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Abstract. The current intensive use of agricultural land is
affecting the land quality and contributes to climate change.
Feeding the world’s growing population under changing cli-
matic conditions demands a global transition to more sus-
tainable agricultural systems. This requires efficient models
and data to monitor land cultivation practices at the field to
global scale.

This study outlines a spatially distributed version of the
field-scale crop model AquaCrop version 6.1 to simulate
agricultural biomass production and soil moisture variabil-
ity over Europe at a relatively fine resolution of 30 arcsec
(∼ 1 km). A highly efficient parallel processing system is im-
plemented to run the model regionally with global meteoro-
logical input data from the Modern-Era Retrospective anal-
ysis for Research and Applications version 2 (MERRA-2),
soil textural information from the Harmonized World Soil
Database version 1.2 (HWSDv1.2), and generic crop infor-
mation. The setup with a generic crop is chosen as a baseline
for a future satellite-based data assimilation system. The rel-
ative temporal variability in daily crop biomass production is
evaluated with the Copernicus Global Land Service dry mat-
ter productivity (CGLS-DMP) data. Surface soil moisture
is compared against NASA Soil Moisture Active–Passive
surface soil moisture (SMAP-SSM) retrievals, the Coperni-
cus Global Land Service surface soil moisture (CGLS-SSM)
product derived from Sentinel-1, and in situ data from the
International Soil Moisture Network (ISMN). Over central
Europe, the regional AquaCrop model is able to capture
the temporal variability in both biomass production and soil
moisture, with a spatial mean temporal correlation of 0.8
(CGLS-DMP), 0.74 (SMAP-SSM), and 0.52 (CGLS-SSM).
The higher performance when evaluating with SMAP-SSM

compared to Sentinel-1 CGLS-SSM is largely due to the
lower quality of CGLS-SSM satellite retrievals under grow-
ing vegetation. The regional model further captures the short-
term and inter-annual variability, with a mean anomaly cor-
relation of 0.46 for daily biomass and mean anomaly corre-
lations of 0.65 (SMAP-SSM) and 0.50 (CGLS-SSM) for soil
moisture. It is shown that soil textural characteristics and ir-
rigated areas influence the model performance. Overall, the
regional AquaCrop model adequately simulates crop produc-
tion and soil moisture and provides a suitable setup for sub-
sequent satellite-based data assimilation.

1 Introduction

Over the past 60 years, global agricultural production has
more than tripled (FAO, 2017). This became possible through
productivity-enhanced technologies, industrialization, and
expansion of agricultural land. However, the current inten-
sive use of cropland is resulting in reduced land quality
and increased greenhouse gas emissions, which in turn im-
pact agricultural systems (Foley et al., 2011; Kopittke et al.,
2019). To meet the future crop demand of a vastly growing
population, while minimizing the ecological footprint and in-
creasing the crop resilience for changing climatic conditions,
the need to adapt to more effective and sustainable land cul-
tivation practices is urgent (Aznar-Sánchez et al., 2019; Pin-
gali, 2012; Raes and Vanuytrecht, 2017).

To evaluate the effect of environmental conditions and dif-
ferent management practices on crop production, there are a
variety of models that simulate the biophysiological growth
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of crops at the field scale. An overview of 70 of such crop
models is given by Di Paola et al. (2016). Some of these
point-based crop models have more recently been upscaled
and assessed at a regional to global level (Balkovic et al.,
2013; Boogaard et al., 2013; Folberth et al., 2019; Liu et al.,
2007; Müller et al., 2017; Nichols et al., 2011; Resop et al.,
2012; Roerink et al., 2012; Stöckle et al., 2014). Large-scale
crop models are a valuable asset in providing information to
policy makers and for applications in climate scenario anal-
yses (Asseng et al., 2013; Iizumi et al., 2018). A downside
of large-scale crop models, especially at a global level, is
that they often suffer from the generalization of input data
and loss of information that is typically available at smaller
scales, resulting in larger errors at the local scale. The Ag-
MIP Global Gridded Model Intercomparisons (GGCMI) is a
framework initiated to overcome this issue. It is built on a
large group of crop modelling researchers that combine and
intercompare a set of upscaled point models or global grid-
ded crop models to assess and reduce the bias and uncertain-
ties at a global level (Elliot et al., 2015). Another possibility
to improve the simulations at either the local or larger scale
is the updating of the model simulations with remote sens-
ing observations via data assimilation. There are several stud-
ies that have already used data assimilation in regional crop
modelling systems (De wit and van Diepen, 2007; Mladen-
ova et al., 2019; Zhuo et al., 2019) either for parameter or
state updating. Parameter updating or calibration allows for
matching the absolute values of the simulations with (most
often historical) observations. State updating allows for cor-
rection of the relative temporal evolution and for obtaining
better initial conditions for subsequent model predictions. To
get the most optimal results with data assimilation, it is im-
portant to start with a reliable model that is able capture the
seasonal and inter-annual temporal variabilities.

This study presents a methodology to apply the original
field-scale AquaCrop model version 6.1 efficiently over a
large region and for any spatial resolution. The flexible model
setup will allow for many different applications, but in this
study the focus is on the preparation of a satellite-based data
assimilation system. AquaCrop was developed by the FAO
to estimate responses of herbaceous crops to water (Raes
et al., 2009; Steduto, et al., 2009). It differs from most other
crop models by its low requirement of detailed input data,
as it aims for a balance between simplicity, accuracy, and
robustness (Steduto, et al., 2009). The model has been ap-
plied in numerous studies for various crop types and envi-
ronmental conditions and shows good results in simulating
crop biomass and yield, especially when calibrated for lo-
cal field conditions (Abedinpour et al., 2012; Geerts et al.,
2009; Hsiao et al., 2009; Maniruzzaman et al., 2015; Raz-
zaghi et al., 2017; Sandhu and Irmak, 2019). Earlier spa-
tially distributed versions of AquaCrop were developed by
e.g. Lorite et al. (2013), Sallah et al. (2019), and Huang
et al. (2019) using a Geographic Information System or batch
processing with remote sensing data input. Some challenges

of existing distributed AquaCrop systems are related to the
limited scalability and high computational cost when they
are applied to any large domain at any resolution, the limi-
tations in the upscaling of crop parameters from the plant or
field to the grid scale (Han et al., 2020), and the availabil-
ity of other suitable spatially distributed parameters or input
information. Applications of the AquaCrop model at a conti-
nental scale exist but are very limited (Dale et al., 2017) and
so far are only used in combination with coarse spatial reso-
lutions. To our best knowledge, no study has yet reported on
high-resolution and large-scale (beyond country level) appli-
cations of AquaCrop.

The continental setup of our regional AquaCrop simu-
lations uses spatially distributed input data about soil tex-
ture and meteorology, while assuming a homogenous generic
crop. To evaluate, or later update, select variables within such
a regional modelling system, in situ data only provide sparse
information. However, a range of spatially distributed opti-
cal and microwave-based satellite data are available at var-
ious temporal and spatial resolutions. A confrontation be-
tween model simulations and satellite data to evaluate or up-
date the model simulations is not always trivial. Most im-
portantly, the magnitude of model simulations and satellite
retrievals of soil moisture or biomass are often not directly
comparable. Biases between models and observations are in-
evitable because they represent different quantities (Koster
et al., 2009; Reichle et al., 2004) or are simply based on
different assumed parameterizations. The assumption of a
generic crop will, for example, lead to inevitable biases. Via
parameter estimation, soil and vegetation parameters can be
spatially tuned to reduce such biases, but this is often not fea-
sible for satellite retrievals or is difficult with more detailed
models at the regional to global scale. For this same reason,
state-of-the-art data assimilation systems for state updating
are designed to correct for random error and not for system-
atic bias. Therefore, satellite products of relative soil water
indices or anomaly total water storage are often distributed
(Wagner et al., 1999; Albergel et al., 2008; De Lannoy et al.,
2016; Li et al., 2019), and the performance of large-scale
model simulations is often evaluated using bias-free tempo-
ral skill metrics (De Lannoy et al., 2015; Gruber et al., 2020).

The objective of this research is to assess whether a high-
resolution regional gridded AquaCrop model can capture the
seasonal, inter-annual, and short-term temporal variability, as
well as the spatial variability, of biomass and surface soil
moisture when using global spatially distributed input data
about soil texture and meteorology and assuming a generic
crop. The model performance will be evaluated over Europe
at a spatial resolution of 30 arcsec (1/120◦; ∼ 1 km at the
Equator) using satellite products derived from both optical
and microwave sensors as well as in situ measurements.

The structure of the paper will be as follows: Sects. 2 and
3 will cover the methodology, with a description of the re-
gional AquaCrop model setup, the evaluation datasets, and
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performance metrics. In Sect. 4 the results will be presented
and discussed, followed by a conclusion in Sect. 5.

2 The regional gridded AquaCrop model

2.1 AquaCrop equations

AquaCrop is a daily crop-water productivity model that
translates, on a daily basis, the simulated amount of crop
transpiration into a proportional amount of biomass for a sin-
gle field, which is assumed to be homogeneous (Raes et al.,
2009; Steduto et al., 2009). The relation between transpira-
tion and biomass production is defined by a water productiv-
ity (WP) factor.

B =WP∗ ·
∑ Tr

ET0
(1)

B (t ha−1) is the cumulative biomass produced, WP∗ is
the WP (gm−2) factor normalized for atmospheric CO2
(369.41 ppm for the year 2000) and for climate, and Tr
(mmd−1) is the transpiration, also normalized for cli-
mate after division by the reference evapotranspiration, ET0
(mmd−1). Because of this normalization, the WP∗ factor
only significantly differs between C3 and C4 crops, with C4
crops having a higher WP∗ due to a more efficient carbon
assimilation process. The calculation of Tr is dependent on
ET0, the adjusted green canopy cover (CC∗; –), the crop
transpiration coefficient (Kc,tr; –), the cold stress coefficient
(KsTr ; –), and the soil water stress coefficient (Ks; –).

Tr=Ks ·KsTr ·Kc,tr ·CC∗ ·ET0 (2)

To calculate the soil water balance, AquaCrop divides the soil
profile into multiple compartments (default 12) with depth
increments1z (default 0.1 m). For deeper soils,1z increases
exponentially with increasing soil depth so that the processes
of the near-surface layers can still be resolved with suffi-
cient detail. The number of compartments is independent of
the number of soil horizons, and the hydraulic properties for
each compartment will be used depending on the soil layer
in which they reside. The simulation of the water content
in each compartment is done with a set of finite-difference
equations (subroutines) that are defined in terms of the de-
pendent variable 2, as represented in Eq. (3) (Raes et al.,
2018). First, the drainage of the soil profile is calculated.
Then, the water infiltration is computed (after subtraction of
surface runoff) and upward movement of water by capillary
rise is estimated. Finally, the amount of water lost by evapo-
ration and crop transpiration is subtracted:

θi,j = θi,j−1+1θDFi,1t +1θIi,1t +1θCRi,1t

+1θEi,1t +1θTi,1t , (3)

where θi,j is the soil water content of compartment i at time
step j , θi,j−1 is the water content of compartment i at the pre-
vious time step, and1θXi,1t indicates the change in moisture

due to various processes X, with X = DF. DF is downward
flow, I is infiltration, CR is capillary rise, E is soil evapora-
tion, and T is crop transpiration.

Downward flow over the compartments is described by
an exponential drainage function (Eq. 4) based on the vol-
umetric water content in the compartment i (2i) within the
soil layer and drainage characteristics of the soil layer (Raes
et al., 2006, 2009).

1θDFi,1t = τi (θsat− θFC)
eθi−θFC − 1
eθsat−θFC − 1

(4)

1θDFi,1t is the decrease in water content over time
(m3 m−3 d−1), θFC and θsat are the volumetric moisture con-
tent at field capacity and at saturation (i.e. the porosity) of
the soil layer, and τi is the drainage coefficient derived from
the saturated hydraulic conductivity (Ksat). Infiltration (I ) is
the sum of water that enters the soil, which is rainfall minus
surface runoff and possibly irrigation. Internal drainage be-
tween compartments is defined by the drainage ability, which
depends on θsat and θFC (Eq. 4). The cumulative drainage
amount from any compartment will percolate through as long
as its drainage ability is greater than or equal to the drainage
ability of the overlying compartment. If the drainage abil-
ity is lower than the overlying compartment, the cumulative
drainage amount will be stored in that compartment, increas-
ing the water content and thereby its drainage ability. If the
drainage ability then reaches the equal amount of that of
the overlying compartment, excess drainage will percolate
through to the lower compartment. For the bottom soil com-
partment, the drainage is lost as deep percolation. The runoff
is estimated based on the curve number (CN) method devel-
oped by the US Soil Conservation Service (USDA, 1964).
The CN values are dependent on Ksat of the topsoil layer.
Upward flow by capillary rise is estimated based on the depth
of the groundwater table and hydraulic characteristics of the
soil layers. Since no groundwater table is implemented in the
regional version of the model in this paper, capillary rise is
not included in the simulations. Soil evaporation is based on
the soil wetness and crop cover (Ritchie, 1972), and water
extraction by roots is described with the sink term from Fed-
des (1982). Because the root density for most crops is highest
near the soil surface and decreases with increasing soil depth,
the water extraction pattern by roots is simulated as follows:
40 %, 30 %, 20 %, 10 % for the upper quarter to the lowest
quarter of the root zone (Raes et al., 2009). The estimated
water retained in the root zone that will be available to the
plants (Wr) at each daily time step is described by the frac-
tion of total available water (TAW) after subtraction of de-
pleted water (Dr). TAW is the difference of volumetric mois-
ture content between field capacity (θFC) and wilting point
(θWP) over the root zone and is therefore dependent on soil
texture and depth.

Plant stresses, such as water excess or water limitation,
cold–heat air temperature stress, soil fertility, and salinity
stresses, can affect biomass production during different steps
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of the calculation procedure, depending on the process that
is affected (i.e. canopy expansion, crop transpiration, polli-
nation). The inclusion of stress factors is done by assign-
ing unique thresholds to each of these biological processes
(Raes et al., 2018). Further details on the AquaCrop equa-
tions can be found in the calculation procedure manual by
Raes et al. (2018).

2.2 Regional model setup

The model domain of this study covers the agricultural
land in the central part of Europe (35–55◦ N, 10–20◦ E) and
45 pixels across all of mainland Europe where in situ soil
moisture data are available for evaluation (three in situ points
are also included in the central European domain). The model
was run for the years 2011 through 2018, starting on 1 Jan-
uary 2011. The initial soil moisture content for the first year
was set at θFC, since the runs were initiated midwinter, and
for the subsequent years the initial soil moisture content was
based on the moisture content of the last day from the previ-
ous year. Because the evaluation for soil moisture was done
with microwave-based satellite products that pertain to the
surface layer, the AquaCrop volumetric moisture content of
the topsoil compartment (WC01) at a depth of 0.05 m (centre
of top 10 cm) was chosen for evaluation in this study. For the
biomass, the daily productivity (t ha−1) was derived from the
cumulative biomass. In the regional version of AquaCrop,
a single homogeneous field is represented by a 30 arcsec
(∼ 1 km) pixel, and input and output were defined indepen-
dently for each pixel. The system can easily be set up for any
given resolution over any domain. In this study, the model
was run exclusively for dominantly rainfed agricultural areas
based on the land use map of the CORINE land cover inven-
tory (Büttner, 2014) for the year 2012. This dataset is avail-
able at 100 m resolution and was aggregated to 30 arcsec.
To best represent the pixels as agricultural fields, only pixels
were included for which at least 50 CORINE pixels (∼ 50 %
of one AquaCrop pixel) contained non-irrigated agriculture.

The AquaCrop input data are categorized into several com-
ponents, e.g. climate, soil, vegetation, and management. For
each component, parameters are described in a text file with
a specific file extension that is recognized by the model. A
project management (PRM) file oversees all the information
for a single field (or pixel) and contains paths and names
of these input files. This PRM file is read and executed by
AquaCrop, after which an output file is created.

The original Pascal source code of AquaCrop v6.1 was
minimally adjusted and compiled on the Linux-based high-
performance computer (HPC) of the Vlaams Supercomputer
Centrum (VSC), and the resulting executable was plugged
into a Python wrapper to allow massively parallel simula-
tions to optimize the model efficiency over larger spatial do-
mains. The current system allows for easy implementations
of later versions of AquaCrop. The regional input files have
to be prepared before model execution. The Python wrapper

then creates the PRM file for a pixel as a first step of the
model run, after which the AquaCrop model is executed and
time series output is stored into a new folder for each pixel.
The reason for creating the PRM files right before the model
execution is so that changes to a project can be made quickly.
With this setup, AquaCrop simulations over 1000 pixels for
8 years can be completed in a wall time of 2.2 min when
using 36 processors. The runs over the domain and period
used in this study were completed in approximately 20 h on
36 processors.

2.3 Model input

The meteorological forcings were extracted from the global
Modern-Era Retrospective analysis for Research and Ap-
plications version 2 (MERRA-2; Gelaro et al., 2017).
The MERRA-2 meteorological variables have a 3-hourly
temporal resolution and a spatial resolution of 0.5◦ lat×
0.625◦ long, and they are readily available at a latency of
about a month. A nearest-neighbour function was used to
identify the 30 arcsec pixels situated within one MERRA-2
grid to assign meteorological input. Minimum and maximum
temperature and precipitation were converted into daily data
needed for the AquaCrop model. The reference evapotran-
spiration ET0 was derived from the FAO Penman–Monteith
equation using radiation, wind speed, average temperature,
and dew temperature from MERRA-2 (Allen et al., 1998).
For the FAO Penman–Monteith equation, a psychrometric
constant of 0.067 was assumed for the entire domain, and
variations in topographic elevation were not taken into ac-
count. At high elevations (> 1 kma.s.l.) this could result in
deviations of ET0 of max 0.2 mmd−1. However, since most
agricultural areas are located at much lower elevations, the
effect of the psychrometric constant was assumed to be very
small. The long record of mean annual CO2 concentration
observed at Mauna Loa (Hawaii, USA) was used as CO2 in-
put (default file in the database of AquaCrop).

The soil texture and organic matter were taken from the
Harmonized World Soil Database version 1.2 (HWSDv1.2).
The HWSDv1.2 has a spatial resolution of 30 arcsec. The
hydraulic soil properties for 253 different soil classes were
linked to the information on mineral soil texture and organic
matter from the HWSDv1.2 via pedo-transfer functions as
in De Lannoy et al. (2014). More specifically, AquaCrop
uses the soil water content at various matrix potentials, i.e.
θWP, θFC, θsat, and Ksat. These parameters are available for a
top layer (0–30 cm) and a deeper layer (30–100 cm). Stoni-
ness and soil salinity were not considered. No restrictions on
the root zone development by impermeable layers were in-
cluded in the simulations. According to the 1◦ global dataset
of soil depth to bedrock used by the Second Global Soil
Wetness Project (Dirmeyer and Oki, 2002; Mahanama et al.,
2015) and the 250 m resolution map developed by Shang-
guan et al. (2017), the bedrock is generally deeper than 1 m
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over the study area, which allows for reaching the maximum
effective rooting depth.

A soil fertility stress parameter in the field management
file provides an indication of the overall soil quality. The de-
fault of this parameter is 0 %, referencing to unlimited soil
fertility with the perfect concentrations of plant nutrients.
Since this situation is very rare in real fields, even for well-
maintained land, the value was manually tuned to 30 % af-
ter initial model evaluation of daily biomass production with
the CGLS-DMP (see Sect. 3.1) product for several pixels.
With this reduction in soil fertility, a good to moderate crop
production over the entire domain can be simulated in the
absence of water stress, which is a setting recommended by
expert knowledge of the AquaCrop source code developers.

A single crop file was created to simulate crop produc-
tion over Europe. Spatial and temporal gaps of information
at the ∼ 1 km resolution prevent the inclusion of a more de-
tailed crop parameterization. Furthermore, this research is
focused on capturing relative temporal variation in biomass
(not yield) for future use in a data assimilation system, so a
generic crop was developed and used for the entire domain.
It is expected that regional differences of crop productiv-
ity from different crops will be corrected for via future data
assimilation. After visual model evaluation and quantitative
comparisons against satellite-based dry matter productivity
(DMP, see below; Smets et al., 2019), the date of senescence
was tuned manually to optimally capture the length of the
growing season. A generic reference crop was developed to
simulate annual biomass development of C3 crops. C3 crops
are predominantly found in temperate climates, as opposed
to C4 crops that are more common in hot and dry climato-
logical zones (Monfreda et al., 2008; Still et al., 2003). The
crop was simulated as a transplant, assuming a small pres-
ence of vegetation from the start of the season, and with an
annual cycle of 365 d starting on 1 January. Because of this
fixed annual cycle, the canopy development had to be sim-
ulated in calendar days instead of the more commonly used
growing degree days. This results in an error in the simula-
tion of canopy expansion during cold periods, but due to the
consideration of growing degrees in the simulation of crop
transpiration with the cold stress factor (KsTr ; Eq. 2), the re-
duced biomass production in these periods is still captured.
As can been seen from Eqs. (1) and (2), the factors that af-
fect the crop development, simulated by canopy cover, are
soil water stress and cold temperature stress. This generic
crop file is mostly suitable to simulate canopy development
during the spring and summer season. The main crop param-
eters are presented in Table 1, and a flowchart of the model
setup with input datasets is shown in Fig. 1.

3 Evaluation datasets and metrics

3.1 CGLS-DMP

To evaluate simulations of daily biomass production, the
∼ 1 km dry matter productivity product from the Coperni-
cus Global Land Service (CGLS-DMP; kgha−1 d−1) was
used (Smets et al., 2019). The CGLS-DMP is based on a
simplified Monteith (1972) approach that makes use of the
fraction of absorbed photosynthetically active radiation (fA-
PAR), which is derived from the optical satellite missions
Satellite Pour l’Observation de la Terre (SPOT; 1999–2014)
and Project for On-Board Autonomy – Vegetation (PROBA-
V; 2014–June 2020), ECMWF re-analysis estimates of at-
mospheric variables such as radiation and temperature, and
land cover information from the ESA CCA Land Cover Map.
The retrieval algorithm is thus driven by atmospheric water
availabilities, without explicitly accounting for water stor-
age in the soil. The CGLS-DMP product is provided in 10 d
time steps; each value is representative of the past 10 d for
the years 1999 up to present date. To compare the data with
the AquaCrop biomass, the nearest-neighbour function was
used to spatially match the gridded simulations to the grid of
CGLS-DMP, and the median of the modelled daily biomass
production was computed for the corresponding 10 d inter-
vals of the CGLS-DMP products. Since the crop parameter-
ization in AquaCrop is suited to simulate the main growing
season, the months November to February were not included
for the biomass evaluation.

3.2 CGLS-SSM

AquaCrop surface moisture content, i.e. the output of soil
moisture in the top compartment of the soil profile, was eval-
uated with the CGLS relative surface soil moisture product
CGLS-SSM. CGLS-SSM provides data for the top few cen-
timetres of the soil, which are available at the same ∼ 1 km
resolution as CGLS-DMP. This product is derived from the
C-band radar on board Sentinel-1, processed by the TU Wien
(Bauer-Marschallinger et al., 2018), and available from Octo-
ber 2014 onwards. Processing steps included geo-correction,
radiometric calibration, and normalization of the incidence
angle. No correction was included for dynamics in vegeta-
tion or surface roughness. The data are provided as relative
soil moisture estimates (%) that have to be multiplied by the
porosity (θsat) to convert to absolute volumetric soil mois-
ture contents (m3 m−3). The Sentinel-1 satellite has varying
overpass densities, resulting in a slightly different number of
data points in various areas, but the temporal resolution is
generally between 3 and 8 d. To exclude potential data points
for days on which the soil was nearly frozen, the soil tem-
perature variable from MERRA-2 was used to identify and
remove all data for which the soil temperature was below
4 ◦C, following the recommended data masking by e.g. Gru-
ber et al. (2020). The CGLS-SSM product contains masks for

https://doi.org/10.5194/gmd-14-7309-2021 Geosci. Model Dev., 14, 7309–7328, 2021



7314 S. de Roos et al.: Performance analysis of regional AquaCrop (v6.1)

Table 1. Main crop parameters of the generic crop to simulate biomass over Europe.

Generic crop main parameters Input

Crop type leafy vegetable crop
Crop is sown/crop is transplanted crop is transplanted
Determination of crop cycle calendar days
Coefficient for maximum crop transpiration (Kc,tr,x ; –) 1.10
Base temperature (◦C) below which crop development does not progress 8.0
Upper temperature (◦C) above which crop development no longer increases with an increase in temperature 30.0
Minimum effective rooting depth (m) 0.3
Maximum effective rooting depth (m) 1.0
Normalized water productivity factor (WP∗; gm−2) 17.0
Calendar days from transplanting to recovered transplant 0
Calendar days from transplanting to maximum rooting depth 80
Calendar days from transplanting to start senescence 232
Calendar days from transplanting to maturity 365
Calendar days from transplanting to flowering 0
Minimum growing degrees required for full crop transpiration (◦C per day) 10.0

Figure 1. Flowchart of the regional model setup with gridded meteorological and soil input data as well as generic crop and management
input data indicated on the left side. The parallel computing system with a maximum of N cores can execute N pixels at the same time. The
composited output files can then be visualized as maps or time series.

areas where it cannot be applied, i.e. a water mask for pix-
els containing only water, a sensitivity mask for pixels with
a low sensitivity (urban, rivers, dense forests), and a slope
mask screening out pixels with a topographic slope higher
than 17◦.

3.3 SMAP-SSM

Surface soil moisture simulations were further evaluated
with retrievals from the NASA Soil Moisture Active–Passive
(SMAP) mission from April 2015 onwards. More specifi-
cally, the enhanced level-2 radiometer half-orbit version 4

was used at 9 km resolution (Chan et al., 2018; Chaubell
et al., 2020). The SMAP radiometer measures L-band bright-
ness temperatures in vertical and horizontal polarization at
an incidence angle of 40◦. It scans the Earth’s surface in a
sun-synchronous orbit, which is 06:00 for descending and
18:00 for ascending mode (both local time), with a temporal
resolution of 2–3 d. The SMAP product provides three es-
timates of surface (∼ 5 cm) soil moisture (m3 m−3) derived
from different retrieval algorithms (O’Neill et al., 2020). The
single-channel algorithm using vertical polarization is the
current baseline for SMAP soil moisture and was also used
for AquaCrop evaluations.
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SMAP data are projected onto the 9 km EASE-Grid ver-
sion 2.0 (EASE2; Brodzik et al., 2012), and the AquaCrop
soil moisture output was aggregated to this grid by simply
averaging all ∼ 1 km pixels belonging to the same EASE2
grid cell. Only cells that were at least 50 % filled with
AquaCrop output were included for evaluation. The number
of AquaCrop pixels per 9 km grid cell varies depending on
the location on the EASE2 grid. For SMAP-SSM, the recom-
mended conservative quality control was applied, and a tem-
perature threshold of 4 ◦C, derived from the GMAO GEOS
land surface model, was applied to exclude nearly frozen
soils (O’Neill et al., 2018).

3.4 In situ SSM

In situ soil moisture measurements up to a depth of 5 cm
were taken from the International Soil Moisture Network
(ISMN; Dorigo et al., 2011) to evaluate AquaCrop simula-
tions and satellite soil moisture products across all of main-
land Europe. The corresponding soil temperature data were
used to exclude the dates with temperatures below 4 ◦C.
Whenever multiple in situ observation points were avail-
able within one AquaCrop pixel, the mean of those points
was taken. AquaCrop simulations were cross-masked with
both in situ data and the respective satellite product (CGLS-
SSM, SMAP-SSM) to perform an in situ (and satellite-based)
evaluation at each point. In situ data from the Hydrologi-
cal Open Air Laboratory (HOAL) in Petzenkirchen, Austria
(∼ 49◦57′ N, 14◦52′ E), were made available by partners of
the SHui consortium with data contributed to three extra clus-
tered pixels for CGLS-SSM, resulting in a total of 45 evalu-
ation points for CGLS-SSM and 32 for SMAP-SSM in non-
irrigated agricultural areas.

3.5 Metrics

To assess the temporal performance of the AquaCrop model,
the bias, root mean square difference (RMSD), unbiased
RMSD (ubRMSD), temporal Pearson correlation (R), and
anomaly correlation (anomR) were calculated with satellite
and in situ products as follows:

Bias=
1
N

∑N

n=1
(xn− yn), (5)

RMSD=

√
1
N

∑N

n=1
(xn− yn)

2, (6)

ubRMSD=
√

RMSD2
− bias2, (7)

R =

∑N
n=1(xn− x)(yn− y)√∑N

n=1(xn− x)
2∑N

n=1(yn− y)
2
, (8)

where x represents the simulated output data from
AquaCrop, y represents the observations from the satellite
products, and N is the number of observations. x and y are
the time mean values. For the anomR, x and y are anomaly
time series.

Comparing products with different spatial resolutions will
always result in representativeness bias, which is especially
acute when using in situ observations to evaluate pixel-scale
estimates. Therefore, the focus of the evaluation was on tem-
poral variability using the R, anomR, and ubRMSD metrics.
The time period used for validation depended on the evalua-
tion product. When using satellite-based soil moisture, only
grid cells were included when at least 150 CGLS-SSM or
200 SMAP-SSM retrievals (after quality control) were avail-
able during the overlapping period of satellite data (starting
in 2014 for CGLS-SSM and in 2015 for SMAP-SSM) and
simulations. When further comparing the satellite products to
in situ data, a relaxed minimal threshold of 100 data pairs was
set for the period of available data for each satellite product.
For CGLS-DMP, the 10 d data are complete between 2011
and 2018 and only March through November are included in
the evaluation metrics.

The anomR was computed to assess both the short-term
and inter-annual variability of biomass and soil moisture
compared to the satellite products only, for lack of suffi-
ciently long records of in situ data. A multi-year climatology
(8 for CGLS-DMP, 4 for CGLS-SSM, and 3.5 for SMAP-
SSM) was computed and subtracted from the datasets to ob-
tain anomalies as described by Gruber et al. (2020). The cli-
matology is built on 31 d moving window averages, requir-
ing either a minimum of three 10 d CGLS-DMP estimates
or a minimum of 10 instantaneous CGLS-SSM and SMAP-
SSM observations within a 31 d window. The climatology
of AquaCrop was computed using the same moving window
and time period as the evaluation product. For surface soil
moisture, only daily model output that matched the days of
observations of the evaluation product was used, whereas for
biomass evaluations, the data consisted of the median of the
matching 10 d period.

In this study, only rainfed agriculture is considered. How-
ever, it is very likely that irrigation will occasionally take
place on rainfed fields, where the timing and volume are
based on local decisions made by farmers. Irrigation prac-
tices were not included in the model simulations. To analyse
how this human-driven process could influence the model
performance, the FAO map of area equipped for irrigation
(AEI; Siebert et al., 2015) was used to identify areas that are
occasionally irrigated and which were not necessarily cap-
tured by the irrigation class from the CORINE land cover
inventory. The latter only considers regularly irrigated areas
to distinguish rainfed from irrigated land. The available 1 and
10 km AEI map versions were used to stratify correlation val-
ues with CGLS-DMP and with SMAP-SSM, respectively.
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Figure 2. Biomass production of CGLS-DMP and AquaCrop during different days of the year 2017. Light grey areas represent no data.

4 Results and discussion

4.1 Biomass

A visual comparison of simulated and satellite-based
biomass on different days in the year 2017 is presented in
Fig. 2 and gives an indication of the spatial performance of
the regional AquaCrop model against the CGLS-DMP prod-
uct. The figure shows that the model is able to capture large
regional and temporal differences in biomass production, but
the absolute values can differ between CGLS-DMP and the
model. The coarser-resolution MERRA-2 climate input is
visible in the blocky pattern of the AquaCrop biomass maps.
For the days in June and July, simulations over most of Italy
ceased to produce biomass, whereas the CGLS-DMP prod-

uct shows spatial variability in productivity. Water stress in
the simulations brings crop production to a halt, which is not
in agreement with the CGLS-DMP. This can be caused by
an overestimation of water stress by the model, unmodelled
irrigation, or the CGLS-DMP product not accounting for
drought stresses well. Drought stress is indirectly included
in the CGLS-DMP via the observed fAPAR but could still
lead to overestimations of DMP in drier periods (Smets et al.,
2019).

Figure 3 summarizes the performance metrics of
AquaCrop biomass simulations against CGLS-DMP. Differ-
ences in absolute values of biomass estimates are inevitable
because of representativeness errors in both the model and
satellite retrievals. For example, the model uses a generic
crop, for which the parameters could be locally optimized.
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Figure 3. Temporal metrics of AquaCrop biomass evaluated against CGLS-DMP, with metrics R (–), anomR (–), bias (t ha−1 d−1), and
ubRMSD (thad−1). The spatial mean and standard deviation of the metrics are indicated with MEAN and SD. Also shown is the TAW
(m3 m−3) computed as the field capacity minus wilting point, without taking rooting depth into account. Light grey areas represent no data.

Figure 4. Box plots showing the distribution of biomass anomaly
correlations for the northern half of the study domain (46–55◦ N),
grouped by different TAW ranges.

Nevertheless, the long-term biases are limited and cancel
out over the entire domain. When focusing on the tempo-
ral variability, the temporal correlations indicate a high per-
formance, with an overall mean of R = 0.8. Higher correla-
tions are mostly found in the northern part of Europe. Lower
correlations are specifically found in the upper north and in
the south (Italy). Similarly, the ubRMSD is highest in the
southern half of the study domain. The spatial variability in
ubRMSD can be attributed to different factors that limit crop
growth, which will be mostly cold temperatures in the north

and low soil water contents in the south. Across the domain
the ubRMSD is 0.03 tha−1 d−1 and typically less than 20 %
of the amplitude in biomass production. The anomaly corre-
lation is lower than the correlation but still significant, with
a mean of anomR= 0.46. The raw correlation includes the
trivial agreement in the seasonal variability and is thus in-
evitably higher, whereas the anomaly correlation only eval-
uates short-term and inter-annual variability, as illustrated in
Fig. 5 for the HOAL catchment in Austria. Both the model
and satellite data show anomalously high biomass production
in June 2017, whereas anomalously low values are found in
both datasets in June 2013. The short-term anomaly biomass
productivity increments also correspond well to the evalua-
tion data, but for AquaCrop they are often more pronounced.
For regions in the south of Europe (Italy), simulated produc-
tivity anomalies are much more pronounced, clearly showing
the modelled response to stronger rainfall events after a rel-
atively dry period. When comparing this to the CGLS-DMP
product, it shows anomalies that are either less extreme or
do not match the anomalies of the model simulations, result-
ing in lower anomaly correlations (Fig. 5). This emphasizes
the importance of high-resolution precipitation information
for climatic regions in which precipitation is the main lim-
iting factor for crop production. Across the northern region,
the lower anomaly correlation values can be partly associ-
ated with soil texture (TAW), as can be seen from Figs. 3 and
4. In areas where there is a sufficient amount of rainfall but
soils are typically sandy and have a low TAW and high Ksat,
soil water easily drains through the profile, which prevents

https://doi.org/10.5194/gmd-14-7309-2021 Geosci. Model Dev., 14, 7309–7328, 2021



7318 S. de Roos et al.: Performance analysis of regional AquaCrop (v6.1)

Figure 5. Time series of biomass productivity, anomaly daily productivity (and precipitation) for (HL) the HOAL catchment in Austria, and
(AP) a pixel in the Apulia region of southern Italy; both are marked in Fig. 3. Precipitation is only shown for AP because it has a marked
effect there on short-term anomaly productivity. Periods between October and March are masked out in grey for precipitation.

optimal crop production. The effect of such stresses may not
be observed in the CGLS-DMP and will result in deviating
inter-annual variabilities.

4.2 Surface moisture content

Surface soil moisture content was evaluated using three prod-
ucts at different scales: point measurements from ISMN and
some additional sites in the HOAL catchment, 1 km CGLS-
SSM, and 9 km SMAP-SSM. Figure 6 shows the AquaCrop
performance metrics against the satellite data. The spatial
mean R and anomR values with SMAP retrievals are 0.74
and 0.65, respectively. The anomR is especially high in the

central part of Europe and decreases towards the north. Over-
all, AquaCrop is much better correlated with SMAP-SSM
than with CGLS-SSM. The mean R and anomR values of
AquaCrop SSM with CGLS-SSM are 0.52 and 0.50, respec-
tively. Figure 7 illustrates that the lower agreement between
AquaCrop and CGLS-SSM data is not solely due to the
inevitably higher noise in the finer-scale CGLS-SSM data.
When aggregating CGLS-SSM to the EASE2 9 km grid us-
ing the same spatial mask of SMAP-SSM, the temporal cor-
relations with AquaCrop increase slightly, with a mean R of
0.57 (spatial standard deviation SD: 0.08) and a mean anomR
of 0.56 (SD: 0.06) (Fig. 7), and they remain well below
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Figure 6. Temporal performance metrics of AquaCrop SSM evaluated against (a) SMAP-SSM and (b) CGLS-SSM, i.e. R (–), anomR (–),
bias (m3 m−3), and ubRMSD (m3 m−3), with indication of the spatial mean and standard deviation of the metrics (MEAN, SD). Light grey
areas represent no data.

the correlation values between SMAP-SSM and AquaCrop
SSM.

Several areas with higher elevations have lower correlation
values (central Italy, eastern Alps). The spatial correlations of
AquaCrop SSM on the 9 km EASE2 grid with 9 km CGLS-
SSM and 9 km SMAP-SSM reveal a large variability in time,
with a temporal mean spatialR of 0.38 and temporal standard
deviation of 0.21 for CGLS-SSM as well as a mean R of 0.32
and temporal standard deviation of 0.22 with SMAP-SSM.

When looking at the absolute values of the bias and
ubRMSD, the evaluation of AquaCrop against CGLS-SSM

(1 or 9 km) is also far worse than that against SMAP-SSM,
but the spatial pattern of the errors is similar for SMAP-
SSM and CGLS-SSM. The spatial mean ubRMSD against
SMAP-SSM is 0.05 m3 m−3, which is close to the global
target product uncertainty of 0.04 m3 m−3 (Entekhabi et al.,
2014), and the spatial mean ubRMSD against 1 km CGLS-
SSM is 0.10 m3 m−3. Also here, the effect of soil texture
on model performance was found. The ubRMSD values of
0.14 m3 m−3 and higher for 1 km CGLS-SSM exactly corre-
spond to outliers in a specific soil class in the HWSDv1.2
classification that contains 93 % sand. This soil class is char-
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Figure 7. Same as Fig. 6b, but after aggregation of the CGLS-SSM data to the 9 km EASEv2 grid and spatial cross-masking with SMAP-SSM
data.

acterized by very high Ksat and very low values for θWP and
θFC, resulting in extremely low simulated available moisture
content in the top layers. Because the low θWP is very close
to the soil evaporation demand, the model is not able to sim-
ulate soil moisture correctly for the top layers for daily time
steps. AquaCrop is a crop simulation model, and this soil
class is unrealistic for agricultural land. In future applica-
tions when multiple datasets from different sources are com-
bined, it is recommended to limit the simulations to possibil-
ities that are actually suitable for the specific simulation pur-
pose. Nonetheless, the poorer performance against the 1 km
Sentinel-1-based CGLS-SSM is in general not due to model
shortcomings, but dominated by poor satellite retrievals, as
will be discussed below.

A comparison between in situ data, 1 km CGLS-SSM,
9 km SMAP-SSM, and 1 km AquaCrop surface soil mois-
ture at ISMN sites and three sites in the HOAL catchment is
shown in Fig. 8. Across the in situ sites, the mean R value
between AquaCrop and in situ soil moisture is 0.61 (Fig. 8a)
and higher than the mean R value of 0.52 with CGLS-
SSM (Fig. 8b). The mean ubRMSD between AquaCrop and
in situ measurements is 0.06 m3 m−3, which is significantly
lower than the mean between AquaCrop and CGLS-SSM
(0.10 m3 m−3). The mean R between Sentinel-1 CGLS-SSM
and in situ data is even lower, with a value of 0.42 and
a mean ubRMSD of 0.11 m3 m−3 (Fig. 8c). The compari-
son with the satellite products over in situ sites shows that
SMAP-SSM mean temporal correlations are significantly
better with both AquaCrop simulations (Fig. 8b; R = 0.81,
ubRMSD= 0.05 m3 m−3) and in situ measurements (Fig. 8c;

R = 0.69, ubRMSD= 0.05 m3 m−3) than CGLS-SSM, even
though SMAP-SSM has a lower spatial resolution. This is
further illustrated in the time series at three locations pre-
sented in Fig. 9, where SMAP-SSM follows the pattern of
in situ data well and slightly better than AquaCrop, whereas
the pattern of the CGLS-SSM values is more erratic. The
high correlations between SMAP-SSM and in situ measure-
ments show that SMAP-SSM is better at capturing variations
at smaller scales than the current system of AquaCrop due
the coarse resolution of meteorological input data. Addition-
ally, SMAP-SSM retrievals probably benefit from a more ac-
curate background representation of the vegetation, whereas
AquaCrop uses a generic crop description. For CGLS-SSM,
lower observed soil moisture was often found for the months
April, May, and June, as can be seen in Fig. 9b and c. The
poor correlation of CGLS-SSM during these months is most
likely due to the fact that the Sentinel-1 backscatter signals
are dynamically affected by changing vegetation during the
growing season, but the soil moisture retrievals are only cor-
rected for with a static vegetation value for every day of the
year. Furthermore, changes in surface soil roughness are not
accounted for in the retrievals and could play an important
role in the lower quality of the CGLS-SSM retrievals (Bauer-
Marschallinger et al., 2018).

4.3 Effect of irrigation

Figure 10 shows the spatial distribution of the R values
of AquaCrop biomass and soil moisture with CGLS-DMP
and SMAP-SSM, respectively, grouped into two percentage
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Figure 8. (a) Pearson correlation R values between in situ measurements from the ISMN and AquaCrop surface soil moisture at 45 locations
over Europe, with grey pixels containing at least 50 % rainfed agriculture according to the CORINE land cover map for 2012. Correlations
shown are from cross-masked data with CGLS-SSM. The circles indicate the locations used for evaluations with both CGLS-SSM and
SMAP-SSM, whereas triangles show locations that were only used for CGLS-SSM. (b) Histogram of R values between AquaCrop surface
soil moisture and the two satellite products CGLS-SSM (45 points) in grey and SMAP-SSM (32 points) in orange at the locations of the in
situ sites. (c) Histogram of the R values between the in situ measurements and the two satellite products CGLS-SSM (45 points) in grey and
SMAP-SSM (32 points) in orange.

classes of AEI. In terms of biomass, higherR values between
AquaCrop and CGLS-DMP (mean R = 0.81) are found for
pixels wherein AEI< 10 % than for areas where AEI≥ 10 %
(mean R = 0.72). For soil moisture, the correlation with
SMAP-SSM barely shows any difference between the AEI
groups (AEI< 10 %: mean R = 0.74; AEI≥ 10 %: mean
R = 0.73). It should be noted that SMAP-SSM has much
smaller coverage than the CGLS-DMP because SMAP-SSM
is screened conservatively based on its quality flags. The re-
sults of this comparison suggest that, even if the simulations
were limited to dominantly rainfed agricultural areas accord-
ing to the CORINE land use map and therefore did not in-
clude irrigation, it is possible that in reality irrigation is oc-

casionally applied in rainfed fields and seen by the satellite
data, resulting in lower correlation metrics.

4.4 Discussion of the regional AquaCrop model

The current gridded AquaCrop model has several conve-
niences, such as the efficient parallel processing structure, the
ability to run at any resolution and domain, and the modular
setup in which a compiled executable can be easily replaced
by newer AquaCrop versions. The model setup is chosen
to facilitate subsequent embedding within a future satellite-
based data assimilation system.

The regional modelling system was designed to capture
the seasonal and inter-annual variability, with some impor-
tant simplifications. A general C3 crop was assumed, and
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Figure 9. Time series of daily surface soil moisture at three locations marked in Fig. 6a: 1 (∼ 55◦54′ N, 8◦52′ E), 2 (∼ 43◦39′ N, 0◦13′ E),
and 3 (∼ 41◦17′ N, 5◦18′W). AquaCrop (light blue) in situ measurements (dark grey), CGLS-SSM (light grey), and SMAP-SSM (orange).
Pearson correlations R of in situ data with the different products are given for each location.

management data were considered to be homogeneous over
the entire study area, whereas meteorology and soil infor-
mation were spatially variant. Therefore, the evaluation of
this regional crop model setup against satellite products
was mainly done in terms of unbiased temporal metrics.
AquaCrop accurately simulates the temporal variability in
biomass and surface soil moisture, especially in the north-
ern regions and if the soil’s TAW is not limiting. Limita-
tions in the accuracy of the input precipitation (MERRA-2)
causes slightly worse simulations in the water-limited south-
ern regions, where biomass shows a fast response to lim-
ited (but sometimes inaccurately timed) rainfall events. The
use of high-resolution meteorological forcing is likely to be
the most important next step to further improve fine-scale
AquaCrop simulations. The evaluation was limited to surface
soil moisture and biomass but could be further expanded to
other variables such as root zone soil moisture and transpira-
tion in the future. Reference data for the latter variables are
always informed by strong (often modelled) background in-

formation (Martens et al., 2017; Reichle et al., 2019) and not
directly observed over large regions. Furthermore, applying
crop-specific parameters to the crop file would most likely
result in better biomass and yield simulations, which would
mainly improve the temporal bias and spatial performance
metrics.

The suitability of this modelling system to estimate the
spatial variability in soil moisture and yield production for
specific crop types would require further analysis and more
detailed input information. For example, by combining input
datasets from different sources, some unsuitable cropland ar-
eas were identified (e.g. TAW that is too low in combination
with high Ksat) that were not filtered out from this analy-
sis. Furthermore, unmodelled irrigation could influence the
regional model performance. Most importantly, the relative
spatial variability in biomass is likely not dominated by me-
teorology and soil texture, but by the various types of crops.
The parameters associated with each of these crops could be
spatially optimized (calibration, data assimilation for param-
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Figure 10. (a) Box plots with a violin curve of temporal R values grouped by the FAO percentage of area equipped for irrigation (AEI).
Group 1: 0 %–10 %, group 2: 10 %–100 %. The left side is for CGLS-DMP and the right side for SMAP-SSM. The percentage of the total
number of pixels for each group and the spatial mean R value are noted at the top of the figure. (b) AEI map over the study domain.

eter estimation) in future work using historical time series of
spatially covering reference data, e.g. optical Sentinel-2 data.

The regional model evaluation could only be performed
with satellite retrievals, but such an evaluation is limited to
the days of overpass and to times and locations for which re-
trievals are of sufficient quality. For example, SMAP-SSM
retrievals are filtered out under vegetation that is too dense
or frozen conditions. Furthermore, the satellite signal may
represent a slightly different quantity than what is modelled.
Additionally, microwave signals only pertain to the upper
5 cm of the soil, but the model’s surface layer is 10 cm. The
provided quality flags on CGLS-SSM are less strict, provid-
ing better spatial coverage of fine-scale data. However, the
C-band soil moisture measurements pertain to an even shal-
lower soil depth and are likely more affected by vegetation.
In any case, both the satellite retrievals and model simula-
tions have their own systematic and random errors. The influ-
ence of the former is suppressed in this study by focusing on
relative temporal variability. To further dynamically improve
model simulations or to add value to the available satellite
data (e.g. dynamically interpolate) via AquaCrop modelling,
random errors in both sources can be limited via data assim-
ilation for state updating.

5 Conclusions

In this paper, a spatially distributed version of the field-scale
AquaCrop model v6.1 is presented and evaluated against var-
ious satellite data products and in situ data. The new regional
AquaCrop infrastructure allows for simulation of biomass
and soil moisture over large domains in an efficient way due
to the massive parallelization of the gridded simulations. In
this case study, the regional AquaCrop model is forced with

meteorological input based on MERRA-2 re-analysis data,
the soil information is extracted from the HWSDv1.2, and
a generic crop is parameterized. Even when using coarse
meteorological input data, the AquaCrop model can cap-
ture seasonal, inter-annual, and short-term temporal dynam-
ics of biomass over Europe at a fine ∼ 1 km resolution. For
the years 2011 through 2018, the temporal R between the
AquaCrop biomass production and CGLS-DMP is 0.8, and
the anomR is 0.46, across central Europe. The R values
are higher in the northern half of the study domain, where
crop growth is generally temperature-limited, whereas in the
southern half of the domain, water stress becomes more im-
portant and the R values are lower. Likely factors that can in-
fluence this difference in correlation are an underrepresenta-
tion of drought stress by the CGLS-DMP product, the effect
of occasionally applied irrigation which is not included in
the model, or possibly overestimations of simulated drought
stress by the model. Additionally, the impact of soil param-
eters is apparent in the anomR values; lower TAW values in
the northern part result in differing anomalies for modelled
biomass and CGLS-DMP.

The AquaCrop simulations for surface moisture content
show that seasonal, inter-annual, and short-term temporal dy-
namics correspond well to the 9 km SMAP-SSM data, with
a mean R value of 0.75 and an anomR value of 0.65 across
the study domain. Lower R values are found for Sentinel-1
CGLS-SSM, with a mean temporal R of 0.52 (aggregated to
9 km EASE2 grid: 0.57) and a similar anomR of 0.50 (aggre-
gated to 9 km EASE2 grid: 0.56). The comparison between
AquaCrop, CGLS-SSM, SMAP-SSM, and in situ data for 45
(32 for SMAP-SSM) locations in Europe shows that both
AquaCrop and SMAP-SSM agree better with in situ data
(mean R = 0.61, 0.69, respectively) than Sentinel-1 CGLS-
SSM (mean R = 0.52). The lower performance of Sentinel-1
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CGLS-SSM can be attributed to the static correction for veg-
etation, which causes soil moisture retrieval errors during the
growing season, and the fact that there is no correction for
surface roughness (Bauer-Marschallinger et al., 2018). For
both the evaluations with SMAP and Sentinel-1 retrievals,
the effect of soil characteristics influences the evaluation per-
formance of the AquaCrop model. When certain soil charac-
teristics are unsuitable for crop cultivation, such as a high
Ksat, a very low θWP, and low TAW, soil moisture becomes
inaccurately represented by the AquaCrop model, increasing
the model error. At the same time, satellite-based soil mois-
ture retrievals also contain errors related to a priori defined
soil hydraulic parameters.

Improvements to the regional AquaCrop model can be
made in terms of higher-resolution meteorological input data
to better capture small-scale spatial differences by revis-
ing the soil hydraulic parameters to better represent soil
types used for agricultural land and by introducing spatio-
temporally varying crop parameters when such information
becomes available. Overall, the current model is able to rep-
resent temporal and spatial differences well at the field and
regional scale in both biomass production and surface soil
moisture, requiring only easily accessible input data. The
computationally efficient modelling system is ideal to fos-
ter future improvements in the spatial patterns in both soil
moisture and biomass production via local parameter opti-
mization based on historical records of satellite data, as well
as improvements in the short-term and inter-annual temporal
variations via sequential satellite data assimilation.

Code and data availability. The code and data needed to run the
regional version of AquaCrop v6.1 on a Linux-based system are
available on Zenodo at https://doi.org/10.5281/zenodo.4770738 (de
Roos et al., 2021). Apart from the code, this repository includes the
generic crop file, the management file, and ancillary soil data from
De Lannoy et al. (2014) at https://doi.org/10.1002/2014MS000330.
All other input data and evaluation datasets are freely available,
except for the in situ measurements of the HOAL experiment
site. Please visit the following links for data access. MERRA-2
variables: https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
(last access: 24 May 2019, Global Modeling and Assimila-
tion office, 2015a, https://doi.org/10.5067/VJAFPLI1CSIV,
2015b, https://doi.org/10.5067/RKPHT8KC1Y1T); the soil
mineral classification and organic matter from HWSDv1.2:
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/ (last access: 30
August 2019, FAO/IIASA/ISRIC/ISSCAS/JRC, 2012);
the CORINE land cover map: https://land.copernicus.eu/
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(last access: 5 September 2019, Copernicus Global
Land Service, 2018); evaluation datasets CGLS-DMP:
https://land.copernicus.eu/global/products/dmp (last access: 2
February 2020, Copernicus Global Land Service, 2019a) and
CGLS-SSM: https://land.copernicus.eu/global/products/ssm (last
access: 2 June 2020, Copernicus Global Land Service, 2019b);
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moisture version 4: https://nsidc.org/data/SPL2SMP_E/versions/4
(last access: 14 November 2020, O’Neill et al., 2020,
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various observatories at a depth of 5 cm: https://ismn.geo.tuwien.
ac.at/en/ (last access: 29 June 2020, GEWEX/CEOS/GCOS-
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https://doi.org/10.1016/j.rse.2018.02.010; Calvet et al., 2007,
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2020, Siebert et al., 2013).
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