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Abstract. We propose an explicit GPU-based solver within
the material point method (MPM) framework using graph-
ics processing units (GPUs) to resolve elastoplastic problems
under two- and three-dimensional configurations (i.e. gran-
ular collapses and slumping mechanics). Modern GPU ar-
chitectures, including Ampere, Turing and Volta, provide a
computational framework that is well suited to the locality of
the material point method in view of high-performance com-
puting. For intense and non-local computational aspects (i.e.
the back-and-forth mapping between the nodes of the back-
ground mesh and the material points), we use straightforward
atomic operations (the scattering paradigm). We select the
generalized interpolation material point method (GIMPM) to
resolve the cell-crossing error, which typically arises in the
original MPM, because of the C0 continuity of the linear ba-
sis function. We validate our GPU-based in-house solver by
comparing numerical results for granular collapses with the
available experimental data sets. Good agreement is found
between the numerical results and experimental results for
the free surface and failure surface. We further evaluate the
performance of our GPU-based implementation for the three-
dimensional elastoplastic slumping mechanics problem. We
report (i) a maximum 200-fold performance gain between
a CPU- and a single-GPU-based implementation, provided
that (ii) the hardware limit (i.e. the peak memory bandwidth)
of the device is reached. Furthermore, our multi-GPU im-
plementation can resolve models with nearly a billion ma-
terial points. We finally showcase an application to slump-
ing mechanics and demonstrate the importance of a three-
dimensional configuration coupled with heterogeneous prop-
erties to resolve complex material behaviour.

1 Introduction

Graphics processing units, or GPUs, have revolutionized the
entire field of high-performance computing (HPC) in the
last decade. GPUs are many-core processors that were orig-
inally developed by the gaming industry in the mid-1990s
to accelerate graphics and video rendering. Currently, GPUs
are widely employed hardware accelerators used in various
applications, including artificial intelligence (AI) and ma-
chine learning. GPUs are also increasingly used for high-
performance scientific computing (see Dong et al., 2015b;
Omlin et al., 2018; Räss et al., 2018; Zhang et al., 2021;
Alkhimenkov et al., 2021). The majority of the scientific
algorithms on many-core (e.g. GPU) hardware accelerators
are memory-bounded, meaning that data transferring (read-
ing and writing) limits the performance of a solver. This
is in contrast to the recent compute-bounded algorithms,
where arithmetic floating point calculations are the main lim-
iting factor in solver performance. This GPU supercomput-
ing breakthrough requires re-engineering existing scientific
codes or developing new algorithmic structures to efficiently
take advantage of the intrinsic low-level parallelism of GPUs.

The material point method (MPM) was first proposed by
Sulsky et al. (1994) and was further advanced by the gen-
eralized interpolation material point method (GIMPM) by
Bardenhagen and Kober (2004). It can be thought of as a
finite-element method (FEM) in which (a) integration points
(i.e. material points) move and (b) convey state variables,
e.g. stress and strain components. The continuum is dis-
cretized by material points. The nodal momentum equations
are solved on a background mesh, and nodal basis functions
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provide a mapping framework between the mesh and the ma-
terial points to transfer either the updated nodal solution or
material point properties. The background mesh is reset and
actually never deforms. It has been widely used for large
deformation geomechanical problems such as retrogressive
failure, coupled hydromechanical landslides or granular col-
lapses (Tran and Sołowski, 2019; Bandara and Soga, 2015;
Dunatunga and Kamrin, 2015).

From a computational point a view, it is critical for MPM
to be able to simulate large-scale problems in both two-
and three-dimensional configurations. From this perspec-
tive, a few researchers have exploited parallel computing us-
ing a single or multiple GPU strategy (Dong et al., 2015a;
Dong and Grabe, 2018) to efficiently implement an explicit
GIMPM for two-dimensional configurations. More recently,
some researchers in the graphics community presented a sim-
ilar implementation (Gao et al., 2018; Hu et al., 2019; Wang
et al., 2020) for three-dimensional configurations. One of
the most computationally expensive operations in MPM is
mapping between material points and their associated nodes,
which is supported by basis functions. When implement-
ing a GPU, the two most common approaches are gather-
ing and scattering. The former gathers the material point’s
state variables (i.e. mass, velocity component or stresses) to
the nodes, whereas the latter scatters (i.e. distributes) the ma-
terial point’s state variables to their associated nodes. This
leads to write conflicts, as several threads are writing into the
same memory location at the same time. Gao et al. (2018)
demonstrated the superiority of scattering over gathering,
provided that the write conflicts are handled without atomic
operations. Gao et al. (2018) proposed parallel scattering that
results in a performance of an order of magnitude higher than
that of a naive atomic implementation. Recently, Wang et al.
(2020) proposed an Array of Structures of Arrays (AoSoA)
as an efficient layout. It is largely responsible for CPU or
GPU performances, as it dictates the memory access pattern
by ensuring coalesced memory accesses (Wang et al., 2020).

We propose an explicit GIMPM implementation in a three-
dimensional configuration on a single GPU and multiple
GPUs (ep2-3De v1.0), taking advantage of the efficient vec-
torized algorithmic structure of the MPM solver proposed
by Wyser et al. (2020a). Our GPU-based solver relies on
built-in functions of atomic operations for the mapping be-
tween material points and their associated nodes (i.e. scat-
tering). For large-scale simulations, the main hardware limit
is the GPU on-chip memory, which was well documented
by Dong and Grabe (2018). To resolve the GPU on-chip
memory limitation, we rely on a distributed memory paral-
lelization using the message passing interface (MPI) stan-
dard. The multi-GPU implementation can resolve models
with nearly a billion material points. The GPU solver ep2-
3De v1.01 combines MATLAB for pre- and postprocessing

1The routines of the ep2-3De v1.0 solver are available for down-
load from GitHub at https://github.com/ewyser/ep2-3De (last ac-

activities with the massive power of the most recent GPU
architectures available (Ampere, Turing and Tesla architec-
tures). This approach allows the user to easily set the prob-
lem’s geometry and initialize the material points as well as
their state variables. Everything needed is then passed to
the GPU, which further performs the computations. We pro-
pose a formal framework to evaluate the performance of our
GPU-based implementation based on the metric for memory-
bounded codes, i.e. the effective memory throughput (Omlin,
2017). Since the memory wall has been reached, the mem-
ory bandwidth becomes the limiting factor for performance.
In addition, it is an easily comparable metric. Similarly, we
also report the average number of iterations per second for
the same reason: it indicates a relative performance, and it
does not depend on material properties (e.g. bulk or shear
moduli). We also implement the solver ep2-3De v1.0 under
a single-CPU architecture to provide a reference baseline for
the performance evaluation of the GPU-based implementa-
tion. For the validation of our solver, we simulate the gran-
ular collapse problem in a three-dimensional configuration
and compare the result against the well-known experimental
results of Bui et al. (2008).

2 Numerical implementation

In this section, we briefly describe the governing equations
implemented in the MPM solver. We use a linear elastoplas-
tic rheology. Large deformations are carried out via a rate-
dependent formulation with the Jaumann stress rate.

2.1 Governing equations

The conservation of linear momentum is given by (using the
Einstein summation convention)

ρ
∂vk

∂t
=
∂σkl

∂xl
+ ρgk, (1)

where σkl is the Cauchy stress tensor, vk = ∂uk/∂t is the
velocity, uk is the displacement, gk is the body force, and
k, l = 1. . .3. The conservation of angular momentum is given
by σkl = σlk . Dirichlet and Neumann boundary conditions
are

uk = uk on ∂�u, (2)
σklnl = τ k on ∂�τ , (3)

where uk and τ k are prescribed displacements, and nk is a
unit normal vector pointing outward from the boundary ∂�
of the domain�. Following the standard FEM procedure, we
use the updated Lagrangian framework; thus, the weak form
of Eq. (1) is written in the current spatial configuration. The

cess: 26 October 2021). The routines archive (v1.0) (Wyser et al.,
2021) is available from a permanent DOI repository (Zenodo) at
https://doi.org/10.5281/zenodo.5600373.
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weak form of Eq. (1) can be obtained by multiplying it with
a test function φ and then applying integration by parts and
divergence theorem, leading to∫
�

φρakd�=
∫
�

φρgkd�−
∫
�

∂φ

∂xl
σkld�+

∫
∂�τ

φτ kdS, (4)

where ∂vk/∂t = ak is the acceleration, φ is any test function
that vanishes on ∂�u, and τ k is the external traction applied
on the boundary ∂�, k = 1. . .3. However, in our MPM im-
plementation, tractions on the boundary are not used. Equa-
tion (4) can be solved using a finite-element approach leading
to the following compact form:

[Mijaj ]k =
[
f ext
i − f

int
i

]
k
, (5)

where Mij =
∑np
p=1mpφi(xp)φj (xp) is the consistent mass

matrix with φi(xp) being the basis function between node i
and material point p. This work adopts a lumped mass ma-
trix, i.e. mi ≡Mii =

∑np
p=1mpφi(xp), to avoid an expen-

sive matrix inversion (Sulsky et al., 1994; Bardenhagen and
Kober, 2004; González Acosta et al., 2020). The external
f ext
k,n and internal f int

k,n forces at node n are then defined by

f ext
k,n =

np∑
p=1

mpφn(xp)gk, (6)

f int
k,n =

np∑
p=1

vp
∂φn

∂xl
(xp)σkl,p, (7)

where mp is the material point’s mass, vp is the material
point’s volume and σkl,p is the material point’s Cauchy stress
tensor. Solving Eq. (5) for the acceleration ak,n, the updated
velocity is obtained via a forward-Euler scheme,

vt+1tk,n = v
t
k,n+1tak,n, (8)

where the velocity is given by vtk,n =

m−1
n

∑np
p=1φn(xp)mpvk,p and vk,p is the material point’s

velocity. Boundary conditions are enforced on the boundary
nodes. The material point velocity vk,p and coordinates xk,p
are defined by mapping (i.e. an interpolation) between the
updated solution on the mesh and the material points, i.e.

vt+1tk,p = v
t
k,p +1t

nn∑
n=1

φn(xp)ak,n, (9)

xt+1tk,p = x
t
k,p +1t

nn∑
n=1

φn(xp)v
t+1t
k,n , (10)

where nn is the number of associated nodes n to a material
point p. The remaining tasks are (i) to update the material
point volume and (ii) to solve for the constitutive stress–
strain relationship.

2.2 Rate formulation

The large deformation framework necessitates a suitable
stress–strain formulation. Some studies prefer the finite de-
formation framework and employ a linear relationship be-
tween Kirchhoff stresses and logarithmic strains (Charlton
et al., 2017; Gaume et al., 2018; Coombs et al., 2020). In the
present work, we adopt a rate-dependent framework by ap-
plying the Jaumann rate (e.g. Huang et al., 2015; Wang et al.,
2016c, b; Bandara et al., 2016), which yields an objective
stress rate measure.

The Jaumann rate of the Cauchy stress is given by

Dσij
Dt
= Cijkl

1
2

(
∂vl

∂xk
+
∂vk

∂xl

)
, (11)

where Cijkl is the fourth-rank tangent stiffness tensor. Thus,
the Jaumann stress derivative may be written as

Dσij
Dt
=

Dσij
Dt
− σikω̇jk − σjkω̇ik, (12)

where ωij = (∂ivj − ∂jvi)/2 is the vorticity tensor, and
Dσij/Dt corresponds to the material derivative

Dσij
Dt
=
∂σij

∂t
+ vk

∂σij

∂xk
. (13)

By rearranging the Jaumann stress derivative in Eq. (12),
we obtain

∂σij

∂t
=

Dσij
Dt
+

σRij︷ ︸︸ ︷
σikω̇jk + σjkω̇ik, (14)

where σRij represents the rotation of the Cauchy stress tensor,
which satisfies the stress objectivity for the rate-dependent
formulation.

Let us expand σRij in Eq. (14) using identities σij =
σji , ω̇ij =−ω̇ji and ω̇kk = 0. The Cauchy stress tensor
is written using the so-called Voigt notation (as a vector
σ = {σxx,σyy,σzz,σxy,σyz,σxz}). After expanding, collect-
ing and rearranging terms, the objective stress terms σRij for
a three-dimensional configuration are

σRxx = 2
(
σxyω̇xy + σxzω̇xz

)
, (15)

σRyy =−2
(
σxyω̇xy − σyzω̇yz

)
, (16)

σRzz =−2
(
σxzω̇xz+ σyzω̇yz

)
, (17)

σRxy = ω̇xy(σyy − σxx)+ σyzω̇xz+ σxzω̇yz, (18)

σRyz = ω̇yz(σzz− σyy)− σxyω̇xz− σxzω̇xy, (19)

σRxz = ω̇xz(σzz− σxx)+ σyzω̇xy − σxyω̇yz, (20)

and, for a two-dimensional configuration assuming plane
strain conditions, Eqs. (15), (16) and (18) reduce to

σRxx = 2σxyω̇xy, (21)

σRyy =−2σxyω̇xy, (22)

σRxy = ω̇xy(σyy − σxx). (23)
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Figure 1. Drucker–Prager yield surface in the (σm–τ ) space. The
yield surface is made of a shear line segment (in red) and a tensile
line segment (in blue).

2.3 Elastoplastic deformation

A non-associated Drucker–Prager (D-P) model with a ten-
sion cutoff is used in this study, similar to Huang et al.
(2015), Liu et al. (2020), Nguyen et al. (2020) and Zuo et al.
(2020), because of its straightforward implementation within
explicit numerical solvers. The D-P model has been estab-
lished as an approximation of the Mohr–Couloumb (M-C)
model (Krabbenhoft et al., 2012; Alejano and Bobet, 2012),
i.e. a conical yield surface that approximates the M-C yield
surface in the principal stress space. The former can be ad-
justed by parameters, so it passes either through the outer or
inner edges of the M-C yield surface (Jiang and Xie, 2011;
De Borst et al., 2012).

The D-P yield function f (see Fig. 1) is typically defined
in terms of invariants: the first invariant of the Cauchy stress
tensor I1 = σkk and the second invariant J2 =

1
2τij τji of its

deviatoric part τij , where the deviatoric part of the Cauchy
stress is τij = σij + δijp with the pressure p =− 1

3σkk . The
D-P yield surface is made of two surfaces (i.e. representing
shear and tensile yield criteria), delimited by

f s(σm,τ )= τ + qφσm− kφ, (24)
f t(σm)= σm− σ

t, (25)

where τ =
√
J2 is the effective shear stress, σm =−p is the

mean stress, qφ and kφ are the material parameters defined
by φ as the internal friction angle, σ t is the tensile strength,
and c is the cohesion. Cohesion varies with the accumulated
plastic strain εp when considering a strain-softening material,
i.e. c = f (εp). These two surfaces define two plastic regions
(see Fig. 1) corresponding to either the shear or tensile fail-
ure mode. We use a non-associated plastic flow law for shear
and tensile failures; thus, the plastic potential function g is
written as

gs(σm,τ )= τ + qψσm, (26)
gt(σm)= σm, (27)

where qψ is a material parameter estimated with the dilation
angle ψ .

The line segment h(σm,τ )= 0 represents the diagonal
line between f s(σm,τ )= 0 and f t(σm,τ )= 0 in the (σm,τ )

plane; i.e. h is the boundary between shear and tensile failure

modes. The function h(σm,τ ) is given by

h(σm,τ )= τ − τ
P
−αP

(
σm− σ

t) , (28)

with the constants τP = kφ−qφσ t and αP = (1−q2
φ)

1/2
−q2

φ .
We consider an inner adjustment of the D-P yield surface
with respect to the M-C yield surface (de Souza Neto et al.,
2011), and the model parameter used in Eqs. (24) and (26)
are given by

qφ =
6sinφ

√
3(3+ sinφ)

, (29)

qψ =
6sinψ

√
3(3+ sinψ)

, (30)

kφ =
6ccosφ

√
3(3+ sinφ)

. (31)

In the following, we briefly detail the return mapping strat-
egy used to return the trial Cauchy stress σ tr

ij (i.e. assuming
pure elastic deformation only) onto the yield surfaces consid-
ering ψ = 0. A complete description of such return mapping
can be found in Huang et al. (2015). Shear failure is declared
when (i) f s(σ tr

m,τ
tr) > 0 and σ tr

m < σ
t or if (ii) h(σ tr,τ tr) > 0

and σ tr
m ≥ σ

t. The corrected Cauchy stress tensor now reads

σ t+1tij = τ tr
ij

(
kφ − qφσ

tr

τ tr

)
+ σ trδij , (32)

with δ the Kronecker tensor. Tensile failure is declared when
h(σ tr,τ tr)≤ 0 and σ tr

m ≥ σ
t. The corrected Cauchy stress ten-

sor reads as

σ t+1tij = σ tr
ij +

(
σ t
− σ tr

m
)
δij . (33)

3 GIMPM implementation under a GPU architecture

We propose an explicit generalized interpolation material
point method (GIMPM) implementation (Dong and Grabe,
2018; Wang et al., 2020) in a three-dimensional configura-
tion on a GPU, taking advantage of the efficient vectorized
algorithmic structure (Wyser et al., 2020a, b). We select an
explicit GIMPM implementation, which is valid for a va-
riety of problems compared to other recent variants (Wang
et al., 2019; Coombs et al., 2020), i.e. CPDI or CPDI2q.
Additionally, we use a double-mapping approach (MUSL;
see Nairn, 2003; Buzzi et al., 2008), which consists of up-
dating the stress at the end of the time step. We implement
the following domain-update methods: (a) no update of the
material point domain, further labelled uGIMPM, and (b) a
domain update controlled by the determinant of the deforma-
tion gradient, i.e. det(Fij ), further labelled cpGIMPM. These
domain-update methods are commonly used in the literature
(Baumgarten and Kamrin, 2019; Tran and Sołowski, 2019).
The limitation of the two methods is that they are not ideally
suited for specific tests: simple stretching and compression
modes (Coombs et al., 2020).
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Figure 2. Schematic chip representation for both the central pro-
cessing unit (CPU) and the graphical processing unit (GPU) archi-
tecture (Nvidia, 2007). The latter is made of thousands of arithmetic
logical units (ALUs). The CPU architecture is primarily dedicated
to controlling units and cache memory, and the physical space al-
lowed for ALUs is considerably reduced compared to a GPU archi-
tecture.

3.1 Implementation on a graphical processing unit
(GPU)

Graphical processing units (GPUs) are many-core processors
originally designed to refresh screen pixels (e.g. for com-
puter games) independently. A schematic representation of
the main architecture differences between a CPU and a GPU
is depicted in Fig. 2. On the GPU chip, most of the physical
space is dedicated to arithmetic logical units, whereas on a
CPU, most of the physical space is dedicated to chip host
scheduling and control microsystems. GPUs feature many
more cores, a lower thread-scheduling cost and a higher
memory bandwidth than CPUs. The programming model is
based on a parallel principle called single instruction and
multiple data (or SIMD); i.e. every single instruction is exe-
cuted on different data. GPUs feature a hierarchical structure.
The lowest computational unit is the thread. Threads are or-
ganized into blocks of threads, the whole constituting a hier-
archical grid of blocks of threads. A GPU typically launches
thousands of threads, which execute the same instruction
in parallel, thus achieving massive parallelism. Additionally,
the most recent GPUs offer a high throughput (close to a TB
per second peak memory throughput).

Currently, most of the algorithms are memory-bounded,
meaning that memory transfers limit the performance, in
contrast to computer-bounded algorithms, where floating
point (arithmetic) operations limit the performance. Thus, for
an efficient implementation of an algorithm, one must con-
sider (a) limiting the memory transfers to the bare minimum
and (b) avoiding complex data structures (Räss et al., 2019a)
to benefit from the high throughput capabilities of GPUs.
The ability of a GPU is particularly well suited to efficiently
execute a large number of local operations in parallel, i.e.
SIMD programming. In the case of a GIMPM implementa-
tion, this includes the calculation of shape functions and the
update of various quantities at the material point level (i.e.
stresses, domain lengths, material point volumes, etc.). Be-
low, we present key aspects of our GPU-based implementa-

tion using the Compute Unified Device Architecture (CUDA
C) language of the Nvidia Corporation, which is a syntax ex-
tension of the C programming language.

3.2 The multi-GPU code implementation

One of the major limitations of a single-GPU implementa-
tion is the on-chip memory. It is then essential to overcome
this limit in order to resolve larger computational domains
with a greater amount of material points. We address this
concern by implementing a distributed memory paralleliza-
tion using the message passing interface (MPI) standard.
However, we limit our implementation efforts by considering
(1) a one-dimensional GPU topology, (2) no computation–
communication overlaps, and (3) only mesh-related quanti-
ties are shared amongst GPUs; i.e. the material points are not
transferred between GPUs during a simulation. We also se-
lected a non-adaptive time step to avoid the collection of the
material point’s velocities located in different GPUs at the
beginning of each calculation cycle.

3.2.1 Algorithm workflow

In our implementation, MATLAB acts as an architect (see
Fig. 3). It (1) defines the problem geometry (i.e. the back-
ground mesh, material point locations and related quantities,
etc.), which can be tedious to initialize in a CUDA C environ-
ment. It also calls an external MATLAB script, which com-
piles the necessary source codes, i.e. gpu.cu or cpu.cu.
It further (2) calls either a CUDA C or plain C executable,
i.e. gpu.exe or cpu.exe, within a Windows operating
system (OS) to solve for the numerical problem and finally
(3) imports the results of calculations for further postprocess-
ing tasks.

This is a powerful combination between a high-level lan-
guage such as MATLAB and a performant low-level lan-
guage such as CUDA C or plain C. It is also easy to in-
voke system commands directly via MATLAB, i.e. to com-
pile source codes and/or run executables using the built-in
command system('...'). We focus on OS-free script-
ing in MATLAB using a built-in command (i.e. isunix or
ispc) to ensure that it performs well under all OS architec-
tures. In addition, such a workflow can be easily extended to
other high-level languages such as Python.

3.2.2 Kernels and launch configuration

We briefly describe our GPU-based implementation
(gpu_main.cu) while focusing mainly on the computa-
tional aspects of the implementation. Implementation of an
explicit GIMPM solver into the CUDA C language requires
dispatching computational activities into several kernels, i.e.
similar to classic functions for a serial implementation in
the C language. Each kernel is operated by the GPU only,
and kernel launch configuration parameters must be defined
for its proper execution. Among them, one must define the
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Figure 3. Multifunctional workflow: (1) usage of MATLAB for data initialization, compilation and postprocessing activities and (2) system
calls to a performance compiled language such as C (CPU-based) and CUDA C (GPU-based) for heavy calculations. Here, I/O stands for
input/output, and the colouring (red or green) specifies which one is active.

Figure 4. Specific workflow for the source code running of the
GPU; tend is a user-defined time that controls the total time of the
simulation, and the operator ∗ stands for the pointer object, as in
the C language. It should be noted that a vast majority of operations
within kernels are performed on pointers.

number of active threads per block (i.e. the block size) and
the number of blocks (i.e. the grid size). A typical kernel is
executed N times in parallel by N distinct threads organized
into blocks of threads, i.e. a grid of blocks of threads. The
principal hardware limitation is the total number of threads
within a block: it cannot exceed 1024 threads per block. One
must ensure that the maximal size of a block is lower than or
equal to this limit.

The computational activities are handled by multiple GPU
kernels; 11 kernels are successively launched over a com-
putational cycle. An overall description is given in Fig. 4. A
while loop is used to perform the computational cycles, and
an MPM step is solved at every cycle. nIO (i.e. the number
of accesses to the GPU global memory) is reported in Fig. 4
for each kernel and is estimated by a careful examination of
relevant operations within the kernels. Note that all calcula-
tions are performed on the GPU, except the calculation of the
adaptive time step, which is serially executed by the CPU.

In our GPU-based implementation, we define two distinct
types of kernel launch parameters: (1) those used for map-
ping between material points and background nodes (i.e. ac-
cumulations and projections between material points with
their associated nodes and back and forth) and (2) those
used for local calculation at the material point or node
level (i.e. update of material point stresses or the solution
to the momentum balance equations on the Eulerian back-
ground mesh). We use regular background mesh because it
is straightforward to find the material point’s location. How-
ever, computing a material point’s location using an irregular
background mesh is more complicated.

3.2.3 Adaptive time step

An adaptive time step is implemented. For three-dimensional
configurations, the maximum elastic wave speed of the ma-
terial (Anderson, 1987; Zhang et al., 2017) reads as

(cx,cy,cz)= cel

+

(
max
p
(|vx,p|),max

p
(|vy,p|),max

p
(|vz,p|)

)
, (34)

where cel = ((K + 4G/3)/ρ)
1
2 is the elastic wave speed of

the material;K andG are the bulk and shear moduli, respec-
tively; ρ is the material density; and vx,p, vy,p and vz,p are
the material point velocity components. The time step 1t is
then restricted by the CFL condition,

1t = αmin
(
1x

cx
,
1y

cy
,
1z

cz

)
, (35)

where α ∈ [0;1] is the time step multiplier, and1x,1y, and
1z are the background mesh resolutions.

This requires evaluation of the maximum velocity of all
material points at the beginning of each calculation cycle. We
choose to sequentially find the maximum velocity using the
CPU instead of a parallel implementation on the GPU. This
results in systematic memory transfers between the GPU
global memory and the random access memory (RAM) of
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the CPU. However, we report a low performance loss due
to these transfers, i.e. a maximal loss of 2 %–5 % in perfor-
mance, which is acceptable.

3.2.4 Back-and-forth mapping between material points
and their associated nodes

The GPU-based algorithm relies heavily on the use of ar-
rays p2e and e2n (Wyser et al., 2020a). Elements are num-
bered with an increasing index. Associated nodes are also
numbered in a similar manner. The array e2n of dimension
nel× nn, where nel is the total number of nodes and nn is
the number of nodes associated with an element e, describes
the topological relation between the elements and the nodes
of the mesh. Similarly, the array p2e describes the topolog-
ical relation between the material points and the element in
which they are located. These two arrays provide an intuitive
definition of the relations between (i) the material points and
the nodes they are associated with (i.e. p2n) and (ii) the ele-
ment and their nodes (i.e. e2n). Then, it is a computationally
straightforward process to identify which nodes n are asso-
ciated with a material point p, which is occupying an ele-
ment e.

The GPU-based implementation relies on the built-in
function atomicAdd() in CUDA C. It performs atomic
operations, which avoid the data race of multiple threads,
from the same or different blocks to update the same memory
location. Atomic operations are extensively used to calculate
internal and external force contributions (Eqs. 6 and 7), as
well as the lumped mass matrix, and to update the material
point’s properties such as velocities and coordinates (Eqs. 9
and 10). Dong et al. (2015a) and Wang et al. (2020) reported
(for older GPU architectures such as Pascal or Kepler) that
atomic scattering can be significantly slower compared to an
optimized parallel implementation. However, atomic opera-
tions are (a) intuitive to both understand and implement, and
(b) they avoid a complex data layout, such as recently pro-
posed in Wang et al. (2020). The use of built-in atomic oper-
ations considerably reduces programming efforts.

3.2.5 Treatment of volumetric locking for low-order
elements

When low-order elements are used in a GIMP formulation,
volumetric locking arises and results in spurious oscillations
of the stress field (Jassim et al., 2013; Coombs et al., 2018;
González Acosta et al., 2019; González Acosta et al., 2021).
We implement a simple procedure to mitigate volumetric
locking when considering near-incompressible behaviour for
isochoric plastic flows. Cuomo et al. (2019) and Lei et al.
(2020) introduced an element-based averaging method, fol-
lowing Mast et al. (2012). Selected material point proper-
ties are reconstructed based on an average value calculated
at the element’s centre at the end of a time step. However,
we propose averaging only the volumetric part of the stress

tensor, i.e. the pressure p =− 1
3σkk , while its deviatoric part

τij = σij−pδij remains unchanged. We believe our approach
is conceptually similar to the B-bar technique (Hughes, 1980;
Bisht et al., 2021). This results in the following:

pe =

∑
p∈evppp∑
p∈evp

, (36)

where vp is the material point’s volume. This gives a constant
distribution of the pressure field over an element because of
its zero-order reconstruction (Lei et al., 2020). The Cauchy
stress tensor σij,p of a material point p occupying an ele-
ment e is corrected as

σij,p = τij,p + δij (pe)p, (37)

where δij is the Kronecker delta and (pe)p is the averaged
pressure within an element e and assigned to a material
point p.

3.3 Available computational resources

The CPU- and GPU-based simulations are performed on a
modern workstation running on a Windows 10 operating sys-
tem with the latest CUDA version v11.2. The CPU is an Intel
Core i9-10900K with 10 physical cores of base clock speed
(or frequency) of 3.70 GHz, which can rise up to a maxi-
mum clock speed of 5.30 GHz, supported with 64 GB DDR4
RAM. It hosts a consumer electronics Nvidia RTX 3090
GPU (the latest Ampere architecture) with 82 streaming mul-
tiprocessors (SM units) with a base frequency of 1.40 GHz.
This results in 10490 CUDA cores that are supported with
an on-chip memory of 24 GB GDDR6 (i.e. the GPU global
memory). Other GPUs installed on older desktops are also
used to compare their respective GPU performances, i.e. an
RTX 2080 Ti (workstation) and a GTX 1650 (laptop), both
running on a Windows 10 operating system. Additional sim-
ulations were also run on a workstation equipped with the
latest Nvidia A100 GPU at the Lomonosov Moscow State
University.

Furthermore, GPU-based simulations are also performed
on the Octopus GPU supercomputer at the Swiss Geocom-
puting Centre, University of Lausanne, Switzerland. In par-
ticular, the GPU-based simulations are run on the Volta node,
hosting a 16 GB Nvidia Tesla V100 (Volta architecture), sup-
ported by an Intel(R) Xeon(R) E5-2620 v2 (Haswell) with
2.1 GHz CPU. The latest CUDA version installed is v11.0,
and the supercomputer Octopus is operated under a Cen-
tOS 6.9. environment. To summarize the computational re-
sources in use, Table 1 presents the main characteristics of
the GPUs used in this study.

The multi-GPU simulations are run on the two differ-
ent systems. The first one is an Nvidia DGX-1 – like node
hosting eight Nvidia Tesla V100 Nvlink (32 GB) GPUs and
two Intel Xeon Silver 4112 (2.6 GHz) CPUs. The second one
is composed of 32 nodes, each featuring four Nvidia GeForce
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Table 1. List of the graphical processing units (GPUs) used throughout this study. We also report the peak memory throughput, i.e. MTPpeak,
measured thanks to the routine bandwidthTest.cu provided by Nvidia alongside with the CUDA toolkit. When compared with the
effective memory throughput MTPeff, one can estimate the possible gain of an additional optimization of the algorithm. This is particularly
useful when estimating the level of optimization of a GPU-based implementation.

GPU Architecture SM count On-chip memory (GB) MTPpeak (GB s−1)

A100 Ampere 108 40 1127.1
RTX 3090 Ampere 82 24 774.1
RTX 2080 Ti Turing 68 11 513.1
GTX 1650 Turing 14 4 168.7
V100 Volta 80 16 732.6

Table 2. List of the graphical processing units (GPUs) used for
multi-GPU simulations.

GPU Architecture On-chip memory
(GB)

8×V100 Volta 8× 32
128×GTX Titan X Maxwell 128× 12

GTX Titan X Maxwell (12 GB) GPUs and two Intel XEON
E5-2620V3 4112 (2.4 GHz) CPUs. To summarize the com-
putational resources in use, Table 2 presents the main char-
acteristics of the GPUs used in this study.

3.4 Measuring computational performance on a GPU

Omlin (2017), Räss et al. (2019a, b) and Alkhimenkov et al.
(2021) demonstrated that a pertinent metric to quantify the
performance of memory-bounded algorithms is the effective
memory throughput, i.e. MTPeff in GBs−1. It quantifies the
efficiency of data transfers between the global memory (i.e.
the on-chip memory of the GPU) and the arithmetic logical
units (ALUs) of the GPU. To determine the effective memory
throughput, one must estimate (or quantify) the overall set of
memory operations (read-and-write or read-only), i.e. nIO,
which are needed to resolve a given problem. Consequently,
we carefully estimate the minimum number of memory op-
erations while considering a GIMPM-based implementation.
This results in the following effective memory throughput:

MTPeff =
niter · nIO · np

10243
· tGPU

(GBs−1), (38)

where np is the arithmetic precision (i.e. single-precision
floating-point format FP32 or double-precision floating-point
format FP64) and tGPU is the wall-clock time in seconds to
complete the niter iterations to solve for the numerical prob-
lem. For three-dimensional problems, we estimate the mini-
mal number of memory operations for an explicit GIMP im-
plementation as

nIO = 2nmp(43+ 22nn)+ 26nno+ 2nel, (39)

where nmp is the number of material points, nn is the number
of associated nodes for an element (i.e. nn = 16 in 2D and
nn = 64 in 3D), nno is the number of nodes, and nel is the
number of elements. Additionally, we also report the count of
calculation cycles per second of the GPU, i.e. iterations s−1

as well as the wall-clock time. These two metrics give an
intuitive sense of the time-to-solution, which is convenient
for potential application purposes.

4 Results

In this section, we present two numerical models using the
solver ep2-3De v1.0, namely,

1. Model 1, the granular collapse, which serves as

a. a validation benchmark against the results of the
widely accepted experiment of Bui et al. (2008) un-
der a three-dimensional configuration and

b. a demonstration of the influence of the mesh res-
olution on plastic strain localization under a plane
strain configuration;

2. Model 2, the three-dimensional earth slump (Varnes,
1958, 1978), which serves as

a. an evaluation of the relative performances of a
single- and multiple-GPU-based and CPU-based
implementations of the solver ep2-3De v1.0 con-
sidering a variety of recent GPU architectures and

b. a showcase of a potential application of the solver
ep2-3De v1.0 for an elastoplastic problem consid-
ering different isotropic peak cohesion fields (ho-
mogeneous and heterogeneous).

4.1 Model 1

4.1.1 Settings for Models 1a and 1b

We investigate the granular collapse of an aluminium-bar as-
semblage (Bui et al., 2008) under three-dimensional or plane
strain configurations. The geometry of the problem is shown
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Figure 5. Initial configuration for the granular collapse numerical
model. The blue surrounding frame depicts the computational do-
main (i.e. the background Eulerian mesh), and the red volume is
the granular material, which is discretized by 8 material points. The
total number of background elements nel depends on the number
of elements in the x direction nel,x used to discretize the granular
material.

in Fig. 5, and its variables are summarized in Table 3 for both
three-dimensional and plane strain configurations. Note that
for Model 1a, we use the same number of elements in the
x direction nel,x = 80 as in Huang et al. (2015). As a direct
comparison for Model 1b under a plane strain configuration,
Huang et al. (2015) used nel = 15360, 1x =1z= 2.5 mm
and nmp = 25600.

We consider a non-cohesive granular material of density
ρ= 2650 kgm−3, with a bulk modulus K = 0.7 MPa and a
Poisson’s ratio ν = 0.3, as in Huang et al. (2015). The cohe-
sion is c= 0 Pa, and the internal friction angle is φ= 19.8◦

with a dilatancy angle ψ = 0 according to Bui et al. (2008).
However, the density and stiffness properties have negligible
effects on the granular flow dynamics, as reported by Nguyen
et al. (2020). We introduce local dampingD (see Wang et al.,
2016b) to resolve numerical results that are compatible with
the experimental results of Bui et al. (2008). We find that
D = 0.025 results in the most compatible dynamics. The rea-
sons for the introduction of local damping can be found in
Appendix C. Fully fixed boundary conditions (i.e. no slip)
are enforced at the bottom and rollers on the sidewalls. The
total simulation time is 1.0 s, considering a the time step mul-
tiplier α = 0.5.

4.1.2 Model 1a: the three-dimensional granular
collapse

To validate the numerical implementation under a GPU ar-
chitecture, we first compare it against the well-known gran-
ular collapse experiments initially performed by Bui et al.
(2008). Here, we present and compare numerical results
without focusing on the performance of the GPU-based im-
plementation. All the simulations are performed on a con-
sumer electronics RTX 3090 GPU with double-arithmetic
precision (i.e. np = 8 bytes).

The results from the numerical simulation under a three-
dimensional configuration are shown in Fig. 6. A direct
and visual comparison demonstrates excellent agreement be-

Figure 6. Final geometry of the granular collapse for three-
dimensional configuration of our GPU-based explicit GIMPM im-
plementation ep3De v1.0. The green region (i.e. the intact region)
is defined by the L2 norm of the material point displacement up =
||up||2 ≤ 0.5 mm, whereas the red region (i.e. the deformed region)
is defined by up = ||up||2 > 0.5 mm. The experiment of Bui et al.
(2008) is indicated by the blue dashed line (i.e. the free surface) and
the blue dotted line (i.e. the failure surface).

tween the numerical solver and the experiments of Bui et al.
(2008). We observe a slightly lower run-out distance, but the
overall geometry of both the failure surface and the free sur-
face is very close to the experimental data. We also report
an angle of repose of ≈ 13◦. This value is also consistent
with the value reported by Bui et al. (2008), i.e. 14◦. The
good agreement between the numerical results and the ex-
perimental work of Bui et al. (2008) demonstrates that the
solver ep2-3De v1.0 is suitable to simulate large deformation
elastoplastic problems such as granular collapses.

The equivalent accumulated plastic strain εp
eqv is shown in

Fig. 7. We observe a coherent deformation of the granular
material with a large shear zone that propagates backward
from the base of the material to the top of the granular mate-
rial. The mobilized granular material flows along a principal
failure surface. However, the overall deformation pattern is
rather coarse, i.e. fine structures or local shear bands are not
yet observed, even though slight deformation heterogeneities
can be observed. This coarse behaviour of shear banding is
also consistent with previous studies (see Huang et al., 2015;
Chalk et al., 2020; Zhang et al., 2021). This is mainly due to
the background mesh resolution used in the numerical sim-
ulation. We further investigate shear banding using a higher
background mesh resolution under a plane strain configura-
tion in Model 1b.

4.1.3 Model 1b: the plane strain granular collapse

We investigate granular collapse under a plane strain config-
uration, as this allows an increase in the number of elements,
resulting in an even finer background mesh (see Table 3). For
Model 1a, the numerical solution is in agreement with the ex-
perimental work of Bui et al. (2008) regarding either the free
surface or the failure surface (see Fig. 8). This demonstrates
that both the three-dimensional and plane strain configura-
tions are in agreement with each other. However, we observe
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Table 3. Parameters used in Models 1a and 1b for the granular collapse. nel,i is the number of elements to discretize the granular material in
the ith direction, nel and nno are the total number of elements and nodes of the background mesh, npe is the number of material points per
element, and nmp is the total number of material points. Note that the mesh resolution is 1x =1y =1z= 2.5 mm.

Experiment nel,x nel,y nel,z nel nno npe nmp 1x (mm)

1a 80 20 40 342 144 365 625 8 512 ,000 2.5
1b 640 – 240 833 300 836 190 4 819 200 0.3

Figure 7. Equivalent plastic strain εp
eqv for the final configuration

of the granular collapse. The principal feature of a granular collapse
can be observed, i.e. a backward propagation of plastic deformation
along a principal failure surface.

Figure 8. Final geometry of the granular collapse for the plane-
strain configuration for our GPU-based explicit GIMPM implemen-
tation ep2De v1.0. The numerical solution and the experimental re-
sults are in good agreement. Some differences are more pronounced
when compared with the numerical results obtained under a three-
dimensional configuration.

a lower run-out for the granular collapse under a plane strain
configuration.

An interesting feature of granular collapse is the equiva-
lent accumulated plastic strain (see Figs. 9 and 10a and b).
The GPU-based implementation allows both the background
mesh resolution and the total number of material points to be
increased. This results in finer plastic strain localizations, as
demonstrated in Fig. 10a by the various shear bands and their
complex interactions during collapse. Such detailed shear
bands are almost impossible to obtain at lower resolutions,
which demonstrates the importance of a GPU-based imple-

Figure 9. Equivalent plastic strain εp
eqv for the final configuration

of the granular collapse. The dashed red rectangle denotes the lo-
cation of the zoomed-in region in Fig. 10a. One can observe more
complex plastic strain localizations compared to the numerical re-
sults obtained in Fig. 7 for a three-dimensional configuration with a
coarser background mesh resolution.

mentation to overcome the hardware limitation of a CPU-
based implementation, i.e. mainly longer wall-clock times.

Furthermore, Fig. 10a and b demonstrate the influence of
the mesh resolution over shear banding: the finer the back-
ground mesh, the thinner the shear bands. This is signifi-
cant since it shows that the dynamics of shallower granular
avalanches appears to be more complex for higher resolu-
tions.

4.2 Model 2

4.2.1 Settings for Models 2a and 2b

Here, we select a cohesive elastoplastic isotropic material
(i.e. a homogeneous or heterogeneous peak cohesion field)
with no dilatancy behaviour. It is modelled with a pressure-
sensitive Drucker–Prager model with linear strain-softening
behaviour. It is well known that the numerical solutions (as
in FEM) are mesh-dependent when considering the strain-
softening behaviour of the material. We did not implement
techniques to address this issue, but the use of non-local plas-
ticity (Galavi and Schweiger, 2010; Burghardt et al., 2012) or
viscoplastic formulations (Duretz et al., 2019) are possible
ways to address this specific task.

We have chosen an arbitrary geometry (see Fig. 11 and Ta-
ble 5), which represents an idealized three-dimensional set-
ting, to observe elastoplastic slumps (i.e. earth slumps ac-
cording to the original classification proposed by Varnes,
1958, 1978), which are now classified as rotational slides in
the recent update of the Varnes classification proposed by
Hungr et al. (2014). The geometrical setting differs from the
one typically used in the literature, as in Zhang et al. (2021).
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Figure 10. (a) εp
eqv for the zoomed-in area in Fig. 9. A shallow granular flow clearly appears, as suggested by the higher values of εp

eqv.
This supports evidence of shallower granular avalanches during collapses. Deeper structures, which result in lower accumulated plastic
strains, probably highlight slower deformation modes along well-defined and persistent shear bands. (b) εp

eqv for a coarser background mesh
resolution, which demonstrates the influence of the mesh resolution over shear bands.

Figure 11. Geometry for the earth slump. The number of elements
in the y direction nel,y and the width of the problem ly are variable.
This allows us to increase (or decrease) the number of both elements
and material points without decreasing the mesh resolution. The pa-
rameter n controls the dimension of the domain and the number of
elements in the y direction. The wall-clock time depends only on
the total number of elements, nodes and material points and is not
influenced by the mesh resolution.

However, it promotes the compression of the toe, which is an
expected feature we want to reproduce. The size of the phys-
ical domain lz× lx× ly is, at most, 12 m× 64 m× 1024 m for
Model 2a, whereas it is 12 m× 64 m× 16 m for Model 2b.

We assume this setting features the principal first-order
characteristics of a typical rotational earth slump (Varnes,
1958, 1978), i.e. a complex zone of scarps (minor and major)
delimiting a crown-like structure, followed by a transition (or
depletion) zone in which the material flows homogeneously
along internal shear zones due to severe plastic strain local-
izations and, finally, a compression (or accumulation) zone
resulting in complex thrusting at the toe of the slump. Be-
cause of the nature of the boundary condition at the bottom
of the material (i.e. free-slip), an additional horizontal slid-
ing component is introduced within the rotational part of the
displacement. This results in stronger deformations, which
we want to highlight. However, the bottom boundary con-
dition influences the shear band propagation and the overall
behaviour by introducing a stronger horizontal component in
the motion.

We select material properties (i.e. bulk and shear moduliK
andG, friction angle φ, and peak and residual cohesion cpeak
and cres) that result in severe deformation processes and

Table 4. Material properties shared by both Models 2a and 2b.

Parameter Symbol Value Unit

Density ρ 2700 kgm−3

Poisson’s ratio ν 0.3 –
Elastic modulus E 1 MPa
Softening modulus H 50 kPa
Friction angles φ/φweak 20/7.5 ◦

strain localizations. The material properties are presented in
Table 4. They are close to the values commonly used in the
literature (Wang et al., 2016b, a; Bandara et al., 2016; Zhang
et al., 2021). To increase deformations even more, we also in-
troduce a weak layer of thickness 0.3× lz m at the base of the
material with a lower friction angle φweak. A time step mul-
tiplier α = 0.5 is selected; i.e. 1tmin= 1.56× 10−2 s is ob-
tained over the whole simulation according to the CFL con-
dition for both Models 2a and b. As in Zhang et al. (2021),
elastic loading dynamic relaxation is applied for a period of
t = 8 s (i.e. Models 2a and b), and the elastoplastic behaviour
is activated for an additional 7 s, resulting in a total simula-
tion time t = 15 s (i.e. Model 2b only).

Gaussian random fields (see Appendix B) are used to ini-
tialize the peak cohesion field cpeak, which is parametrized
by an average cohesion cpeak and its standard deviation σ
(see Table 5) along with the residual cohesion cres = cpeak/4.
This allows us to account for heterogeneities within the mate-
rial, which lead to complex and heterogeneous displacement
fields. We first perform preliminary simulations with a con-
stant cohesion field and notice a homogenous solution of the
displacement field in the y direction. Using Gaussian fields
allows us to mitigate this homogeneity.

Free-slip boundary conditions are applied on the sides and
the bottom of the computational domain; only the normal
component to the boundary is constrained, while the two oth-
ers are free. Finally, and as suggested in Wang et al. (2016b)
for landslide applications, we introduce local damping, i.e.
D = 0.1.
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Table 5. Geometrical and material properties for Models 2a and b. The correlation length vector is λ= (λx ,λy ,λz)= (2.5,2.5,2.5)m for
both Gaussian and exponential isotropic covariance functions. The grid spacing is always constant in Models 2a and b, i.e.1z=1y =1x =
0.8 m.

Model nel,y (–) nmp (–) 1x (m) cpeak (kPa) σ (kPa)

2a ∈ [1;1280] ≤ 3.2× 106 0.8 20 0
2b 20 ≈ 105 0.8 20 0/5

4.2.2 Model 2a: single GPU performances

Here, we investigate the computational performances of the
solver ep2-3De v1.0 under a three-dimensional configuration
on a variety of GPUs with recent architectures: Ampere, Tur-
ing and Volta. Furthermore, we restrict our performance anal-
ysis only for the elastic loading phase (i.e. 8 s of simulation)
because it is more complex to determine the exact number of
material points that are yielding during each computational
cycle (see Fig. 4) and to infer the exact effective memory
throughput.

All the numerical simulations are performed on the com-
putational resources and GPU hardware presented in Ta-
ble 1 under double-arithmetic precision (i.e. np = 8 bytes in
Eq. 38). As a reference baseline, we use the performance ob-
tained for a CPU-based single-threaded implementation of
ep2-3De v1.0 on an i9-10900K CPU (e.g. latest Intel CPU
chip). However, this is not representative of a highly opti-
mized multithreaded implementation under a CPU architec-
ture.

We report the effective memory throughput MTPeff of
the solver ep2-3De v1.0 on various GPUs and CPUs (see
Fig. 12). An increase in the effective memory through-
put is observed as the number of material points in-
creases. All GPUs reach a maximum effective through-
put, but the Tesla V100 scores a maximum effective
throughput of ≈ 650 GBs−1. This corresponds to 88 %
of its peak throughput (for the GPU’s hardware limit,
see Table 1). We report a similar observation for the
RTX 2080 Ti, MTPeff ≈ 320 GBs−1 corresponding to 62 %
of its hardware limit. RTX 3090 and GTX 1650 reach
MTPeff ≈ 405 GBs−1 and MTPeff ≈ 75 GBs−1, respectively,
which correspond to 52 % and 44 % of their respective hard-
ware limits. Finally, we report a memory throughput of at
least MTPeff ≈ 5 GBs−1 for the i9-10900K CPU (10 % of its
hardware limit).

The overall results suggest, as in Räss et al. (2019b),
that most recent GPUs, such as the data-centre Tesla V100
(Volta), offer significant performances compared to entry-
level consumer electronics GPUs, such as the GTX 1650.
In terms of absolute performance, the more recent the GPU
is, the higher its performance. A demonstration is given by
the absolute effective throughput between the RTX 2080 Ti
and the RTX 3090: the latter achieves an additional 20 %
throughput compared to the former. We highly suspect the

hardware itself to be the main reason for this. We further
investigate the performances of the most recent data-centre
GPU, i.e. the A100 (Ampere architecture), with its pre-
decessor the V100 (Tesla architecture). The A100 reaches
≈ 1100 GBs−1, which yields a 1.6-fold performance gain
with respect to the Tesla V100. When compared to the max-
imum effective memory throughput in Table 1, this corre-
sponds to 97 % of the hardware limit.

Finally, we report the wall-clock time for various comput-
ing architectures (see Fig. 13a). As expected by the maxi-
mum effective memory throughput, A100 delivers the fastest
solution, regardless of the number of material points nmp.
The A100 GPU resolves a geometry of nmp ≈ 3.2× 106 in
less than a minute (29 s), whereas the i9-10900K CPU re-
solves the same problem in more than an hour (5949 s). This
corresponds to a 200-fold performance gain (123-fold perfor-
mance gain for the V100; see Fig. 13b compared to the CPU-
based implementation of ep2-3De v1.0. The RTX 2080 Ti
and the RTX 3090 reach a 60-fold and 77-fold performance
gain, respectively. However, the entry-level GTX 1650 is
only 10 times faster than i9-10900 K. As already shown in
Fig. 12a, these performance gains are only expected when
the different GPUs reach their maximum effective mem-
ory throughput. In terms of runtime, the performance gain
(Fig. 13b) is in agreement with the memory throughputs re-
ported in Fig. 12a.

4.2.3 Model 2a: multi-GPU performances

To avoid transfers of frequent material points transfers
amongst the GPUs, we consider an overlap of eight elements
between neighbouring meshes, i.e. nine nodes. This results
in a one-dimensional GPU topology, for which both material
points and meshes are distributed in the y direction of the
global computational domain (see Figs. 11 and 14). Arrang-
ing GPUs in this direction allows the need to transfer material
points amongst GPUs to be overcome, provided that the ma-
terial point’s displacement is not greater than the buffer zone,
i.e. the element overlap. The evaluation of the multi-GPU im-
plementation is based on the Model 2a, with slight modifica-
tions; i.e. the number of elements in the y direction is largely
increased. The size of the physical domain lz× lx × ly is, at
most, 12 m× 64 m× (64× 2048) m.

We consider two distributed computing systems for par-
allel GPU computation, using up to 8 Tesla V100 (Volta ar-
chitecture) or 128 Geforce GTX Titan X (Maxwell architec-
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Figure 12. (a) Effective memory throughput MTPeff of the solver ep2-3De v1.0 for double-arithmetic precision. One can see the on-chip
memory limit, as neither the RTX 2080 Ti nor V100 can resolve the same number of material points as the RTX 3090. (b) GPU on-chip
memory load increases with the number of material points nmp, which demonstrates, as expected, one of the GPU’s hardware limits.

Figure 13. (a) Wall-clock time reported for various computing architectures (GPUs and CPU). The differences in the maximal number of
material points nmp are due to the on-chip memory limit. A significant difference in terms of wall-clock time is observed between the CPU
and GPUs, even for the low-entry consumer electronic GTX 1650, i.e. a performance gain of≈ 10×. (b) Performance gains of GPUs relative
to the CPU, i.e. with 1× as a baseline. We add the CPU and the GTX 1650 wall-clock time for an easier comparison.

Figure 14. Domain partition of the material points amongst eight
GPUs. Combined with an overlap of eight elements in the y direc-
tion, material points can moderately move while still residing within
the same GPU during the whole simulation.

ture) GPUs. All numerical simulations are performed using
a single-arithmetic precision (i.e. np = 4 bytes). This allows
the maximum number of material points and mesh dimen-
sions to be increased. In addition, our GPU implementation
relies on the usage of the built-in function atomicAdd().
It does not support the double-precision floating-point for-
mat FP64 for GPUs with compute capabilities lower than

6.0, i.e. the Maxwell architecture amongst others. Note that,
unlike the Tesla V100, the Geforce GTX Titan X only deliv-
ers an effective memory throughput of MTPeff ≈ 100 GBs−1.
This corresponds to 38 % of its hardware limit. This was al-
ready reported by Räss et al. (2019a) and Alkhimenkov et al.
(2021), and it could be attributed to its older Maxwell ar-
chitecture (Gao et al., 2018). This performance drop is even
more severe, mainly due to the use of built-in functions like
atomicAdd().

We first performed parallel simulations with a moderate
number of GPUs, up to 8 Tesla V100 NVlink (32 GB). The
respective wall-clock times are reported in Fig. 15. We re-
port a wall-clock time of ≈ 110 s for nmp ≈ 108. If nmp
is increased by a factor 2, 4 or 8, the wall-clock time is
roughly similar to the baseline, i.e. nGPU = 1. The effective
memory throughput MTPeff is shown in Fig. 16 (the total
sum of MTPeff across all the GPUs). Based on the mem-
ory throughput of one GPU, an estimation of a perfect weak
scaling is possible. For eight GPUs, an ideal weak scal-
ing corresponds to MTPeff= 4824 GBs−1, whereas we re-
port MTPeff= 4538 GBs−1. This gives a parallel efficiency
of≈ 94 % and, an effective 7.5-fold speed-up. Similar obser-
vations are made for nGPU = 2 and nGPU = 4.
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Figure 15. Wall-clock time for one, two, four and eight Tesla V100
GPUs.

Figure 16. Sum across the GPUs involved of the MTPeff. We
roughly report a weak scaling between the number of GPUs and
the overall effective memory throughput.

We investigate a parallel GPU computation using up to
128 Geforce GTX Titan X GPUs. This allows even larger
geometries to be addressed, as shown in Fig. 17 where the
geometry of nearly nmp ≈ 9.75× 108 is resolved in less than
8 min. For parallel computations of up to 64 GPUs, the wall-
clock time evolution is smooth. For 128 GPUs, the wall-
clock time is chaotic for fewer material points, whereas it
stabilizes as the number of material points increases. We
suspect the absence of computation–communication over-
laps to be the main reason for this erratic behaviour. The
communication between many GPUs requires careful syn-
chronization between GPUs which can be hidden under
computation–communication overlap (Räss et al., 2019a;
Alkhimenkov et al., 2021). The total size of the overlap is
constant, regardless of the y dimension. As the number of
material points increases, the time spent on computation be-
comes larger compared to the time spent on exchanges be-
tween GPUs and the wall-clock time stabilizes. The effective
memory throughput MTPeff is shown in Fig. 18. An ideal
weak scaling corresponds to the effective memory through-
put MTPeff= 12 800 GBs−1 for 128 GPUs, whereas we re-
port only MTPeff= 11 326 GBs−1. This gives a parallel effi-
ciency of ≈ 90 % and an effective ≈ 113-fold speed-up.

4.3 Model 2b: homogeneous and heterogeneous slumps

As a final experiment, we show the results of the ep2-3De
v1.0 solver for a slump with homogeneous or heterogeneous
cohesion fields. In this numerical model, we only show the
displacement field at the end of the numerical simulation at
t = 15 s. The interested reader is referred to Appendix D for

Figure 17. Wall-clock time reported for up to 128 Geforce GTX
Titan X GPUs and up to nmp ≈ 9.75× 108.

Figure 18. MTPeff sum across the GPUs involved.

an overview of the temporal evolution of the equivalent plas-
tic strain εeqv for the slump under the three settings of the
peak cohesion field. All the numerical simulations are run on
a laptop equipped with GTX 1650; tGPU ≈ 30 s with the set-
tings presented in Table 5. In the following, we present the
main results for the three peak cohesion fields, and we dis-
cuss the main characteristics obtained for typical slumping
mechanics.

4.3.1 Homogeneous peak cohesion field

The homogeneous solution gives preliminarily interesting re-
sults (see Fig. 19). The first-order characteristics of a slump
can be observed, even though their magnitude is relatively
fair compared to the real slump. The most striking feature is
the development of one major shear zone, along which the
material flows (i.e. depletion) towards the toe of the slump,
resulting in a compression zone (i.e. thrusting and folding
deformations). The crown-like structure develops linearly in
the y direction and is highly localized at the surface of the
slump (at x ≈ 20 m in Fig. 19). However, the material flows
homogeneously in the x direction (see the vertical profile in
Fig. 19), as shown by the displacement field. The lateral vari-
ation of the displacement field (along the y direction) is al-
most non-existent, which is mainly due to the spatial homo-
geneity of the peak cohesion field.

4.3.2 Isotropic Gaussian covariance

Considering heterogeneities with a Gaussian covariance
function for the cohesion field, the displacement field starts to
resolve a differential behaviour (see Fig. 20). Higher and/or
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Figure 19. Displacement field obtained after t = 15 s for a homogeneous peak cohesion field. One can see an overall homogenous displace-
ment field with some of the first-order characteristics of a slump, i.e. a rotational displacement with a compression zone at the toe, a transition
zone delimited by one principal shear zone and a major scarp at the top of the material.

weaker values of the peak cohesion field yield lower and/or
greater displacements. This is obvious, especially in the tran-
sition zone where this differential is observable. In addition,
the compression zone also starts to resolve spatial variations
due to weaker and stronger cohesion values.

A striking difference is the shear zone itself (see Fig. D2):
the shear zone exhibits a more complex spatial pattern,
whereas only one major shear zone is observed in Fig. D2.
Retrogressive shear banding appears during the time evolu-
tion of the slump, which suggests the development of a sec-
ondary shear zone within the slump. Moreover, the crown-
like structure is now curved and not linear in the y direction.
Its spatial extent is more important and is not as localized as
in the homogeneous case. Nevertheless, a more complex ar-
rangement of major and minor scarps within the crown-like
structure has not yet been observed. Such a structure is more
evident if one observes the accumulated equivalent plastic
strain εp

eqv in Fig. D2 in Appendix D.
The high magnitude of the displacement field in the areas

x ∈ [20;40] and y ≥ 8 m is due to a weaker zone in the peak
cohesion field (see Fig. D2). This shows a strong influence
of the heterogeneous peak cohesion field on the final dis-
placement field. A lower shear strength of the material yields
faster strain-softening behaviour, promoting a faster response
of shear banding.

4.3.3 Isotropic exponential covariance

Shear banding activities become even more complex when
an exponential covariance function is used, relative to Fig. 19
and even to Fig. 20 to some extent. The spatial distribution of
the peak cohesion (see Fig. D3) resolves finer heterogeneities
with a smaller length scale compared to when Gaussian co-
variance is used. Principal differences are observed at the
top and toe of the slump, where the crown-like structure
turns into a complex zone made of minor and major scarps
(see Fig. 21). The displacement field becomes highly het-
erogeneous, particularly at the toe and the top of the slump.

However, it is also more homogeneous when compared with
Fig. 20, particularly in x ∈ [25;35]. The difference is evident
between Figs. 22 and 20 at this particular location.

The difference between the Gaussian and exponential co-
variance of the peak cohesion suggests the following. Het-
erogeneous displacement fields could be influenced by larger
and/or coarser fluctuations of the shear strength within the
material. By extrapolation, this could imply that the magni-
tude of the heterogeneity might be related to the fluctuation
scales of the peak cohesion field. Locally rather homoge-
neous fluctuations of the peak cohesion (i.e. Gaussian covari-
ance) seem to promote an increasingly heterogeneous dis-
placement field at the surface. The characteristic length scale
of spatial fluctuations could have important implications for
highly heterogeneous displacements within landslides. The
same assumption could hold for understanding the more
complex crown-like structure of slumps (see Fig. D3)

5 Discussion

5.1 GIMPM suitability

We investigated granular collapses in both three-dimensional
and plane strain configurations. Our numerical results
demonstrated the suitability of GIMPM to correctly repro-
duce experimental granular collapses. They also demon-
strated that the results did not significantly differ between
these two spatial configurations and that both approaches
give similar numerical solutions.

5.2 Collapse limitation

For Model 1a, the principal hardware limit is the on-chip
memory of the GPU. Even though RTX3090 is supported by
24 GB DDR4, it is physically impossible to achieve the reso-
lution used for plane strain granular collapse. This would re-
quire more than 24 GB of on-chip memory. Model 1b demon-
strated the importance of the background mesh resolution
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Figure 20. Displacement field obtained after t = 15 s for a heterogeneous peak cohesion field with a Gaussian covariance function.

Figure 21. Heterogeneous cohesion field with an exponential covariance function: time evolution of the equivalent plastic strain εp
eqv. Similar

to Fig. D2, heterogeneous behaviour is observed. However, the exponential covariance function results in an even more complex pattern of
strain localization, i.e. minor and major scarps develop at the top. The crown-like structure of the slump becomes even more heterogeneous.

over strain localization. Using a higher numerical resolution
(i.e. finer background mesh) allows full-resolution plastic
strain localization. Similarly, future additional development
efforts towards MPI implementation could resolve highly de-
tailed three-dimensional granular collapse simulations in the
future. This will definitely benefit future studies on complex
strain localization.

The wall-clock time for Model 1b is tGPU= 1470.5 s
(25 min), and the number of iterations per second is
85.5 iterations s−1 for nmp= 819 200. As a preliminary ex-
ample, the same numerical model was performed by
Wyser et al. (2020a), who reported 19.98 iterations s−1 for
nmp= 12 800. Proportionally, this corresponds to a perfor-
mance gain factor of 275 for the GPU-based implementa-
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Figure 22. Displacement field obtained after t = 15 s for a heterogeneous peak cohesion field with an exponential covariance function.

tion (ep2-3De v1.0) over the MATLAB-based implementa-
tion (fMPMM-solver v1.1) (Wyser et al., 2020a).

5.3 Performance

The performance analysis we carried out in Model 2a demon-
strated that even though the algorithm heavily relies on
atomic operations to accumulate material point quantities on
the nodes, the effective memory throughput reaches 88 % at
most (for Tesla V100). We expected a much lower through-
put due to the use of these atomic operations, since they are
likely known to undermine the computational performances
of an implementation under previous GPU architectures (e.g.
Kepler) (Dong et al., 2015a; Dong and Grabe, 2018; Gao
et al., 2018). Our actual understanding (at least for a GPU-
based implementation of GIMPM) is that the latest GPU ar-
chitecture (Ampere and Turing) is now efficient when deal-
ing with atomic operations and that the need to use a complex
data layout for scattering is not as important as before. Fur-
thermore, we identify the memory throughput as the main
bottleneck: an additional 12 % performance improvement on
the V100 before reaching the hardware limit of the mem-
ory bandwidth. The A100 shows that the solver reaches the
hardware limit with an effective memory throughput which
is very close (i.e. 97 %) to the actual maximum memory
throughput. Similarly, the true limiting factor of the single
GPU implementation is the hardware limit of the GPU on-
chip memory.

The multi-GPU implementation resolves the on-chip
memory limitation problem. Our multi-GPU implementa-
tion is particularly well-suited to resolve highly detailed
three-dimensional shear-banding. We also reported decent
wall-clock times (less than 8 min) for simulations with
nearly a billion material points. However, investigating high-
resolution three-dimensional granular collapses is not pos-
sible under the assumptions made, because of small dis-
placement required in the y direction. This is incompatible
with three-dimensional granular collapses. Hence, this mo-
tivates future deeper investigations toward a more versatile
multi-GPU implementation. In addition, we report a slight

drop of the parallel efficiency, as the number of GPUs in-
creases. Future works should be directed toward a parallel
strategy that hides communication latency, as proposed in
Räss et al. (2019a), Räss et al. (2020) and Alkhimenkov et al.
(2021). This will allow us to achieve an optimal parallel ef-
ficiency of 95 %–98 % of the weak scaling tests involving up
to 128 GPUs.

5.4 Slumping mechanics

We show the application of the GIMPM solver ep2-3De v1.0
for slumping mechanics. We have presented various slump
results and demonstrated the significant influence of hetero-
geneities within the peak cohesion field over the displace-
ment field or the equivalent plastic strain. However, we have
arbitrarily selected values that resulted in severe deforma-
tions of the material, which we wanted to highlight to demon-
strate the potential of the solver. Further efforts should now
be oriented towards numerical models that are closer to real
and well-documented cases, such as in Tran and Sołowski
(2019) and Ying et al. (2021). Despite the simplifications we
made, we have reported three-dimensional simulations that
resolve all the first-order characteristics of slumps, includ-
ing complex major and minor scarps, different shear zones
of various activities, and a complex arrangement within the
compression zone. The use of a three-dimensional GIMPM
implementation under a GPU architecture will highly benefit
future studies in the field, allowing faster and more detailed
numerical simulations of heterogeneous and complex strain
localization problems.

5.5 Local damping coefficient

Due to our explicit formulation, a damping relaxation term
should be introduced to mitigate dynamic wave propagations
(Wang et al., 2016c). In this work, we selected damping val-
ues that were either commonly accepted (e.g. D = 0.1 for
slumps) or that were better at resolving experimental results
(e.g.D = 0.025 for granular collapses). Future investigations
should specifically address the influence of damping terms on
the material’s behaviour.
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5.6 Code portability

Our numerical models showed the efficient computing capa-
bilities of modern GPUs under the latest Nvidia GPU archi-
tectures. An important concern is the code portability. CUDA
C is only applicable for Nvidia’s GPUs and is not yet com-
patible with other corporations’ GPUs, such as AMD (ATI
Technologies). As such, an extension of the ep2-3De v1.0
solver towards an OpenCL-based implementation would en-
sure better code portability in the future.

6 Conclusions

We developed ep2-3De v1.0, an explicit GPU-based im-
plementation of the generalized interpolation material point
method that exploits the capabilities of the most recent GPU
architectures (Ampere, Turing and Volta). We achieved fast
execution times on a single GPU with a scattering approach
that relies on extensive usage of atomic operations. We re-
port, at most, an effective memory bandwidth of 88 % rel-
ative to the maximal hardware capabilities of the GPUs.
We achieve, at most, a 200-fold performance gain on a sin-
gle GPU compared to a single-threaded CPU-based imple-
mentation of the solver. On entry-level customer electronics
GPUs, we report a ≈ 10-fold performance gain. Our multi-
GPU implementation permits geometries with almost a bil-
lion material points to be resolved and demonstrates fast ex-
ecution times. We achieve a parallel efficiency of ≈ 94 % on
weak scaling tests for 8 GPUs and ≈ 90 % for 128 GPUs.
We also report that the memory bandwidth is the main lim-
iting performance factor. We validated our solver against
the well-known experimental results of the granular collapse
problem in a three-dimensional configuration. We show ap-
plications of the solver to model slumping mechanics in
three-dimensional configurations considering different mate-
rial heterogeneities.

Appendix A: GIMPM basis functions and derivatives

One of the most important problems of any sMPM formula-
tion is the cell-crossing instability (or error; see Steffen et al.,
2008; Wilson et al., 2021). As material points move through
the mesh, they cross element boundaries. The discontinuous
gradient due to the C0 continuity of the basis functions re-
sults in spurious oscillations of the stress field and internal
forces (González Acosta et al., 2020, 2019; Bardenhagen and
Kober, 2004) when material points cross element boundaries.

To solve for this instability, Bardenhagen and Kober
(2004) introduced the generalized interpolation material
point method (GIMPM). Whereas the material point is
treated as a point in sMPM, Bardenhagen and Kober (2004)
assigned a spatial extent or a domain to the material point.
Alternative basis functions are constructed, i.e. to consider
the material point domain, as follows:

φnp ≡ φn(xp)=
1
vp

∫
�p⊂�

χp(x)Nn(x)d�, (A1)

where vp is the material point volume, �p denotes the mate-
rial point domain, χp(x) is the particle characteristic func-
tion, Nn(x) is the basis function (or shape function) for the
mapping between the material point p and its associated
nodes n, and x = xp − xn are the local coordinates between
node n and material point p.

The particle characteristic function must satisfy the parti-
tion of unity property, i.e.

∑
pχp(x)= 1 (Bardenhagen and

Kober, 2004). The simplest particle characteristic function is
given by the hat function, i.e.

χp(x)=

{
1, if x ⊂�p,

0 otherwise.
(A2)

The GIMPM basis functions and derivatives are con-
structed analytically (Coombs et al., 2020; Charlton et al.,
2017) in one dimension from a convolution of the standard
finite-element basis functions and the material point charac-
teristic function (Steffen et al., 2008), i.e.

φn(xp)=



1−
(

4x2
+ l2p

)/
(4hlp)

if |x|< lp/2
1− |x|/h

if lp/2≤ |x|< h− lp/2(
h+ lp/2− |x|

)2
/(2hlp)

if h− lp/2≤ |x|< h+ lp/2
0

otherwise ,

(A3)

where lp is the length of the material point domain, h is the
mesh resolution, and x = xp−xn, where xp is the coordinate
of a material point and xn is the coordinate of its associated
node n. The two-dimensional basis function of a node n with
its material point p is constructed as

φnp ≡ φn(xp)= φn(xp)φn(yp), (A4)

for which the gradient is defined as

∇φnp ≡∇φn(xp)

= (∂xφn(xp)φn(yp),φn(xp)∂yφn(yp)). (A5)

Appendix B: Gaussian random cohesion fields

In earth sciences, random fields (Christakos, 1992) are nu-
merically generated predictions of a geophysical property
(i.e. rock- or soil-related properties) with probabilistic spa-
tial variability. These predictions are based on (i) an assumed
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probability density function, i.e. characterized by a mean
value µ with a standard deviation σ , and (ii) an assumed spa-
tial correlation function, characterized by fluctuation scales
in a vector format, i.e. λ= (λx,λy,λz). In regard to numer-
ical modelling, the principal requirement is that both small
and large scales are simultaneously resolved over the com-
putational mesh to ensure physically meaningful solutions.

Recently, Räss et al. (2019b) presented an efficient imple-
mentation based on a spectral representation of Gaussian ran-
dom fields for geophysical applications using either Gaussian
or exponential covariance functions. The numerical codes,
named GRFS, were made available by Räss et al. (2019b) in
both native MATLAB and CUDA C languages2. However,
a sufficiently large number of harmonics should be used to
obtain convergent Gaussian random fields, as stated in Räss
et al. (2019b).

Similar to the random material point method (RMPM;
see Wang et al., 2016a; Liu et al., 2019; Remmerswaal
et al., 2021) initially proposed by Fenton and Vanmarcke
(1990) to generate RFs for a finite-element mesh (RFEM),
we combined this approach with the codes proposed by Räss
et al. (2019b) to generate an isotropic peak cohesion field to
demonstrate its influence on the mechanical behaviour.

Appendix C: Volumetric locking and damping
corrections

In Huang et al. (2015), no volumetric locking mitigation
strategy was introduced, even though low-order elements
were used. This should promote volumetric locking and an
overall stiffer response of the granular material. In addition,
Huang et al. (2015) used the standard (or original) material
point method (instead of the generalized interpolation mate-
rial point method), which is well known to introduce spurious
oscillations of internal forces (González Acosta et al., 2020).

When implementing the proposed volumetric locking mit-
igation strategy, we observed (a) larger deformations of the
granular material with a stronger vertical compaction (i.e.
stronger vertical displacement) and (b) slightly longer run-
out distances when compared to the experimental data. The
softer mechanical response of the granular material had to
be compensated for somehow, which can be achieved by the
introduction of a small local damping parameter.

We reproduced the numerical setting used in Huang
et al. (2015) with the same mesh resolution, i.e. 1x =
1y= 2.5 mm, and a similar number of material points
nmp= 28 800 with an initial number of material points per
initially filled element npe = 9. The material parameters used
for this preliminary investigation are presented in Sect. 4.1.1.

Figure C1a and b show the major differences between ei-
ther a locking-free or a locking-prone solution and the exper-
imental results. As mentioned before, a slightly longer run-

2The GRFS routines are available at https://bitbucket.org/lraess/
grfs/src/master/ (last access: 25 February 2021).

Figure C1. (a) Numerical solution without any volumetric locking
strategy and (b) numerical solution with the proposed volumetric
locking strategy. For both cases, no damping is introduced.

out distance is obtained for the locking-free solution. As a re-
sult, the numerical prediction given by the locking-free solu-
tion of the free surface is underestimated. However, the most
noticeable difference is the failure surface. Whereas the fail-
ure surface predicted by the locking-prone solution fits with
the experiment of Bui et al. (2008), it diverges for a locking-
free solution. In particular, the onset of the failure surface at
the top of the material is underestimated by the locking-free
solution compared to the experimental results. This is due to
the softer response of the granular material when volumetric
locking is mitigated, which promotes greater vertical com-
paction and a stronger run-out distance at the same time.

Even though the introduction of local damping better
resolves the experimental results, one can argue that the
locking-free solution without the introduction of local damp-
ing still agrees with the experiment of Bui et al. (2008). The
overall response of the numerical granular collapse is still
very close to the actual physical experiment, and the differ-
ences between the numerical and experimental results can
still be considered acceptable.

We further present additional three-dimensional results for
Model 2b for a homogeneous cohesion field (see Figs. C2
and C3). Three-dimensional simulations of cohesive mate-
rial better illustrate the influence of volumetric locking. Fig-
ure C3 demonstrates that a significantly smoother pressure
field is resolved with the proposed method.

In addition, the pressure field is certainly smoothed, but it
does not significantly differ from the original pressure field
(in locations where locking is minimum). Volumetric lock-
ing is particularly highlighted within shear bands due to iso-
choric plastic flows, resulting in significant stress oscilla-
tions.
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Figure C2. Non-smooth pressure field due to volumetric locking. The typical check-board pattern of volumetric locking can be observed
where the material has yielded, i.e. the shear band.

Figure C3. Smoother pressure field when volumetric locking is mitigated with the proposed solution.
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Appendix D: Heterogeneities for the peak cohesion field

Figure D1. Homogeneous cohesion field: time evolution of the equivalent plastic strain εp
eqv. Its evolution is rather homogeneous, and the

overall plastic behaviour is free of any heterogeneities. Some of the first-order characteristics are observed, i.e. a principal shear zone and a
compression zone at the toe of the slump.
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Figure D2. Heterogeneous cohesion field with a Gaussian covariance function: time evolution of the equivalent plastic strain εp
eqv. Unlike

Fig. D1, heterogeneous behaviour is observed, i.e. the appearance of a second shear zone highlights a more complex deformation pattern.
Moreover, a crown-like structure starts to develop at the top of the material, where an initial weak zone is located.
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Figure D3. Heterogeneous cohesion field with an exponential covariance function: time evolution of the equivalent plastic strain εp
eqv. Similar

to Fig. D2, heterogeneous behaviour is observed. However, the exponential covariance function results in an even more complex pattern of
strain localization; i.e. minor and major scarps develop at the top. The crown-like structure of the slump becomes even more heterogeneous.

Code availability. The solver ep2-3De v1.0 developed in this study
is licensed under the GPLv3 free software licence. The solver ep2-
3De v1.0 archive (v1.0) is available from a permanent DOI repos-
itory (Zenodo) at https://doi.org/10.5281/zenodo.5600373 (Wyser
et al., 2021) (the latest version of the code is available for down-
load from GitHub at https://github.com/ewyser/ep2-3De, last ac-
cess: 26 October 2021).
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