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Figure S1. Monthly TROPOMI sampling density at 0.25° x 0.3125° resolution (~25 km) between May
2018 and April 2019, after filtering for data quality and clouds. The total number of observations, and
percent over-land grid cell data coverage, is indicated in each panel.



a) Boundary condition b) Time averaging c) PBLH

e) Total transport error
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Figure S2. Methane column concentration differences for 2018-08-01 resulting from the individual
model transport errors employed in the OSSE (see Sect. 2 for details). Shown are differences incurred
from: a) using 6 versus 3 buffer grid cells at the domain boundary; b) averaging over 13:00-14:00 LT
versus sampling the model instantaneously at the satellite overpass time; c) employing non-local versus
full PBL mixing schemes; d) alternate convection and tropopause treatments; and ¢) all model transport
errors. Shown for comparison are f) the column differences that arise from employing the true versus
spatially biased prior emissions. The root-mean-square errors (RMSE) relative to the true fluxes are
labeled in each panel.
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Figure S3. Cost function analysis and determination of the regularization parameter y based on one-week
inversions with spatially uniform prior errors. Panel a) shows the L. curve comparing the prior and
observational deviation terms in the cost function as a function of y, following the method in Hansen and
O’Leary (1993). As shown in Eq. 1 of the main text, the prior term is given by (x — x,)7S;*(x — x,) and the
observational term is given by (y — F (x))TS;bls(y — F(x)). Panel b) shows the prior term divided by the total
cost function computed at y = 1000 (Ji000, where the solution is mostly determined by the observations;
blue line), the observational term divided by the total cost function computed at y = 0 (Jo, where the
solution is solely determined by the prior; red line), and the sum of the blue and red lines (in grey).
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Figure S4. Initial guess and optimized emissions for each inversion framework. Labels inset indicate the
domain-wide total emissions and spatial correlation to the true fluxes.
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Figure S5. Emission increments added to the prior fluxes in the V-OBSGuess inversions. See Sect. 4 for
details.



a) Instrument error only, 4x5 b) Instrument error + transport error, 4x5
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Figure S6. Same as Figure 8, but with prior and posterior results degraded to 4°x5° horizontal resolution.
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Figure S7. Same as Fig. 4, but showing results with model transport error.
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Table S1. Filters applied for TROPOMI data quality assurance

Parameter Range
Solar Zenith Angle (SZA) <70°
Viewing Zenith Angle (VZA) <60°
Surface albedo >0.02
Aerosol Optical Thickness (AOT) <03
XCHj, precision (noise-related error) <10 ppb
Signal-to-noise ratio >50

v <100
Fraction of non-corrupted/unphysical spectral pixel' >70%

Cloudiness level

Confidently clear!

Pixel quality is determined per orbit, for details see the TROPOMI Product User Manual (2019).
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