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Abstract. The Energy Exascale Earth System Model
(E3SM) developed by the Department of Energy has a goal
of addressing challenges in understanding the global water
cycle. Success depends on correct simulation of cloud and
precipitation elements. However, lack of appropriate evalua-
tion metrics has hindered the accurate representation of these
elements in general circulation models. We derive metrics
from the three-dimensional data of the ground-based Next-
Generation Radar (NEXRAD) network over the US to eval-
uate both horizontal and vertical structures of precipitation
elements. We coarsened the resolution of the radar observa-
tions to be consistent with the model resolution and improved
the coupling of the Cloud Feedback Model Intercomparison
Project Observation Simulator Package (COSP) and E3SM
Atmospheric Model Version 1 (EAMv1) to obtain the best
possible model output for comparison with the observations.
Three warm seasons (2014–2016) of EAMv1 simulations of
3-D radar reflectivity features at an hourly scale are evalu-
ated. A general agreement in domain-mean radar reflectiv-
ity intensity is found between EAMv1 and NEXRAD below
4 km altitude; however, the model underestimates reflectivity
over the central US, which suggests that the model does not
capture the mesoscale convective systems that produce much
of the precipitation in that region. The shape of the model-
estimated histogram of subgrid-scale reflectivity is improved
by correcting the microphysical assumptions in COSP. Dif-
ferent from previous studies that evaluated modeled cloud
top height, we find the model severely underestimates radar
reflectivity at upper levels – the simulated echo top height
is about 5 km lower than in observations – and this result

is not changed by tuning any single physics parameter. For
more accurate model evaluation, a higher-order consistency
between the COSP and the host model is warranted in future
studies.

1 Introduction

Clouds and precipitation play a major role in Earth’s bud-
gets of energy, water, and momentum. However, the cor-
rect simulation of 3-D structures of clouds and precipitation
has been challenging in general circulation models (GCMs)
(Trenberth et al., 2007; Randall et al., 2007), partially be-
cause model grid spacings generally do not adequately re-
solve the cloud-structure details important to these budgets.
In addition, the lack of appropriate evaluation metrics also
hinders the evaluation of GCMs. Over the contiguous US
(CONUS), the detailed 3-D radar reflectivity field (indicating
the 3-D distribution of precipitation particles) is observed by
the ground-based Next-Generation Radar (NEXRAD) net-
work of S-band weather radars (3 GHz; Zhang et al., 2011,
2016). In this study, we use the mosaic of NEXRAD obser-
vations called Gridded Radar Data (GridRad) developed by
Homeyer and Bowman (2017), which have a horizontal res-
olution of 0.02◦ (regridded to 4 km in this study), vertical
resolution of 1 km (24 levels), and an update cycle of 1 h.
In order to compare these data appropriately with output of
the global model used here, we further coarsen the horizontal
resolution, as described in Sect. 2.
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The Energy Exascale Earth System Model (E3SM) is
an ongoing effort of the Department of Energy (DOE) to
advance the next generation of climate modeling Version
1 of E3SM Atmosphere Model (EAMv1) is a descendent
of the National Center for Atmospheric Research (NCAR)
Community Atmosphere Model version 5.3 (CAM5.3; Neale
et al., 2012). However, it has evolved substantially in coding,
performance, resolution, physical processes, testing, and de-
velopment procedures (Rasch et al., 2019). Previous model
evaluation has focused on the long-term climatological prop-
erties of certain cloud fields, surface precipitation, and water
conservation on the global scale (e.g., Qian et al., 2018; Xie
et al., 2018; K. Zhang et al., 2018; Lin et al., 2019). Eval-
uations of the vertical structures of cloud and precipitation
elements have used vertically pointing radar observations ob-
tained during field campaigns (Y. Zhang et al., 2018; Zhang
et al., 2019). However, these tests lacked evaluation of fully
3-D cloud and precipitation structure over large regions of
the globe and over long time periods.

For this study, we have built data processing techniques
to evaluate EAMv1 simulation of the 3-D radar reflectivity
field at its default setting of 1◦ grid spacing and 72 vertical
layers at an hourly timescale. Our goal is to provide a com-
prehensive evaluation of both horizontal pattern and vertical
structure of cloud and precipitation. We use radar observa-
tions obtained from the NEXRAD over the CONUS for the 3
years 2014–2016. In order to directly compare the model re-
sults with NEXRAD, we have improved the Cloud Feedback
Model Intercomparison Project (CFMIP) Observation Simu-
lator Package (COSP) (Bodas-Salcedo, et al., 2011) and im-
plemented it into EAMv1. We restrict the evaluation to the
warm season (i.e., April to September). Over the CONUS,
warm-season precipitation is dominated by convective pro-
cesses, which are very different from the more widespread
frontal cloud systems of cold-season precipitation. As dis-
cussed by Iguchi et al. (2018), precipitating ice particles have
large variation in habits and scattering properties, and the
effect of non-Rayleigh scattering and multiple scattering by
large precipitating ice particles could introduce large uncer-
tainty into simulating the radar reflectivity field. To reduce
uncertainty due to these factors, we examine only the warm
season of the 3 years from 2014 to 2016.

This paper is organized as follows: Sect. 2 describes
the model, the GridRad dataset, the COSP simulator, and
the step-by-step methodology of data processing to account
for differences between the modeled and observed datasets,
specifically (1) horizontal and vertical resolutions of EAMv1
(1◦, 72 vertical levels) and NEXRAD (4 km horizontally,
1 km vertically) and (2) minimum detectable limits between
the model and NEXRAD. Section 3 presents the model eval-
uation results and tests of the sensitivity to physics parame-
ters. Section 4 provides synthesis and conclusions.

2 Methodology

2.1 EAMv1 description and configuration

EAMv1’s dynamics core and physics parameterizations are
described in detail by Rasch et al. (2019). The continuous
Galerkin spectral finite-element method solves the primitive
equations on a cubed-sphere grid (Dennis et al., 2012; Tay-
lor and Fournier, 2010). Tracer transport on the cubed sphere
is handled using a variant of the semi-Lagrangian vertical
coordinate system of Lin (2004). The method locally con-
serves air mass, trace constituent mass, and moist total en-
ergy (Taylor, 2011). Turbulence, shallow cumulus clouds,
and cloud macrophysics are parameterized with the Cloud
Layers Unified By Binormals (CLUBB) parameterization
(Golaz et al., 2002; Larson, 2017). Deep convection is based
upon the formulation originally described in Zhang and Mc-
Farlane (1995, hereafter ZM), with modifications by Neale
et al. (2008) and Richter and Rasch (2008). Stratiform clouds
are represented with the “Morrison and Gettelman version
2” (MG2) two-moment bulk microphysics parameterization
(Gettelman and Morrison, 2015). Aerosol microphysics and
interactions with stratiform clouds are treated with an up-
dated and improved version of the four-mode version of the
Modal Aerosol Module (MAM4; Liu et al., 2016). Regard-
ing the stratiform–convection partition, the MG2 stratiform
cloud microphysics and CLUBB higher-order turbulence pa-
rameterization explicitly provide values for condensate mass
and number, as well as an estimate of stratiform cloud frac-
tion, whereas the convective cloud fraction is not parameter-
ized in the mass-flux-based ZM scheme (assumed to be� 1
for typical GCM resolutions such as at 1◦ grid spacing or
coarser) and is diagnosed from cloud mass flux for cloud ra-
diation calculation, which is treated as a tunable parameter.

The EAMv1 used in this study has 30 spectral elements
(ne30), which corresponds to approximately 1◦ horizontal
grid spacing, and the total number of grid columns is 48 602.
Vertically, there are 72 layers using a traditional hybridized
sigma pressure coordinate. The simulation is run for the time
period from 1 January 2014 to 1 October 2016. We use a
dynamic time step of 5 min and a cloud microphysics time
step of 30 min. The large-scale circulation in the simulation
is constrained using the nudging technique (Zhang et al.,
2014; Ma et al., 2014; Lin et al., 2016), so that the model
simulations can be constrained by realistic large-scale forc-
ing. Specifically, horizontal winds (U , V components) are
nudged towards the Modern-Era Retrospective analysis for
Research and Applications, version 2 (MERRA2), reanalysis
data (Gelaro, et al., 2017) with a relaxation timescale of 6 h.
Nudging is applied to all grid boxes at each time step, with
the nudging tendency calculated using the model state and
the linearly interpolated MERRA2 data (Sun et al., 2019).

To facilitate the comparison with observations, model out-
puts are regridded to the geographic coordinate system with a
horizontal grid spacing of 100 km, and the vertical coordinate
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is converted to the above mean surface level height in me-
ters. By default, all the regridding processes in this study are
based on the Earth System Modeling Framework Python Re-
gridding Interface (https://earthsystemmodeling.org/esmpy/,
last access: 10 April 2019) using bilinear interpolation.

2.2 COSP radar simulator

The retrieved spaceborne satellite and ground-based radar
products such as cloud water content and effective parti-
cle size (e.g., Randel et al., 1996; Wang et al., 2015; Tian
et al., 2016; Um et al., 2018) are often treated as the
ground truth for model evaluation (e.g., Fan et al., 2017;
Han et al., 2019). However, the retrieved products often have
large uncertainty (Stephens and Kummerow, 2007). To al-
low the comparison of model results with direct measure-
ments from 3-D scanning radars (ground-based or satellite-
borne), the COSP was developed for use in GCMs (Bodas-
Salcedo et al., 2011). Instead of using retrieved products to
evaluate the model simulation, COSP converts model output
into pseudo-observations using forward calculations (Bodas-
Salcedo et al., 2011; Swales et al., 2018; Zhang et al., 2010).

The COSP consists of three steps, as detailed in Zhang
et al. (2010). The first step is to generate a subgrid-scale dis-
tribution of cloud and precipitation, which is done by using
the Subgrid Cloud Overlap Profile Sampler (SCOPS; Klein
and Jakob, 1999; Webb et al., 2001) and SCOPS for precipi-
tation (SCOPS_PREC), respectively. Each GCM grid box is
divided into 50 subcolumns in this study. Detailed descrip-
tion of SCOPS and SCOPS_PREC can be found in Zhang
et al. (2010). Then, the radar signals are calculated by the
QuickBeam code (Haynes and Stephens, 2007) using the col-
umn distribution of cloud and precipitation. Thus, COSP cal-
culates the reflectivity for the combined cloud properties us-
ing its own subgrid assumption, and it does not distinguish
convective and stratiform cloud contributions to reflectivity.
Finally, the grid box mean radar reflectivity is calculated
through the method of linear averaging (i.e., the reflectivity
values [in dBZ] are converted to the Z values [mm6 m−3] to
calculate the meanZ, and then meanZ is converted back into
dBZ). In addition to averaging, all the processing of radar re-
flectivity data from model and NEXRAD in this study uti-
lizes the linearized Z values, including horizontal averaging,
vertical interpolation, calculation and comparison of mean
values, etc.

The COSP version 1.4 used in this study has no scientific
difference from version 2.0 (Song et al., 2018, Swales et al.,
2018). Following the general usage of COSP, we modified
the microphysics assumptions used for the radar reflectiv-
ity calculation regarding hydrometeor density, size distribu-
tion, etc., making those assumptions consistent with those
used in the MG2 cloud microphysics scheme that is used in
E3SM. The detailed documentation of those changes is in
Table 1. Note that, although we tried to make the COSP use
the same hydrometeor size distribution functions as MG2,

the three parameters (slope, intercept, and shape parameters)
are still separately defined in COSP. We use horizontally ho-
mogeneous cloud condensate distribution within the model
grid element and the maximum–random overlapping scheme
for cloud occurrence (Marchand et al., 2009; Hillman et al.,
2018).

2.3 NEXRAD observations

The NEXRAD network consists of 159 S-band (3 GHz)
Doppler radars, which form a dense observational network
nearly covering the CONUS. We use the GridRad mo-
saic product of Homeyer and Bowman (2017), which com-
bines all NEXRAD radar data covering the region 25–49◦N,
155–69◦W. To compare the GridRad data to the E3SM
model fields, the radar frequency in the COSP was set to
13.6 GHz, consistent with the Global Precipitation Measure-
ment (GPM) Ku-band radar, since we originally aimed at
evaluating the E3SM simulation with GPM data. However,
due to the high detectable threshold of 13 dBZ, low sam-
pling frequency (four to seven overpasses over CONUS per
day), and the narrow swath width (245 km) for each over-
pass, GPM data within the 3-year period (2014–2016) have
a significant under-sampling issue. That is, the GPM sample
sizes over 1◦ model grid boxes are generally too small to ro-
bustly represent the grid element mean value. Therefore, we
decided not to use GPM data in this study. As GPM operates
over the whole earth and is anticipated to run for a long time
period, it will likely be a very useful dataset for evaluating
the coarse-resolution global model in the future.

The GPM radar frequency is higher than that of NEXRAD
(13.6 vs. 3 GHz). Previous studies have shown conversions
from Ku (13.6 GHz) to S band (3 GHz) are necessary when
using GPM Ku-band radar to calibrate the ground-based
radars (Warren et al., 2018). Based on our previous study that
quantitatively evaluated the coincident observations from
NEXRAD and GPM over the CONUS, we found the 3-D
radar reflectivity fields obtained from the two independent
platforms are highly consistent with each other after proper
smoothing of GPM data in the vertical (Wang et al., 2019b).
We performed a series of offline tests of COSP simulation
using the frequency of 3 GHz (NEXRAD), 13.6 GHz (GPM
Ku band), and 94 GHz (the cloud profiling radar on board
the CloudSat satellite). Their corresponding reflectivities are
compared in Fig. 1. As shown, the reflectivity values with
3 GHz are very similar to those with 13.6 GHz, indicating
the Rayleigh scattering is satisfied for both frequencies in this
application. To examine if the COSP can correctly handle the
Mie scattering calculation, the frequency of 94 GHz used by
the CloudSat is also tested, whose products have been widely
used for the evaluation of coarse-resolution models (Zhang
et al., 2010). As shown in Fig. 1, the reflectivities simulated
with 94 GHz significantly deviate from those simulated with
3 and 13.6 GHz when reflectivities > 10 dBZ, which reveals
that the COSP simulator is capable of handling both Rayleigh
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Table 1. Modification of the hydrometeor assumptions used in COSP.

Hydrometeor typea Distribution type Density (kgm−3) Particle mean diameter (µm) Distribution widthb (unitless)

Default Modified Default Modified Default Modified Default Modified

LSL Lognormal Gamma 524×D3 – 6 12 0.3 0
CVL Lognormal Gamma 524×D3 – 6 12 0.3 0
LSI Gamma – 110.8×D2.91 500 4 – 2 0
CVI Gamma – 110.8×D2.91 500 4 – 2 0
LSS Exponential – 100 250 n/a – n/a –
CVS Exponential – 100 250 n/a – n/a –

a LS: large-scale; CV: convective; L: cloud liquid; I: cloud ice; S: snow. b Distribution width: ν in N(D)=N0D
(ν−1)e−λD , which is a shape parameter in gamma distribution describing

the dispersion of the distribution. n/a – not applicable

Figure 1. Scatterplots of radar reflectivity values simulated by the
COSP simulator at 3 GHz (x axis) vs. those simulated at 13.6 GHz
(left y axis) and 94 GHz (right y axis).

and Mie scattering calculations. However, there is no differ-
ence using Ku band or S band in the COSP simulator in
this study, because the simulated condensates are not large
enough to lead to non-Rayleigh scattering, which is typically
observed at Z > 40 dBZ for the Ku band (Matrosov, 1992).

An attenuation correction has been applied in case of ex-
istence of any large particles, although they are extremely
unlikely to occur in this application. Since the COSP mimics
the satellite view from space to the ground, the layer below
1 km altitude is most vulnerable to the possible attenuation
caused by large precipitation particles, which has been ex-
cluded from the comparison. In this study, biases caused by
the temporal mismatch are minimal at the horizontal reso-
lution of 1◦ (∼ 100 km); we nevertheless perform Gaussian
smoothing of GridRad data to match the model time step
(30 min) in the comparison.

2.4 Mapping the radar observations to the model grid

As shown in previous studies (e.g., Wang et al., 2015, 2016,
2018; Feng et al., 2012, 2019), the minimum reflectivity
of the 3-D mosaic NEXRAD dataset is 0 dBZ (Fig. 2a).
However, the model grid-mean reflectivity can be as low
as −100 dBZ. Because our focus is on significantly precip-
itating clouds, the minimum threshold of reflectivity at 1◦

grid scale is set to be 8 dBZ (corresponding to rain rate
≥ 0.1 mmh−1). We also tested with a threshold of 0 dBZ
and report later on how it only has minor effects on our
conclusions. For our main results, after coarsening the 4 km
GridRad data to a model grid element, only the grid elements
with a mean value larger than 8 dBZ are taken into account in
both observations (Fig. 2b) and in the simulation (Fig. 2c). In
the vertical direction, the EAMv1-simulated radar reflectiv-
ity field (72 vertical levels, hybrid coordinate) is interpolated
to the levels of GridRad (vertical resolution of 1 km). The
simulation data are saved hourly, consistent with the hourly
GridRad data.

3 Results

After the horizontal averaging, vertical interpolation, and
truncation at the identified minimum threshold of 8 dBZ,
the 3-D radar reflectivity fields obtained from GridRad and
the model simulation become comparable. The EAMv1-
simulated reflectivity is evaluated from the perspectives of
subgrid distribution, horizontal pattern, and vertical distribu-
tion.

3.1 Comparison of subgrid distribution of reflectivity

The horizontal resolution difference between GCMs (∼
100 km) and NEXRAD observations (4 km) presents a chal-
lenge for testing the model-simulated radar reflectivity. To
mimic the observations, COSP divides the grid-mean cloud
and precipitation properties into subcolumns (Pincus et al.,
2006) that statistically downscale the data in a way that
should be consistent with observations. The way this is done
in COSP is discussed by Zhang et al. (2010) and Hillman
et al. (2018). In this section we examine whether the sub-
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Figure 2. Examples of (a) original GridRad observation, (b) GridRad mapped over the E3SM model grid, and (c) the concurrent model
simulation on 11 May 2016, 07:00 UTC, at the 2 km altitude.

grid reflectivity distribution generated by COSP is consistent
with the observed subgrid reflectivity distribution shown by
the NEXRAD observations.

In EAMv1, 50 subcolumns are used for calculating the
mean radar reflectivity for a model grid box. There are
625 pixels inside each 1◦ grid for NEXRAD data to provide
a probability density function (PDF) of observed reflectivity
within the box. After averaging the NEXRAD pixels at sub-
grid scale to 50 samples to match the COSP’s subcolumns,
Fig. 3 compares the simulated subgrid reflectivity PDF to the
NEXRAD PDF based on all the GridRad samples combined
for the 3-year period at each individual level, where the in-
terval of reflectivity bins is 1 dBZ. The results for the default
microphysics assumptions in COSP, which are for a single-
moment scheme, produce a bimodal distribution at and be-
low 8 km altitudes (blue histograms in the left-hand column
of Fig. 3). The bimodality is significantly different from the
observed PDF, which forms a smooth gamma distribution.
Song et al. (2018) also found bimodal distributions when the
COSP was implemented in the CAM with the original micro-
physics assumptions, which are clearly unlike real observed
radar reflectivity distributions.

Our modification of the microphysical assumptions in
COSP (right-hand column of Fig. 3) greatly reduces the bi-
modality. In addition, the modified microphysical assump-
tions produce higher values of reflectivity, in better agree-
ment with observations, and the grid-mean radar reflectivi-
ties increase by ∼ 4 dBZ (Fig. 4) mainly for values less than
25 dBZ. The improvement in the subgrid distribution and
grid-mean reflectivity brought by the change of microphysics
assumptions indicates the necessity of microphysical consis-
tency between the COSP and the host model. It should be
noted that the simulated radar reflectivity and its subgrid dis-
tribution are sensitive to the overlap assumption and the dis-

tribution function of condensates that are set in COSP (Hill-
man et al., 2018). Our results are from the default setup of
these aspects of COSP. It is not the purpose of this study to
test those assumptions.

Although the simulated subgrid reflectivity distribution is
improved by setting the microphysics assumptions used in
COSP consistent with the MG2, the model is still signifi-
cantly biased. In addition to the intrinsic model–observation
differences in the number concentrations and mixing ratios
of hydrometeors, there are other possible error sources re-
lated to the reflectivity calculation as mentioned in Sect. 2.2.
For example, (1) the mixing ratios of hydrometeor types from
different types of clouds are not directly passed from the host
model to COSP but rather are lumped together and equally
divided among all the precipitating subcolumns, (2) the spec-
tral parameters for defining a gamma distribution are not con-
sistent with those from MG2, and (3) the assumptions of sub-
grid distribution and hydrometeor vertical overlap are simple
and not consistent with other parts of the host model. In ad-
dition, the subgrid distribution results from COSP are calcu-
lated based on the assumption about the distribution of cloud
and precipitation among the 50 subcolumns, which is inde-
pendent of what E3SM uses. Therefore, a higher-order con-
sistency between the COSP and the host model is warranted
in future studies.

In this following analysis, we focus on the evaluation of
the simulated 3-D radar reflectivity field at the model’s native
grid, which is 1◦, since the subgrid information from COSP
does not directly reflect how E3SM does it. Also, the con-
vective cloud fraction is not parameterized in the mass-flux-
based ZM scheme and is diagnosed from cloud mass flux for
cloud radiation calculation, which is treated as a tunable pa-
rameter, whose evaluation is not very meaningful unless it
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Figure 3. Comparison of radar reflectivity subgrid distribution between NEXRAD observations (red bars) and the simulations (blue bars) at
the vertical levels of 2, 4, 8, and 11 km. Simulation results in the left and right columns are from the default microphysics assumptions in
COSP and modified COSP microphysics assumptions, respectively.

becomes an independent variable, for instance, for grey-zone
resolutions.

3.2 Comparison of horizontal patterns

Now we compare the temporal mean reflectivity through
the entire study period between the NEXRAD observation
(Fig. 5a, d, g, and j) and EAMv1 simulation (Fig. 5b, e, h, and
k) with the consistent microphysical assumptions between
COSP and the host model at the vertical levels of 2, 4, 8, and
11 km. The mean, standard deviation, 95th-percentile values,
and valid sample numbers between the model and NEXRAD
are compared in Table 2. At 2 km altitude, the EAMv1 es-
timates higher reflectivity than the NEXRAD observations
(Fig. 5a–b) except over the central US. The overall mean
value is 28.7 dBZ for EAMv1 and 25.1 dBZ for NEXRAD.
The negative bias for the model is in the region between
the Rocky Mountains and Mississippi Basin (Fig. 5c), where

precipitation is heavily contributed by mesoscale convec-
tive systems (MCSs). Those MCSs propagate eastward from
their initiation over or just east of the Rocky Mountains,
go through upscale growth, and finally dissipate in the east-
ern part of the Mississippi Basin (Yang et al., 2017; Feng
et al., 2018, 2019). The standard deviations of the two in-
dividual datasets are quite similar, and EAMv1 generates a
higher 95th-percentile value than the observation, indicat-
ing the model overestimates the extremely high values in the
lower troposphere. In addition, those simulated extreme val-
ues are evenly distributed across the entire domain, which
fail to mimic the spatial footprint of MCSs as depicted by
the NEXRAD data.

At 4 km altitude (Fig. 5d–e), the model’s underestima-
tion over the central US becomes larger compared to 2 km
altitude, and the overestimation at the foothills of Rocky
Mountains also becomes larger. The model also overesti-
mates reflectivity in the east region of the domain. These
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Table 2. The statistical comparison of radar reflectivity between NEXRAD and EAMv1.

Altitude NEXRAD EAMv1

Mean Standard deviation 95th percentile Sample Mean Standard deviation 95th percentile Sample
(dBZ) (dBZ) (dBZ) Numbers (dBZ) (dBZ) (dBZ) Numbers

2 km 25.1 7.7 32.1 1.7× 106 28.7 7.4 35.8 4.1× 106

4 km 24.0 7.2 31.6 1.6× 106 24.0 6.4 30.2 4.2× 106

8 km 19.2 5.2 24.4 7.9× 105 15.0 3.9 21.0 1.5× 106

11 km 16.6 4.4 21.8 2.2× 105 9.8 1.6 12.9 4.1× 103

Figure 4. Scatter density plot of radar reflectivity values from the
simulation with the modified microphysics assumptions (y axis) vs.
those with the default microphysics assumptions (x axis). The data
shown are for April 2014. The dots are color-labeled with their fre-
quency of occurrence.

results indicate that the E3SM simulation fails to capture
the observed spatial variability. The domain mean value be-
tween the model and observations is the same (24.0 dBZ) as
a consequence of the offset between the negative and pos-
itive biases in different areas. The standard deviation and
95th-percentile values are comparable with the observations
as well. At 8 km, underestimation of the reflectivity by the
model occurs over almost the entire domain (Fig. 5i), with a
domain mean of 15.0 dBZ, much lower than 19.2 dBZ in the
NEXRAD data. Meanwhile, the modeled standard deviation
and the extreme values are smaller, indicating the model has
difficulty capturing the observed variability.

At 11 km altitude, the EAMv1 severely underestimates
the reflectivity values compared to NEXRAD (Fig. 5j–k),
with a mean value of 9.8 dBZ for EAMv1 and 16.6 dBZ for
NEXRAD. The negative bias is generally more than 7.5 dBZ
in the central US (Fig. 5l), and the model severely underesti-
mates the standard deviation and extreme reflectivity. More-
over, EAMv1’s sample size is 50 times lower than that of
NEXRAD, indicating the lower occurrence of reflectivity
values ≥ 8 dBZ.

Clearly, above 4 km, the model’s negative biases increase
with height as shown in Fig. 5f, i, and l, manifested in the
central US. There is no valid reflectivity value simulated by
EAMv1 above 12 km altitude, where NEXRAD still shows
reflectivity values up to 15.7 dBZ, indicating that the simu-
lated deep convection in the warm season is not deep enough,
a problem that is further examined in the following section.

In addition to the mean values, the histograms of observed
and simulated radar reflectivities are compared for differ-
ent altitudes, where the interval of reflectivity bins is 2 dBZ
(Fig. 6). By comparing the occurrence of Z ≥ 8 dBZ be-
tween model and observations, the model apparently has a
narrower distribution than the observations, and the model–
observation deviation in maximum values increases with
height. At 8 km and below, the model generally overestimates
the sample sizes of smaller reflectivity values but lacks ex-
tremely high reflectivity values. However, at 11 km altitude,
the model greatly underestimates the sample sizes of the en-
tire reflectivity spectrum compared to the observation, caus-
ing the severe underestimation in the mean value.

3.3 Comparison of vertical distribution of radar
reflectivity

To quantitatively examine the simulated vertical distribu-
tion of radar reflectivity, contoured-frequency-by-altitude di-
agrams (CFADs; Yuter and Houze 1995) are generated from
NEXRAD and EAMv1 and compared in Fig. 7. The CFADs
represent the frequency of occurrence of reflectivity in a co-
ordinate system having reflectivity bins (interval of 1 dBZ)
on the x axis and altitude bins (interval of 1 km) on the y axis.
The frequency within each bin box is calculated as the num-
ber of valid samples it contains divided by the total sample
number of all reflectivity bins at all levels, meaning that the
integrated value of all frequencies in each plot is 100 %.

Figure 7 shows the CFADs for both NEXRAD observa-
tions (Fig. 7a, d, g, j, m, and p) and the EAMv1 simula-
tion (Fig. 7b, e, h, k, n, and q) for each month from April to
September combined over 2014–2016. The most distinct dif-
ference between the model and observations is the simulated
echo top height. The echo top height in the simulation gener-
ally is at 11 km, at least 5 km lower than the 16 km top seen
in the observations. At levels below 4 km, the NEXRAD data
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Figure 5. Plan view of radar reflectivity averaged from NEXRAD observations (a, d, g, j); EAMv1 simulation with the modified microphysics
assumptions in COSP (b, e, h, k); and their absolute differences (c, f, i, l) at the level of 2, 4, 8, and 11 km altitude. The NEXRAD data
are spatially averaged from native resolution to the model grid over the April–September period during 2014–2016, and the simulations are
vertically interpolated to the NEXRAD levels.

show a high-frequency zone (> 3.2 %) concentrated between
8–25 dBZ, whereas the simulated high-frequency zone is at
13–28 dBZ. For reflectivity > 35 dBZ, the simulation has a
higher probability of occurrence than the NEXRAD obser-
vations.

Regarding the overall shape of CFADs, the model follows
the well-known pattern where the reflectivity value range of
the high-frequency zone (> 3.2 %) increases from cloud top
to the freezing level and then slowly decreases or remains
constant below the freezing level. The cores of maximum
frequency (> 5 %) are located in the centres of the high-
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Figure 6. Comparison of radar reflectivity histograms at 1◦ scale
between NEXRAD observations (red bars) and the simulations
(blue bars) at the vertical levels of 2, 4, 8, and 11 km.

frequency zones. However, these characteristics are not pre-
sented in the observations, whose high-frequency zones are
greatly skewed to the lower reflectivity values. The character-
istics of NEXRAD’s CFADs could be due to averaging from
fine resolution (4 km) to coarse resolution (1◦) , as well as
averaging of convective and stratiform components because
the two components produce significantly different reflectiv-
ity profiles and magnitudes.

The box-and-whisker plots (Fig. 7c, f, i, l, o, and r) rep-
resent the same results in a different way, where the normal-
ization is conducted at each level rather than against the en-
tire dataset at all levels. Below 4 km, the percentile values are
consistent between the model and observations except for the
1 km altitude, where the model overestimates the reflectivity.
The simulated 25–75th percentiles are located at the reflec-
tivity values of 15–27 dBZ at 1 km altitude, which is higher
than the NEXRAD observation (12–28 dBZ). As noted in the
discussion of Fig. 5, the consistency at low levels (e.g., 2 km)
between the model and observations is mainly due to the off-
set of negative and positive biases in different regions of the
domain. Moreover, EAMv1 underestimates the frequency of

echoes ≤ 15 dBZ and overestimates it for echoes between
15 and 30 dBZ, which causes the higher median values in
the model. From 4 km upward, the model–observation dif-
ferences become much larger than at low levels, consistent
with the result shown in Fig. 5. The underestimation of 95th-
percentile value increases from 10 dBZ at 7 km to more than
20 dBZ at 11 km. Above 11 km, the model fails to generate
average reflectivity above 8 dBZ, and the typical reflectivity
value is between 0 and 2 dBZ at 12 km.

From Fig. 7 it is clear that the model severely underesti-
mates the echo top height by at least 5 km. To look at how
this result is sensitive to the threshold reflectivity, we repro-
cessed the results with the 0 dBZ threshold. By lowering the
threshold to 0 dBZ, an increment of ∼ 1 km in the vertical
extension of the CFADs is found in the model, but the echo
top height of the observations is not changed much. As a re-
sult, the choice of threshold does not change the conclusion
of severe model underestimation in echo top height.

The CFADs of NEXRAD observations vary from month
to month. For example, the echo top height is at 15 km in
April, which increases to 16 km in May, then reaches 17 km
in June and July, and finally decreases to 15 km in Septem-
ber. Similarly, the 0.6–0.8 % contour level in the observations
stops at 9 km altitude in April but extends to 10 km in May
and reaches 11 km in June. It increases to the highest level
at 11.5 km in July and August, and then decreases to 11 km
in September. This seasonality follows the seasonal variation
of intensity of convection (Wang et al., 2019a), which is not
captured in the EAMv1 simulation (Fig. 7b, e, h, k, n, and q).

The severe underestimation of the echo top height by
EAMv1 has been reported for simulation of tropical convec-
tion with CAM5 in a recent study (Wang and Zhang, 2018).
Although EAMv1 is different from CAM5 in many aspects,
such as vertical resolution and dynamical core, they share the
same ZM cumulus parameterization (Zhang and McFarlane,
1995) for representing deep convection. Wang and Zhang
(2019) found the cloud top height of tropical convection is
underestimated by more than 2 km, which can be alleviated
by the adjustment of the ZM scheme. We have performed a
series of sensitivity tests by changing physical parameters in
ZM and cloud microphysics schemes to explore the possibil-
ity of model improvement in echo top height. These tests are
detailed in Sect. 3.4.

As evaluated in Zheng et al. (2019), E3SM v1 failed to
simulate the diurnal variation of precipitation over the cen-
tral US, where the observed nocturnal peak is greatly under-
estimated. Xie et al. (2019) improved the diurnal cycle of
convection in E3SM v1 recently by modifying the convec-
tive trigger function in the ZM scheme. It will be interesting
to see if the 3-D radar reflectivity fields can be better simu-
lated using the updated ZM scheme.
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Figure 7. Contoured-frequency-by-altitude diagrams (CFADs) normalized by the total number of samples at all altitude levels for NEXRAD
(a, d, g, j, m, p) and EAMv1 simulation with the modified microphysics assumptions in COSP (b, e, h, k, n, q) for the months from April
to September averaged over the 2014–2016 period. The box-and-whisker plots (c, f, i, l, o, r) for NEXRAD (red) and EAMv1(blue) are
calculated using normalization at each individual level, where the center of the box represents the 50th-percentile value, and the 25th and
75th percentiles are represented by the left and right boundary of the box, respectively. Whiskers correspond to the 5 and 95 % values.

3.4 Sensitivity of simulated echo top height to tunable
parameters of the global model

Differently from the model evaluation of cloud top height
and high cloud fraction (e.g., Xie et al., 2018), where EAMv1
has shown good agreement with satellite observations over
the CONUS, evaluation of radar echo top height indicates
whether the processes internal to the cloud are producing pre-
cipitation correctly. To examine if any model parameters in
the ZM cumulus parameterization scheme and/or MG2 mi-
crophysics parameterization scheme can significantly influ-
ence the echo top height, we conducted a series of sensitivity

tests for the tunable parameters as listed in Table 3. In each
test a single parameter is changed, and all other parameters
retain their default values.

Wang and Zhang (2018) suggested that the restriction of
neutral buoyancy level (NBL) from the dilute convective
available potential energy (CAPE) calculation (Neale et al.,
2008) can limit the depth of deep convection in ZM. When
the convective plume reaches the NBL, all mass flux is de-
trained even if the updraft is still positively buoyant from
the cloud model calculation (Zhang, 2009). To allow deep
convection to grow deeper, we performed a sensitivity test
following Wang and Zhang (2018), where the NBL deter-
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Table 3. Changes of the tunable parameters in the sensitivity tests for echo top height.

Parameter Physics meaning Default Changed values Impact

Cumulus
parameterization

NBL restriction The upper limit level
of the integral of the
mass flux, moist static
energy, etc. in ZM

Calculated NBL 200, 70 hPa No

zmconv_dmpdz ZM entrainment rate in
CAPE calculation

−0.7× 10−3
−1.0× 10−3, −1.0× 10−5 Yes

zmconv_tau Convection adjustment
timescale

1 h 15 min, 6 h No

zmconv_c0_lnd Coefficient of autocon-
version rate in ZM

0.007 0.01, 0.002 No

zmconv_cape_cin Number of layers
allowed for negative
CAPE

1 5, 10 No

clubb_ice_deep Assumed ice conden-
sate radius detrained
from ZM

16× 10−6 32× 10−6, 8× 10−6 No

cldfrc_dp1 Convective fraction 0.045 0.01, 0.2 No

Microphysics
parameterization

prc_coef1 Coefficient of autocon-
version rate in MG2

30500 10 000, 675 No

berg_eff_factor Efficiency factor for the
Wegener–Bergeron–
Findeisen process

0.1 0.2, 0.7 No

thres_ice_snow Autoconversion size
threshold from cloud
ice to snow

Temperature dependent Maximize at 175× 10−6 No

Figure 8. Comparison of contoured-frequency-by-altitude dia-
grams (CFADs) for the warm seasons over 2014–2016 between
(a) NEXRAD, (b) EAMv1 simulation, and (c) the EAMv1-test sim-
ulation with reduced convective entrainment rate.

mined in the dilute CAPE calculation is removed, and the
upper limit of the integrals of mass flux, moist static energy,
and other cloud properties is set to be very high (70 hPa in
this study). After the modification, the convective cloud top
height increases as shown in Wang and Zhang (2018); how-

ever there is no change in the radar echo top height, i.e.,
the maximum altitude at which precipitation-sized particles
occur. A possible reason for the limited effect on echo top
height is that the cloud ice content is too low in midlatitude
continental convection without convective microphysics pa-
rameterization (Song et al., 2012), which cannot be improved
by merely increasing the NBL.

Other parameters that we tested in the ZM cumu-
lus parameterization with the dilute CAPE calculation in-
clude convective entrainment rate (zmconv_dmpdz), the
convection adjustment timescale (zmconv_tau), the coef-
ficient of autoconversion rate (zmconv_c0_lnd), ice parti-
cle size (clubb_ice_deep), convective fraction (cldfrc_dp),
and number of layers allowed for negative CAPE (zm-
conv_cape_cin). The overall conclusion is that separately
tuning any of these parameters does not improve the simu-
lation of echo top height. For the convective entrainment rate
(zmconv_dmpdz), we decreased its value from −0.7× 10−3

to −1.0× 10−5, which means that the entrainment in con-
vection is almost turned off, similar to the undiluted CAPE
assumption. Results show the simulated echo top height is
increased by 500–800 m in the EAMv1-test simulation, and
the reflectivity span in the lower troposphere is narrowed by
1–2 dBZ, which is closer to the observations (Fig. 8). This
result is consistent with the previous studies that tested the
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undiluted CAPE assumption as well (Neale et al., 2008; Han-
nah and Maloney, 2014). However, that assumption is unre-
alistic given the fact that the undiluted CAPE-based closure
strongly deviated from observations (Zhang, 2009). In sum-
mary, changing any of our selected parameters individually
in the ZM scheme does not improve the simulation of echo
top height.

The MG2 cloud microphysics parameterization in E3SM
determines only large-scale cloud and precipitation (i.e.,
those resolved by the model). Changes in the MG2 cloud mi-
crophysics parameterization could affect the parameterized
cumulus cloud and precipitation by changing the large-scale
forcing which feeds into the cumulus cloud calculations. By
decreasing the MG2 autoconversion rate (prc_coef1), ideally
the depletion of moisture within the atmospheric column is
slowed down and more water vapor can be supplied to cu-
mulus convection. Results show, however, that the echo top
height is not affected by changing the MG2 assumptions. At-
tempts at accelerating the Wegener–Bergeron–Findeisen pro-
cess in MG2 to increase the conversion of liquid to snow or
ice, as well as using a lower size threshold for the ice-to-
snow conversion, have also proven to be unimportant to the
simulation of echo top height.

Thus, echo top height proves to be insensitive to the avail-
able tunable parameters. Setting the value of the convective
entrainment rate to be unrealistically low only gains a 500–
800 m increment in echo top height. Given that the model un-
derestimation is more than 5 km, the increment is insufficient
to solve the discrepancy. Note that each individual tunable
parameter was changed without retuning the model to keep
the top-of-atmosphere radiative energy budget balanced and
the model performance optimized. Thus, some expected im-
provement in echo top height can be subsequently offset by
other untuned processes. Instead of providing quantification
of how the model responds to the changes of parameters, we
emphasize the trend of change in echo top height, in which
the simulation of the echo top height cannot be significantly
improved by tuning only one of those physical parameters.
Further investigation of combinations of two and more pa-
rameters is a topic for a future study.

4 Conclusions and discussion

We have evaluated the model performance of E3SM EAMv1
in simulating the warm-season 3-D radar reflectivity at an
hourly scale over the North American sector of the globe by
comparing the model results to the 3-D distribution of radar
reflectivity observed by NEXRAD radars over the CONUS
during April–September of 2014–2016. The evaluation is
achieved by improving the COSP radar simulator and em-
ploying special data processing techniques to ensure fair
comparison between model and observations that are dif-
ferent in sampling frequency, horizontal–vertical resolutions,
and minimum detection limit. Our findings are as follows:

1. With the default microphysics assumptions in COSP,
the simulated subgrid reflectivity PDF is bimodal,
in disagreement with radar observations which show
that the subgrid reflectivity follows a gamma distribu-
tion. When the microphysics assumptions in COSP are
changed to be consistent with the MG2 microphysics
parameterization used in E3SM, the bimodality of the
subgrid distribution is nearly eliminated. It is therefore
important to maintain consistency of microphysics as-
sumptions between the host model and radar echo sim-
ulator attached to the model as advocated by the COSP
community (Swales et al., 2018). For more accurate
model evaluation, a higher-order consistency between
the COSP and the host model is warranted in future
studies.

2. Below 4 km altitude, the simulated domain-mean reflec-
tivities by EAMv1 agree with NEXRAD observations in
magnitude, but the simulation fails to capture the spa-
tial variability. The model underestimates the reflectiv-
ity in the central US between the Rocky Mountains and
Mississippi River. This pattern suggests that the model
is not adequately representing the mesoscale convective
systems that dominate warm-season rainfall in that re-
gion. The model overestimates the reflectivity outside
this region.

3. Above 4 km altitude, EAMv1 shows a severe underes-
timation of the domain-mean reflectivity, and the neg-
ative bias increases with altitude up to 11 km, above
which the model fails to simulate any valid reflectiv-
ity at all, whereas NEXRAD observations show strong
radar echoes up to 16 km.

4. EAMv1 is able to simulate the variability and extreme
value of reflectivity at the lower troposphere but signif-
icantly underestimates them at high levels.

The NEXRAD observations used in this study reveal that
EAMv1 fails to simulate the occurrence of large ice-phase
particles at high levels in deep convective clouds. In addi-
tion, the conclusion that “simulated deep convection is not
deep enough” also echoes the dry bias seen in GCMs as
manifested in underestimations of total precipitation and in-
dividually large rain rates over the CONUS (e.g., Zheng
et al., 2019). We have now shown that this model deficiency
cannot be significantly improved by tuning a single value
of the physical parameters in the ZM cumulus and MG2
cloud microphysics schemes. Note the large-scale circula-
tion is nudged towards observations for the simulations in
this study, so our results represent the best-case model perfor-
mance. Compared to the nudged simulations, free running of
EAMv1 has shown nonnegligible biases in the regional cir-
culation (Sun et al., 2019). With the nudged simulations, the
large biases in circulation can be excluded so that the perfor-
mances of physics parameterizations in simulating convec-
tive systems can be more insightfully understood.
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The data processing techniques and metrics we have devel-
oped in this study can be used globally for model evaluation
when satellite-based radars provide global 3-D radar obser-
vations. The GPM radar observations will eventually be able
to provide global radar echo coverage (Houze et al., 2019),
whose data have been proven consistent with NEXRAD
(Wang et al., 2019b). However, as discussed in Sect. 2, the
sampling by GPM at 1◦ model grid elements for only 3 years
of GPM data is insufficient for obtaining robust grid-mean
values to compare with the EAMv1 simulation. In addition
to the restriction in the availability of observational data, the
high computation cost with the incorporation of the COSP
simulator in simulation and the demand of large data space
(14 000 core hours and 1.2 TB of data per simulation month
at hourly output frequency) have hindered the modeling for
an extended period. When GPM has run for a much longer
time period and more powerful computational resources be-
come available, it will be a very useful study for evaluating
the long-term model simulations at the global scale. In ad-
dition, the results of this study can provide metrics for eval-
uating the cumulus parameterizations or provide insights on
how to further improve the cumulus parameterizations like
Labbouz et al. (2018), which could be a follow-on work. Fu-
ture studies can also focus on separately evaluating proper-
ties in convective and stratiform regions, since the thermo-
dynamic and reflectivity profiles are fundamentally different
between the two regions.
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