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Abstract. Understanding soil moisture dynamics at the sub-
kilometre scale is increasingly important, especially with the
continuous development of hyper-resolution land surface and
hydrological models. Cosmic-ray neutron sensors (CRNSs)
are able to provide estimates of soil moisture at this elusive
scale, and networks of these sensors have been expanding
across the world over the previous decade. However, each
network currently implements its own protocol when pro-
cessing raw data into soil moisture estimates. As a conse-
quence, this lack of a harmonised global data set can ul-
timately lead to limitations in the global assessment of the
CRNS technology from multiple networks. Here, we present
crspy, an open-source Python tool that is designed to facili-
tate the processing of raw CRNS data into soil moisture es-
timates in an easy and harmonised way. We outline the ba-
sic structure of this tool, discussing the correction methods
used as well as the metadata that crspy can create about each
site. Metadata can add value to global-scale studies of field-
scale soil moisture estimates by providing additional routes
to understanding catchment similarities and differences. We
demonstrate that current differences in processing method-
ologies can lead to misinterpretations when comparing sites
from different networks and that having a tool to provide a
harmonised data set can help to mitigate these issues. By be-
ing open source, crspy can also serve as a development and
testing tool for new understanding of the CRNS technology
as well as being used as a teaching tool for the community.

1 Context and background

Soil moisture exerts a large influence on hydrological
(Van Loon et al., 2015), biogeochemical (Schlesinger et
al., 2015), and climatic processes (Dobriyal et al., 2012;
Koster et al., 2004); agricultural systems (Fontanet et
al., 2018; Dutta et al., 2014); landslide modelling (Zhuo et
al., 2019); and Earth system sciences (Fang and Lakshmi,
2014; Bonan, 2008). Its accurate measurement is important
to advance our understanding of these areas of research.
In situ point-scale soil moisture estimates, such as time do-
main reflectometry (TDR), can provide higher temporal res-
olution; however, spatial resolution is still limited, on the or-
der of centimetres. Soil heterogeneity can lead to uncertain-
ties when upscaling to the field scale (Western et al., 1999),
which would be required for regional- or larger-scale hy-
drological modelling. Alternatively, satellite remote sensing
products such as Soil Moisture Active Passive (SMAP) and
Soil Moisture and Ocean Salinity (SMOS) can provide global
estimates of soil moisture at a coarser spatial (∼ 40 km res-
olution) and temporal (∼ 3 d) scale, and at much shallower
depths (∼ 5 cm) (Entekhabi et al., 2010; Kerr et al., 2001).
It is accepted that we will require a finer spatial resolu-
tion than currently achievable through remote sensing esti-
mates for tasks such as increasing our understanding of sub-
kilometre land–atmosphere interactions or for the improve-
ments of farming practices (such as through the process of
irrigation scheduling); thus, there is a need for additional
processing of ancillary data for the downscaling of these
products (Portal et al., 2020; Alemohammad et al., 2018).
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In addition, the recent push for hyper-resolution global mod-
elling means that we require measurements at a finer spa-
tial resolution, on the order of sub-kilometre scales (Wood
et al., 2011). Bierkens et al. (2015) discussed the implica-
tions of moving from a more standard resolution ∼ 50 km
model to a hyper-resolution model at the sub-kilometre scale.
The study further discussed the need to move from sub-grid
paradigms, which represent a conceptualised form of Earth
system dynamics from within the standard 50 km resolution
model, to explicit dynamics of Earth system processes at
scales < 50 km. This requires a greater understanding of en-
vironmental functions at sub-kilometre spatial scales, which
in turn requires accurate measurements of environment states
at the same scales.

Cosmic-ray neutron sensors (CRNSs) are a relatively new
technology that allows estimates of soil moisture at the field
scale (∼ 600 m diameter) at an hourly temporal resolution.
Zreda et al. (2008) demonstrated that fast neutrons are mainly
moderated by hydrogen atoms, which allows us to infer
changes in water content in the soil profile. A tube attached
to the sensor, filled with a gas such as helium or boron triflu-
oride, is able to detect fast neutrons that pass through it by in-
ducing a voltage difference. Desilets et al. (2010) introduced
an equation used to convert neutron counting rates into gravi-
metric soil moisture which has been further improved upon
by Dong et al. (2014) and Hawdon et al. (2014) (Eq. 1). The
original equation along with the above-mentioned advance-
ments provides us with estimates of volumetric soil moisture:

θvol =

 a0
Nraw·fp·fi·fh·fv

N0
− a1
− a2−LW−WSOM

 ρbd

ρw
, (1)

where θvol is volumetric soil moisture (cm3 cm−3); a0, a1,
and a2 are coefficients obtained from neutron particle physics
modelling (Zreda et al., 2008; Desilets et al., 2010) and
are assumed to be constants; LW is the lattice (chemically
bounded mineral) water (gg−1); WSOM is the water equiva-
lent of soil organic carbon (gram of water per gram of soil);
ρbd is the bulk density of the dry soil (gcm−3); ρw is the
density of water defined as 1 gcm−3; Nraw is the measured
raw, uncorrected, neutron count identified over the given in-
tegration time, usually set to 1 h; fp, fi, fh, and fv represent
correction factors for air pressure, incoming neutron inten-
sity, atmospheric water vapour, and above-ground biomass
respectively that are applied toNraw to account for additional
influences on the neutron signal other than soil moisture; and
N0 is the theoretical neutron count found in absolutely dry
conditions (i.e. the maximum number of neutrons that can be
found at the site without the direct presence of hydrogen).
This last term is unique to each site and is found through the
calibration process, explained in detail in Sect. 2.2.

The detection of background neutrons in the atmosphere,
as a method to infer estimates of field-scale soil moisture,
was first described in Zreda et al. (2008). In that study, the
authors demonstrated that neutron intensity above the sur-

face was inversely correlated with the amount of moisture
in the soil below. This was developed further in Desilets
et al. (2010), where the initial form of Eq. (1) was first
described and applications of this technology continued to
be explored within the Earth sciences community (Desilets,
2011; Franz et al., 2012; Rivera Villarreyes et al., 2011).
A large-scale network of these sensors was subsequently
deployed across the USA, leading to the Cosmic-Ray Soil
Moisture Observing System (COSMOS) (Zreda et al., 2012).

After the establishment of the first national-scale network
in the USA (Zreda et al., 2012), other countries such as Aus-
tralia (Hawdon et al., 2014; McJannet et al., 2021), Ger-
many (Zacharias et al., 2011; Bogena, 2016), and the UK
(Evans et al., 2016; Cooper et al., 2021) established their in-
dividual national networks, as well as additional sensors lo-
cated in smaller networks or individual sites. Sensors from
these networks have, in some cases, been running for up to
10 years and can provide potentially valuable information
for the understanding of soil hydrology. As these networks
have grown so has the literature surrounding best practices
for the calibration and correction of the sensor signals, al-
lowing us to have a lower uncertainty in CRNS soil moisture
estimates (Franz et al., 2012; Rosolem et al., 2013; Haw-
don et al., 2014; Baatz et al., 2015; Schrön et al., 2017).
As a consequence of improvements to the signal correction
and sensor calibration, a divergence in methods is noticeable
between different networks. Each network inevitably imple-
ments its own protocol when correcting the neutron signal
to give soil moisture estimates, leading to a less harmonised
data set among networks. This is in part due to the difficul-
ties that would be encountered in quickly changing data pro-
cessing pipelines within already established databases. The
benefit of such structures is that live data are available to
stakeholders through online portals. Unfortunately, the inter-
dependencies of a database mean that it does not lend itself
to quick changes; thus, a post-processing method could alle-
viate some of these issues.

This lack of a harmonised global data set can ultimately
lead to limitations in the global assessment of this technol-
ogy from multiple CRNS networks. Discrepancies in pro-
cessing methodology can leave questions around the infor-
mation obtained and the uncertainty propagated from the
analysis and comparison of sensors in different networks,
such as whether soil moisture signals can be attributed solely
to environmental differences or processing differences. By
not necessarily following all of the recommended correc-
tion steps, the estimated soil moisture products from these
sensors or even networks can be seen as suboptimal, poten-
tially undermining their true value. An example of the impact
of evaluating with sub-processed cosmic ray soil moisture
data is found in Dirmeyer et al. (2016). CRNS data from the
COSMOS network were compared with both alternative in
situ soil moisture instruments and land surface models. The
CRNS data used in this study did not apply the atmospheric
water vapour correction at the time and so can be consid-
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ered less accurate than they otherwise should be. There is a
consensus to follow certain steps and guidelines which are
not uniformly applied across all networks. Known correc-
tions to account for changes in atmospheric pressure, neu-
tron intensity, atmospheric water vapour, and aboveground
biomass are applied differently or, on occasion, not at all on
some networks, which could lead to different estimates of
soil moisture (Zreda et al., 2012; Hawdon et al., 2014; Evans
et al., 2016). For example, Rosolem et al. (2013) demon-
strated the influence on the neutron signal that occurs from
changes in atmospheric water vapour over time. When com-
paring processed soil moisture estimates with and without
this additional signal correction, they demonstrated a differ-
ence of up to 0.1 cm3 cm−3 at a site at Park Falls, USA. Addi-
tionally, Hawdon et al. (2014) demonstrated the different ap-
proaches available for correcting neutron counts for incom-
ing cosmic-ray intensity and showed that there is a notice-
able difference in neutron counts and ultimately soil moisture
depending on the chosen method. Schrön et al. (2017) pro-
vided an improved approach to CRNS calibration, demon-
strating that their revised approach improves the accuracy
of soil moisture estimates. Using UK sites as an example,
Schrön et al. (2017) found that the root-mean-square error
(RMSE) of soil moisture estimates from the CRNS was re-
duced from 5.3 % vol, using the conventional calibration ap-
proach, to 1.4 % vol, using the revised calibration approach.
Improvements in accuracy were identified at all of the sites
that they analysed. Although this revised approach is being
adopted in more recent studies (Cooper et al., 2021), this is
not always the case (such as the original sites in the COS-
MOS network) and can mean that sites in different networks
have been calibrated using different methods.

In order to mitigate this ongoing issue of lack of harmoni-
sation in the soil moisture estimates from the CRNS technol-
ogy, we present here an open-source Python tool to process
raw CRNS data into soil moisture estimates, using the most
current methods identified in the literature. It is designed
to allow a user to apply consistent data processing methods
across sensors that may be located in different networks. Sec-
tion 2 will describe the structure of the tool along with the
relevant correction and calibration methods. Section 2 will
also describe the site metadata creation process, which is an
additional aspect to crspy that is built to facilitate the data
analysis of many sites. Section 3 will discuss the implica-
tions of differing processing methodologies on soil moisture
estimates, as well as the benefits of creating detailed meta-
data for post-processing analysis.

2 The crspy tool

The Cosmic-Ray neutron Sensor PYthon tool (crspy, pro-
nounced “crispy”) is a tool written in Python3 that has been
developed to facilitate the processing of the global networks
of CRNS data in a uniform and harmonised way. It is avail-

able through an open-source repository and can be installed
into a user’s Python environment. The tool is designed to al-
low the easy implementation of the most up-to-date correc-
tion factors and calibration processes to any CRNS site glob-
ally, ultimately allowing for any user to access a harmonised
data set. Although it is designed for multiple sites from var-
ied networks, crspy is versatile enough to process a single
site as well. It is being provided to help facilitate research in
the CRNS community and is not intended to state whether
one networks processing methods are superior to another. It
is the authors’ opinion, however, that it is important for the
community to consider the creation of a best practice, as this
will allow for the comparison of sensor data around the world
in the future. In addition, crspy is structurally designed to ac-
commodate new corrections and processing steps that may
become available in the future in an easy manner. By being
open source, crspy can also serve as a development and test-
ing tool for any new understanding of the CRNS technology,
as well as a teaching tool for the community.

Figure 1 is a visual representation of the processes within
crspy that convert raw sensor data into corrected soil mois-
ture estimates. Due to the varied nature of input data, such
as when different networks label data differently, it is first
necessary for a user to correctly format input data following
crspy’s naming convention (see Table A1 in Appendix A).
Additionally, to organise the various input and output data
sets, a specific working directory folder structure is neces-
sary. This allows crspy to automatically handle the numerous
sources of data. After installing the package, a user can build
this folder structure easily with the crspy.initial(wd)
function, where wd is a string representing the working di-
rectory location.

2.1 Data processing and correction

To obtain soil moisture estimates, we need to apply Eq. (1) at
each time step in the data. The values will be obtained from
time-varying sensor data, external data products, static site-
specific values, and static values that are not site-specific.
The coefficients [a0,a1,a2] are constants with values of
0.0808, 0.372, and 0.115 respectively, as defined in Desilets
et al. (2010). These values are fitting constants that describe
the shape of the relationship between neutron counts and soil
moisture, obtained from neutron particle physics modelling,
and are the same for all sites. These values are stored in the
config.ini file, which stores constant values for crspy.

2.1.1 Site-specific soil properties

The site-specific soil parameters described in Eq. (1) are LW,
WSOM (obtained from soil organic carbon), and ρbd. Due to
the open data policies of many of the CRNS networks, these
data are usually available online (see the “Data availability”
section). These values should be defined prior to running the
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Figure 1. The structure of crspy, demonstrating all of the modules that are used in creating soil moisture estimates. Number 1 represents the
metadata table, which is a collection of site descriptors, e.g. soil texture and site elevation (see Sect. 2.4). Numbers 2, 3, and 4 correspond to
gap filling with ERA5-Land data, data tidying, and the computation of correction factors, respectively (see Sect. 2.1). Number 5 represents
the calibration process, if this option is selected (see Sect. 2.2). Number 6 highlights the quality assessment steps undertaken (see Sect. 2.3).
Finally, number 7 represents the step where soil moisture estimates are calculated from the neutron counting rates (refer to Eq. 1).

main crspy function and are stored and read from the meta-
data file.

The LW parameter corresponds to the lattice water (%),
which represents the hydrogen contained in the mineral
structures of the soil (Hawdon et al., 2014). As fast neutrons
are mitigated by hydrogen atoms, regardless of their source,
this will have an overall impact on the neutron count rate.
This value is usually obtained through the analysis of soil
samples taken from the footprint of the site sensor (Franz et
al., 2012). The WSOM parameter represents the water equiv-
alent of soil organic matter (gcm−3). Soil organic carbon
(SOC) is obtained through the analysis of soil samples and
represents the total organic carbon in the soil at the site. Haw-
don et al. (2014) discuss the need to convert this value into
a water equivalent and provided a method for this (Eq. 2).
This is completed on the assumption that organic matter in
the soil is cellulose and means that proportionally the water
equivalent of this can be found as follows:

WSOM= SOC · 0.556. (2)

The ρbd parameter represents the dry-soil bulk density
(gcm−3) and is a site-specific static value. It is obtained
through the analysis of soil samples and is used in the conver-
sion of gravimetric soil moisture to volumetric soil moisture
values. If dry-soil bulk density data are unavailable for a site,
crspy includes the option to obtain this value from the global

data source SoilGridsv2 (see Sect. 2.4). In the case of miss-
ing data, crspy takes advantages of built-in routines to fill out
the information. In that case, if ρbd or SOC (used to calculate
WSOM) are missing, crspy will use the estimates collected
from SoilGridsv2, which are assembled in the metadata pro-
cess. If LW is unavailable, a value of zero can be input into
the metadata table by the user. Past studies have also demon-
strated techniques to estimate LW using soil clay content,
which could be used to provide estimates that can be input to
the metadata table (Avery et al., 2016; McJannet et al., 2017).
Notice that the other site-specific static value is the N0 num-
ber. This number is found through the calibration process,
which is described in greater detail in Sect. 2.2.

2.1.2 Time-varying values and correction methods

The remaining values required to obtain θvol areNraw and fp,
fi fh, and fv, which all vary with time. It is ultimately the
relationship between Nraw and N0 that gives us the ability
to estimate volumetric soil moisture once the additional cor-
rections have been applied. The parameter Nraw is obtained
from the sensor data and will usually be representative of the
number of neutrons counted over a 1 h time period. This is
the measured raw (uncorrected) neutron count; however, we
know that there are additional impacts on this count rate that
require correction which are represented by the f factors in
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Eq. (1). Changes in atmospheric pressure impact the neutron
counting rate; the fp term corrects for this so that Nraw · fp
gives the neutron count rate as if it were taken at the refer-
ence atmospheric pressure. Changes in incoming cosmic-ray
intensity will directly influence neutron count rates, as this
is the source of fast neutrons; thus, the fi term will correct
this to match a reference date in time. Atmospheric water
vapour and above-ground biomass are additional sources of
hydrogen, outside of the soil moisture source that we are in-
terested in, and so the fh and fv terms adjust the count rate
in consideration of this. These correction methods have been
improved upon since the first implementation of this tech-
nology, with additional sources of uncertainty identified and
equations designed to mitigate their impact.

There are occasional data availability issues observed at
some sites. For example, meteorological variables are a nec-
essary part of converting neutron counts to soil moisture es-
timates because they are needed to account for the numerous
impacts on the signal, such as pressure corrections and atmo-
spheric water vapour corrections. On occasion, some of the
sites do not measure all of the necessary variables considered
to be essential to correct for additional sources on the neu-
tron signal. External relative humidity sensors are essential
in correcting for changes in atmospheric water vapour but are
not always included in site data. When data are unavailable
from in situ site sensors, ERA5-Land (Muñoz Sabater, 2019)
data are used to replace missing sensor data. ERA5-Land is
a data set, based upon the ERA5 reanalysis data and pro-
vided publicly by the European Centre for Medium-Range
Weather Forecasts (ECMWF), that combines modelled data
with real-world observations, resulting in a gridded, global
hourly product at a 9 km resolution. Previous iterations of
the ERA reanalysis data sets (such as ERA-Interim) have
proven useful for other global networks for the task of gap
filling missing data, such as in the FLUXNET community
(Vuichard and Papale, 2015). We implement a similar ap-
proach to that used by the FLUXNET community in crspy
and, consequently, to the global CRNS database, as we en-
vision the potential of a merged database incorporating both
flux tower and CRNS soil moisture data in the future. As the
two measurement technologies show similar temporal and
spatial footprints, their combined use can eventually lead to
a better understanding of land–atmosphere interactions at the
field scale (e.g. Iwema et al., 2017). It is important to note
that although the resolution is spatially coarser when com-
pared with CRNS sites, the ERA5-Land data set was chosen
as a source for replacing missing sensors for three main rea-
sons: (1) it covers the lifetime of all of the CRNS sites around
the world, which ensures that all historical data can be used
for gap filling if necessary; (2) the data set is produced at an
hourly resolution, which matches the standard resolution of
CRNS sites; (3) it is an open data source, which aligns with
our desire to develop a full open-source tool for CRNS data
processing.

The ERA5-Land data set includes key variables such as
precipitation, temperature and dew point temperature which
can be used to correct for influences on the neutron signal,
such as the impact of atmospheric water vapour on neu-
tron count rates. Hence, we can use dew point temperature
when relative humidity sensors are not available at the site
(Rosolem et al., 2013). Our choice also follows previous
studies that demonstrated that ERA-Interim tended to per-
form best when compared with other global reanalysis prod-
ucts (Decker et al., 2012). ERA5, which ERA5-Land is de-
rived from, has benefitted from a decade of research when
compared with ERA-Interim and has been shown to be a
great improvement (Hersbach et al., 2020).

(i) Atmospheric pressure correction (fp)

Changes in atmospheric pressure can have an impact on
neutron counting rates measured by the CRNSs (Zreda et
al., 2012; Hawdon et al., 2014). This is attributed to the fact
that higher atmospheric pressure reduces neutron counting
rates, as there are more particles in the air column that can
slow fast neutrons down. In crspy this is corrected with the
following equation:

fp = exp(β(p−p0)), (3)

where fp is the pressure correction factor (defined in Eq. 1),
β is a coefficient to account for mass attenuation length at the
site, p is the atmospheric pressure at the site (hPa), and p0
is a reference atmospheric pressure (hPa) for the site, com-
monly taken as the mean pressure for the site’s elevation. The
β coefficient and the reference atmospheric pressure value
are calculated for each location as a function of the latitude,
elevation, and cut-off rigidity, at the site as described in De-
silets (2021).

(ii) Incoming high-energy neutron intensity (fi)

It is important to correct for incoming neutron intensity, as
this will have a direct impact on neutron counting rates.
Changes in the incoming cosmic-ray intensity will affect
the number of fast neutrons in the atmosphere, as increased
cosmic-ray intensity will lead to an increased counting
rate created through the cascade of reactions (Desilets et
al., 2006). We use data from the Neutron Monitor Database
(NMDB; available online), which comprises a collection of
neutron monitoring sites from around the world. The NMDB
provides neutron counting rates at an hourly resolution from
monitoring stations around the world, and its data are consid-
ered the official distribution from each site principal inves-
tigator. The correction method currently varies across net-
works. For example, COSMOS (USA) originally corrected
the data by comparing neutron intensity to a predefined ref-
erence date, which, in that case, was to be 1 May 2011. The
Jungfraujoch neutron monitoring station in Switzerland was
used as a reference site. The calculation for the incoming
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neutron intensity correction factor is as follows:

f ′i =
I0
Im
, (4)

where Im is the incoming cosmic-ray intensity at the sen-
sor measurement time, I0 is incoming neutron intensity at
the decided reference date, and f ′i is used here to define this
particular incoming cosmic-ray intensity correction factor (in
order to avoid confusion with fi from Eq. 1).

The default approach in crspy, however, is to use the ap-
proach outlined in Hawdon et al. (2014), where the Jungfrau-
joch monitoring station is used but an additional correction
for differences in site cut-off rigidity is applied:

Rccorr=−0.075(Rc−Rcjung)+ 1. (5)

Here, Rccorr is the correction for differences in cut-off rigid-
ity (GV), Rc is the cut-off rigidity at the sensor location, and
Rcjung is the cut-off rigidity at the Jungfraujoch monitoring
station (which has a value of 4.49 GV). This is applied at
each time step to give a final corrected value as follows:

fi =
(
f ′i − 1

)
Rccorr+ 1. (6)

Ultimately, fi is similar to f ′i but contains an additional cor-
rection to account for the difference in cut-off rigidity be-
tween the CRNS site being processed and the Jungfraujoch
neutron monitoring reference site.

The Australian CosmOz network employs a different ap-
proach that does not always use the Jungfraujoch as the
reference monitoring station. Instead, this network changes
the reference station based on the station that has the clos-
est cut-off rigidity (GV) to the sensor site from the Neu-
tron Monitor Database (Hawdon et al., 2014). This option
is also available in crspy when running the main process-
ing function crspy.process_raw_data(fileloc,
intentype="nearestGV") by invoking “intentype”
with the “nearestGV” option. This involves identifying
the NMDB site with the nearest cut-off rigidity and apply-
ing Eq. (4).

(iii) Atmospheric water vapour (fh)

Hydrogen atoms can slow down fast neutrons, leading to a
reduction in the count rate with increasing atmospheric wa-
ter vapour. This signal needs to be removed to ensure that
neutron counting rates are attributed to soil moisture and not
moisture in the air. This is corrected at each time step with
the following equation (Rosolem et al., 2013):

fh = 1+ 0.0054 · ρv, (7)

where fh is the atmospheric water vapour correction factor,
and ρv is absolute humidity (gm−3). Some sites do not have
external relative humidity sensors that can be used to calcu-
late vapour pressure, which can be used to calculate abso-
lute humidity along with temperature. When this is the case,

ERA-5 Land data can be utilised by converting dew point
temperature (◦C) to vapour pressure (kPa) (for further infor-
mation on the steps to obtain absolute humidity from stan-
dard meteorological variables, please refer to the appendix
section in Rosolem et al., 2013).

Arguably, ERA5-Land data present a spatial mismatch
with the cosmic-ray sensor whilst also being a non-direct
measurement of environmental variables. The majority of
CRNS sites in the USA have not been deployed with a set
of standard meteorological measurements, and only a few
are co-located with external monitoring stations. Hence, in
this case, ERA5-Land data are critical to ensure that neutron
counts are appropriately corrected for water vapour varia-
tions at these sites. Our preliminary analysis suggests that
correcting neutron counts with ERA5-Land data provides
superior results compared with not applying the correction
at all due to a lack of meteorological data (Fig. 2). In this
example, meteorological data at the Atmospheric Radiation
Measurement (ARM) site in Oklahoma are available from
a nearby flux tower (Biraud et al., 2021). Notice how the
processed soil moisture time series corrected with ERA5-
Land data closely follows the soil moisture estimates pro-
duced when using the in situ meteorological data (Fig. 2a).
Neglecting this correction can lead to a significant underes-
timation of soil moisture, especially during the wet seasons.
Figure 2c helps to visualise these impacts by showing the
difference between obtained soil moisture with a correction
using ERA5-Land data and that with no correction applied,
both compared with soil moisture corrected with in situ data.

(iv) Above-ground biomass (AGB) (fv)

Similar to other sources of hydrogen, biomass can also af-
fect the neutron counting signal. There have been numerous
attempts to identify the relationship between AGB and neu-
tron count rates (e.g. Rivera Villarreyes et al., 2011; Baatz et
al., 2015; Heidbüchel et al., 2016, and Tian et al., 2016). Un-
like other sources of hydrogen, AGB is sometimes not avail-
able from local samples at each site. In order to reduce the
impact of AGB on the measured neutron signal, crspy cur-
rently uses a static estimated value for each site from the
European Space Agency (ESA) Climate Change Initiative
(CCI) global data set and applies a correction method based
on the work of Baatz et al. (2015), who found a linear rela-
tionship between above-ground biomass and neutron count-
ing rates.

The following equation is used:

fv =
1

1− (0.009 · agb)
, (8)

where fv is the above-ground biomass correction factor, and
agb is the dry above-ground biomass at the site (kgm−2).
The ESA CCI database provides above-ground biomass esti-
mates as a global gridded data product at a 100 m resolution
(Santoro and Cartus, 2019). As the ESA CCI data currently
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Figure 2. The soil moisture (SM) record at the ARM-1 CRNS site in the USA. Panels (a) and (b) show the SM product when corrected
using in situ data in black. The red line in panel (a) is the SM product corrected with ERA5-Land data in place of temperature and relative
humidity sensors. The blue line in panel (b) shows the SM product when not correcting for atmospheric water vapour (fh). Panel (c) shows
the difference between the SM corrected with in situ data and the alternative correction methods.

used are a static value in time, they will not impact the soil
moisture estimates, in principle, because the correction is ap-
plied on both the Nraw and N0 numbers, thereby mitigating
any impact. Nevertheless, we have included this routine in
crspy in this form because we anticipate improvements to
dynamical above-ground biomass corrections in the future,
at which point crspy can be updated to include the latest the-
ory that can be applied across all sites (Franz et al., 2018;
Vather et al., 2020; Fersch et al., 2020). Further improve-
ments to be able to dynamically account for biomass changes
at all CRNS sites will be important for reliable estimation of
soil moisture dynamics, especially when analysing sites with
land use changes or cropping cycles.

2.2 Sensor calibration

The above steps give us all of the values in Eq. (1) that are
necessary to provide a soil moisture estimate, except for N0.
A required step in processing, and eventually using the data,
is to calibrate the CRNS to the specific conditions found at
the site of interest. Without this step, the soil moisture can
potentially have significant biases and may be deemed unus-
able. Alternatively, the uncalibrated measurement can only
give you a rough idea about the dynamics of the soil wet-
ness conditions in relative terms. The calibration step typi-
cally requires multiple soil samples (typically > 100) taken
from within the sensor footprint and oven-dried to get an ac-

curate representation of soil moisture at the calibration time.
These samples are then weighted and averaged to give a
field-scale soil moisture estimate of the sensor footprint (note
that we use dry-soil bulk density, ρbd, sampled within the
footprint to estimate volumetric water content in cm3 cm−3).
The crspy tool uses the soil moisture averaging method ob-
tained from field samples proposed by Schrön et al. (2017),
which is based upon the original work of Köhli et al. (2015).
The method provides an updated approach for weighting soil
moisture samples taken within the footprint that considers
the spatial distance of each sample from the sensor as well as
the influences of pressure and humidity during the sampling
period. This allows for a more accurate estimate of indepen-
dent soil moisture within the CRNS footprint for the cali-
bration step. Schrön et al. (2017) suggested improved sam-
pling strategies which included samples closer to the sensor
(< 5 m radius from the sensor) and sample locations guided
by the knowledge of local hydrological features. The data
required for the calibration step include the date of the sam-
ple, an integer to represent each soil moisture profile (a core
of soil taken from within the sensor footprint), the depth of
each sample within each profile, the distance from the sensor,
and the volumetric soil moisture of the sample. Again, these
should be named following the template requirements of cr-
spy (see Table A2 in Appendix A). Calibration data sets are
openly available from some of the networks at existing sites,
such as CosmOz and COSMOS, and can be obtained from
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their respective websites. Alternatively, if a user was setting
up their own sensor, a sampling campaign would be required
such as that described in Schrön et al. (2017).

With regards to the number of calibration days, crspy is
flexible enough to process both single-day or multiple-day
calibration campaigns. Multiple calibration campaigns were
shown to improve the CRNS signal (Iweema et al., 2015).
For the case of multiple-day calibration, all calibration days
should be presented in a single table, ensuring that the correct
dates of each sample period are provided, and following the
same formatting and naming requirements used for single-
day calibration.

Finally, when running crspy for a single site, the user is
able to turn the calibration process on or off. This is included
because calibration only needs to be done once, as N0 does
not vary with time. When the calibration step is turned on,
crspy will call the calibration routine and write the output
to the metadata table in the column “N0”. If the calibration
routine is turned off, crspy will skip this step and simply read
the N0 number for the site from the metadata. Alternatively,
the user can provide the N0 coefficient independently in the
metadata table and skip the calibration step completely by
always having it off in crspy.

2.3 Quality assessment

All data should be checked for quality to ensure that erro-
neous data are not included, and crspy includes some au-
tomated steps to begin this process. All networks imple-
ment quality assessment on neutron counts in order to re-
move poor-quality data (e.g. Zreda et al., 2012; Hawdon et
al., 2014; Evans et al., 2016). In crspy, we remove suspi-
cious data points by applying flags to neutron counts that fall
within four categories, and the following rules are consistent
with the application in other networks:

1. counts that differ by 20 % from the previous time step
are removed;

2. counts below 30 % of N0 are removed;

3. counts above (N0 ·1.075) are removed, according to
Eq. (13) in Köhli et al. (2021);

4. battery voltages below 10 V are removed,

Flag 1 is applied on the raw, uncorrected neutron count, as
we are interested in identifying sudden jumps in the count-
ing rate in the sensor that are believed to be in error. Flags
2 and 3 are applied to the corrected neutron count. This is
because the N0 number is itself a corrected number (i.e. it is
the maximum number of neutrons at the site under theoreti-
cal dry conditions, once additional environmental influences
on the neuron count rate, N , have been taken into account
and removed from the signal). In the case of flags 2 and 3 the
N and N0 number need to both be corrected in order to be
comparable.

Additionally, crspy will output time series diagnostic plots
of all variables used for identifying patterns in data that point
towards potential issues which may require a small subset of
the data to be removed manually (this, of course, depends on
the quality of the data from individual sites and, therefore,
cannot be fully automated).

2.4 Metadata

Metadata are important pieces of information that allow the
user to better describe each site characteristics beyond its
soil moisture dynamics. This information can be extremely
useful, especially when multi-site regional to global CRNS
stations are to be analysed simultaneously. The metadata of
each site are stored in a tabular format within the folder struc-
ture of the working directory, and a full description of the
columns is given in the Appendix A (Table A3). This serves
two main purposes. Firstly, it stores static site-specific vari-
ables that are used in computing estimated soil moisture val-
ues (e.g. LW, SOC, and ρbd). To provide an example, ρbd is
necessary to convert gravimetric soil moisture estimates into
volumetric soil moisture estimates in Eq. (1). The ρbd value
is collected during the calibration campaign at each site and
will vary between sites. It represents an averaged value taken
from the soil samples, and it is stored in the metadata. The
user should also give each site a country code which repre-
sents the country it is located in and a unique site number
for each CRNS site. The country code is used to help iden-
tify geographic locations in analysis and helps when the site
numbering of networks may overlap. Raw time series data
should be titled with the country code and number in the fol-
lowing format: country_SITE_sitenum.txt. Here, country is a
capitalised letter code, and the sitenum is a three-digit num-
ber. For example, sensor data for a site in the UK could be
titled: UK_SITE_101.txt. The country and sitenum variables
form a sitecode (e.g. UK_SITE_101) which is used to label
the outputs of crspy for easier identification, especially when
processing many sites. The country and sitenum are also used
as lookup values in the metadata to extract necessary vari-
ables.

A second purpose of the metadata is to act as a resource
when analysing many sites together. The ability to classify
catchments by physical characteristics can allow us to under-
stand key similarities and differences between sites, which is
an important direction in hydrological research (Wagener et
al., 2007). To increase the value of the metadata, in addition
to including data collected at the site, global data products
have been integrated. These products are all public products
that a user can download and store within the folder structure
of the working directory. We realise that these global data
sets are not a direct replacement for the invaluable informa-
tion obtained at the site; however, in many cases, such pieces
of information are not available, undermining any multi-site
analysis. We believe that the use of the data sets described
in detail below can provide us with key information at both
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the regional and global level. In crspy, a simple function is
used to extract the information from the data products below
when provided with the location of the CRNS (i.e. latitude
and longitude):

(i) ESA CCI Land Cover and Above-Ground Biomass data.
The European Space Agency (ESA) Climate Change
Initiative (CCI) provides numerous global data prod-
ucts that are useful in the Earth sciences community.
Land Cover data and Above-Ground Biomass data are
obtained from ESA CCI and stored in metadata for each
site for analysis via identifying site differences and sim-
ilarities. Both products are spatially consistent with the
CRNS range (100–300 m) and are available globally.
The usefulness of ESA CCI data sets in land surface
modelling continues to be established (Li et al., 2017).

(ii) International Soil Reference and Information Centre
(ISRIC). The ISRIC provides a global data product
that gives estimates of soil properties on a 250 m res-
olution grid. This is available as SoilGridsv2 (Poggio
et al., 2021), which is an updated (as of May 2020)
iteration of the original SoilGrid product (Hengl et
al., 2017). The properties are estimated from collec-
tions of ground measurements that are compiled by the
World Soil Information Service (WoSIS). WoSIS pro-
vides standardised soil profile data to facilitate the cre-
ation of products such as SoilGrid (Batjes et al., 2020).

(iii) ERA5-Land. As discussed previously, meteorological
variables from ERA5-Land data can be downloaded for
each site. Mean annual precipitation and temperature
data are stored along with derived Köppen–Geiger clas-
sifications.

2.5 Running the tool

Once the working environment has been
prepared, the data can be processed with
crspy.process_raw_data(fileloc,
calibrate=True, intentype=None). Here,
“fileloc” is the location of the raw sensor data, the calibra-
tion process can be turned on or off as a Boolean descriptor,
and intentype can be left as “None” to enact the default
process for incoming neutron intensity correction or can be
changed to “nearestGV” to utilise the alternative method.
Once applied, crspy will process the raw data using the
provided information to give soil moisture estimates and
will output figures and tables into the folder structure of
the working directory. A description of the final output file
and what each of the standard columns represent is given in
Table A4.

3 Discussion

3.1 Benefits of data harmonisation

As mentioned previously, one of the key purposes of crspy
is the easy and harmonised processing of CRNS sites from
around the globe, as there is currently no true consensus on
what correction steps are implemented in different national
networks. These technical differences can lead to changes
in outputs which may result in non-optimal conditions for
regional/global analysis from multiple countries. Whereas
some users may wish to understand changes at one particular
site, inter-site comparisons are limited when each site could
be processed in a different way. In this section, we highlight
such impacts using an example related to the individual sen-
sor corrections steps and their impact on the final soil mois-
ture estimates.

Table 1 outlines three identified methods that are currently
employed across different networks. The p_int1 method is
employed at the COSMOS (USA) network; it lacks the atmo-
spheric water vapour correction and applies an intensity cor-
rection using only the Jungfraujoch neutron monitoring site
directly. The p_int2_awv method closely resembles the Cos-
mOz (Australia) network methodology, which applies the at-
mospheric water vapour corrections and an intensity correc-
tion that differs from the p_int method. In this case, the neu-
tron monitoring station used as an incoming neutron inten-
sity reference is changed to the nearest station with a sim-
ilar cut-off rigidity to the CRNS site being corrected. The
p_int3_awv_agb method is the default crspy method; it re-
sembles the methods used by COSMOS-UK while also al-
lowing for the above-ground biomass correction to the neu-
tron signal. In this final case, the intensity correction uses
Jungfraujoch as its reference site but with an additional cor-
rection to account for differences in cut-off rigidity between
Jungfraujoch and the site (Eq. 5).

With all of these different correction approaches applied
independently by each national network, we investigate both
the impact on the measured neutron counts and, conse-
quently, the propagated effects on the estimation of soil mois-
ture. Figure 3 shows two sites with distinct hydroclimatic
regimes, both taken from the COSMOS-USA network, that
have been processed using the three identified methods (see
highlighted star markers in Figs. 4 and 5). The Santa Rita
Creosote site (Arizona, USA) is a shrubland-dominated re-
gion with a soil categorised predominantly by sandy loam.
The site has a mean annual temperature of 19 ◦C and a mean
annual precipitation of 335 mm, the latter of which primar-
ily falls in winter storms and monsoonal summers (Köppen–
Geiger climate classification BSh, a hot semi-arid climate).
Climate data are taken from ERA5-Land, and the Köppen–
Geiger classification is derived from ERA5-Land data using
the method outlined in Peel et al. (2007). The Wind River
site (Washington, USA) is an old-growth mixed conifer for-
est area. The site is much wetter than the Santa Rita Cre-
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Table 1. The three identified methods of correcting neutron signals in use.

Method p_int1 Method p_int2_awv Method p_int3_awv_agb

Atmospheric pressure correction Yes Yes Yes

Incoming neutron intensity correction Jungfraujoch NMDB Nearest GV NMDB, Jungfraujoch NMDB and an
(no GV correction) (variable locations) additional correction for site GV

(Hawdon et al., 2014) (see Eq. 5 and Hawdon et al., 2014)

Atmospheric water vapour correction None Yes (Rosolem et al., 2013) Yes (Rosolem et al., 2013)

Above-ground biomass correction None None Yes (Baatz et al., 2015)

osote site, with an annual precipitation of 2200 mm, and
much colder, with an average annual temperature of 8 ◦C.
Precipitation at Wind River tends to fall all year round but
with slightly lower rates in the summer period (Köppen–
Geiger classification is Csb, a Mediterranean climate, mild
with dry, warm summers). Climate data have been extracted
from ERA5-Land, and the Köppen–Geiger classification is
derived from 10 years of ERA5-Land data using the method
outlined in Peel et al. (2007). The raw neutron data from both
sites were obtained directly from the COSMOS network, rep-
resenting the p_int case in Table 1. In addition, in order to
compare the impact of the different correction approaches
outlined in Table 1, the raw data from the CRNSs at both
sites have been processed in crspy to give the corrected sig-
nals for the p_int2_awv and p_int3_awv_agb methods.

It is clear to see the inverse relationship between neutron
count rates and soil moisture, most noticeably at Santa Rita
Creosote (Fig. 3a, c). The soil moisture here tends to be low,
such as in June when it was below 0.05 cm3 cm−3, which is
to be expected in a hot semi-arid environment. Sudden spikes
in soil moisture can be attributed to precipitation events, with
the summer monsoonal precipitation causing a sudden in-
crease in the mean soil moisture values for the months of
July, August, and September (and, inversely, periods corre-
sponding to decreases neutron counting rates). It is also clear
that the method chosen has an impact on soil moisture values.
This is most notable when comparing the p_int1 method with
both the p_int2_awv and p_int3_awv_agb methods. During
the summer months, the p_int1 method appears to estimate
higher soil moisture values compared with the other two
methods (both appearing to be much more closely aligned
with each other). This is likely due to the fact that the p_int1
method does not account for changes in atmospheric water
vapour. As a consequence, during the monsoonal summers
when there is more hydrogen in the atmosphere from in-
creased humidity, the relatively high water vapour in the at-
mosphere is incorrectly attributed to additional soil moisture.
This is because the CRNS records wrongly attribute the de-
crease (attenuation) of neutron counts due to water vapour
to an increase in soil moisture, causing an overestimation.
For example, even early in March, there is a sudden rise in
soil moisture from the p_int1 estimates that does not appear

in the other two methods (Fig. 3c). This suggests that rather
than a sudden rise in soil moisture, this was actually a rise
in atmospheric water vapour. This demonstrates the impor-
tance of removing external impacts on the neutron signal, as
they could be incorrectly attributed to soil moisture dynam-
ics. The negative effect of neglecting such correction, for ex-
ample, can be even more pronounced in monthly estimates
of soil moisture due to the aggregated nature of this error
(Fig. 3e).

The Wind River site is a much wetter site when compared
with Santa Rita, with its driest month matching Santa Rita
Creosote’s wettest month. In the case of Wind River, it is
worth noting that there is a much larger difference between
the neutron count rate of the p_int3_awv_agb method com-
pared with the other methods (Fig. 3b). This is because the
p_int3_awv_agb method includes an above-ground biomass
correction, using the ESA CCI Above-Ground Biomass
product to calculate a correction. Currently, as this correction
is applied using a static aboveground biomass value (con-
stant with time), the impact of the correction is not trans-
lated to differences in estimated soil moisture. This is due
to the correction being applied to both the neutron counting
rate and the N0 term. With dynamic data, which represent
changes in above-ground biomass over time, we would be
able to improve our estimates of soil moisture, as the impact
of changing above-ground biomass could be removed from
the neutron signal. One additional noticeable feature that cr-
spy implements is the capping of soil moisture to more real-
istic values, in this case 0.68 cm3 cm−3. The p_int1 method
does not do this, and so there are physically impossible val-
ues of volumetric soil moisture in February and December, as
seen in Fig. 3d. In crspy, maximum values for soil moisture
are estimated by inferring the porosity of the soil:

sm_max= 1−
(

ρbd

density

)
, (9)

where sm_max is the maximum volumetric soil moisture
value (cm3 cm−3), ρbd is soil bulk density (gcm−3), and den-
sity is the density of ground material (estimated with an as-
sumed density of quartz at 2.65 gcm−3). If a user did not
wish to enable this cut-off value, the value for sm_max can
be set to one in the metadata.
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Figure 3. Example of CRNS data obtained at two distinct sites: Santa Rita Creosote (a, c, e) and Wind River (b, d, f). Daily neutron counting
rates (raw and corrected based on the different strategies outlined in Table 1) are shown in panels (a) and (b). Derived soil moisture estimates
(cm3 cm−3) are shown at daily and monthly timescales in panels (c) and (d) and in panels (e) and (f) respectively.

At the Wind River site, the differences between
p_int2_awv and p_int3_awv_agb are much more noticeable,
especially when the soil moisture estimates are aggregated to
monthly timescales (Fig. 3f). This observed difference is due
to the fact that these methods do not apply the same correc-
tion for incoming cosmic-ray intensity (fi). Such differences
are caused by the choice of correction rather than physical
controls on soil water dynamics. This can lead to inaccurate
comparisons across sites from different national/regional net-
works. For example, identifying useful soil moisture signals
that can be used to categorise the hydrology of sites will be
an important tool for understanding differences and similari-
ties with regards to hydrology. Branger and McMillan (2020)
demonstrated this in their paper which looked to identify use-
ful soil moisture signals that can be robust, discriminatory,
and representative, and research into developing useful diag-
nostic soil moisture signatures is ongoing (Araki and McMil-
lan, 2020). When reducing large time series data into signa-
tures, such differences can be aggregated, which could begin
to affect conclusions. However, the authors stress here that
it is not within the scope of this work nor the intention of
this study to identify which method is better or worse than
the other; rather, we intend to highlight the potential negative

impacts of the lack of a harmonised data set for large-scale
global assessment of CRNS technology.

3.2 Usefulness of crspy metadata

Metadata can be used to describe the network of CRNSs
around the world geographically, climatologically, and hy-
drologically. To achieve this, crspy compiles relevant data
obtained directly from the sensor, key data descriptors pro-
vided from each site or network, and from global data prod-
ucts. Wagener et al. (2021) discuss the need for high-quality
metadata to improve our ability to understand the knowledge
accumulation in the field of hydrology. Metadata can be valu-
able in separating relevant sites in different groups; for ex-
ample, researchers may be interested in understanding how
soil moisture behaves at sites above 2000 m elevation with
certain land use types and given particular weather events
(Chen et al., 2020), how it behaves at sites where mean an-
nual precipitation is above/below a certain threshold, or they
may even wish to group sites by different land cover or soil
types. So called meta-analyses can help a researcher iden-
tify which sites should be included in their studies and which
can be excluded (Evaristo and McDonnell, 2017). The meta-
data provided by crspy allow the user to quickly obtain any
grouping of interest in an easy and accessible way.
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Figure 4. Map showing the location of CRNS sites from the COSMOS network across continental USA (CONUS). The colours are repre-
sentative of the land cover types obtained from the ESA CCI global database, and the stars highlight the location of the two sites processed
above (i.e. Santa Rita Creosote and Wind River).

In order to demonstrate some of the features that can be
easily accessed with the help of metadata, we show an ex-
ample using the compiled COSMOS network data for the
continental USA (CONUS). Some of these data are taken di-
rectly from the network website and then processed using the
crspy.fill_metadata() function. This function col-
lects information from global data products at a specific site
location (i.e. latitude and longitude) as well as using mete-
orological data from ERA5-Land to produce annual mete-
orological summaries (e.g. mean annual temperature, mean
annual precipitation, and Köppen–Geiger climate classifica-
tion). Figure 4 gives an example of how the metadata can be
easily used to show the location of each sensor in the CONUS
domain based upon the supplied additional information – in
this case, the main land cover classes obtained from the CCI
ESA Land Use data. An important step here is that the user
is not required to download and process the land cover data
separately and individually. crspy incorporates that step for
the user seamlessly.

In addition to locating the CRNS stations and identified
the main land cover type, Fig. 5 shows a scatter histogram of
the sites across CONUS, providing additional annual mete-
orological summaries, namely mean annual temperature and
mean annual precipitation. The scatterplot still retains the in-
formation about the main land cover type obtained from the
ESA CCI global database. In addition, both meteorological
variables are shown as side histograms and were computed
using ERA5-Land data. The initial analysis indicates that
CRNSs classified as shrublands tend to be relatively warmer
and drier. Grassland and forests tend to be wetter while show-
ing a wider range of temperatures. Croplands are slightly
warmer than grassland and forests but still show lower tem-
peratures than those observed in shrublands. However, crop-
lands also indicate a slightly wider range of wetness com-
pared with the grassland and forest sites, as observed from
the total annual precipitation. This could be useful when de-

Figure 5. Scatter histogram showing the CONUS CRNS sites and
some of their climatological characteristics. The units for the his-
tograms are the number of sites for each bin. The colours represent
land use types identified from the ESA CCI Land Use global data
set. The stars highlight the location of the two sites processed above
(i.e. Santa Rita Creosote and Wind River).

ciding which sites should be used in a particular study, such
as a study on soil moisture dynamics in shrublands with low
overall precipitation. Alternatively, it can be used in big-data
analytics when trying to identify the dominant mechanisms
in soil moisture dynamics globally.

The objective of metadata in crspy is to easily collect a
wide range of information on site characteristics that can be
used to improve our knowledge of soil moisture and, con-
sequently, other hydrological and environmental processes
beyond just a single site. This allows for knowledge accu-
mulation across multiple sites (from local to regional and
even global), highlighting key similarities and any emergent
patterns (e.g. hydroclimatic and ecological). Metadata anal-
ysis has not yet been fully exploited in hydrological sciences
(Evaristo and McDonnell, 2017), but it can also contribute
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to knowledge accumulation, which can be translated to aid
in the design of improved or new perceptual or conceptual
models (Wagener et al., 2021). An early example of that
within the cosmic-ray neutron sensing community is clearly
demonstrated by Shuttleworth et al. (2013) during the con-
ceptual development of the COsmic-ray Soil Moisture Inter-
action Code (COSMIC). COSMIC was developed as a for-
ward observational operator, allowing for the conversion of
simulated soil moisture profile by land surface or hydrolog-
ical models into equivalent neutron counting rates, facilitat-
ing data assimilation applications (Rosolem et al., 2014). By
collecting and accumulating information from (at that time)
42 available COSMOS sites (see Table 1 in Shuttleworth et
al., 2013), the authors were able to simplify the requirement
for two of the prescribed parameters by establishing relation-
ship with dry-soil bulk density (see Fig. 6 and Eqs. 6 and 7
in Shuttleworth et al., 2013). crspy will certainly facilitate
such efforts in the future to help both experimental and mod-
elling scientists, with the potential to reach other disciplines
beyond traditional hydrological and environmental sciences.
For example, a prototype version of crspy has recently been
used for space weather application (Hands et al., 2021).

4 Future direction

In this paper, we have presented crspy, an open-source
Python tool for the processing of cosmic-ray neutron sen-
sors. Our aim in developing crspy is to provide a tool to the
community that can provide methods to process CRNS data
easily and that can be updated in the future to keep pace with
our increasing understanding of the sensor signal. Due to this
evolving understanding of the sensor, we expect to be updat-
ing crspy regularly in the future to accommodate our new
understanding of the technology along the years.

Köhli et al. (2021) recently presented research that demon-
strates a revised formulation of the key equation that converts
neutron counts into soil moisture estimates (see Eq. 1). This
emphasises the need to be able to update CRNS estimates to
keep pace with the research as well as to test newer formula-
tions across a range of sites quickly. In version 1.2.1 of crspy,
we maintain the Desilets et al. (2010) version of Eq. (1) as the
default setting but provide a document that describes how a
user could update crspy on their home machine to implement
the revised approach (see the Supplement). This document
serves two functions: it demonstrates how to update crspy so
that researchers may be able to test newer methods on a broad
range of sites, but it also speaks of a more general need to
agree on a standard approach for processing CRNS data. We
believe it will be an important step in the future for the nu-
merous stakeholders in CRNS measurements to agree upon
a standard approach. This must be decided as a community,
and we should look towards the positive steps other commu-
nities have taken in this regard, such as the flux community
(Novick et al., 2018).

Another aspect of development in crspy will be making it
more accessible and user-friendly. We consider that one of
the key functions of crspy is to act as a tool for researchers,
providing a way to update processing methods and apply
them quickly to a collection of data. On top of this, we would
hope that it can be used as an education tool, helping newer
users understand how the sensor functions and what is re-
quired to fully correct it based on our current understanding.
This could include developing crspy into frameworks such as
Python Dash, which are powerful tools for exploring data.

5 Summary

Soil moisture is an important component of the hydrologi-
cal cycle, and understanding its dynamics at relevant spatio-
temporal scales is critical especially with recent advances
of global land surface and hydrological models. The CRNS
technology is able to provide estimates of soil moisture at
the sub-kilometre scale and at an hourly resolution. This is
particularly relevant now as we continue to move towards
hyper-resolution global modelling efforts. Over the years,
with increased adoption of the technology, the CRNS com-
munity has acquired a better understanding of the benefits
and limitations of this relatively novel technique. However,
due to a lack of data harmonisation across networks, un-
dertaking global-scale analyses is currently very limited and
unexploited. Here, we introduced the crspy Python package
with the aim of facilitating user data processing easily and
with the most current methods and, most importantly, in a
harmonised fashion. crspy is an open-source tool aimed at
integrating the latest developed methodologies for CRNSs
for use in both research and teaching activities. It integrates
high-quality global data products (such as ERA5-Land) to
ensure that all sites can be included in the analysis. This is
done in a similar way to other well-established global envi-
ronmental networks such as the AmeriFlux and FLUXNET.

Our application examples demonstrated that processing
CRNS data with different methodologies can ultimately lead
to divergences in soil moisture estimates. This could poten-
tially have a negative impact on the analysis and overall find-
ings, especially when sites across multiple networks are eval-
uated simultaneously. By harmonising data processes, we
envisage that CRNS data will be used more widely by the
global modelling and experimental communities, leading to
further adoption of the technology. The objective of crspy is
to provide an open and easy-to-use data processing platform
that can enable easy processing of CRNS data. Additionally,
crspy data collection relies on the production of an exten-
sive metadata archive. This archive can be shared and used
within the community to better understand key aspects of soil
moisture from typical sampling locations, in order to provide
information on signature behaviour by different groupings.
crspy has been developed to show the potential to easily and
efficiently process CRNS data in a harmonised way. The aim

https://doi.org/10.5194/gmd-14-7287-2021 Geosci. Model Dev., 14, 7287–7307, 2021



7300 D. Power et al.: Cosmic-Ray neutron Sensor PYthon tool (crspy 1.2.1)

is to promote the usefulness of free and open-access data and
engage the CRNS and research communities in the continued
improvement of this product in the coming years.

Appendix A: Tables to describe variables’ names and
outputs

Appendix A consists of four tables that outline the naming
conventions required for crspy to run; it also presents the out-
put table and a description of each variable. When labelling
input data, column titles should match the style used in the
“Column name” column below. This initial step will then al-
low crspy to run smoothly, as it uses column titles to identify
relevant data sources.

Table A1. The naming convention for CRNS input data. Networks can occasionally have different naming conventions (e.g. temperature is
referred to as t1). Changing the column titles to the following format will allow crspy to function correctly.

Column name Units Description

TIME Date and time Date and time of the observation in UTC (format: yyyy-mm-dd hh:mm:ss)

MOD Count Moderated neutron count for time interval – the sensor tube is surrounded by a high-density
polyethylene shield to remove thermal neutrons from the count rate

UNMOD Count Unmoderated neutron count for time interval – a bare tube without the shield which will include
thermal neutrons in the count

PRESS1 hPa Pressure sensor number 1: usually the older analogue version that is somewhat less accurate

PRESS2 hPa Pressure sensor number 2: the sensor that will be primarily used. If it is unavailable,
PRESS1 will be used in its place.

I_TEM ◦C Internal temperature of the sensor box

I_RH % Relative humidity inside the sensor box

BATT V Voltage of the battery

E_TEM ◦C External temperature at the site: this would be an external reading. If it is unavailable, ERA5-Land
data are used

E_RH % External relative humidity at the site. If it is unavailable, dew point temperature is used to find
absolute humidity

RAIN mm Rainfall at the site. If local information is available, it is used; if local information is not available,
rainfall is obtained from ERA5-Land data

Table A2. The naming convention for the calibration data. This format should be followed and will allow the calibration module to be
utilised.

Column name Units Description

DATE Date (format: dd/mm/yyyy) Date that the data were collected from the site

PROFILE int Integer (int) to differentiate profiles, with a profile being a single core. The core could then
have multiple “layers”.

LOC_rad m Distance from the sensor for each sample in metres.

DEPTH_AVG cm The depth of the soil sample for each layer, taken as the mid-point of the layer.

SWV % The volumetric soil moisture of the sample, which should be given as a decimal (i.e. 0.3).
If it is given as a numeric percent (e.g. 30 %), crspy will attempt to identify this and
convert it to a decimal
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Table A3. The naming convention of the metadata table.

Column name Units Description Required
at start?

COUNTRY – Country code for the location of the site, e.g. “USA” Yes

SITENUM – Assigned three-digit number for the site, e.g. 001 Yes

INSTALL_DATE – Date of site installation No

LONGITUDE Decimal degrees Longitude of the site Yes

LATITUDE Decimal degrees Latitude of the site Yes

ELEV m Elevation of the site above sea level Yes

TIMEZONE – Time zone of the site No

GV GV Cut-off rigidity (GV) of the site Yes

LW % Lattice water from site-specific calibration data Yes

SOC % Soil organic carbon from site-specific calibration data Yes

BD gcm−3 Dry-soil bulk density from site-specific calibration data Yes

N0 – Theoretic maximum neutron count for site (dry conditions), calculated in No
tool and written

AGBWEIGHT kg m−2 Live woody above-ground biomass estimates from ESA CCI biomass data No

RAIN_DATA_SOURCE – Declaration of the source of rain data: currently this will be either “Local” No
or “ERA5_Land”

TEM_DATA_SOURCE – Declaration of the source of temperature data: currently this will be either “Local” No
or “ERA5_Land”

BETA_COEFF – Store of the calculated β coefficient (see pressure calculations) No
for each individual site

REFERENCE_PRESS hPa Reference pressure calculated using elevation No

BD_ISRIC gcm−3 Bulk density estimates taken from the International Soil Reference and No
Information Centre (SoilGrids250m; https://soilgrids.org/,
last access: 11 November 2021)

SOC_ISRIC gdm−3 Soil organic carbon estimates from ISRIC No

pH_H20_ISRIC pH pH of water estimates from ISRIC No

CEC_ISRIC mmol(c)kg−1 Cation exchange capacity at pH 7 from ISRIC No

CFVO_ISRIC cm3 dm−3 Coarse fragments from ISRIC No

NITROGEN_ISRIC cgkg−1 Nitrogen in soil from ISRIC No

SAND_ISRIC gkg−1 Sand in soil from ISRIC No

SILT_ISRIC gkg−1 Silt in soil from ISRIC No

CLAY_ISRIC gkg−1 Clay in soil from ISRIC No

*_ISRIC_UC Varied The uncertainty bounds of each of the ISRIC variables, in absolute terms No

TEXTURE – Soil texture identified from sand/silt/clay percentages using the USDA No
soil texture triangle

WRB_ISRIC – World Reference Base (2006) soil class from ISRIC: provided as a table No
of probable classes – this is the most probable class.

LAND_COVER – Land cover type taken from Copernicus data set No
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Table A4. crspy final output table from a given CRNS site. Note that there may be additional columns when run as different networks may
have additional variables.

Column name Units Description

DT Date and time Date and time of the observation (format: yyyy-mm-dd hh:mm:ss)

MOD Countsh−1 Moderated neutron count

UNMOD Countsh−1 Unmoderated neutron count

PRESS hPa Atmospheric pressure recorded by the sensors at the site

TEMP ◦C Atmospheric temperature. If sensors are missing, ERA5-Land data are used

I_TEM ◦C Internal temperature of the sensor box

I_RH % Relative humidity inside the sensor box

E_TEM ◦C External (atmospheric) temperature

E_RH % External (atmospheric) relative humidity

RAIN mm Rainfall recorded at the site. If local data are unavailable, ERA5-Land data
will be used in their place

BATT V Voltage of the battery

fbar – The pressure correction factor

DEWPOINT_TEMP ◦C Dew point temperature – from ERA5-Land data

SWE mm Snow water equivalent – from ERA5-Land data

ERA5L_PRESS hPa Atmospheric pressure – from ERA5-Land data

VP hPa Vapour pressure – calculated

NMDB_COUNT Countsh−1 Neutron count rate from neutron monitoring database – usually Jungfraujoch

pv kgm−3 Absolute humidity – calculated

fawv – The atmospheric water vapour correction factor

finten – The incoming cosmic-ray intensity correction factor

fagb – The above-ground biomass correction factor

FLAG – The flag assigned to data in error (see Sect. 2.3 for definitions)

MOD_CORR Countsh−1 The corrected neutron count rate after the correction factors have been applied

MOD_ERR Countsh−1 The statistical error of the neutron count rate

SM Volumetric soil moisture cm3 cm−3 Estimated soil moisture

SM_PLUS_ERR Volumetric soil moisture cm3 cm−3 Estimated soil moisture error above the estimated value – this is calculated by
subtracting the MOD_ERR value (due to the inverse relationship) from the
MOD_CORR value and calculating what the SM would then be

SM_MINUS_ERR Volumetric soil moisture cm3 cm−3 Estimated soil moisture error below the estimated value – this is calculated by adding
the MOD_ERR value (due to the inverse relationship) to the MOD_CORR value
and calculating what the SM would then be

SM_12h Volumetric soil moisture cm3 cm−3 The SM value with a 12 h rolling average applied to it. Minimum number of values
to calculate the 12 h average is 6 h of data within the 12 h window

D86avg cm The depth of the measurement – taken as the depth from which 86 % of neutrons
are estimated to be sourced from (Schrön et al., 2017)

D86avg_12h cm The D86 value with a 12 h rolling average applied to it. Minimum number of values
to calculate the 12 h average is 6 h of data within the 12 h window
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Appendix B: Examples of standard outputs of crspy

Appendix B provides some examples of the automatically
generated outputs of crspy along with a description of their
purpose.

Figure B1. Charts that take the fully corrected SM data and plot them over the entire time series are output automatically. Optional yearly
plots are also possible. The colouring is used to visually see the difference between wet (dark blue) and dry (dark brown) periods (code is
found in “graphical_functions.py” under the “colourts()” function).

Figure B2. Diagnostic plots that create time series of the data columns are generated. Here, two are presented (titles match variables from
Table A4): I_RH is the internal relative humidity, and BATT is the battery voltage. These allow a user to quickly visually understand possible
periods where more investigation is necessary. For example, the BATT variable begins to fall around 2017 which demonstrates an issue with
the battery (right panel).

Figure B3. A correlation heat map is generated during quality analysis. We would expect correlation between certain variables (such as fbar
and PRESS), but other correlations may point towards issues with the sensor that require investigation.
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Code availability. The code discussed in this paper can be found
at https://doi.org/10.5281/zenodo.5543669 (Power et al., 2021a).
The GitHub repository where future updates will be uploaded
can be found at https://github.com/danpower101/crspy (last access:
11 November 2021). Moreover, the GitHub repository includes a
wiki page which goes into greater detail on how to run the pack-
age. We have also generated an example walk-through repository
including example data that users can try, this can be found at
https://doi.org/10.5281/zenodo.5719063 (Power et al., 2021b).

Data availability. Raw CRNS data, including calibration
data, are publicly available from several sources, including
the US COSMOS network (http://cosmos.hwr.arizona.edu/,
last access: 11 November 2021, Zreda et al., 2012,
https://doi.org/10.5194/hess-16-4079-2012), the Australian
CosmOz network (https://doi.org/10.25901/5e7ab81af0394,
McJannet et al., 2021), and the UK-COSMOS network
(https://doi.org/10.5285/b5c190e4-e35d-40ea-8fbe-598da03a1185,
Stanley et al., 2021). We acknowledge the NMDB database
(https://www.nmdb.eu, last access: 11 November 2021),
founded under the European Union’s FP7 programme
(contract no. 213007), for providing neutron count data.
ESA CCI data, including Above-Ground Biomass data
(https://doi.org/10.5285/84403d09cef3485883158f4df2989b0c,
Santoro and Cartus, 2021) and Land Cover data (ESA Land Cover
CCI project team and Defourny, 2019, https://catalogue.ceda.
ac.uk/uuid/b382ebe6679d44b8b0e68ea4ef4b701c, last access:
11 November 2021), are available from http://cci.esa.int/data
(last access: 10 January 2021). The soil grids data are accessible
online from https://soilgrids.org/ (last access: 11 November
2021, Poggio et al., 2021, https://doi.org/10.5194/soil-7-217-
2021). The ERA5-Land data are provided by ECMWF and
are available at https://doi.org/10.24381/cds.e2161bac (Muñoz
Sabater, 2021). The flux tower data (ARM1) are available from
https://doi.org/10.17190/AMF/1246027 (Biraud et al., 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-7287-2021-supplement.
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