UEB snow module
- **Set Constants**
- Estimate radiation components, considering horizontal measurement, cloud cover, vegetation canopy adjustment
- **Partition Precip into rain and snow**
- **Calculate snow albedo**
- Solve snow energy/mass balance equations; Update state variables (U, SWE, and τ)
- Update snow albedo; temperature
- Update mass balance components

STEMMUS-FT soil module
- **Forcing PARM**
 - Begin a new time step
 - Update state variable and Set boundary conditions and Time disaggregated Meteorological Forcing
 - Start iteration for current time step
 - SFCC: Total water conservation for θ_L, θ_i
 - Run UEB
 - Update hydrothermal parameters
 - Adjust time step
- Solve balance equations for ψ, T, P_g
- Reach max No. of iterations?
- Converge?
- Convergence reached for current time step?
- End of simulation?
- Repeat current time step
- **Output**

Update hydrothermal parameters
1. Soil hydraulic conductivity K_l; thermal properties C, λ_{eff}
2. Vapor density, ρ_v; diffusivity, D_V; dispersivity, D_{Vg}
3. Transport coefficient for adsorbed liquid flow (heat of wetting), D_{Tdisp}
4. Dry air density, ρ_{da}; Gas conductivity, k_g

Solve balance equations for ψ, T, P_g
- CPLD = 1?
 - NO → **BCD**
 - Solve water and energy balance equation **Diff_Moisture_Heat**
 - YES → **ACD-air**
 - Solve dry air balance equation **Air_sub**
- AIR = 1?
 - NO → **ACD**
 - Solve water balance equation **h_sub**
 - YES → **ACD**
 - Solve energy balance equation **Enrgy_sub**