements per model.

Input variable Unit Model stacks

Temperature ◦C all model stacks
Precipitation mmh−1 all model stacks
Radiation Wm−2 all model stacks
Wind speed ms−1 PTGSK
Relative humidity % PTGSK

hydrologic calculations. In these remaining model stacks, the
model stack naming convention provides information about
the hydrologic methods used in the respective model.

5.3 PTGSK

– PT (Priestley–Taylor)
Method for evapotranspiration calculations according to
Priestley and Taylor (1972).

– GS (Gamma-Snow)
Energy-balance-based snow routine that uses a gamma
function to represent sub-cell snow distribution (Kol-
berg et al., 2006).

– K (Kirchner)
Hydrologic response routine based on Kirchner (2009).

In the PTGSK model stack, the model first uses Priestley–
Taylor to calculate the potential evapotranspiration based on
temperature, radiation, and relative humidity data (see Ta-
ble 1 for an overview of model input data). The calculated
potential evaporation is then used to estimate the actual evap-
otranspiration using a simple scaling approach. The Gamma-
Snow routine is used to calculate snow accumulation and
melt-adjusted runoff using time series data for precipitation
and wind speed in addition to the input data used in the
Priestley–Taylor method. Glacier melt is accounted for using
a simple temperature index approach (Hock, 2003). Based on
the snow- and ice-adjusted available liquid water, Kirchner’s
approach is used to calculate the catchment response. The
PTGSK model stack is the only model in Shyft which pro-
vides an energy-balance approach to the calculation of snow
accumulation and melt processes.

5.4 PTSSK

– SS (Skaugen Snow)
Temperature-index-model-based snow routine with a
focus on snow distribution according to Skaugen and
Randen (2013) and Skaugen and Weltzien (2016).

As with the PTGSK model stack, all calculations are iden-
tical with the exception that the snow accumulation and melt
processes are calculated using the Skaugen Snow routine.
The implementation strictly separates potential melt calcula-
tions from snow distribution calculations, making it an easy
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task to replace the simple temperature index model currently
in use with an advanced (energy-balance-based) algorithm.

5.5 PTHSK

– HS (HBV Snow)
Temperature index model for snow accumulation and
melt processes based on the snow routine of the HBV
(Hydrologiska Byråns Vattenbalansavdeling) model
(Lindström et al., 1997).

As with the PTGSK model stack, all calculations are iden-
tical with the exception that the snow accumulation and melt
processes are calculated using the snow routine from the
HBV model.

5.6 HBV

The HBV model stack very closely resembles the original de-
scription of Bergström (1976). An exception is that we cal-
culate the potential evapotranspiration using the Priestley–
Taylor routine rather than temperature-adjusted monthly
mean potential evapotranspiration. In the HBV model stack,
the original routines are all combined into a complete model.
As with the other routines, we also include the calculation
of glacial melt and allow for routing using the methods de-
scribed in Sect. 5.7.

5.7 Routing

Routing in Shyft is established through two phases: (a) cell-
to-river routing and (b) river network routing. In cell-to-river
routing water is routed to the closest river object providing
lateral inflow to the river. While individual cells have the pos-
sibility to have a specific routing velocity and distance, unit
hydrograph (UHG) shape parameters are catchment-specific.
River network routing provides for routing from one river
object to the next downstream river object along with lateral
inflow from the cells as defined in the first phase. The sum of
the upstream river discharge and lateral inflow is then passed
to the next downstream river object. A UHG parameter struc-
ture provides for UHG shape parameters and a discretized
time length according to the model time step resolution. Cur-
rently, a gamma function is used for defining the shape of
the UHG. The approach of Skaugen and Onof (2014) to sum
together all cell responses at a river routing point and define
a UHG based on a distance distribution profile to that rout-
ing point is commonly used. Together with convolution, the
UHG will determine the response from the cells to the rout-
ing point.

5.8 Uncertainty analysis

Shyft is equipped with several mechanisms, which ease un-
certainty analysis of different kinds. First, the modules are
easily configurable via YAML configuration files (an exam-
ple of a model configuration file is provided in the online

code repository), which are utilized by orchestration rou-
tines. The configuration files define

– forcings datasets,

– interpolation methods,

– calibration and simulation periods,

– parameters to be used in calibrations, and

– model stack to be used.

Secondly, via the Python API a practitioner can interact
with forcings, parameters, and state variables at any stage
of simulation, so in the case that the orchestration provided
by Shyft is limited, one can programmatically control and
manipulate simulations.

Thus, one can assess uncertainty coming from forcing data
via model runs with a variety of forcing datasets and the
same configuration (stack and parameters), uncertainty com-
ing from model structure via running experiments with dif-
ferent stacks, and uncertainty coming from parameterization
of the stacks. All types of such experiments are possible
without recompilation of the software. The uncertainty anal-
ysis application is presented in Teweldebrhan et al. (2018b),
and an application of Shyft in a machine-learning-based en-
vironment is presented in Teweldebrhan et al. (2020).

5.9 Prediction in ungauged basins

Prediction in ungauged basins (PUBs) is mostly done via
various methods under the regionalization approach (Hra-
chowitz et al., 2013), whereby regionalization means that hy-
drological information from a gauged (donor) basin is trans-
ferred to an ungauged (target) location. Shyft is perfectly
suited with functionality for parameter regionalization: given
several catchments in the area, one can easily set up a cal-
ibration procedure (via YAML configuration files or pro-
grammatically) to use one or some of the subcatchments
in the domain and for the remaining ungauged catchments.
What provided immense flexibility here is the use of repos-
itories, whereby a parameter repository could be developed
that maps gauged to ungauged catchments and returns the ap-
propriate configuration. One could even take the approach of
making the configuration functional and apply gradient cal-
culations to physical parameters (e.g., PCORR). The internal
methods, such as inverse distance weighting (IDW), can be
applied in order to average donor subcatchment results based
on geographical proximity to the target (Merz and Blöschl,
2004). However, considerations on the similarities of the sub-
catchments and a suitable regionalization approach are left
for the practitioner.

5.10 Hydrological forecasting

The development of Shyft was primarily driven by require-
ments within a production planning environment. Key met-
rics for the software were the ability to produce simulations
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and forecasts in a fast and accurate manner, while allowing
for replicable configurations and assessment of uncertainty.
In order to balance optimal forecast performance and com-
putational efficiency, several choices were made within do-
mains for which the greatest control exists. For example,
Shyft can run, in a highly optimized manner, simulations
across numerous spatial domains with different model stacks
and/or weather forcings. The feature-rich and programmatic
configurability provides the “fast” capability.

“Accurate” means that all algorithmic implementations
and hydrologic paradigms are coded in such a manner as
to ensure replicability and to optimally serve the quality of
the discharge forecast, and only that. We do not place em-
phasis on accuracy in the context of simulating the full hy-
drologic system or state, but rather discharge as measured
against observations. There are opinionated choices made in
the currently available model stacks. For instance, given the
uncertainties associated with the input data required to phys-
ically resolve subsurface flow, we intentionally leave the “re-
sponse” of the watershed to the Kirchner routine. However,
we have full control over distributed input forcing data and
surface geography, and therefore we emphasize the develop-
ment of snow distribution routines and weather processing
routines to provide our optimal forecasts. So it should not
be construed that within Shyft there is not an interest in the
physical systems. It is rather the contrary that emphasis is
placed based on greatest value toward the goals of produc-
tion planning.

The introduction of Shyft to the open-source community
is an invitation for further development, and we encourage
the contribution of routines to address components of the hy-
drologic cycle for which contributors feel they can provide
higher-quality forecasts through implementation of more so-
phisticated routines.

6 Computational performance

There are certain design principles that indirectly prove Shyft
is an efficient tool from a computational point of view:

– the choice of programming language and libraries (C++,
fast third-party libraries, boost, armadillo, dlib, tem-
plate, static dispatch, inline, simple structures);

– avoiding memory allocations during computation, traf-
fic, shared pointer, and other interlocking features in the
core;

– design of data structures and types to maximize perfor-
mance, e.g., time series, fixed or known time step and
time axis, pre-allocate cell environment;

– design of the computational steps (like the first prepara-
tion and/or interpolation, then cells, then river network);

– design of hydrology methods that is suitable for the
above approach, like composable method stacks.

Figure 5. Benchmarking of Shyft computational performance con-
ducted using a synthetic time series and regular 1 km grid cells. The
model was run at an hourly time step for the purposes of testing
with 3 h input data from the NOAA Global Ensemble Forecast Sys-
tem (GEFS).

The formal comparison to other software is challenged by
several things. First of all, most operational tools continue
to reside as proprietary, meaning they are not available for
the general public. Most of the ready-to-use research tools
are developing with research activities being the main driv-
ing factor, not taking into account production specifics de-
scribed in Sect. 1.2 paragraph 2. Another challenge comes
from the well-known problem of standardized hydrological
benchmarking discussed in Abramowitz (2012) and Grewe
et al. (2012), as the definition of efficient (from a hydrologi-
cal simulation point of view) software depends on the proper
application of metrics and proper justification at each step.

However, we can assess computational efficiency via
benchmarking towards existing hardware. Fig. 5 shows re-
sults of the synthetic experiment on evaluating computational
performance. As can be seen the use of computational time
increases linearly, which is the expected behavior.

7 Availability and documentation

The source code of Shyft is published under version 3 of the
GNU Lesser General Public License. All code is available
via Git repositories located at https://gitlab.com/shyft-os (last
access: 22 November 2020). Therein, three separate reposi-
tories are used by the developers for the management of the
code. The main code repository is simply called “shyft”. In
addition to the source code of Shyft, data needed to run the
full test suite are distributed in the “shyft-data” repository,
while a collection of Jupyter Notebooks providing example
Python code for a number of use cases of the Shyft API is
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provided within the “shyft-doc” repository – in addition to
the full code for the Read the Docs (https://shyft.readthedocs.
io, last access: 22 November 2020) website. At this site we
provide end-user documentation on

– installation on both Linux and Windows operating sys-
tems;

– how to use the Shyft API to construct a hydrological
model, feed it with data, and run hydrologic simula-
tions;

– use of Shyft repositories to access model input data and
parameters; and

– use of the Shyft orchestration to configure and run sim-
ulations.

We also maintain a “dockers” repository at https://gitlab.
com/shyft-os/dockers (last access: 22 November 2020),
where docker-built recipes for the complete Shyft ecosys-
tem reside, including “build dockers”, “Python test dockers”,
“development dockers”, and “application dockers”.

An aspect of Shyft that is unique to most research code
bases is the extensive test suite that covers both the Python
and the C++ code base. The test suite is comprehensive, and
in addition to unit tests covering C++ parts and Python parts,
it also covers integration tests, ensuring valid bindings to ex-
ternal dependencies such as NetCDF and geo-services. This
is a particularly helpful resource for those who are somewhat
more advanced in their knowledge of coding.

8 Recent applications

Shyft was originally developed in order to explore epistemic
uncertainty associated with model formulation and input se-
lection (Beven et al., 2011). At Statkraft, and at most Norwe-
gian hydropower companies, inflow forecasting to the reser-
voirs is conducted using the well-known HBV (Bergström,
1976) model. The inflow to the reservoirs is a critical vari-
able in production planning. As such, there was an interest in
evaluating and assessing whether improvements in the fore-
casts could be gained through the use of different formula-
tions. In particular, we sought the ability to ingest distributed
meteorological inputs and to also assess the variability result-
ing from NWP models of differing resolution and operating
at different timescales (e.g., Zsoter et al., 2015).

8.1 Production planning

In Fig. 6 we present a simple example in which Shyft is
used to provide inflow forecasts with a horizon of 15 d for
a subcatchment in the Nea–Nidelva basin (marked in red in
Fig. 4). The total area of the basin is about 3050 km2, and
the watercourse runs for some 160 km from the Sylan moun-
tains on the boarder between Sweden and Norway to the river

mouth in Trondheimsfjorden. The hydrology of the area is
dominated by snowmelt from seasonal snow cover. The in-
tent of the example is not to analyze the performance of the
forecast, but rather to simply demonstrate the capability of
Shyft to run an ensemble forecast in a single configuration.

In this example we show the results from a single ensem-
ble configuration of Shyft in which the region is configured
with a spatial resolution of 1km× 1km and the model setup
aims to reproduce the hydrological forecast with a forecast-
ing start on 22 April 2018 at 00:00 UTC. In order to estimate
model state variables, the simulation initiates before the melt
season begins. Using the model state based on the histori-
cal simulation and latest discharge observations, the model
state is updated so that the discharge at forecast start equals
the observed discharge. Forecasts are then initiated based on
the updated model state and using a number of weather fore-
casts from different meteorological forecast providers and
ensembles. A deterministic hydrologic forecast is run us-
ing the AROME weather prediction system from the Nor-
wegian Meteorological Institute with a horizon of 66 h and
a spatial resolution of 2.5 km (Seity et al., 2011; Bengts-
son et al., 2017). Likewise, a second deterministic forecast
is conducted based on the high-resolution 10 d forecast prod-
uct from the European Centre for Medium-Range Weather
Forecasts (ECMWF) (spatial resolution 0.1◦×0.1◦ latitude–
longitude). In addition to the deterministic forecasts, sim-
ulations based on ECMWF’s 15 d ensemble forecast sys-
tem are conducted (51 ensemble members, spatial resolu-
tion 0.2◦×0.2◦ latitude–longitude) (Andersson and Thépaut,
2008). In total, from initiation to completion this forecast
takes less than a few minutes to run, with the bulk of the
time dependent on the input–output-bound operations, which
significantly depend on how users choose to implement their
repositories for the weather (e.g., Sect. 3.3).

The forecast is run during the initial phase of the snowmelt
season in April 2018. The historical simulation overesti-
mated streamflow during the week prior to the forecast start
(left of the black bar in Fig. 6). However, after updating the
model state using observed discharge (the black bar is the
time step when the internal states updated to match observa-
tions), the simulations provide a reasonable streamflow fore-
cast (right of the black bar in Fig. 6) as well as a series of
possible outcomes based on the ensemble of meteorological
products. For production planning purposes, the ability to as-
sess the uncertainty of the forecast rapidly and to efficiently
ingest ensemble forecasts is highly valued (e.g., Anghileri
et al., 2016, 2019).

8.2 The impact of aerosol-driven snowpack melt on
discharge

One of the first research-based applications of the framework
was to evaluate the impact of aerosols on snowmelt. The
story of light-absorbing impurities in snow and ice (LAISI)
is one that has gained a significant amount of attention in
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Figure 6. Example of a hydrological forecast conducted with Shyft for a subcatchment in the Nea–Nidelva basin. Shyft has been used
to simulate the historical discharge (red) in order to estimate state variables (22 April 2018, 00:00 UTC). Three different weather forecast
products are then used in order to predict discharge: the operational deterministic weather prediction AROME with a forecasting horizon
of 66 h from the Norwegian Meteorological Institute (purple), ECMWF’s deterministic weather forecast with a horizon of 10 d (blue), and
ECMWF’s ensemble weather prediction with a horizon of 15 d and 51 ensemble members (grey). Discharge observations (black) are shown
for reference. Note: discharge is provided from Statkraft AS and is divided by a factorX in order to mask the observational data as Statkraft’s
data policy considers discharge-sensitive data.

the research community. While the initial emphasis on the
development of the routine was aligned more toward Arc-
tic black carbon aerosol, the increasing awareness of the
role of aerosols influencing discharge in regions of Colorado
(Bryant et al., 2013) has created an exciting new application
for this algorithm. To our knowledge no other catchment-
scale hydrologic forecast model provides this capability.

Wiscombe and Warren (1980) and Warren and Wiscombe
(1980) hypothesized that trace amounts of absorptive impuri-
ties occurring in natural snow can lead to significant implica-
tions for snow albedo. To date, many studies have given evi-
dence for this hypothesis (e.g., Jacobson, 2004; IPCC, 2013;
Wang et al., 2013; Hansen and Nazarenko, 2004). Particles
that have the ability to absorb electromagnetic waves in the
short wavelength range caught the attention of the research
community due their influence on water and energy budgets
of both the atmosphere and the Earth’s surface (e.g., Twomey
et al., 1984; Albrecht, 1989; Hansen et al., 1997; Ramanathan
et al., 2001). If these aerosols are deposited alongside snow-
fall, they lower the spectral albedo of the snow in the short-
wave spectrum (see, for example, Fig. 1 of Hadley and
Kirchstetter, 2012) and act in a similar way as their airborne
counterparts by emitting infrared radiation (Fig. 7). Due to
the efficient absorption properties of snow grains in the ther-
mal infrared, this leads to heating the snow. This in turn

has implications for the evolution of the snow microstructure
(Flanner et al., 2007) and snowmelt.

At the catchment scale such an absorptive process should
have an observable impact on melt rates and discharge. While
several studies have provided field-based measurements of
the impact of LAISI on albedo of the snow (e.g., Painter
et al., 2012; Doherty et al., 2016), no studies have attempted
to address the impact of this process on discharge. Skiles and
Painter (2016) showed that snowpack melt rates were im-
pacted in the Colorado Rockies resulting from dust deposi-
tion by evaluating a sequence of snow pits, and Painter et al.
(2017) provided observational evidence that the hydrology
of catchments is likely impacted by LAISI deposition, but
no studies have incorporated a physically based simulation
in a hydrologic model to describe the component of melt at-
tributable to LAISI.

Using Shyft, Matt et al. (2018) addressed this process by
using the catchment as an integrating sampler to capture the
signal of deposited LAISI. In this work, it was shown that
even in a remote Norwegian catchment, the timing of melt
is impacted by the slight black carbon (BC) concentrations
deposited in the snow, with an average percentage increase
in daily discharge ranging from 2.5 % to 21.4 % for the early
melt season and a decrease in discharge of −0.8% to−6.7%
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Figure 7. Schematic drawing of black carbon (and other light-absorbing particles) pathways and processes in the atmosphere and snow.

during the late melt season depending on the deposition sce-
nario.

To accomplish this, a new snowpack algorithm was de-
veloped to solve the energy balance for incoming shortwave
radiation flux Kin, incoming and outgoing longwave radia-
tion fluxes Lin and Lout, sensible and latent heat fluxes Hs
andHl, and the heat contribution from rain R. As such, δF

δt
is

the net energy flux for the snowpack:

δF

δt
=Kin(1−α)+Lin+Lout+Hs+Hl+R. (1)

In order to account for the impact of LAISI the algo-
rithm implemented a radiative transfer solution for the dy-
namical calculation of snow albedo, α. The algorithm builds
on the SNICAR model (Flanner et al., 2007) and allows for
model input variables of wet and dry deposition rates of light-
absorbing aerosols. Thusly, the model is able to simulate the
impact of dust, black carbon, volcanic ash, and other aerosol
deposition on snow albedo, snowmelt, and runoff. This is the
first implementation of a dynamical snow albedo calculation
in a catchment-scale conceptual hydrologic model and raises
exciting opportunities for significant improvements in fore-
casting for regions that may have significant dust burdens in
the snowpack (e.g., the southern Alps and the western slope
of the Colorado Rockies).

8.3 The value of snow cover products in reducing
uncertainty

In operational hydrologic environments, quantification of un-
certainty is becoming increasingly paramount. Traditionally,
hydrologic forecasts may have provided water resource man-
agers or production planners with a single estimate of the in-
flow to a reservoir. This individual value often initializes a
chain of models that are used to optimize use of the water re-
source. In some cases it may be used as input to subsequently
calculate a water value for a hydropower producer, giving in-
sight into how to operate the generation of resources. In other
cases, the value may be provided to a flood manager, who is
responsible for assessing the potential downstream flood im-
pacts.

There is a growing awareness of the need to quantify the
amount of uncertainty associated with the forecasted number.
In general, in hydrologic modeling, uncertainty is driven by
the following factors: data quality (for both input forcing data
and validation or gauge data), uncertainty associated with the
model formulation, and uncertainty around the parameters
selected (Renard et al., 2010). The Shyft platform aims to
provide tools to facilitate rapid exploration of these factors.

In Teweldebrhan et al. (2018b) not only was parameter
uncertainty explored using the well-known generalized like-
lihood uncertainty estimation (GLUE) methodology, but a
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novel modification to the GLUE methodology was also im-
plemented for operational applications. The investigation of
the suitability of snow cover data to condition model pa-
rameters required a novel approach to be defined to con-
strain model parameters. Rather than the traditional approach
to the GLUE limit of acceptability (GLUE LOA), Tewelde-
brhan et al. (2018b) relaxed the percentage of time steps in
which prediction of model realizations falls within the lim-
its. Though this approach was found in the specific case not
to lessen the uncertainty of the forecasts, it provides a for-
ward direction whereby one can investigate the value of dis-
continuous and often sparse snow product information more
thoroughly.

Furthering the investigation of reducing forecast uncer-
tainty through the use of remotely sensed snow cover prod-
ucts, Teweldebrhan et al. (2018a) explored the implemen-
tation of data assimilation (DA) schemes into the Shyft
framework. Given the relative availability of fractional snow-
covered area (fSCA), this was selected as a predictor vari-
able. Key to this study was the development of a change
point (CP) detection algorithm that allowed for the explo-
ration of the timing aspects of uncertainty associated with
the fSCA. Using fuzzy-logic-based ensemble fSCA assim-
ilation schemes enabled capturing uncertainties associated
with model forcing and parameters, ultimately yielding im-
proved estimates of snow water equivalence (SWE). The re-
sults showed that by quantifying the variable informational
value of fSCA observations – as a function of location and
timing windows – one can reduce the uncertainty in SWE
reanalysis. In this study the LOA approach to data assimila-
tion was introduced and improved the performance versus a
more traditional particle-batch smoother scheme. In both DA
schemes, however, the correlation coefficient between site-
averaged predicted and observed SWE increased by 8 % and
16 %, respectively, for the particle batch and LOA schemes.

9 Discussion

9.1 Complexity of hydrologic algorithms

Shyft is focused on providing both hydrologic service
providers and researchers with a robust code base suitable
for implementation in operational environments. The design
principles of Shyft are formulated in order to serve this aim.
Using simple approaches in hydrological routines is a design
decision related to the desire for computational efficiency.
Rapid calculations are necessary in order to provide the pos-
sibility to simulate a large number of regions at high temporal
and spatial resolution several times per day or on demand in
order to react to updated input data from weather forecasts
and observations. Hydrologic routines are therefore kept as
simple as possible, but also as complex as necessary, and fo-
cus has not been on the implementation of the most advanced
hydrologic routines, but on known and tested algorithms that

are proven in application. Furthermore, emphasis is on por-
tions of the hydrologic model for which data exist. For this
reason, the available routines are limited in hydrologic pro-
cess representation, but active community contribution is en-
visioned, and new functionality will be implemented when
significant improvement in the scope of the targeted applica-
tions is ensured. Developments aiming to increase algorith-
mic complexity in Shyft undergo critical testing aiming to
evaluate whether the efforts go hand in hand with a signif-
icant increase in forecasting performance or similar advan-
tages. Of key importance is that the architecture of the soft-
ware facilitates both the testing of new algorithms and model
configurations within an operational setting.

9.2 Multiple model configuration

A significant challenge in introducing new or innovative ap-
proaches exists in environments that have 24/7 up-time op-
erations. Furthermore, there is generally a requirement to
maintain an existing model configuration while exploring
new possibilities. Shyft is built to facilitate the replacement
of outdated operational systems in several ways. Most im-
portantly, Shyft does not force a user to give up on certain
established workflows and model configurations. Hence, it
is well-geared toward a so-called forecast-based adaptive-
management workflow to evaluate multiple preprocessing
configurations of weather (see Fig. 1 in Anghileri et al.,
2019).

Many classical conceptual models describe the model do-
main in a lumped or semi-lumped fashion, such as done in the
original formulation of the HBV model (Bergström, 1976)
and the Sacramento Soil Moisture Accounting Model devel-
oped by the US National Weather Service. Today, both of
these models are still used in private and public sectors for
streamflow forecasting. The concept of cells in Shyft allows
for equivalent model domain configurations, in which a cell
may represent a basin or an elevation zone. While a user is
free to configure a model in such a fashion, Shyft addition-
ally allows for easy testing of more advanced representations
of the model domain while leaving other parts of the model
configuration untouched.

Another example is given by Shyft’s independence from
requirements towards file formats and databases. The repos-
itory concept allows a strict separation of data sources and
the model, which facilitates the replacement of the forecast-
ing model in the operational setup while leaving other parts
of the forecasting system, such as databases and data storage
setups, unchanged.

Moreover, the abovementioned functionalities allow, in
addition to using the multiple working hypothesis through
multi-model support, the testing of multiple model config-
urations with which different combinations of input data,
downscaling methods, and model algorithms can be tested.
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10 Conclusions

This model description intends to introduce a new hydro-
logic model toolbox aiming for streamflow forecasts in op-
erational environments that provides experts in the business
domain and scientists at research institutes and universities
with enterprise-level software. Shyft is based on advanced
templated C++ concepts. The code is highly efficient, able
to take advantage of modern-day compiler functionality, and
released open-source in order to provide a platform for joint
development. An application programming interface allows
for easy access to all of the components of the framework,
including the individual hydrologic routines, from Python.
This enables rapid exploration of different model configura-
tions and selection of an optimal forecast model.

Code and data availability. The current version of the Shyft model
is available from the project website at https://gitlab.com/shyft-os/
shyft (Shyft, 2021a) under the GPLv.3 license. The documentation
is available at https://gitlab.com/shyft-os/shyft-doc (Shyft, 2021b).
The dockers for the Shyft ecosystem are available at https://gitlab.
com/shyft-os/dockers (Shyft, 2021c). A Zenodo archive with the
exact version of Shyft described and used in this paper is available
at https://doi.org/10.5281/zenodo.3782737 (Burkhart et al., 2020).

Author contributions. Shyft is developed by Statkraft and the Uni-
versity of Oslo. The two main authors of the C++ core are SH and
OSk, with later contributions from the open-source community, in-
cluding OSi. Orchestration and the Python wrappers were originally
developed by JFB, with later contributions from YSA and FNM.
Repositories were developed by YSA, JFB, and FNM. The paper
was written by JFB and FNM with contributions from OSi. The case
study and examples were produced by JFB and FNM. All authors
participated in the discussion of the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The development of Shyft is led by Statkraft
AS with the collaboration of the University of Oslo. Particular
thanks to Gaute Lappegard for his encouragement to develop an
open platform and guidance during the implementation.

Financial support. This research has been supported by the Nor-
wegian Research Council (grant nos. 222195, 244024, and 255049)
and the Strategic Research Initiative LATICE (UiO/GEO103920) at
the University of Oslo.

Review statement. This paper was edited by Bethanna Jackson and
reviewed by two anonymous referees.

References

Abramowitz, G.: Towards a public, standardized, diagnostic bench-
marking system for land surface models, Geosci. Model Dev., 5,
819–827, https://doi.org/10.5194/gmd-5-819-2012, 2012.

Albrecht, B. A.: Aerosols, Cloud Microphysics, and
Fractional Cloudiness, Science, 245, 1227–1230,
https://doi.org/10.1126/science.245.4923.1227, 1989.

Andersson, E. and Thépaut, J.: ECMWF’s 4D-Var data assimila-
tion system – the genesis and ten years in operations, ECMWF
Newslett., 115, 8–12, https://doi.org/10.21957/wnmguimihe,
2008.

Anghileri, D., Voisin, N., Castelletti, A., Pianosi, F., Nijssen,
B., and Lettenmaier, D. P.: Value of long-term streamflow
forecasts to reservoir operations for water supply in snow-
dominated river catchments, Water Resour. Res., 52, 4209–4225,
https://doi.org/10.1002/2015WR017864, 2016.

Anghileri, D., Monhart, S., Zhou, C., Bogner, K., Castelletti, A.,
Burlando, P., and Zappa, M.: The Value of Subseasonal Hy-
drometeorological Forecasts to Hydropower Operations: How
Much Does Preprocessing Matter?, Water Resour. Res., 55, 10,
https://doi.org/10.1029/2019WR025280, 2019.

Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J.,
de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hor-
tal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen,
K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S.,
Subias, A., Tijm, S., Toll, V., Yang, X., and Koltzow, M. O.: The
HARMONIE-AROME Model Configuration in the ALADIN-
HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935,
https://doi.org/10.1175/MWR-D-16-0417.1, 2017.

Berg, P., Donnelly, C., and Gustafsson, D.: Near-real-time adjusted
reanalysis forcing data for hydrology, Hydrol. Earth Syst. Sci.,
22, 989–1000, https://doi.org/10.5194/hess-22-989-2018, 2018.

Bergström, S.: Development and application of a conceptual runoff
model for Scandinavian catchments, SMHI, Report RH07, Nor-
rköping, Sweden, 1976.

Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320,
18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.

Beven, K., Smith, P. J., and Wood, A.: On the colour and spin of
epistemic error (and what we might do about it), Hydrol. Earth
Syst. Sci., 15, 3123–3133, https://doi.org/10.5194/hess-15-3123-
2011, 2011.

Bryant, A. C., Painter, T. H., Deems, J. S., and Bender, S. M.: Im-
pact of dust radiative forcing in snow on accuracy of operational
runoff prediction in the Upper Colorado River Basin, Geophys.
Res. Lett., 40, 3945–3949, https://doi.org/10.1002/grl.50773,
2013.

Burkhart, J. F., Matt, F., Sigbjorn, H., Abdella, Y. S., Skavhaug, O.,
and Silantyeva, O.: Shyft v4.8: A Framework for Uncertainty As-
sessment and Distributed Hydrologic Modelling for Operational
Hydrology, Zenodo, https://doi.org/10.5281/zenodo.3782737,
2020.

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of
multiple working hypotheses for hydrological modeling, Water
Resour. Res., 47, 1–16, https://doi.org/10.1029/2010WR009827,
2011.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp,
D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W.,
Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen,
R. M.: A unified approach for process-based hydrologic mod-

https://doi.org/10.5194/gmd-14-821-2021 Geosci. Model Dev., 14, 821–842, 2021

https://gitlab.com/shyft-os/shyft
https://gitlab.com/shyft-os/shyft
https://gitlab.com/shyft-os/shyft-doc
https://gitlab.com/shyft-os/dockers
https://gitlab.com/shyft-os/dockers
https://doi.org/10.5281/zenodo.3782737
https://doi.org/10.5194/gmd-5-819-2012
https://doi.org/10.1126/science.245.4923.1227
https://doi.org/10.21957/wnmguimihe
https://doi.org/10.1002/2015WR017864
https://doi.org/10.1029/2019WR025280
https://doi.org/10.1175/MWR-D-16-0417.1
https://doi.org/10.5194/hess-22-989-2018
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.5194/hess-15-3123-2011
https://doi.org/10.5194/hess-15-3123-2011
https://doi.org/10.1002/grl.50773
https://doi.org/10.5281/zenodo.3782737
https://doi.org/10.1029/2010WR009827


840 J. F. Burkhart et al.: Shyft v4.8

eling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514,
https://doi.org/10.1002/2015WR017198, 2015a.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp,
D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood,
A. W., Gochis, D. J., Rasmussen, R. M., Tarboton, D. G., Ma-
hat, V., Flerchinger, G. N., and Marks, D. G.: A unified ap-
proach for process-based hydrologic modeling: 2. Model imple-
mentation and case studies, Water Resour. Res., 51, 2515–2542,
https://doi.org/10.1002/2015WR017200, 2015b.

Day, G. N.: Extended Streamflow Forecasting Using NWS-
RFS, J. Water Resour. Plan. Manage., 111, 157–170,
https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157),
1985.

Demming, R., Duffy, D. J., and Schling, B.: Introduction to the
Boost C++ libraries. Volume I, Foundations, Datasim Education
BV, Amsterdam, The Netherlands, 2010.

Doherty, S. J., Hegg, D. A., Johnson, J. E., Quinn, P. K.,
Schwarz, J. P., Dang, C., and Warren, S. G.: Causes of vari-
ability in light absorption by particles in snow at sites in
Idaho and Utah, J. Geophys. Res.-Atmos., 121, 4751–4768,
https://doi.org/10.1002/2015JD024375, 2016.

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch,
P. J.: Present-day climate forcing and response from black
carbon in snow, J. Geophys. Res.-Atmos., 112, D11202,
https://doi.org/10.1029/2006JD008003, 2007.

Fowler, M.: Patterns of Enterprise Application Architecture,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

Germann, U., Berenguer, M., Sempere-Torres, D., and Zappa, M.:
REAL-Ensemble radar precipitation estimation for hydrology in
a mountainous region, Q. J. Roy. Meteorol. Soc., 135, 445–456,
https://doi.org/10.1002/qj.375, 2009.

Gochis, D. J., Barlage, M., Dugger, A., Fitzgerald, K., Karsten, L.,
McAllister, M., McCreight, J., Mills, J., RafieeiNasab, A., Read,
L., Sampson, K., Yates, D., and Yu, W.: The WRF-Hydro model-
ing system technical description, (Version 5.0), NCAR Technical
Note, pp. 1–107, https://doi.org/10.5065/D6J38RBJ, 2018.

Grewe, V., Moussiopoulos, N., Builtjes, P., Borrego, C., Isak-
sen, I. S. A., and Volz-Thomas, A.: The ACCENT-protocol:
a framework for benchmarking and model evaluation, Geosci.
Model Dev., 5, 611–618, https://doi.org/10.5194/gmd-5-611-
2012, 2012.

Grubert, E. and Sanders, K. T.: Water Use in the United States En-
ergy System: A National Assessment and Unit Process Inventory
of Water Consumption and Withdrawals, Env. Sci. Technol., 52,
6695–6703, https://doi.org/10.1021/acs.est.8b00139, 2018.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved
calibration of hydrologic models: Multiple and noncommensu-
rable measures of information, Water Resour. Res., 34, 751–763,
https://doi.org/10.1029/97WR03495, 1998.

Haddeland, I., Lettenmaier, D. P., and Skaugen, T.: Effects of
irrigation on the water and energy balances of the Col-
orado and Mekong river basins, J. Hydrol., 324, 210–223,
https://doi.org/10.1016/j.jhydrol.2005.09.028, 2006a.

Haddeland, I., Skaugen, T., and Lettenmaier, D. P.: Anthropogenic
impacts on continental surface water fluxes, Geophys. Res. Lett.,
33, L08406, https://doi.org/10.1029/2006GL026047, 2006b.

Haddeland, I., Skaugen, T., and Lettenmaier, D. P.: Hydrologic
effects of land and water management in North America and

Asia: 1700–1992, Hydrol. Earth Syst. Sci., 11, 1035–1045,
https://doi.org/10.5194/hess-11-1035-2007, 2007.

Hadley, O. L. and Kirchstetter, T. W.: Black-carbon reduc-
tion of snow albedo, Nat. Clim. Change, 2, 437–440,
https://doi.org/10.1038/nclimate1433, 2012.

Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and
Mao, Y.: The Variable Infiltration Capacity model version
5 (VIC-5): infrastructure improvements for new applications
and reproducibility, Geosci. Model Dev., 11, 3481–3496,
https://doi.org/10.5194/gmd-11-3481-2018, 2018.

Hansen, J. and Nazarenko, L.: Soot climate forcing via snow
and ice albedos, P. Natl. Acad. Sci. USA, 101, 423–428,
https://doi.org/10.1073/pnas.2237157100, 2004.

Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and
climate response, J. Geophys. Res.-Atmos. 102, 6831–6864,
https://doi.org/10.1029/96JD03436, 1997.

Hock, R.: Temperature index melt modelling in mountain ar-
eas, J. Hydrol., 282, 104–115, https://doi.org/10.1016/S0022-
1694(03)00257-9, 2003.

Hrachowitz, M., Savenije, H., Blöschl, G., McDonnell, J., Siva-
palan, M., Pomeroy, J., Arheimer, B., Blume, T., Clark, M.,
Ehret, U., Fenicia, F., Freer, J., Gelfan, A., Gupta, H., Hughes,
D., Hut, R., Montanari, A., Pande, S., Tetzlaff, D., Troch,
P., Uhlenbrook, S., Wagener, T., Winsemius, H., Woods, R.,
Zehe, E., and Cudennec, C.: A decade of Predictions in Un-
gauged Basins (PUB) – a review, Hydrol. Sci. J., 58, 1198–1255,
https://doi.org/10.1080/02626667.2013.803183, 2013.

IPCC, W. G. I.: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Re-
port of the Intergovernmental Panel on Climate Change, Cam-
bridge University Press, Cambridge, UK and New York, NY,
USA, https://doi.org/10.1017/CBO9781107415324, 2013.

Jacobson, M. Z.: Climate response of fossil fuel and biofuel
soot, accounting for soot’s feedback to snow and sea ice
albedo and emissivity, J. Geophys. Res.-Atmos. 109, D21201,
https://doi.org/10.1029/2004JD004945, 2004.

King, D. E.: Dlib-ml: A Machine Learning Toolkit, J. Machine
Learn. Res., 10, 1755–1758, 2009.

Kirchner, J. W.: Getting the right answers for the right rea-
sons: Linking measurements, analyses, and models to advance
the science of hydrology, Water Resour. Res., 42, W03S04,
https://doi.org/10.1029/2005WR004362, 2006.

Kirchner, J. W.: Catchments as simple dynamical systems:
Catchment characterization, rainfall-runoff modeling, and do-
ing hydrology backward, Water Resour. Res., 45, W2429,
https://doi.org/10.1029/2008WR006912, 2009.

Kolberg, S. and Bruland, O.: Open-Source as a strategy for opera-
tional software – the case of Enki, in: EGU General Assembly
Conference Abstracts, EGU General Assembly Conference Ab-
stracts, p. 11334, 2014.

Kolberg, S., Rue, H., and Gottschalk, L.: A Bayesian spa-
tial assimilation scheme for snow coverage observations in a
gridded snow model, Hydrol. Earth Syst. Sci., 10, 369–381,
https://doi.org/10.5194/hess-10-369-2006, 2006.

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A
simple hydrologically based model of land surface water and en-
ergy fluxes for general circulation models, J. Geophys. Res., 99,
14415–14428, https://doi.org/10.1029/94JD00483, 1994.

Geosci. Model Dev., 14, 821–842, 2021 https://doi.org/10.5194/gmd-14-821-2021

https://doi.org/10.1002/2015WR017198
https://doi.org/10.1002/2015WR017200
https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157)
https://doi.org/10.1002/2015JD024375
https://doi.org/10.1029/2006JD008003
https://doi.org/10.1002/qj.375
https://doi.org/10.5065/D6J38RBJ
https://doi.org/10.5194/gmd-5-611-2012
https://doi.org/10.5194/gmd-5-611-2012
https://doi.org/10.1021/acs.est.8b00139
https://doi.org/10.1029/97WR03495
https://doi.org/10.1016/j.jhydrol.2005.09.028
https://doi.org/10.1029/2006GL026047
https://doi.org/10.5194/hess-11-1035-2007
https://doi.org/10.1038/nclimate1433
https://doi.org/10.5194/gmd-11-3481-2018
https://doi.org/10.1073/pnas.2237157100
https://doi.org/10.1029/96JD03436
https://doi.org/10.1016/S0022-1694(03)00257-9
https://doi.org/10.1016/S0022-1694(03)00257-9
https://doi.org/10.1080/02626667.2013.803183
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1029/2004JD004945
https://doi.org/10.1029/2005WR004362
https://doi.org/10.1029/2008WR006912
https://doi.org/10.5194/hess-10-369-2006
https://doi.org/10.1029/94JD00483


J. F. Burkhart et al.: Shyft v4.8 841

Liechti, K., Panziera, L., Germann, U., and Zappa, M.: The potential
of radar-based ensemble forecasts for flash-flood early warning
in the southern Swiss Alps, Hydrol. Earth Syst. Sci., 17, 3853–
3869, https://doi.org/10.5194/hess-17-3853-2013, 2013.

Lindström, G., Johansson, B., Persson, M., Gardelin, M., and
Bergström, S.: Development and test of the distributed
HBV-96 hydrological model, J. Hydrol., 201, 272–288,
https://doi.org/10.1016/S0022-1694(97)00041-3, 1997.

Matt, F. N., Burkhart, J. F., and Pietikäinen, J.-P.: Modelling hy-
drologic impacts of light absorbing aerosol deposition on snow
at the catchment scale, Hydrol. Earth Syst. Sci., 22, 179–201,
https://doi.org/10.5194/hess-22-179-2018, 2018.

McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlen-
hoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E.
C., Franz, T. E., Shi, J., Gao, H., and Wood, E. F.: The future
of Earth observation in hydrology, Hydrol. Earth Syst. Sci., 21,
3879–3914, https://doi.org/10.5194/hess-21-3879-2017, 2017.

Merz, R. and Blöschl, G.: Regionalisation of catch-
ment model parameters, J. Hydrol., 287, 95–123,
https://doi.org/10.1016/j.jhydrol.2003.09.028, 2004.

Moreno, H. A., Vivoni, E. R., and Gochis, D. J.: Util-
ity of Quantitative Precipitation Estimates for high res-
olution hydrologic forecasts in mountain watersheds
of the Colorado Front Range, J. Hydrol., 438, 66–83,
https://doi.org/10.1016/j.jhydrol.2012.03.019, 2012.

Moreno, H. A., Vivoni, E. R., and Gochis, D. J.: Addressing
uncertainty in reflectivity-rainfall relations in mountain water-
sheds during summer convection, Hydrol. Process., 28, 688–704,
https://doi.org/10.1002/hyp.9600, 2014.

Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–
290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Pagano, T. C., Wood, A. W., Ramos, M.-H., Cloke, H. L., Pap-
penberger, F., Clark, M. P., Cranston, M., Kavetski, D., Math-
evet, T., Sorooshian, S., and Verkade, J. S.: Challenges of Op-
erational River Forecasting, J. Hydrometeorol., 15, 1692–1707,
https://doi.org/10.1175/JHM-D-13-0188.1, 2014.

Painter, T. H., Bryant, A. C., and Skiles, S. M.: Radiative
forcing by light absorbing impurities in snow from MODIS
surface reflectance data, Geophys. Res. Lett., 39, L17502,
https://doi.org/10.1029/2012GL052457, 2012.

Painter, T. H., McKenzie Skiles, S., Deems, J. S., Tyler Brandt,
W., and Dozier, J.: Variation in rising limb of Colorado
River snowmelt runoff hydrograph controlled by dust ra-
diative forcing in snow, Geophys. Res. Lett., 45, 797–808,
https://doi.org/10.1002/2017GL075826, 2017.

Pappenberger, F., Pagano, T. C., Brown, J. D., Alfieri, L., Lavers,
D. A., Berthet, L., Bressand, F., Cloke, H. L., Cranston, M.,
Danhelka, J., Demargne, J., Demuth, N., de Saint-Aubin, C.,
Feikema, P. M., Fresch, M. A., Garçon, R., Gelfan, A., He,
Y., Hu, Y. Z., Janet, B., Jurdy, N., Javelle, P., Kuchment, L.,
Laborda, Y., Langsholt, E., Le Lay, M., Li, Z. J., Mannessiez,
F., Marchandise, A., Marty, R., Meißner, D., Manful, D., Or-
gande, D., Pourret, V., Rademacher, S., Ramos, M. H., Rein-
bold, D., Tibaldi, S., Silvano, P., Salamon, P., Shin, D., Sorbet,
C., Sprokkereef, E., Thiemig, V., Tuteja, N. K., van Andel, S. J.,
Verkade, J. S., Vehviläinen, B., Vogelbacher, A., Wetterhall, F.,
Zappa, M., Van der Zwan, R. E., and Thielen-del Pozo, J.: Hy-
drological Ensemble Prediction Systems Around the Globe, in:

Handbook of Hydrometeorological Ensemble Forecasting, 1–35,
https://doi.org/10.1007/978-3-642-40457-3_47-1, 2016.

Pomeroy, J. W., Gray, D. M., Brown, T., Hedstrom, N. R., Quin-
ton, W. L., Granger, R. J., and Carey, S. K.: The cold regions
hydrological model: a platform for basing process representation
and model structure on physical evidence, Hydrol. Process., 21,
2650–2667, https://doi.org/10.1002/hyp.6787, 2007.

Powell, M.: The BOBYQA algorithm for bound constrained opti-
mization without derivatives, DAMTP, available at: http://www.
damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf (last ac-
cess: 28 January 2021), 2009.

Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Sur-
face Heat Flux and Evaporation Using Large-Scale Parameters,
Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-
0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.

Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.:
Aerosols, Climate, and the Hydrological Cycle, Science, 294,
2119–2124, https://doi.org/10.1126/science.1064034, 2001.

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and
Franks, S. W.: Understanding predictive uncertainty in
hydrologic modeling: The challenge of identifying input
and structural errors, Water Resour. Res., 46, W05521,
https://doi.org/10.1029/2009WR008328, 2010.

Riboust, P., Thirel, G., Moine, N. L., and Ribstein, P.: Revisiting a
Simple Degree-Day Model for Integrating Satellite Data: Imple-
mentation of Swe-Sca Hystereses, J. Hydrol. Hydromech., 67,
70–81, https://doi.org/10.2478/johh-2018-0004, 2019.

Sanderson, C. and Curtin, R.: Armadillo: a template-based C++
library for linear algebra, J. Open Source Softw., 1, 26,
https://doi.org/10.21105/joss.00026, 2016.

Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier,
F., Lac, C., and Masson, V.: The AROME-France Convective-
Scale Operational Model, Mon. Weather Rev., 139, 976–991,
https://doi.org/10.1175/2010MWR3425.1, 2011.

Shepard, D.: A two-dimensional interpolation function
for irregularly-spaced data, ACM ’68: Proceedings of
the 1968 23rd ACM national conference, 517–524,
https://doi.org/10.1145/800186.810616, 1968.

Shyft: shyft, GitHub, available at: https://gitlab.com/shyft-os/shyft,
last access: 31 January 2021a.

Shyft: shyft-doc, GitHub, available at: https://gitlab.com/shyft-os/
shyft-doc, last access: 31 January 2021b.

Shyft: dockers, GitHub, available at: https://gitlab.com/shyft-os/
dockers, last access: 31 January 2021c.

Skaugen, T. and Onof, C.: A rainfall-runoff model parameterized
from GIS and runoff data, Hydrol. Process., 28, 4529–4542,
https://doi.org/10.1002/hyp.9968, 2014.

Skaugen, T. and Randen, F.: Modeling the spatial distri-
bution of snow water equivalent, taking into account
changes in snow-covered area, Ann. Glaciol., 54, 305–313,
https://doi.org/10.3189/2013AoG62A162, 2013.

Skaugen, T. and Weltzien, I. H.: A model for the spatial distri-
bution of snow water equivalent parameterized from the spa-
tial variability of precipitation, The Cryosphere, 10, 1947–1963,
https://doi.org/10.5194/tc-10-1947-2016, 2016.

Skiles, S. M. and Painter, T.: Daily evolution in dust and black
carbon content, snow grain size, and snow albedo during
snowmelt, Rocky Mountains, Colorado, J. Glaciol., 63, 118–132,
https://doi.org/10.1017/jog.2016.125, 2016.

https://doi.org/10.5194/gmd-14-821-2021 Geosci. Model Dev., 14, 821–842, 2021

https://doi.org/10.5194/hess-17-3853-2013
https://doi.org/10.1016/S0022-1694(97)00041-3
https://doi.org/10.5194/hess-22-179-2018
https://doi.org/10.5194/hess-21-3879-2017
https://doi.org/10.1016/j.jhydrol.2003.09.028
https://doi.org/10.1016/j.jhydrol.2012.03.019
https://doi.org/10.1002/hyp.9600
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1175/JHM-D-13-0188.1
https://doi.org/10.1029/2012GL052457
https://doi.org/10.1002/2017GL075826
https://doi.org/10.1007/978-3-642-40457-3_47-1
https://doi.org/10.1002/hyp.6787
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
https://doi.org/10.1126/science.1064034
https://doi.org/10.1029/2009WR008328
https://doi.org/10.2478/johh-2018-0004
https://doi.org/10.21105/joss.00026
https://doi.org/10.1175/2010MWR3425.1
https://doi.org/10.1145/800186.810616
https://gitlab.com/shyft-os/shyft
https://gitlab.com/shyft-os/shyft-doc
https://gitlab.com/shyft-os/shyft-doc
https://gitlab.com/shyft-os/dockers
https://gitlab.com/shyft-os/dockers
https://doi.org/10.1002/hyp.9968
https://doi.org/10.3189/2013AoG62A162
https://doi.org/10.5194/tc-10-1947-2016
https://doi.org/10.1017/jog.2016.125


842 J. F. Burkhart et al.: Shyft v4.8

Teweldebrhan, A., Burkhart, J., Schuler, T., and Xu, C.-Y.: Im-
proving the Informational Value of MODIS Fractional Snow
Cover Area Using Fuzzy Logic Based Ensemble Smoother
Data Assimilation Frameworks, Remote Sensing, 11, 28,
https://doi.org/10.3390/rs11010028, 2018a.

Teweldebrhan, A. T., Burkhart, J. F., and Schuler, T. V.: Parameter
uncertainty analysis for an operational hydrological model using
residual-based and limits of acceptability approaches, Hydrol.
Earth Syst. Sci., 22, 5021–5039, https://doi.org/10.5194/hess-22-
5021-2018, 2018b.

Teweldebrhan, A. T., Schuler, T. V., Burkhart, J. F., and Hjorth-
Jensen, M.: Coupled machine learning and the limits of accept-
ability approach applied in parameter identification for a dis-
tributed hydrological model, Hydrol. Earth Syst. Sci., 24, 4641–
4658, https://doi.org/10.5194/hess-24-4641-2020, 2020.

Twomey, S. A., Piepgrass, M., and Wolfe, T. L.: An assessment of
the impact of pollution on global cloud albedo, Tellus B, 36, 356–
366, https://doi.org/10.3402/tellusb.v36i5.14916, 1984.

Vivoni, E. R., Entekhabi, D., and Hoffman, R. N.: Error Propagation
of Radar Rainfall Nowcasting Fields through a Fully Distributed
Flood Forecasting Model, J. Appl. Meteorol. Climatol., 46, 932–
940, https://doi.org/10.1175/JAM2506.1, 2007.

Wang, X., Doherty, S. J., and Huang, J.: Black carbon and
other light-absorbing impurities in snow across North-
ern China, J. Geophys. Res.-Atmos. 118, 1471–1492,
https://doi.org/10.1029/2012JD018291, 2013.

Warren, S. G. and Wiscombe, W. J.: A Model for the Spectral
Albedo of Snow. II: Snow Containing Atmospheric Aerosols,
J. Atmos. Sci., 37, 2734–2745, https://doi.org/10.1175/1520-
0469(1980)037<2734:AMFTSA>2.0.CO;2, 1980.

Weiler, M. and Beven, K.: Do we need a Community
Hydrological Model, Water Resour. Res., 51, 7777–7784,
https://doi.org/10.1002/2014WR016731, 2015.

Westerberg, I. K. and McMillan, H. K.: Uncertainty in hydro-
logical signatures, Hydrol. Earth Syst. Sci., 19, 3951–3968,
https://doi.org/10.5194/hess-19-3951-2015, 2015.

Wiscombe, W. J. and Warren, S. G.: A Model for the
Spectral Albedo of Snow. I: Pure Snow, J. Atmos.
Sci., 37, 2712–2733, https://doi.org/10.1175/1520-
0469(1980)037<2712:AMFTSA>2.0.CO;2, 1980.

World Energy, Council: World Energy Resources 2016,
Strategic Report, World Energy Council, available at:
https://www.worldenergy.org/assets/images/imported/2016/
10/World-Energy-Resources-Full-report-2016.10.03.pdf (last
access: 28 January 2021), 2016.

World Meteorological Organization: Guidelines on the Role,
Operation and Management of National Hydrological Ser-
vices, Operational Hydrology Report, World Meteorological Or-
ganization, available at: https://library.wmo.int/index.php?lvl=
notice_display&id=8875#.X_4QtVNKh_V (last access: 28 Jan-
uary 2021), 49, 1–83, 2006.

Wu, W., Emerton, R., Duan, Q., Wood, A. W., Wetterhall,
F., and Robertson, D. E.: Ensemble flood forecasting: Cur-
rent status and future opportunities, WIREs Water, 7, e1432,
https://doi.org/10.1002/wat2.1432, 2020.

Zappa, M., Rotach, M. W., Arpagaus, M., Dorninger, M., Hegg,
C., Montani, A., Ranzi, R., Ament, F., Germann, U., Grossi, G.,
Jaun, S., Rossa, A., Vogt, S., Walser, A., Wehrhan, J., and Wun-
ram, C.: MAP D-PHASE: real-time demonstration of hydrolog-
ical ensemble prediction systems, Atmos. Sci. Lett., 9, 80–87,
https://doi.org/10.1002/asl.183, 2008.

Zsoter, E., Pappenberger, F., and Richardson, D.: Sensitivity of
model climate to sampling configurations and the impact on
the Extreme Forecast Index, Meteorol. Appl., 22, 236–247,
https://doi.org/10.1002/met.1447, 2015.

Geosci. Model Dev., 14, 821–842, 2021 https://doi.org/10.5194/gmd-14-821-2021

https://doi.org/10.3390/rs11010028
https://doi.org/10.5194/hess-22-5021-2018
https://doi.org/10.5194/hess-22-5021-2018
https://doi.org/10.5194/hess-24-4641-2020
https://doi.org/10.3402/tellusb.v36i5.14916
https://doi.org/10.1175/JAM2506.1
https://doi.org/10.1029/2012JD018291
https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
https://doi.org/10.1002/2014WR016731
https://doi.org/10.5194/hess-19-3951-2015
https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
https://www.worldenergy.org/assets/images/imported/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf
https://www.worldenergy.org/assets/images/imported/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf
https://library.wmo.int/index.php?lvl=notice_display&id=8875#.X_4QtVNKh_V
https://library.wmo.int/index.php?lvl=notice_display&id=8875#.X_4QtVNKh_V
https://doi.org/10.1002/wat2.1432
https://doi.org/10.1002/asl.183
https://doi.org/10.1002/met.1447

	Abstract
	Introduction
	Other frameworks
	Why build a new hydrologic framework?

	Design principles
	Enterprise-level software
	Direct connection to data stores
	Efficient integration of new knowledge
	Flexible method application
	Hot service

	Architecture and structure
	Core
	Shyft API
	Repositories
	Orchestration

	Conceptual model
	Region: the model domain
	Region environment
	Model
	Region model
	Targets

	Hydrologic modeling
	Interpolation
	Inverse distance weighting
	Bayesian temperature kriging
	Generalization

	Model stacks
	PTGSK
	PTSSK
	PTHSK
	HBV
	Routing
	Uncertainty analysis
	Prediction in ungauged basins
	Hydrological forecasting

	Computational performance
	Availability and documentation
	Recent applications
	Production planning
	The impact of aerosol-driven snowpack melt on discharge
	The value of snow cover products in reducing uncertainty

	Discussion
	Complexity of hydrologic algorithms
	Multiple model configuration

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

