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Abstract. The Norwegian Climate Prediction Model ver-
sion 1 (NorCPM1) is a new research tool for performing
climate reanalyses and seasonal-to-decadal climate predic-
tions. It combines the Norwegian Earth System Model ver-
sion 1 (NorESM1) – which features interactive aerosol–cloud
schemes and an isopycnic-coordinate ocean component with
biogeochemistry – with anomaly assimilation of sea surface
temperature (SST) and T/S-profile observations using the
ensemble Kalman filter (EnKF).

We describe the Earth system component and the data as-
similation (DA) scheme, highlighting implementation of new
forcings, bug fixes, retuning and DA innovations. Notably,
NorCPM1 uses two anomaly assimilation variants to assess
the impact of sea ice initialization and climatological refer-
ence period: the first (i1) uses a 1980–2010 reference clima-
tology for computing anomalies and the DA only updates the
physical ocean state; the second (i2) uses a 1950–2010 ref-
erence climatology and additionally updates the sea ice state
via strongly coupled DA of ocean observations.

We assess the baseline, reanalysis and prediction perfor-
mance with output contributed to the Decadal Climate Pre-
diction Project (DCPP) as part of the sixth Coupled Model
Intercomparison Project (CMIP6). The NorESM1 simula-
tions exhibit a moderate historical global surface temperature
evolution and tropical climate variability characteristics that
compare favourably with observations. The climate biases
of NorESM1 using CMIP6 external forcings are compara-

ble to, or slightly larger than those of, the original NorESM1
CMIP5 model, with positive biases in Atlantic meridional
overturning circulation (AMOC) strength and Arctic sea ice
thickness, too-cold subtropical oceans and northern conti-
nents, and a too-warm North Atlantic and Southern Ocean.
The biases in the assimilation experiments are mostly un-
changed, except for a reduced sea ice thickness bias in i2
caused by the assimilation update of sea ice, generally con-
firming that the anomaly assimilation synchronizes variabil-
ity without changing the climatology. The i1 and i2 reanaly-
sis/hindcast products overall show comparable performance.
The benefits of DA-assisted initialization are seen globally in
the first year of the prediction over a range of variables, also
in the atmosphere and over land. External forcings are the
primary source of multiyear skills, while added benefit from
initialization is demonstrated for the subpolar North Atlantic
(SPNA) and its extension to the Arctic, and also for tempera-
ture over land if the forced signal is removed. Both products
show limited success in constraining and predicting unforced
surface ocean biogeochemistry variability. However, obser-
vational uncertainties and short temporal coverage make bio-
geochemistry evaluation uncertain, and potential predictabil-
ity is found to be high. For physical climate prediction, i2
performs marginally better than i1 for a range of variables,
especially in the SPNA and in the vicinity of sea ice, with
notably improved sea level variability of the Southern Ocean.
Despite similar skills, i1 and i2 feature very different drift
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behaviours, mainly due to their use of different climatolo-
gies in DA; i2 exhibits an anomalously strong AMOC that
leads to forecast drift with unrealistic warming in the SPNA,
whereas i1 exhibits a weaker AMOC that leads to unreal-
istic cooling. In polar regions, the reduction in climatologi-
cal ice thickness in i2 causes additional forecast drift as the
ice grows back. Posteriori lead-dependent drift correction re-
moves most hindcast differences; applications should there-
fore benefit from combining the two products.

The results confirm that the large-scale ocean circulation
exerts strong control on North Atlantic temperature variabil-
ity, implying predictive potential from better synchroniza-
tion of circulation variability. Future development will there-
fore focus on improving the representation of mean state and
variability of AMOC and its initialization, in addition to up-
grades of the atmospheric component. Other efforts will be
directed to refining the anomaly assimilation scheme – to
better separate internal and forced signals, to include land
and atmosphere initialization and new observational types –
and improving biogeochemistry prediction capability. Com-
bined with other systems, NorCPM1 may already contribute
to skilful multiyear climate prediction that benefits society.

1 Introduction

Retrospective predictions have demonstrated potential of
forecasting seasonal-to-decadal climate variations. Particu-
larly for the North Atlantic (Keenlyside et al., 2008; Yea-
ger and Robson, 2017) and partly also for the North Pacific
(Mochizuki et al., 2010), models show robust benefit from
initializing the internal climate variability in forecasting the
upper ocean state several years ahead. Prediction skill in the
ocean gives rise to skill in the atmosphere and over land by
affecting the atmospheric circulation or atmospheric trans-
port of anomalous heat and moisture (Årthun et al., 2018;
Athanasiadis et al., 2020; Omrani et al., 2014; Sutton and
Hodson, 2005). The level of internal climate variability, and
thus potential benefit from initialization, is especially high on
the regional scale, where it has numerous socioeconomic ap-
plications (Kushnir et al., 2019). Comparison of initialized
retrospective predictions with the observed climate evolu-
tion not only provides forecast quality information but also
informs climate change attribution and Earth system model
(ESM) evaluation. Initialized retrospective predictions were
part of the Coupled Model Intercomparison Project phase 5
(CMIP5; Taylor et al., 2012) that provided input to the In-
tergovernmental Panel on Climate Change (IPCC) fifth As-
sessment Report (AR5) (Kirtman et al., 2013). They are also
included in the latest CMIP6 (Eyring et al., 2016), as part of
the Decadal Climate Prediction Project (DCPP; Boer et al.,
2016), feeding into the upcoming IPCC AR6 report.

Current climate prediction systems are thought to not fully
realize the predictive potential on multiyear timescales, al-

though the practical limits of predictability themselves and
their regional variations are poorly known (Branstator et al.,
2012; Sanchez-Gomez et al., 2016; Smith et al., 2020). The
skill of climate prediction depends on the initialization of
internal climate variability state, the representation of the
dynamics and processes that lead to predictability and the
representation of the climate responses to external forcings
(Branstator and Teng, 2010; Latif and Keenlyside, 2011; Bel-
lucci et al., 2015; Yeager and Robson, 2017). Dynamical cli-
mate prediction systems typically use ESMs (initially devel-
oped to provide uninitialized long-term climate projections)
for representing the dynamics and the responses to external
forcings (Meehl et al., 2009; Meehl et al., 2014). Importantly,
the dynamical prediction systems add initialization capabil-
ity to the ESMs, adopting a wide range of initialization strate-
gies (see Sect. 2.2.1) (Meehl et al., 2021). A better under-
standing of the three aspects – initialization, model dynamics
and forcing responses – is fundamental for better exploiting
the climate predictive potential and improving estimates of
climate predictability (Keenlyside and Ba, 2010; Cassou et
al., 2018; Verfaillie et al., 2021). The existing climate pre-
diction systems undersample effects of model and initializa-
tion uncertainty and are not necessarily well suited to address
questions related to changes in the observing system. The
benefits from using advanced data assimilation for initializa-
tion, especially in an ocean density coordinate framework,
are not well explored.

The Norwegian Climate Prediction Model version 1 (Nor-
CPM1) is a new climate prediction system with coupled
initialization capability that features innovations aiming to
reduce initialization shock and forecast drift, and to rig-
orously account for observational uncertainties. NorCPM1
contributes to CMIP6 DCPP using two variants of an
anomaly initialization method (see Sect. 2.2 for details), en-
riching the CMIP6 DCPP repository in terms of model and
initialization diversity as well as simulation ensemble size.
Specifically, it provides output from CMIP standard experi-
ments (including a 30-member ensemble of no-assimilation
historical simulations), two sets of DCPP coupled reanalysis
simulations and two sets of initialized DCPP hindcast sim-
ulations that obtain their initial conditions from the two re-
analysis sets. The output is suited for multi-model studies
that address model and initialization uncertainty in climate
prediction or aim at combining multiple models to achieve
better predictions, and for benchmarking future versions of
NorCPM.

The Norwegian Earth System Model version 1
(NorESM1; Bentsen et al., 2013; Iversen et al., 2013),
the backbone of NorCPM1, has previously contributed
to CMIP5 with climate projections and distinguished it-
self with realistic El Niño–Southern Oscillation (ENSO)
variability (Lu et al., 2018) and a modest historical global
warming trend that favourably compares to observations
(Sects. 2.1.1 and S1 in the Supplement). It also includes a
physical–biogeochemical ocean component with a vertical
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density coordinate and an atmosphere component with
specialized aerosol–cloud schemes. While not included
in this version, current development efforts are directed
towards improving the regional climate representation in
the sub-Arctic and Arctic and exploring benefits for climate
prediction from bias-reduction techniques (Toniazzo and
Koseki, 2018; Counillon et al., 2021), model parameter
estimation (Gharamti et al., 2017; Singh et al., 2021),
upgrades of model physics and resolution (Seland et al.,
2020), improved ocean biogeochemistry (Tjiputra et al.,
2020) and coupling of multiple ESMs (Shen et al., 2016).

NorCPM1 further stands out in that it uses an ensemble
Kalman filter (EnKF; Evensen, 2003) based anomaly DA
scheme that updates unobserved variables in the ocean and
sea ice components (currently, a DA update is not applied to
atmosphere and land) by utilizing the state-dependent covari-
ance information derived from the simulation ensemble, and
it also has a rigorous treatment of observation measurement
and representation errors (see Appendix A for more infor-
mation on the choice of DA scheme). To date, few climate
prediction systems use assimilation schemes of similar com-
plexity, and their implementations differ significantly from
the one used here (see Sect. 2.2.3 for details). NorCPM’s
DA capability is subject to continuous development, and the
system serves as a tool and testbed for new science inno-
vations in the field of DA. Reliable ensemble prediction re-
quires an accurate representation of uncertainty in the initial
conditions and the EnKF provides a mean to achieve this.
The EnKF further allows assimilation of raw observations of
various types and controls the assimilation strength depend-
ing on observational error, their spatial coverage and evo-
lution of the covariance with the state of the climate. In a
Monte Carlo manner, it propagates uncertainty from the pre-
vious assimilation, providing a complete spatiotemporal un-
certainty estimate. The method generates a spread in hind-
cast initial conditions that reflects uncertainties in the ini-
tial conditions, which typically evolve in time and space as
the observational network changes. This makes NorCPM1 a
suitable tool for assessing the impact of observation system
changes on climate prediction. It also limits artefacts due to
over-assimilation of sparse and uncertain observations in the
early instrumental era. By utilizing initial conditions from a
coupled reanalysis that assimilates observational anomalies
into the same ESM as that used in the predictions, the sys-
tem reduces initialization shock and ensures consistency of
initialization anomalies across variables and with the model
dynamics.

NorCPM1 has been developed from a series of prototypes.
In a perfect model framework, Counillon et al. (2014) tested
EnKF anomaly assimilation of synthetic sea surface temper-
ature (SST) observations into the low-resolution version of
NorESM1 and found the system to constrain well oceanic
variability in the tropical Pacific and subpolar North At-
lantic. The system was successively upgraded to the medium-
resolution NorESM1-ME and other features such as the use

of real-world SST observations (Counillon et al., 2016; Wang
et al., 2019; Dai et al., 2020), assimilation of temperature and
salinity profiles (Wang et al., 2017) and optional assimilation
of sea ice concentration observations with strongly coupled
ocean–sea ice state update (Kimmritz et al., 2018, 2019). The
version described in this paper includes further upgrades of
the external forcings to comply with CMIP6, code fixes, re-
tuning of the physics, activation of ocean biogeochemistry
and modifications to the anomaly assimilation scheme. These
are detailed in Sect. 2.

This paper sets out to technically describe NorCPM1 and
its contribution to CMIP6 DCPP and then assess the model’s
fitness of purpose through a broad evaluation of its base-
line climate, and climate reanalysis and prediction perfor-
mance. The paper intends to inform science studies that use
the model’s CMIP6 DCPP output, to provide a synthesis of
past model development and to serve as a baseline for future
development. While presenting a comprehensive reference of
NorCPM1, the paper is organized in a way that makes it easy
to navigate through for readers with focused interest.

The following section describes the ESM component, as-
similation scheme and CMIP6 simulations performed with
NorCPM1. Section 3 evaluates the reanalysis and hindcast
performance of NorCPM1. Section 4 further discusses the
results and related caveats. Section 5 summarizes and con-
cludes the paper.

2 Prediction system and simulations

This section describes the physical model, DA approach and
simulations produced for CMIP6. The prediction setup and
simulations are summarized in a schematic diagram in Fig. 1.

2.1 Norwegian Earth System Model (NorESM)

The Earth system model used in NorCPM1 builds on the
medium-resolution NorESM1-ME that includes a complete
carbon cycle representation, which allows the model to be
run fully interactively with prescribed CO2 emissions. How-
ever, we use prescribed atmospheric greenhouse gas con-
centrations in NorCPM. While previous NorCPM prototypes
(e.g. Counillon et al., 2014, 2016) used the original CMIP5
version, NorCPM1 uses a modified version that has been sub-
ject to CMIP6 forcing updates, minor code changes and re-
tuning (see Sect. 2.1.3). In the following subsections, we will
summarize the main features of the original NorESM1-ME
and then detail the differences to the version used in Nor-
CPM1.

2.1.1 General description

NorESM1-ME (Bentsen et al., 2013; Tjiputra et al., 2013) is
based on the Community Earth System Model (CESM1.0.4;
Hurrell et al., 2013). Its atmosphere component CAM4-
OSLO replaces the original prescribed aerosol formulation
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Figure 1. Schematic of NorCPM1 and its contribution to CMIP6.

of the Community Atmosphere Model (CAM4; Neale et al.,
2010) with a prognostic aerosol life cycle formulation us-
ing emissions and new aerosol–cloud interaction schemes
(Kirkevåg et al., 2013). It also uses a different ocean com-
ponent – the Bergen Layered Ocean Model (BLOM, for-
merly NorESM-O; Bentsen et al., 2013; Danabasoglu et al.,
2014) – that originates from the Miami Isopycnic Coordinate
Ocean Model (MICOM; Bleck and Smith, 1990; Bleck et al.,
1992). The vertical density coordinate of the ocean compo-
nent minimizes spurious diapycnal mixing, improving con-
servation and transformation of tracers and water masses.
BLOM transports biogeochemical tracers of the ocean car-
bon cycle component – the Hamburg Ocean Carbon Cycle
model (HAMOCC; Maier-Reimer et al., 2005) – which has
been coupled to the physical ocean model and optimized for
the isopycnic-coordinate framework (Assmann et al., 2010;
Tjiputra et al., 2013). The Community Land Model (CLM4;
Lawrence et al., 2011) and the Los Alamos Sea Ice Model
(CICE4; Bitz et al., 2012), with five thickness categories and
the elastic–viscous–plastic rheology (Hunke and Dukowicz,
1997), are adopted from CESM in their original form.

The atmosphere and land components are configured on
NCAR’s finite-volume 2◦ grid (f19), which has a regular
1.9◦× 2.5◦ latitude–longitude resolution. The atmospheric
component comprises 26 hybrid sigma–pressure levels ex-
tending to 3 hPa. The ocean and sea ice components are
configured on NCAR’s gx1v6 horizontal grid, which is a

curvilinear grid with the northern pole singularity shifted
over Greenland and a nominal resolution of 1◦ that is en-
hanced meridionally towards the Equator and both zonally
and meridionally towards the poles. The ocean component
comprises a stack of 51 isopycnic layers, with a bulk mixed
layer representation on top consisting of two layers with
time-evolving thicknesses and densities.

2.1.2 CMIP6 forcing implementation

This section details the CMIP6 external forcing implementa-
tion into NorCPM1. Special note is made where the model
setup deviates from the CMIP6 protocol. The updates of ex-
ternal forcing from CMIP5 to CMIP6 are expected to mod-
erately alter the model’s climate mean state, variability and
anthropogenic trends. A detailed assessment of the impacts
of the individual forcing upgrades is beyond the scope of this
overview paper and needs to be addressed in separate studies.

The update that most affects the anthropogenic climate
trend in NorCPM1 compared to the original NorESM1-ME
is likely the change in anthropogenic emissions of aerosols
and aerosol precursors (see Sect. 2.1.1 in Kirkevåg et al.,
2013, for details of NorESM1-ME’s CMIP5 aerosol imple-
mentation and emission datasets). We updated the emissions
of SO2, SO4, fossil fuel and biomass burning of black carbon
(BC) and organic matter (OM) to the CMIP6 pre-industrial
and historical forcing (Hoesly et al., 2018). We used the
Shared Socioeconomic Pathway (SSP) 2-4.5 scenario forc-
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ing, i.e. the “middle-of-the-road” scenario of the SSP2 so-
cioeconomic family, with an intermediate 4.5 W m−2 radia-
tive forcing level by 2100 (Gidden et al., 2019) for the post-
2014 period in accordance with the DCPP protocol (Boer
et al., 2016). BC emissions from aviation, omitted in the
CMIP5 implementation, are now included. The representa-
tions of natural aerosol emissions of biogenic OM and sec-
ondary organic aerosol (SOA) production, dimethyl sulfide
(DMS), tropospheric background SO2 from volcanoes, min-
eral dust and sea salt are kept unchanged.

We updated prescribed atmospheric greenhouse gas con-
centrations (except ozone) to Meinshausen et al. (2017) for
the pre-industrial and historical period and to SSP2-4.5 (Gid-
den et al., 2019) for the post-2014 period. We applied glob-
ally uniform concentrations of the five equivalent greenhouse
gas species (CO2, NH4, N2O, CFC-11 and CFC-12). The
forcing data are at annual resolution and linearly interpolated
between years by the model. Due to a bug in the merging of
historical and future scenario forcing, values for 2015 and
2016 were erroneously set to 2014 values, while from 2017
all values correctly follow the scenario forcing. This results
in a CO2 concentration error of less than 4 ppm, which has a
negligible impact on the radiative forcing evolution but may
impact ocean–atmosphere CO2 flux prediction.

We updated prescribed atmospheric ozone concentrations
to Hegglin et al. (2016) (see also Checa-Garcia et al., 2018)
for the pre-industrial, historical and post-2014 periods. Af-
ter most simulations had been completed, we discovered
that the date in our historical and post-2014 ozone input
files was erroneously shifted by 23 months (e.g. the Jan-
uary 2000 observation is applied in February 1998). As a
result, the model anticipates anthropogenic ozone changes
approximately 2 years too early. The 1-month shift in the sea-
sonal cycle may have dynamical implications particularly for
the stratosphere if compared against the pre-industrial simu-
lation that does not contain the shift.

We updated the solar forcing to the CMIP6 product
(Matthes et al., 2017) as well as the stratospheric vol-
canic forcing (Revell et al., 2017; Thomason et al., 2018).
In NorESM1-ME used in CMIP5, stratospheric volcanic
aerosol loadings were prescribed, and the model then com-
puted the resulting radiative forcing assuming certain aerosol
properties and particle growth. In CMIP6, pre-computed
optical parameters are provided instead and prescribed di-
rectly to the radiation code of the models in order to reduce
inter-model spread in responses. NorCPM1 prescribes a zon-
ally uniform space–time-varying extinction coefficient, sin-
gle scattering albedo and hemispheric asymmetry factor for
14 solar (i.e. shortwave covering infrared, visible and ultra-
violet) and 16 terrestrial (i.e. thermal longwave) wavelength
bands. Despite significant changes between volcanic forc-
ing implementations, we found only minor differences when
comparing the radiative forcing to the 1991 Mt. Pinatubo
eruption, with the CMIP6 implementation producing a less
distinct peak and a wider tail compared to the CMIP5 imple-

mentation (not shown). Additionally, the CMIP6 experimen-
tal protocol now requires the use of a stratospheric volcanic
background forcing (monthly climatology computed from
historical 1850–2000 volcanic forcing) during pre-industrial
and future eras, whereas the use of such background forcing
was optional in CMIP5 and not implemented in the original
NorESM1-ME.

We updated the land surface types and transient land use
to be consistent with the Land-Use Harmonization version
2 (LUH2) dataset (Lawrence et al., 2016). For the post-2014
period, NorCPM1 deviates from the DCPP protocol as it uses
land-use data from SSP3-7.0 scenario (which were the only
LUH2-version land-use scenario data for CLM4 available
to us at that time) instead of the recommended SSP2-4.5.
For CMIP6 DCPP, the main interest is in the historical pe-
riod (1850–2014). From the future scenario, only the period
prior to 2030 is of interest for DCPP decadal outlooks, dur-
ing which time the differences between the SSP scenarios are
still small. We expect this deviation to have a minimal impact
on the outcomes of NorCPM1’s near-future climate outlooks
(note that the greenhouse gas concentrations still follow the
SSP2-4.5 scenario). Data users who specifically investigate
near-future land-use-related climate feedbacks are, however,
advised to either exclude NorCPM1 from their analysis or
take the land-use differences between SSP2-4.5 and SSP3-
7.0 into consideration. A supporting simulation experiment
revealed that the update to LUH2 caused an unrealistic land–
cryosphere cooling trend over the historical period in Nor-
CPM1 (Fig. S3, S4 and text in Sect. S1 in the Supplement).
The cause and ramifications are subject to further investiga-
tion.

Other forcings not mentioned above (e.g. nitrogen deposi-
tion) are kept the same as in the CMIP5 model setup.

2.1.3 Code changes, retuning and equilibration

This section describes code changes unrelated to forcing up-
grades and retuning of NorCPM1 relative to NorESM1-ME
that was necessary due to forcing and code changes.

An error in the aerosol code that caused an overestimation
of the BC load was identified in NorESM1-ME and a cor-
rection has been proposed (details in Graff et al., 2019). The
correction of this error is applied in NorCPM1 and causes a
slight cooling of the climate with a −0.5 ◦C difference in the
Arctic (Fig. S4).

NorESM1-ME featured too-thick sea ice on the shelf seas
of the eastern Eurasian Arctic due to spurious variability in
ocean velocities enhancing ice formation in the region (Se-
land and Debernard, 2014; Graff et al., 2019). Increasing the
built-in velocity damping applied to shallow ocean regions in
MICOM reduces the regional thickness bias in NorCPM1.

NorESM1-ME’s ocean biogeochemistry output has been
subject to substantial grid noise. The noise was traced back
to a local tracer mass correction that was applied because
surface freshwater fluxes do not change the ocean column
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mass in the model. For instance, a positive surface freshwater
flux into the ocean – assuming tracer concentrations of this
flux to be zero – will reduce the ocean tracer concentrations.
Without a compensating increase in column water mass, such
a reduction in concentrations inevitably leads to a reduction
(i.e. non-conservation) in column-integrated tracer mass. The
correction in NorESM1-ME locally scales the tracer concen-
trations such that the column-integrated tracer mass is con-
served for each grid cell. This correction scheme has the
weakness that it produces considerable spatial noise at the
surface and artificial temporal variability and trends in the
deep ocean. These problems are mitigated in NorCPM1 by
replacing the local scaling with a global scaling (i.e. the same
correction scale factor is used for all grid cells) that enforces
global instead of local tracer conservation.

Using the original parameter settings of NorESM1-ME,
the surface climate of the physical component of NorCPM1
drifts towards an unrealistic cold state with exacerbated bi-
ases as a consequence of introducing stratospheric back-
ground volcanic forcing, changing the land surface bound-
ary conditions and correcting the bug in the aerosol code.
To avoid a deterioration of climate performance and to re-
equilibrate the climate, we therefore retuned NorCPM1 rela-
tive to NorESM1-ME. Specifically, we increased the conden-
sation threshold for low clouds (from 90.05 % to 90.08 %)
and also decreased the snow albedo over sea ice by ad-
justing parameters that affect snow metamorphosis (from
r_snw= 0, dt_mlt_in= 1.5, rsnw_mlt_in= 1500 to r_snw=-
2, dt_mlt_in=2.0, rsnw_mlt_in= 2000).

After the retuning, NorCPM1 neither shows obvious cli-
mate improvements nor global-scale deterioration compared
to NorESM1-ME, though some regional differences exist
(see Sect. S1). Since the model characteristics did not sub-
stantially change, we performed only a short pre-industrial
spin-up of 250 years for NorCPM1 – using the year-1000
state of NorESM1-ME’s spin-up (corresponding to the year-
100 state of its CMIP5 pre-industrial control simulation) as
initial conditions – in order to allow the upper ocean, sea ice
and land surface to equilibrate to the model code and forcing
changes.

2.2 Data assimilation (DA)

The decadal hindcasts are initialized from two coupled re-
analyses of NorCPM1 in which monthly anomalies of SST
and of hydrographic profiles are assimilated into NorESM
using anomaly EnKF DA over the period 1950–2018. The
same ESM is used for generating the reanalysis and perform-
ing the decadal hindcasts, limiting adjustments that occur af-
ter the model system is initialized. The following subsections
will present the assimilated data, the DA method, its general
implementation and the treatment of ocean biogeochemistry
during assimilation. A rationale behind the choice of the DA
method is presented in Appendix A.

2.2.1 Assimilated data

For the period 1950–2010, SST data are taken from the
Hadley Centre Sea Ice and Sea Surface Temperature dataset
(HadISST2.1.0.0; John Kennedy, personal communication,
2015; and Nick Rayner, personal communication, 2015) that
has also been utilized in the construction of the coupled re-
analysis CERA-20C (Laloyaux et al., 2018). HadISST2 pro-
vides 10 realizations of monthly gridded SST over 1850–
2010 with a 1◦ resolution. The spread between the realiza-
tions, which depends on time and space, is designed to re-
flect uncertainties in gridding and combining SST in situ ob-
servations, retrievals from AATSR (Advanced Along-Track
Scanning Radiometer) reprocessing and AVHRR (Advanced
Very High Resolution Radiometer) retrievals. We consider
the average and variance of these 10 realizations as the
observations and their error the variance. We use monthly
SST data from the National Oceanic and Atmospheric Ad-
ministration (NOAA) Optimum Interpolation SST version
2 (OISSTV2; Reynolds et al., 2002) for the period 2011–
2018, when HadISST2 data are not available. OISSTV2 pro-
vides weekly SST and weekly observation error variance,
in addition to monthly SST. The observation error variance
of the monthly data is estimated as the harmonic mean of
weekly error variances provided by OISSTV2. We have con-
firmed through a separate reanalysis and set of hindcasts
overlapping between 2006 and 2010 that the transition from
HadISST2 to OISSTV2 does not cause discontinuities nor a
significant change of prediction skill (not shown). SST data
in the regions covered by sea ice are not assimilated; these
regions are identified using the sea ice mask in HadISST2 or
OISSTV2.

Subsurface ocean temperature and salinity hydrographic
profile observations are taken from the EN4 dataset
(EN4.2.1; Good et al., 2013). The EN4 dataset consists of
profile data from all types of ocean profiling instruments,
including those from the World Ocean Database, the Arctic
Synoptic Basin Wide Oceanography project, the Global Tem-
perature and Salinity Profile Program and Argo. The EN4
profile data are available from 1900 to the present, includ-
ing data quality information and bias corrections (Gouretski
and Reseghetti, 2010). Data that lie within the mixed layer of
NorCPM’s first ensemble member are not assimilated in or-
der to maximize the impact of SST assimilation in the mixed
layer. The uncertainty of observed hydrographic profiles is
not available, and we have used the estimate provided by
Levitus et al. (1994a, b) and Stammer et al. (2002).

2.2.2 DA method

The EnKF (Evensen, 2003) is an advanced, ensemble-based
and recursive DA method. One advantage of the EnKF
is its probabilistic nature that provides model uncertainty
quantification through Monte Carlo ensembles (Fig. 1; red
box). Moreover, the EnKF provides multivariate and flow-
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dependent updates, meaning that information is propagated
from the observed variables to the unobserved variables de-
pendent on the evolving state of the climate system; this is
crucial to capture shifts in regimes (Counillon et al., 2016).
To work efficiently, the EnKF needs an ensemble size suffi-
ciently large to span the model subspace dimension (Natvik
and Evensen, 2003; Sakov and Oke, 2008). Localization re-
duces the spatial domain of influence of observation which
drastically reduces the need for a large ensemble size. With
the recent improvements of high-performance computing,
the use of the EnKF for seasonal-to-decadal climate pre-
diction has emerged (Zhang et al., 2007; Karspeck et al.,
2013; Counillon et al., 2014; Brune et al., 2015; Sandery et
al., 2020). Because NorCPM1 performs monthly assimila-
tion updates, the numerical cost for performing the updates
is small compared to the cost of integrating the model.

NorCPM1 uses a deterministic variant of the EnKF
(DEnKF; Sakov and Oke, 2008). The DEnKF updates the
ensemble perturbations around the updated ensemble mean
using an expansion of the expected correction to the fore-
cast. This yields an approximate but deterministic form of
the traditional stochastic EnKF that outperforms the latter,
particularly for small ensembles (Sakov and Oke, 2008).

2.2.3 DA implementation

In order to generate the coupled reanalysis, we assimilate
in the middle of the month all observations available dur-
ing that month and update the instantaneous model state.
Assimilation of monthly SST data implies that the innova-
tion (i.e. observations minus model state) compares variabil-
ity of an instantaneous model snapshot with that of monthly
averaged observations. An alternative has been investigated,
where data have been assimilated at the end of the month
comparing the monthly averaged model output with the SST
data. However, the latter approach shows poorer performance
for reanalysis and no improvements during prediction (Bil-
leau et al., 2016). This suggests that comparing model snap-
shots with monthly data is not a critical approximation for
our system.

We perform anomaly assimilation in which the climatol-
ogy of the observations is replaced by the model clima-
tology. Considering the impact of the choice of the clima-
tology reference period on the performance of reanalysis,
NorCPM1 contributes two coupled reanalysis products to
CMIP6 DCPP, labelled assim-i1 and assim-i2 (see Fig. 1;
Sect. 2.3 for experiment overview). In assim-i1, the cli-
matology is defined over the reference period (1980–2010)
when assimilating EN4.2.1 hydrographic profile data and
HadISST2 data, but over the period 1982–2010 when assim-
ilating OISSTV2 data (i.e. beyond 2010) because OISSTV2
was not available before 1982. The model climatology is cal-
culated from the ensemble mean of NorCPM1’s 30-member
no-assimilation historical experiment (Sect. 2.3). The ob-
served climatology for assimilating hydrographic profile data

is computed from EN4 objective analysis (Good et al., 2013).
In assim-i2, the climatology reference period is 1950–2010.
For the hydrographic profile and HadISST2 data, the clima-
tology is computed for the longer reference period. However,
the climatology for the OISSTV2 data (i.e. after 2010) is cal-
culated from concatenated data of HadISST2 for 1950–1981
(when OISSTV2 is not available) and OISSTV2 for 1982–
2010.

Together with changing the climatology reference period,
we test two versions of the DA system. Time and resource
constraints prevented us from testing these two aspects sep-
arately. In assim-i1, we only update the ocean state based
on oceanic observations. In this case, the system belongs to
the category of weakly coupled DA system (WCDA; Penny
and Hamill, 2017), where the update in the ocean compo-
nent of the system only influences the other components dur-
ing model integration. In assim-i2, we allow the oceanic ob-
servations to update the ocean and the sea ice components.
In this case, the system is a strongly coupled DA system
(SCDA), where the oceanic observations influence the sea
ice component of the system both at the DA step and during
the model integration. To avoid confusion with atmosphere–
ocean SCDA (e.g. Penny et al., 2019), we will refer to
the assim-i2 approach as OSI-SCDA (where OSI stands for
“ocean–sea ice”). The OSI-SCDA approach assures a more
consistent initialization across components and exploits the
longer temporal coverage of oceanic observations relative to
sea ice observations (see also Appendix A). To update the
sea ice state, we follow Kimmritz et al. (2018), where an op-
timal way to update the sea ice state was identified: the EnKF
updates the sea ice concentrations of the individual thickness
categories, while the other sea ice state variables (volume per
thickness category, top surface temperature, snow and energy
of melting) are post-processed to ensure physical consistency
and maximize the benefit of the updates in the sea ice con-
centrations. In particular, the volume of the individual sea ice
category is scaled proportionally to the updated individual
concentration so that the prior individual category thickness
is preserved. This approach ensures that the individual thick-
ness values remain in their prescribed range but still allow a
large reduction of total ice thickness error (Kimmritz et al.,
2018).

The DA scheme updates all ocean physical state variables.
In an isopycnal-coordinate ocean model, the layer thickness
(a time-varying ocean state variable) is by definition always
strictly positive. Due to normality assumptions, the linear
analysis update of the EnKF may return unphysical (neg-
ative) values. To solve this issue, we use the aggregation
method proposed by Wang et al. (2016), in which we iter-
atively aggregate layers in the vertical until no unphysical
value is returned by the EnKF. This scheme does not signif-
icantly increase the computational cost of DA but avoids the
drift in heat content, salt content and mass that would other-
wise be caused.
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The reanalysis system uses 30 ensemble members. The
ensemble size is relatively small compared to the dimen-
sion of the system. In order to limit spurious correlation
caused by sampling error, we use localization (Houtekamer
and Mitchell, 1998). We use the local analysis framework
(Evensen, 2003) in which DA is performed for each horizon-
tal grid cell and that uses only observations around the tar-
geted grid cell to limit spurious correlation as ocean covari-
ance decays with distance. This also reduces the dimension
of the problem. In order to avoid discontinuity in the incre-
ment at the edge of the local domain, we use the reciprocal
of the Gaspari and Cohn function (a function of the distance
between observation location and the target model grid; Gas-
pari and Cohn, 1999) to taper observation error variance (i.e.
to reduce the influence of observations). We taper innovation
and ensemble perturbations with the square root of the Gas-
pari and Cohn function, which is equivalent to the tapering
of observation error variance. The localization radius used in
NorCPM1 is a bimodal Gaussian function of latitude with a
local minimum of 1500 km at the Equator where covariances
become anisotropic, a maximum of 2300 km in the midlati-
tudes and another minimum in the high latitudes where the
Rossby radius is small (Wang et al., 2017).

Observation errors are assumed to be uncorrelated. For the
SST product, this assumption clearly fails because the SST
data are the result of an analysis. We have therefore decided
to only assimilate the nearest SST data. For the observed hy-
drographic profile, the independence of observation errors is
more plausible. The observation error for the profile is con-
sidered to be the sum of the instrumental error (defined as in
Levitus et al., 1994a, b, and Stammer et al., 2002) and the
representativity error accounting for the model unresolved
processes and scales. As detailed in Wang et al. (2017), the
representativity error is estimated offline from the innova-
tion and the ensemble spread of the 30-member historical
experiment, to ensure that the reliability of the ensemble is
preserved (i.e. the truth and the ensemble members can be
considered to be drawn from the same underlying proba-
bility distribution function). The profile observation error is
inflated by a factor of 3 in sea-ice-covered regions where
the observation climatology critical for anomaly assimila-
tion is highly uncertain because of the lack of observations.
When there are several observations falling within the same
grid cell, these observations are “superobed”: all observa-
tions falling within the same grid cell are averaged and the
instrumental error variance is reduced as the harmonic sum
of the individual instrumental error variances (Sakov et al.,
2012). Note that the representativity error term mainly re-
lates to the capability of the model to represent the truth and
is thus not reduced by the superobed technique.

As further detailed in Sect. 2.3, the initial ensemble used
at the start of the reanalyses (year 1950) is branched from a
30-member historical experiment. The historical experiment
was initialized in 1850 from the end of a pre-industrial spin-
up simulation (Sect. 2.1.3), with initial ensemble spread be-

ing generated by adding small random noise O(10−10 K) to
the ocean temperatures and then integrated for 100 years, al-
lowing the spread to grow. This approach ensures that the
initial ensemble spans sufficient spread in the interior of the
ocean needed for a well-calibrated EnKF and that each mem-
ber is synchronized with respect to the timing of the external
forcing. To avoid an abrupt start of the assimilation, the ob-
servation error variance is inflated by a factor of 8 during the
first assimilation update; every two assimilation updates, the
factor is decreased by one until it reaches 1, as suggested by
Sakov et al. (2012). The ensemble spread is sustained during
the reanalysis using the following inflation techniques. The
DEnKF (Sect. 2.2.2) limits the need for inflation to some ex-
tent. We use the moderation technique of Sakov et al. (2012)
– while the ensemble mean is updated with the observation
error variance, the ensemble spread is updated with the ob-
servation error variance by a factor of 4. We also use pre-
screening of the observation; i.e. the observation error vari-
ance is inflated so that the analysis remains within 2 standard
deviations of the forecast error from the ensemble mean of
the forecasts.

2.2.4 Treatment of ocean biogeochemistry

Fransner et al. (2020) showed with perfect model predic-
tions using NorESM1-ME that the initial state of the biogeo-
chemical tracers has a negligible impact on the predictabil-
ity of ocean biogeochemistry beyond lead year 1. During the
assimilation process, the thickness of the isopycnal layers
changes, while the tracer concentrations on the layers remain
unchanged, meaning that we allow assimilation to change the
mass at every location. However, this does not introduce a
drift as long as the analysis is unbiased (i.e. the assimilation
does not systematically pull the model climate in one direc-
tion). This was verified with a 10-year long twin experiment
where SST from a pre-industrial control run was assimilated
every month into a run with 30 members. The total change in
the biogeochemical tracer mass over this period was negligi-
ble; the largest drift was found for silicate that corresponded
to 0.5 % of its global mass. With this approach, the global
near-surface primary production approached that of the con-
trol run, showing that there is a good potential for constrain-
ing biogeochemical variability by assimilating SST only in
our model setup. This might be improved by the additional
assimilation of sea ice and temperature and salinity profiles.
Other studies have shown that assimilation of ocean physics
improves the representation of ocean biogeochemistry (e.g.
Séférian et al., 2014; Li et al., 2016).

2.3 CMIP6 simulations

Figure 1 provides a schematic overview of NorCPM1’s sim-
ulations prepared for CMIP6, including their temporal cover-
age and initialization relations. We will base our model ver-
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ification and evaluations on these simulations. They can be
summarized in four groups.

The Diagnostic, Evaluation and Characterization of Klima
(DECK) baseline experiments comprise a coupled control
experiment with fixed pre-industrial forcings (piControl), an
idealized 1 % per year CO2 increase experiment (1pctCO2),
an abrupt 4 times CO2 experiment (abrupt4XCO2) and a
forced atmosphere experiment with prescribed observed evo-
lution of SST and sea ice (amip). NorCPM1’s piControl fea-
tures three realizations to better allow time-evolving assess-
ment of model drift. The second and third realizations start
from the same initial conditions as the first realization (taken
from the end of a long spin-up) but with small random noise
O(10−10 K) added to the atmospheric temperature field. amip
features 10 realizations (matching the ensemble size of the
decadal hindcasts) with slightly perturbed atmospheric ini-
tial states. 1pctCO2 and abrupt4XCO2 feature one realiza-
tion each.

The historical experiment features 30 realizations that are
used for initializing NorCPM1’s assimilation experiments,
for constructing the climate anomalies of the assimilation
experiments and also serve as a benchmark for the initial-
ized hindcasts. The simulations are initialized from the same
restart from piControl, with ensemble spread generated by
adding small perturbations to the mixed layer temperatures
(details in Sect. 2.2.3). In that way, we avoid contaminating
influence of model drift on the ensemble spread that would
occur if the restart conditions of piControl were sampled.
historical-ext extends the historical simulations from 2015 to
2029 using SSP2-4.5 scenario forcing (Sect. 2.1.2) to cover
the time period of the hindcast and future outlook experi-
ments. Hereafter, historical refers to the combined historical
and historical-ext experiment.

The DCPP simulations comprise two sets of assimilation
simulations (dcppA-assim), hereafter referred to as assim-i1
and assim-i2, with 30 ensemble members per set. The simu-
lations are initialized from 1 January 1950 states of historical
and integrated until 15 January 2019.

The DCPP simulations further comprise two sets of
decadal hindcast simulations (dcppA-hindcast), hereafter re-
ferred to as hindcast-i1 and hindcast-i2, that each feature 10
ensemble members per start date, with one start date per year
from 1960 to 2018. The 15 October states of the first 10
members of assim-i1 and assim-i2 are used to initialize corre-
sponding members of hindcast-i1 and hindcast-i2. However,
we will in the following refer to 1 November as the initializa-
tion day because the assimilation update on 15 October uses
observations from the entire month of October. The hindcast
simulations are integrated for a total of 123 months to cover
10 complete calendar years.

3 Verification and evaluation

In this section, we evaluate NorCPM1’s reanalysis perfor-
mance (Sect. 3.1) and hindcast performance (Sect. 3.2) based
on the CMIP6 output. We measure skill and skill differences
with anomaly correlation coefficients (ACCs) and anomaly
correlation coefficient differences (1ACCs) (for details and
discussion of the skill metrics, see Appendix B and Sect. 4).
An additional evaluation of the ESM, focusing on its clima-
tology and variability characteristics, is presented in Sect. S1.

3.1 Reanalysis performance

We evaluate the performance of the assim-i1 and assim-
i2 reanalyses that span the period 1950–2018 and provide
the initial conditions for the decadal hindcast experiments
hindcast-i1 and hindcast-i2. The following subsections cover
global assimilation statistics, the impact of assimilation on
the model mean states and synchronization of variability for
the different components of the climate system.

3.1.1 Global assimilation statistics

We use the innovation to monitor the performance of assim-
ilation over time (Sakov et al., 2012; Counillon et al., 2016),
which is defined as the ensemble mean of the model forecast
state (at assimilation time on the observational grid) minus
the observation. In combination with the ensemble spread
and the observation error standard deviation, it can be used
to assess the reliability of the ensemble system (Sakov et al.,
2012). Ideally, the reliability is checked for each grid cell.
Under an ergodicity assumption, we define global statistics
based on innovation as follows:
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where ai is the area of the model grid cell i where the grid-
ded observation is located, wi is the area weight, di is the
innovation, σ f

i is the ensemble spread (standard deviation)
of forecasts, and σ o

i is the standard deviation of observa-
tion error at the grid cell i at a given time. The observations
are binned onto the model grid and into 42 depth bins that
are also used to bin the model data. In a perfectly reliable
system, the RMSE d̂ matches σ t, i.e. the forecast ensemble
spread combined with the observational error. Figure 2 shows
the time evolution of the innovation statistics for SST, ocean
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Figure 2. Global assimilation statistics (see Sect. 3.1.1 for defini-
tions). Bias d (dashed red lines), ensemble spread (σ f; blue lines),
observation error (σ o; green lines), RMSE (d̂; solid red lines) and
the total error (σ t; pink lines) for SST (a), ocean temperature (b)
and ocean salinity (c).

temperature and salinity in assim-i1 (the evolution in assim-
i2 is similar to that in assim-i1 and therefore not shown).

For SST (Fig. 2a), d̂ is stable with an accuracy of ap-
proximately 0.5 K. The bias d is stable as well, fluctuating
around zero. This is expected as we use anomaly assimila-
tion (with the bias estimated from the historical experiment
that does not use assimilation). It also indicates that the as-
similation with a monthly cycle largely eliminates the con-
ditional bias, caused by model error in the sensitivity to the
forcing and thus corrects the forced long-term trends. The
ensemble spread σ f is also relatively stable. There is a drop
in observation error standard deviation σ o in 1982 with the
emergence of satellite measurements and in 2011 with the
transition from HadISST2 to OISSTV2 (see Sect. 2.2.2). The
reliability of the system is good until 1982 (compare blue
and magenta curves), but then σ t drops slightly below d̂ in-
dicating that the introduction of satellite data overly reduces
the observational error estimates applied during assimilation.
When the observation error reduces, the model accuracy does
not increase accordingly, most likely because the model fails
to represent features seen in the observations. Adding a rep-
resentativity error during the satellite era to improve the reli-
ability should be explored in future development.

For ocean temperature (Fig. 2b), the RMSE d̂ decreases
over time from 1.5 to 1.2 K. The bias d is positive prior to
1970 but near zero afterwards. The distribution of the obser-
vations prior to 1970 is considerably uneven with a predom-
inance in the North Atlantic region and the bias d does not
reflect the globally averaged bias. The total error standard de-
viation σ t is smaller than the RMSE, suggesting that the en-
semble system overestimates its accuracy (i.e. the ensemble
spread is too small). For ocean salinity (Fig. 2c), the RMSE
d̂ is stable prior to 2000 and after 2005. The decrease in the
RMSE d̂ in the period 2000–2005 is due to the introduction
of Argo floats. There is a negative bias d in salinity prior to
2000. The bias d remains negative but is relatively small after
2000. As for ocean temperature, there is a mismatch between
the RMSE d̂ and total error standard deviation σ t indicating
that the system is overconfident.

3.1.2 Effect of assimilation on mean state

Anomaly assimilation should by design have a negligible ef-
fect on the climate mean state. Non-linear propagation of the
assimilation updates between the assimilation updates can,
however, yield a post-assimilation change in the mean state
in regions where there are no observations. Furthermore,
assim-i1 and assim-i2 are not using the same reference pe-
riod (1980–2010 versus 1950–2010) and thus differences in
the mean state can occur as because of different sampling of
internal multidecadal climate variability in the observations
and due to errors in the model’s forced climate trend. Addi-
tionally, in the computation of observational profile anoma-
lies, we subtracted the climatology of the objective EN4 anal-
ysis, which is inaccurate in regions with sparse data cover-
age. This can further impact mean states of the reanalyses.

We verify the effect of DA on the climatology by com-
paring mean state biases of our two assimilation products
with those of the historical experiment (Fig. 3). The mean
state changes due to assimilation in upper ocean temperature
(T 300) and salinity (S300) averaged over the top 300 m, sea
surface height (SSH) and surface air temperature (SAT) are
generally an order of magnitude smaller than the absolute bi-
ases of historical. The relative impact of DA on the biases is
thus mostly below 10 % of its absolute magnitude. An excep-
tion is the Arctic, where the assim-i2 assimilation increases
the S300 bias and decreases the SAT bias. This is consistent
with that the assim-i2 assimilation tends to remove sea ice
mass, leading to higher SAT because of the thinner ice and
higher surface salinity because the model tries to grow back
sea ice, ejecting salt during that process. Despite assimilat-
ing climate anomalies, the sea ice update in assim-i2 largely
reduces the climatological sea ice thicknesses towards more
realistic values, whereas the climatology of assim-i1 remains
unchanged (Fig. 4). In a similar NorCPM version with clima-
tologically too-thick Arctic sea ice, Kimmritz et al. (2019)
found anomaly assimilation of observed sea ice concentra-
tion (updating the area in different thickness categories of the
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model using OSI-SCDA) to yield large reductions in total ice
thickness error. Here, we show that similar bias reduction is
achieved by a strongly coupled update of the sea ice states us-
ing ocean observations. The exact reason for this behaviour
is subject to further investigation.

The effect the assimilation has on the mean state of nutri-
ents was assessed by investigating the difference between the
ensemble means of historical and assim-i1 (Fig. 5a–c, e–g).
From previous studies (While et al., 2010; Park et al., 2018),
we know that the equatorial regions are the most susceptible
to errors originating from assimilation of physical variables.
However, since sea ice, an efficient blocker of sunlight, is up-
dated by weakly coupled DA, some differences in the polar
region are also expected. There is indeed an increase in pri-
mary production in the polar regions in the respective sum-
mers of each hemisphere. On average, there is an increase in
nutrients in the Arctic, indicating that part of the increase in
productivity is caused by an increase in mixing as the ocean
is exposed to the atmosphere. There are very small differ-
ences in the mean nutrients in the Southern Ocean.

Some impact of DA on the mean state of assim-i1 is
also seen in the surface waters of the tropical oceans; these
changes do not have a pronounced seasonal variation. The
largest changes to the surface nitrate and phosphate occurred
in the eastern Pacific, while for silicate there was also an
increase in the concentration in the Bay of Bengal. The in-
crease in silicate in the Bay of Bengal occurs throughout the
water column; there is also a similar increase in the water
column of the western Tropical Pacific. For nitrate and phos-
phate, the increase in concentration is confined to the up-
per 500–1000 m. At the surface and down to about 1000 m,
all three nutrients have increased concentrations along the
Equator. Below 1000 m, in the eastern equatorial Pacific ni-
trate has increased concentration, while silicate and phos-
phate have decreased concentrations compared to histori-
cal. An increase in nitrate with a simultaneous decrease in
silicate indicates that there is some movement in the water
masses that leads to decreased silicate and phosphate and at
the same time an increase in oxygen in assim-i1 (Fig. 5d,
h); this reduces the denitrification that occurs below the ther-
mocline in the tropical Pacific. Furthermore, we compared
the magnitude of the computed ensemble mean differences
between assim-i1 and historical along the Equator with the
variability of the historical ensemble. The changes are al-
ways within 1 standard deviation of the ensemble variability
– i.e. small relative to the internal variability – except for
oxygen in a small region at around 2000 m in the equatorial
Atlantic where there is a large increase in oxygen. We there-
fore conclude that the changes to nutrients in assim-i1 are
caused by changes to circulation and temperature and not by
unphysical mixing caused by the assimilation.

3.1.3 Physical ocean variability

We first evaluate the synchronization of physical ocean vari-
ability globally at grid scale interpolated to 5◦× 5◦. Fig-
ure 6 shows ACCs for annual SST, T 300, S300 and SSH
for assim-i1 along with1ACCs for assim-i1 – historical and
assim-i2 – assim-i1. The ACCs for assim-i1 are high and
statistically significant across variables in most regions. The
1ACCs for assim-i1 – historical show that the assimilation
of ocean data significantly improves the synchronization of
SST, T 300 and S300 with observations in most regions. Sig-
nificant improvements for T 300 are in the Pacific and North
Atlantic. The improvements for S300 are similarly high and
largest in the Arctic, albeit showing localized degradation in
some coastal regions. For SSH, ACCs are increased in the
subpolar North Atlantic (SPNA), tropical Pacific and Indian
oceans, but decreased in the South Atlantic due to the fact
that the long-term trend is degraded by the weakly coupled
DA in the assim-i1 system (not shown). Missing contribu-
tions from land ice in the model possibly play a role in the
degradation. The small 1ACCs for assim-i2 – assim-i1 sug-
gest that the choice of the climatology reference period does
not play an important role for the overall performance of the
reanalysis in terms of variability. Significant differences ap-
pear close to the sea-ice-covered areas and are thus likely re-
lated to the sea ice state updated via OSI-SCDA in assim-i2.
However, we have limited confidence in the EN4 objective
analysis that we used for validation in ice-covered regions
where subsurface observations are sparse.

We evaluate the effect of assimilation on large-scale cli-
mate indices of leading modes of variability (Fig. 7). The
North Atlantic subpolar gyre (SPG) circulation exerts strong
control on subpolar North Atlantic (SPNA) temperature vari-
ations (e.g. Häkkinen and Rhines, 2004), affects the Atlantic
meridional overturning circulation (AMOC) by regulating
the poleward transport of Atlantic water (Hátún et al., 2005)
and has a wide range of marine environmental impacts (e.g.
Hátún et al., 2016). The SPG circulation index is here defined
as the anomalous SSH averaged over the SPNA box (48–
65◦ N, 60–15◦W) (Lohmann et al., 2009). A positive (neg-
ative) SPG index reflects a weak (strong) barotropic mass
transport in the SPNA region that usually coincides with a
warm (cold) SPNA. We note that more elaborated index def-
initions based on principle component analysis of SSH and
subsurface density are likely to capture circulation features
and associated water mass variability better than our simple
index (Koul et al., 2020). Figure 7a shows the SPG index
over 1950–2018 in historical, assim-i1, assim-i2 and obser-
vations (altimetry data available from 1993). The observed
SPG index exhibits an abrupt shift from a strong to a weak
circulation around 1995, that has been linked to direct North
Atlantic Oscillation (NAO) influence (Häkkinen and Rhines,
2004; Yeager and Robson, 2017) and NAO-related precon-
ditioning of the ocean circulation state (e.g. Lohmann et al.,
2009; Robson et al., 2012). The ensemble mean of the histor-
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Figure 3. Annual-mean climatological biases for T 300 (a–c), S300 (d–f), SSH (g–i) and SAT (j–l). Biases of historical (top row), differences
between absolute biases in assim-i1 and historical (middle row), differences between absolute biases in assim-i2 and assim-i1 (bottom row).
Cold colours imply bias improvement. The EN4.2.1 objective analysis (Good et al., 2013) is used to estimate the biases of T 300 and S300
over 1950–2018. The global 3-D thermohaline field reprocessed dataset (ARMOR-3D L4; Larnicol et al., 2006) is used to estimate the biases
of SSH over 1993–2018. The Hadley Centre – Climate Research Unit Temperature dataset version 4 (HadCRUT4) (Morice et al., 2012) is
used to estimate the biases of SAT over 1950–2018.

Figure 4. November–March climatological biases of sea ice thickness (SIT) in historical (a), assim-i1 (b) and assim-i2 (c). The observational
reference combines C2SMOS (Ricker et al., 2017), Cryosat2 (Hendricks et al., 2018a) and Envisat (Hendricks et al., 2018b) over the period
2002–2018.

ical ensemble does not show the shift, but a slow long-term
increase likely related to anthropogenic global sea level rise.
The min–max range of the historical ensemble nevertheless
bounds the observed SPG index, suggesting that the model
range of variability is not inconsistent with the observed tra-

jectory. The ensemble means of assim-i1 and assim-i2 show
pronounced strong and weak SPG index phases and match
well the observed SPG index changes during 1993–2018.
Their simulated weak phase during 1950–1970 and strong
phase during 1980–1997 are also in good agreement with
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Figure 5. Difference between the three nutrients – nitrate (a, e), silicate (b, f) and phosphate (c, g) – as well as oxygen (d, h) between
assim-i1 and historical. Positive values means that the assimilation run has increased values. The left column shows the difference at 100 m
depth and the right column shows the difference at a section along the Equator. The plots are based on the mean from the period 1950–2018.

other model studies (e.g. Msadek et al., 2014). The ensem-
ble ranges of assim-i1 and assim-i2 are much smaller than
that of historical, indicating the ensemble members are well
synchronized by the assimilation. Despite showing similar
decadal-scale variability, assim-i1 and assim-i2 have differ-
ent means and long-term trends. The stronger SPG circula-
tion of assim-i2 goes in tandem with a stronger AMOC, and
it is likely that these two are related (Eden and Willebrand,
2001; Eden and Jung, 2001; Böning et al., 2006).

The strength of AMOC is measured continuously from
April 2004 at 26.5◦ N by a joint US–UK Rapid Climate
Change – Meridional Overturning Circulation and Heat flux
Array (RAPID-MOCHA; Johns et al., 2011). Accordingly,
we define the AMOC index as the yearly anomalies of over-

turning transport maximum at 26.5◦ N. Figure 7b shows the
AMOC indices of historical, assim-i1 and assim-i2 and ob-
servations. The ensemble mean of historical, a measure for
the simulated anthropogenic trend, rises before the mid-70s
and then slowly declines. In contrast, the two assimilation
products show a weakening before the mid-70s, followed by
a strengthening that is consistent with a dominantly positive
observed NAO during that period (Robson et al., 2012; Yea-
ger and Robson, 2017; Zhang et al., 2019). The simulated
AMOC strongly declines after 2005, though not as rapidly
as in the observations, and flattens after 2010. Similar results
have been shown in previous studies (e.g. Keenlyside et al.,
2008; Karspeck et al., 2017). As for SPG circulation, assim-
i1 and assim-i2 show similar multiyear AMOC variations but

https://doi.org/10.5194/gmd-14-7073-2021 Geosci. Model Dev., 14, 7073–7116, 2021



7086 I. Bethke et al.: NorCPM1 and its contribution to CMIP6 DCPP

Figure 6. ACC for annual SST (a), 0–300 m temperature (b), 0–300 m salinity (c) and sea surface height (d) for assim-i1.1ACC for assim-i1
– historical (e–h), assim-i2 – assim-i1 (i–l). Temporal coverage is 1950–2018 for SST (ERSSTv5; Huang et al., 2017) and temperature and
salinity (EN4.2.1; Good et al., 2013) observations, and 1993–2018 for sea surface height (ARMOR-3D; Larnicol et al., 2006). Hatched areas
are not locally significant; dotted areas are field significant.

different long-term trends. Most notably, assim-i1 stays be-
low the ensemble mean of historical over the entire period,
while assim-i2 surpasses historical around 1990, which is
more consistent with the anomalously strong AMOC during
the mid-90s SPG shift. Results from a supporting experiment
suggest that the stronger circulation in assim-i2 is primarily
caused by the different climatological period but also partly
by the OSI-SCDA update of sea ice (Fig. S8 and related text
in Sect. S2).

The Atlantic Multidecadal Oscillation (AMO) – or At-
lantic Multidecadal Variability – refers to large-scale, low-
frequency SST variations in the North Atlantic, with link-
ages to AMOC variability (Keenlyside et al., 2015; Yeager
and Robson, 2017). Following Enfield et al. (2001), we de-
fine the AMO index as the 10-year running mean of linearly
detrended SSTs averaged over the entire North Atlantic (0–
65◦ N, 0–80◦W). Figure 7c shows the index in observations,
historical, assim-i1 and assim-i2. In agreement with obser-

vations, the indices of all three experiments are in a warm
phase during 1950–1965 and 1995–2018 and a cold phase
during 1965–1995. However, the historical ensemble mean
(representing the forced response of the model) underesti-
mates the amplitude, exhibits a longer cold phase as well as
an upward trend after 2010, when observations show a down-
ward trend. As a result of assimilating SST observations, the
AMO indices of assim-i1 and assim-i2 both follow the ob-
served index with only minor departures. assim-i2 shows a
slightly weaker post-2000 downward trend than assim-i1 and
observations, either related to differing sea ice behaviour or
differences in AMOC.

While ocean dynamics in the Atlantic basin give rise to
multiyear climate predictability, ENSO variability is an im-
portant source for seasonal and interannual predictability.
The ESM features realistic ENSO characteristics (Figs. S5,
S6 and text in Sect. S1). But how well do monthly DA up-
dates synchronize the model’s ENSO variability with the ob-
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Figure 7. Anomaly time series for selected large-scale indices. (a) Annual-mean subpolar gyre (48–65◦ N, 60–15◦W) SSH with ARMOR-
3D L4 observations (Larnicol et al., 2006). (b) Annual-mean AMOC strength at 26.5◦ N with RAPID observations (Johns et al., 2011).
(c) Monthly Niño 3.4 index with HadISST observations (Rayner et al., 2003). (d) Atlantic Multidecadal Oscillation (AMO) index computed
as the 10-year running mean of detrended SST averaged over the North Atlantic (0–65◦ N, 0–80◦W), with HadISST observations. (e) Global-
mean SST with HadISST observations (Rayner et al., 2003). (f) Global-mean SAT with HadCRUT4 observations (Morice et al., 2012). In
all panels, the 1950–2018 climatology of historical is removed from historical, assim-i1 and assim-i2. Observations in panels (a) and (b) are
shifted to align their time mean with assim-i1. Observations in panels (c), (d), (e) and (f) are relative to 1950–2018 climatology.

served one? Figure 7d shows the monthly Niño 3.4 – com-
puted as the average of SST in the region 5◦ S–5◦ N, 120–
170◦W – for historical, assim-i1 and assim-i2 and HadISST.
Both assim-i1 and assim-i2 accurately reproduce the ob-
served index, showing a perfect match of the large 1998 event
but slightly underestimate other peaks. We attribute the good
performance to DA in NorCPM1 constraining well thermo-
cline depth (equivalent to warm water volume) in the equa-
torial Pacific that is critical to develop ENSO events (Meinen
and McPhaden, 2000; Wang et al., 2019). The Niño 3.4 in-
dices of assim-i1 and assim-i2 are almost identical, meaning
that the climatology reference period defined in anomaly as-
similation and the jointly updated sea ice state have little im-
pact on the equatorial Pacific. The ensemble mean of histori-
cal has a smaller amplitude and is only marginally correlated
with the observed index (r = 0.2, p = 0.085, alpha= 0.1),
suggesting a potential small contribution from external forc-
ing.

Last, we consider the effect of assimilation on the global-
mean SST representation. Figure 7e shows the anomalies of
global-mean SST evolution for historical, assim-i1, assim-
i2 and HadISST. historical captures the long-term warming

trend and some shorter volcanic cooling events (e.g. after the
1963 Mt. Agung and 1991 Mt. Pinatubo eruptions). assim-
i1 and assim-i2 additionally capture the high-frequency vari-
ability on top of the forced signal. The assimilation exper-
iments show minor discrepancies with respect to observa-
tions, such as a too-weak post-eruption Mt. Pinatubo recov-
ery and a seemingly underestimated 1998 El Niño imprint on
global-mean SST. assim-i2 exhibits a slightly more positive
trend after 2010 compared to assim-i1, which likely is the
imprint of the more positive trend in AMO on global-mean
SST. The behaviour of global-mean SAT (Fig. 7d) is similar
to that of SST and will be further addressed in Sect. 3.1.6.

3.1.4 Ocean biogeochemistry variability

The correlation skills of annual-mean primary production
(PP), pCO2 and air–sea CO2 fluxes for the assimilation ex-
periments are shown in Fig. 8. For PP, the total skill (with
contribution from external forcing) is high and field signifi-
cant in the tropical Pacific and Indian oceans, with some skill
in the subtropical oceans. The1ACCs between assim-i1 and
historical, measuring assimilation benefit, are not field sig-
nificant and smaller in value than the ACCs of assim-i1, in-
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dicating that most skill comes from the external forcing. Still,
large regions in the tropical Pacific and Indian oceans feature
high 1ACCs that are locally significant. The 1ACCs be-
tween assim-i2 and assim-i1 are generally small. The largest
differences are found in the polar regions, although precau-
tion should be taken when evaluating the PP in these regions
due to the low coverage of satellite data.

For the CO2 fluxes and pCO2 (linearly detrended), the
total skill is high and field significant over the tropical and
subtropical oceans. Exceptions are eastern part of the tropi-
cal Pacific, and the southern subtropical Pacific for the CO2
fluxes. For CO2 fluxes, there is also high skill in the southern
part of the Southern Ocean and in the Nordic Seas. This is not
the case for pCO2, which suggests that part of the CO2 flux
skill might be related to successful synchronization of sea
ice variability. As for PP, the 1ACCs relative to historical
are considerably smaller than the ACCs of assim-i1, despite
the linear detrending that was applied to the CO2 fields be-
fore the ACC computation. The 1ACCs remain field signifi-
cant in parts of the subtropical and tropical oceans, although
with a reduced westward extension of the skilful areas. Con-
trary to expectation, the SPNA shows little skill. As for PP,
skill differences for CO2 fluxes and pCO2 are small between
assim-i1 and assim-i2.

3.1.5 Sea ice variability

We evaluate the success of our assimilation in phasing sea
ice variability. We use ACC maps of annual-mean sea ice
concentration and HadISST (Rayner et al., 2003) data from
1950–2018 as a benchmark (Fig. 9).

Over the Arctic, assim-i1 features overall high skill. While
much of this skill is from the externally forced trend, posi-
tive assim-i1 – historical 1ACCs show that ocean DA con-
siderably improves the agreement in the marginal ice zones.
Positive 1ACCs for assim-i2 – assim-i1 show that updating
the sea ice state via OSI-SCDA of ocean observations further
improves the agreement, including over the central Arctic.

Over the Antarctic, assim-i1 shows modest to high skill
and only isolated negative ACCs. Strikingly, the assim-i1
– historical 1ACCs are as high or higher than the abso-
lute ACCs of assim-i1. This means that assimilation corrects
for the negative trend in the historical ensemble. OSI-SCDA
again improves the skill (Fig. 9f), especially close to the coast
where the ACCs of assim-i1 are low or negative (Fig. 9b).

3.1.6 Atmosphere variability

Because our DA is weakly coupled with respect to the atmo-
sphere, we expect a partial synchronization of atmospheric
variability from the combined influence of the ocean surface–
sea ice states and the external forcings. The reanalysis perfor-
mance provides a hypothetical upper bound for the achiev-
able atmospheric–land prediction skill with our system, as-
suming close-to-perfect prediction of ocean variability and

skilful prediction of sea ice variability. We assess the syn-
chronization of atmospheric variability with ACCs of annual-
mean SAT, precipitation over land (PR), sea level pressure
(SLP) and 500 hPa geopotential height (Z500) for assim-i1
(Fig. 10a–d). We also consider1ACCs for assim-i1 – histor-
ical and assim-i2 – assim-i1 to isolate skill contribution from
DA and skill differences between two reanalysis products.

For SAT, the ACCs of assim-i1 are high over both ocean
and land. Most of the DA benefit is located over the oceans,
as revealed by the 1ACCs for assim-i1 – historical, with
benefits over land mainly found in the tropical regions and
also over northwest North America, i.e. regions that are
strongly affected by ENSO variability. assim-i2 does not
show any significant skill improvement over assim-i1, de-
spite the sizable improvements in sea ice variability when up-
dating the sea ice state via OSI-SCDA. This is likely because
the improvements in sea ice extent (Fig. 9) occur mostly dur-
ing summer when they have little impact on surface tempera-
tures (Deser et al., 2010). For global-scale SAT synchroniza-
tion, the global warming hiatus at the beginning of the 21st
century, which has been attributed to both internal variability
and external forcing (e.g. Medhaug et al., 2017), makes an
interesting test case. Figure 7f shows that global-mean SAT
anomaly of assim-i1 reproduces well the flat post-2000 trend
of the observations, while assim-i2 and historical continue
to warm, consistent with their AMO and AMOC evolution.
The better match of assim-i1 with observed global-mean SAT
does not necessarily imply that assim-i1 is more correct than
assim-i2. It is possible that assim-i1 makes up for a missing
post-2000 cooling signal over the continents by an unrealistic
low reduction of winter sea ice thickness during that period,
something that warrants further investigation.

For PR over land, the ACCs of assim-i1 are overall pos-
itive. The 1ACCs for assim-i1 – historical show similar
strength and pattern, indicating a limited contribution to the
ACCs of assim-i1 from the anthropogenically driven spin-up
of the hydrological cycle. The 1ACCs for assim-i2 – assim-
i1 do not suggest statistically significant performance differ-
ences between the two products.

For SLP, the ACCs of assim-i1 are most positive over the
low and high latitudes and less positive over the midlatitudes,
with slightly negative values over the Southern Ocean and
Eurasia. The 1ACCs for assim-i1 – historical suggest that a
large portion of the positive skill can be attributed to DA, in-
cluding benefits over the North Pacific that stretch over North
America and also over the SPNA, consistent with ENSO in-
fluence. However, DA seems to cause degradation over the
subtropical North Atlantic, central Europe, Siberia and East
Asia. The 1ACCs for assim-i2 – assim-i1 reveal that updat-
ing sea ice improves SLP performance over the Arctic. DA
also seems to partly mitigate the skill deficit over central Eu-
rope while degrading skill further east.

For Z500, the correlation skill of assim-i1 is virtually sat-
urated over the tropics, decreases towards the midlatitudes
and again slightly increases towards the poles. While modest
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Figure 8. ACC for annual primary production (a), CO2 flux (b) and surface pCO2 (c) for assim-i1. 1ACC for assim-i1 – historical (d–f),
assim-i2 – assim-i1 (g–i). Temporal coverage is 1998–2018 for observed primary production (GlobColour; Garnesson et al., 2019) and 1982–
2017 for CO2 flux and surface pCO2 (SOCCOM; Landschützer et al., 2019). The linear trend has been removed from the data. Hatched
areas are not locally significant; dotted areas are field significant.

1ACCs for assim-i1 – historical indicate that external forc-
ing contributes significantly to high tropical skill, DA leads
to consistent skill enhancement in those regions. One should
note that a change in correlation from 0.6 to 0.9 equates
to more than doubling in explained variance from 36 % to
81 % (estimated by the square of the correlation). Hence, the
benefit from DA is more substantial than the 1ACCs alone
would suggest. Significant skill enhancement is also present
over the mid-to-high latitudes, presumably related to ENSO
influence on the extratropical atmospheric circulation. The
1ACCs for assim-i2 – assim-i1 indicate weak improvement
over the polar regions, albeit not statistically significant, and
no signs of degradation, as a consequence of updating the sea
ice during DA.

3.2 Hindcast performance

This section evaluates retrospective predictions with Nor-
CPM1 that are initialized on 1 November (i.e. no observa-
tions after 31 October are utilized in the initialization) of the
years 1960–2018. We demonstrate skill benefits from fore-
cast initialization as well as from using a dynamic prediction
system. To assess skill degradation with forecast lead time,
we consider the different time-averaged forecast ranges lead
year 1 (LY1), lead years 2–5 (LY2–5) and lead years 6–9

(LY6–9). We compare these against the skill of NorCPM1’s
reanalyses, uninitialized prediction (constructed from histor-
ical) and persistence forecast (defined in Appendix B). We
also highlight performance differences between the two hind-
cast products hindcast-i1 and hindcast-i2. The following sub-
sections present skill evaluations for the physical ocean, ma-
rine biogeochemistry, sea ice and atmosphere.

3.2.1 Physical ocean variability – globally

SST prediction has the most direct application for near-
term climate impact assessment. We evaluate NorCPM1’s
capability to predict interannual-to-multiyear SST variations
with ACC skill maps for hindcast-i1 along with skill differ-
ence maps for hindcast-i1 – assim-i1, hindcast-i1 – persis-
tence, hindcast-i1 – historical and hindcast-i2 – hindcast-i1
(Fig. 11). For LY1, hindcast-i1 exhibits generally positive
ACCs, exceeding 0.8 over extended areas, that are both lo-
cally and field significant except for limited regions in the
eastern Pacific and at high latitudes (Fig. 11a). The system
loses information of the initial condition over time, result-
ing in notably smaller ACCs compared to the assim-i1 re-
analysis (Fig. 11b). Significant benefits from initialization,
as diagnosed from the 1ACC of hindcast-i1 – historical, are
concentrated in the Pacific and Atlantic sectors of the trop-
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Figure 9. ACC for annual sea ice concentration in Arctic (a) and Antarctic (b) for assim-i1. 1ACC for assim-i1 – historical (c–d), assim-i2
– assim-i1 (e–f). Observations are from HadISST (Rayner et al., 2003) over the period 1950–2018. The data are interpolated to a regular
2◦× 2◦ grid. Hatched areas are not locally significant; dotted areas are field significant.

ics and Southern Ocean, and also in the subpolar North At-
lantic (SPNA) and extending from there into the Eurasian
Arctic (Fig. 11d). Consistent with other prediction systems
(e.g. Yeager et al., 2018), the SPNA stands out as the region
that benefits most from initialization. However, hindcast-i1
does not outperform persistence in the SPNA (Fig. 11c), indi-
cating that the benefit of initialization primarily offsets poor
performance of the uninitialized dynamical prediction of his-
torical in that region. hindcast-i2 shows improved skill over
hindcast-i1 in sea-ice-covered regions and in a small part of
the SPNA (Fig. 11e). These skill differences are not field sig-
nificant, but the fact that the two systems differ in their sea
ice treatment adds confidence that skill improvements in the
polar regions are real. Much of the LY1 skill, in particular in
the tropics, is likely related to skilful initialization of ENSO
in NorCPM (Fig. S9 and text in Sect. S2), which has been
studied in detail using a similar model configuration (Wang
et al., 2019).

The LY2–5 and LY6–9 multiyear SST skill patterns
(Fig. 11, middle and right columns) resemble that of LY1
but with some notable differences. Large regions in the east-
ern central North Atlantic, tropical Indian Ocean and west-
ern Pacific show elevated skills that exceed 0.9. The same
regions show, however, negligible gains relative to uninitial-
ized prediction of historical (Fig. 11i, n). Thus, the skill in-
crease relative to LY1 is likely due to the forced trend having
more weight, as the 4-year averaging effectively filters out
interannual internal variability, and less due to the presence
of more predictable internal climate variability on multiyear
timescales or forecast shock that more strongly impacts LY1.
Despite limited initialization benefit, the initialized predic-
tions globally outperform persistence except for in the South-
ern Ocean. Since we expect the persistence forecast to cap-
ture a linear trend, this may indicate a significant skill con-
tribution from non-linearities in the forced trend. Also for
multiyear prediction, the SPNA and its extension towards the
Arctic stand out as the region benefiting most from initial-
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Figure 10. ACC for annual 2 m temperature (SAT, a), precipitation (PR, b), sea level pressure (SLP, c) and 500 hPa geopotential height
(Z500, d) for assim-i1. 1ACC for assim-i1 – historical (e–h), assim-i2 – assim-i1 (i–l). Temporal coverage is 1950–2018 for observed SAT
(HadCRUT4; Morice et al., 2012), PR (CRU TS4.03; Harris et al., 2020), SLP (NCEP reanalysis; Kalnay et al., 1996) and Z500 (extended
ERA5; Harris et al., 2020). Hatched areas are not locally significant; dotted areas are field significant.

ization, although the benefit is somewhat reduced and less
statistically robust than for LY1 (Fig. 11d). Over time, the
impact of initializations in the SPNA diminishes and the sys-
tem drifts back to the poorly performing simulated forced
trend, causing skill deficit to emerge (Fig. 11f, k). This re-
sult stands in contrast to multi-model findings (that include
NorCPM1) suggesting a positive contribution of the forced
signal to SPNA temperature skill over a comparable period
(Borchert et al., 2021). We suspect a problem with CMIP6
land use change specification (Fig. 13c and text in Sect. S1),
leading to an unrealistic historical cooling trend over North
America in NorCPM1. Via downstream effects, the continen-
tal cooling (likely an artefact) may contribute to the SPNA
cooling trend shown after 1980, exacerbating the discrepancy
between the observed and simulated SPNA temperature evo-
lution. The eastern Pacific presents another region where the
skill notably deteriorates over time. The historical simula-
tions perform better here than for the SPNA (Fig. 11i, n),

suggesting a detrimental effect of initialization on multiyear
scales on Pacific SSTs notwithstanding the positive effect
on LY1 prediction. Also for multiyear prediction, hindcast-
i2 performs better than hindcast-i1 in the high-latitude re-
gions, notably in the northwestern North Atlantic (Fig. 11j,
o). However, the multiyear skill hindcast-i1 – historical and
hindcast-i2 – hindcast-i1 differences are both not field sig-
nificant, and we thus cannot exclude that they are a sampling
artefact.

Skill patterns for the upper ocean temperature and salinity
averaged over the top 300 m (Figs. S10, S11) and for sea sur-
face height (Fig. S12) – a proxy for circulation and vertically
integrated behaviour – largely reflect those for SST. Skill en-
hancement due to multiyear averaging is less apparent than
for the surface state, presumably due to less presence of inter-
annual climatic noise below the surface. Initialization benefit
in the SPNA extends below the surface, across variables, and
stands out as a robust feature.
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Figure 11. Prediction skill for SST. ACC of hindcast-i1 (a), 1ACC of hindcast-i1 – analysis-i1 (b), 1ACC of hindcast-i1 – persistence (c),
1ACC of hindcast-i1 – historical (d) and 1ACC of hindcast-i2 – hindcast-i1 (e) for LY1. The middle and right columns show the same
but for LY2–5 (f–j) and LY6–9 (k–o). Observations use ERSSTv5 (Huang et al., 2017) with coverage for 1960–2018. Hatched areas are not
locally significant; dotted areas are field significant.

3.2.2 Physical ocean variability – SPNA

Initialization of the large-scale ocean circulation and the as-
sociated meridional heat transport have been identified as
essential for skilful prediction of SPNA climate (e.g. Yea-
ger and Robson, 2017). We evaluate in more detail how well
NorCPM1 represents mechanisms that give rise to North At-
lantic decadal predictability. This evaluation provides addi-
tional forecast quality information and a better understand-
ing of the hindcast-i2 – hindcast-i1 skill differences and of
how well the predictive potential for North Atlantic SSTs is
realized in the system.

The forced evolution of the AMOC strength shows a slight
increase until 1980 and weakening thereafter (Fig. 12a, blue
solid). assim-i1 initializes the circulation in an anomalous
weak state prior to 1990, close to neutral between 1990
and 2010, and weak again thereafter (solid red), with the
initial perturbations tending to be outside the internal vari-
ability range (blue shading). After initialization, the circula-
tion (solid purple) rapidly relaxes towards the unperturbed
ensemble-mean state evolution of historical (solid blue).
Because ocean heat exchange between the subtropical and
the SPNA covaries with the variability in AMOC strength
(Fig. S13e–g), the anomalies of the northward heat trans-
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Figure 12. AMOC strength at 26◦ N, Atlantic meridional ocean heat transport at 48◦ N and 0–2000 m temperature averaged over the SPNA
box (48–65◦ N, 60–15◦W) for i1 (a–c) and i2 (d–f). Solid lines show ensemble means of historical (blue), assim (red) and hindcast (purple)
experiments, with the 1950–2010 average of historical subtracted. Shading denotes ensemble minima and maxima.

port at the time initialization (Fig. 12b, red solid) roughly
resemble those of the circulation, mostly showing anoma-
lously negative transports, except during the 1990s. The heat
transport relaxes towards the ensemble-mean of historical
during the hindcasts. assim-i2 shows generally stronger cir-
culation and heat transports with weaker long-term decline
than assim-i1 (Fig. 12d, e). These circulation and heat trans-
port differences are key to explaining strikingly different
SPNA temperature evolution in hindcast-i1 versus hindcast-
i2 (Fig. 12c, f). hindcast-i1 and hindcast-i2 notably drift
away from the observed SPNA-averaged temperature tra-
jectory, suggesting that both configurations struggle to pre-
dict the observed decadal SPNA temperature trends. How-
ever, while hindcast-i1 exhibits drift behaviour towards cool-
ing (most pronounced during 1960–1980 and after 2005),
hindcast-i2 exhibits drift behaviour towards warming (most
severe during 1980–2000).

Diagnosing the hindcast SPNA temperature evolution
from the anomalous ocean heat transport across 48◦ N
(Fig. S13a, c) or the regression of heat transport on AMOC
(Fig. S13b, d) results in a very similar behaviour. The SPNA
0–2000 m heat content changes are well balanced by trans-
port changes across 48◦ N and anomalous surface fluxes
over the SPNA region (not shown). The latter mainly act to
dampen the temperature signal, explaining the greater am-
plitude of the diagnosed temperature evolution. The resem-
blance of diagnosed and simulated hindcast evolution sug-
gests that circulation exerts a strong control on the simulated
SPNA temperature evolution and that poor SPNA prediction
is largely a consequence of poor initialization of AMOC and
associated poleward heat transport. Errors in the simulated
externally forced AMOC trend and associated heat transport
likely affect the skill as well.
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Figure 13. Drift-corrected 0–2000 m temperature (T 2000) and SST averaged over the SPNA box (48–65◦ N, 60–15◦W) for i1 (a, b) and
i2 (c, d), respectively. Solid lines show ensemble means of historical (blue), assim (red) and hindcast (purple) experiments, with the 1950–
2010 average of historical subtracted. Shading denotes ensemble minima and maxima. Also shown are ACCs as function of lead time for
T 2000 and SST for i1 (e, f) and i2 (g, h), respectively. The persistence forecasts use the average over the last year (solid) and last 10 years
(stippled) from the observations.

How can hindcast-i1 and hindcast-i2 exhibit very dif-
ferent SPNA 0–2000 m temperature evolution but similar
correlation skills? Applying lead-dependent drift correction
largely removes the differences (Fig. 13a, c). Remaining dif-
ferences hint at a slight time dependence, consistent with
the somewhat different long-term trends in AMOC strength
in assim-i1 and assim-i2 (Fig. 12a vs. d). In terms of ACC
skill, hindcast-i2 performs marginally better than hindcast-
i1 for long lead times but does not outperform persis-
tence (Fig. 13e, g). The results for SPNA SST (Fig. 13b,
d) generally resemble those for 0–2000 m temperature but
look slightly more promising, with hindcast-i2 perform-
ing marginally better than persistence for long lead times
(Fig. 13f, h).

3.2.3 Ocean biogeochemistry variability

We evaluated the performance of ocean biogeochemistry for
PP and surface CO2 flux. Figure 14 shows maps of PP predic-
tion skill for LY1, LY2–5 and LY6–9. While the results are
patchy, some coherent patterns can be distinguished. For the
total LY1 skill of hindcast-i1 (Fig. 14a), ACCs are relatively
high and the field is significant over large parts of the tropical
Pacific and tropical Indian oceans. The correlations stay rel-
atively high for longer lead times (Fig. 14f, k), although their
significance is reduced. When subtracting the skill of histor-
ical (Fig. 14d, i, n), the correlation is greatly reduced, show-
ing that much of the total skill comes from external forc-
ing. The only region with a coherent pattern of locally sig-
nificant correlation differences is in the tropical Pacific (0–
30◦ S, 120–150◦W), which shows positive skill differences
until LY2–5. For LY6–9, the correlation differences become
statistically not significant, although the values stay relatively
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high. The 1ACCs for hindcast-i1 – assim-i1 (Fig. 14b, g, l)
are negative over the tropical Indo-Pacific and large parts of
the South Pacific and Southern Ocean, indicating information
from initialization is lost over time, while they are positive
over the tropical Atlantic, parts of the Atlantic subpolar gyre
and most parts of the extratropical Indo-Pacific. Paradoxi-
cally, the analysis used to initialize the hindcasts does not
consistently outperform the hindcasts. Improvement of the
initialized dynamic predictions over persistence can be seen
for LY2–5 and LY6–9, but not for LY1. Thus, temporal non-
linearities in the externally forced climate trend are likely to
contribute to skill, as persistence should capture any linear
trends due to forcings and most of the skill comes from the
external forcing. Differences between the two sets of hind-
casts lack statistical robustness (Fig. 14e, j, o).

Using satellite chlorophyll measurements for model eval-
uation is subject to caveats. For example, temporal data cov-
erage is relatively short and the spatial data coverage at
high latitudes is poor due to cloudiness. Following Yeager
et al. (2018), we therefore also analysed the model’s abil-
ity to hindcast its own analysis over the period 1960–2018
(Fig. 15). We will refer to this as the potential predictability∗,
using the asterisk to indicate that it differs from more con-
ventional potential predictability estimates based on self-
prediction that typically utilize a pre-industrial control sim-
ulation (e.g. Collins et al., 2006). The results become less
patchy, and the total skill stays field significant for large parts
of the global ocean until LY6–9. Removing the skill of his-
torical again reveals that there are regions where the skill
is improved by initialization, notably the subtropical gyres
and the Nordic Seas (Fig. 15d, i, n). Note that subtracting
negative historical ACCs leads to 1ACCs higher than the
absolute ACCs of hindcast-i1 itself. Therefore, a large skill
benefit from initialization does not necessarily translate into
a societally useful absolute skill. We analysed time series of
region-averaged PP between 1970–2018 in regions of high
skill, namely the subtropical gyres of the Pacific, Atlantic and
Indian oceans, as well as the Nordic Seas (not shown). The
Nordic Seas are the only region with a strong positive cor-
relation between hindcast-i1 and historical (r = 0.5 and 0.6
for single year and four-year means, respectively), indicating
that there is a large contribution of the external forcing to the
predictive skill. There, the correlation between the hindcast-
i1 and assim-i1 is close to 0.75 for all lead year ranges, in-
dicating an improvement with respect to historical, with the
largest difference for LY1. For the other regions, there is con-
siderable agreement between the hindcast-i1 and the assim-
i1 for LY1, with correlations exceeding 0.7. For the subtrop-
ical gyres in the Pacific and South Atlantic, the agreement
between the hindcasts and the analysis extends to LY2–5,
while the skill in the Indian and North Atlantic oceans drops
beyond LY1.

Despite the ambiguous results, the predictability of PP
of a couple of years in the tropical/subtropical Pacific is
in agreement with the results from perfect model experi-

ments (Fransner et al., 2020) and Séférian et al. (2014), who
found a predictability of 2–5 years when comparing with
satellite-based PP in the same region. Also, Krumhardt et
al. (2020) found a potential predictability of PP of a cou-
ple of years in tropical/subtropical regions when compar-
ing to a reconstruction based on an ocean simulation forced
with an atmospheric reanalysis. However, to remove the ef-
fect of external forcing, they performed a linear detrending.
This partly removes the effect of climate change but not of
other episodic external forcing such as volcanic eruptions.
Frölicher et al. (2020) found a perfect model predictability
of more than 10 years in some parts of the subtropical gyres
in their perfect model study.

Studies have yet to report predictability of PP in high lat-
itudes if compared to observational data. In these regions,
the use of satellite observations is not reliable because of the
lower data coverage and more variable chlorophyll-to-carbon
ratio of phytoplankton (Frigstad et al., 2014). However, sev-
eral recent perfect and potential predictability studies sug-
gest that predictability of primary production in high lati-
tudes is low or even non-existent on interannual-to-decadal
timescales (Fransner et al., 2020; Frölicher et al., 2020;
Krumhardt et al., 2020).

For CO2 fluxes (linearly detrended), a high total skill is
found for all lead years but with initialization benefit limited
to LY1 in the tropical Pacific, indicating that most skill stems
from external forcing (Fig. S14 and text in Sect. S2). The
modest benefit from initialization agrees with the findings
of Lovenduski et al. (2019), who compared hindcasts of the
CESM Decadal Prediction Large Ensemble (DPLE; Yeager
et al., 2018) with the same observational dataset. However,
other model systems (Li et al., 2016; Ilyina et al., 2020) and
perfect model studies (Séférian et al., 2018; Fransner et al.,
2020) have shown a predictability of unforced CO2 flux vari-
ability up to several years, particularly in the North Atlantic
subpolar gyre, suggesting that there is room for improvement
for the NorCPM1 decadal predictions.

3.2.4 Sea ice variability

Previous studies have found robust initialization benefits for
sea ice prediction lasting for a couple of months (Guemas et
al., 2016), with some re-emergence of skill during the sec-
ond year (Day et al., 2014). While these studies reported
strong seasonal dependencies, the evaluation here is limited
to hindcasts initialized in November. We evaluate LY1 pre-
dictions of annual-mean sea ice concentration (SIC) against
HadISST1 (Rayner et al., 2003) over the period 1960–2018
that includes historical observations as well as satellite es-
timates (Fig. 16). In the Arctic, the uninitialized predic-
tions (historical) show externally forced skill in the Barents,
Kara and Chukchi seas as well as the Canadian Archipelago
(Fig. 16a). hindcast-i1 shows consistently higher ACCs than
historical in these regions and additionally exhibits first-year
skill in sub-Arctic regions, e.g. in the Bering and Green-
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Figure 14. Prediction skill for PP. ACC of hindcast-i1 (a), 1ACC of hindcast-i1 – analysis-i1 (b), 1ACC of hindcast-i1 – persistence (c),
1ACC of hindcast-i1 – historical (d) and 1ACC of hindcast-i2 – hindcast-i1 (e) for LY1. The middle and right columns show the same but
for LY2–5 (f–j) and LY6–9 (k–o). Observations use GlobColour (Garnesson et al., 2019) with coverage for 1998–2018. Hatched areas are
not locally significant; dotted areas are field significant.

land seas (Fig. 16b). hindcast-i2 benefits from a stronger
constraint on the sea ice initial state compared to hindcast-
i1, resulting in generally higher and more widespread skill
(Fig. 16c). In the Antarctic, historical shows patches of both
positive and negative ACC (Fig. 16d). There are nearly no
regions where hindcast-i1 shows negative ACC, while re-
gions with positive ACC are limited to the east Pacific sector
of the Southern Ocean (Fig. 16e). hindcast-i2 shows even
more positive skill, which extends into the Atlantic sector
(Fig. 16f), but also some negative skill in the Pacific sector,
albeit less negative than that in historical.

We address seasonal dependence and temporal forecast
limit of sea ice prediction by computing the ACC of to-
tal Arctic and Antarctic sea ice area as a function of lead
month after November initialization (Fig. 17a, c). The Arc-
tic ACC of persistence drops rapidly and both hindcast-i1
and hindcast-i2 show comparable or higher skill during the
first winter and into spring. From early summer, the ACCs
of hindcast-i1 remain close to zero. In contrast, hindcast-
i2 shows some re-emergence of skill from the first autumn
extending into the second year. Performing 3-month pre-
averaging makes the skill re-emergence for hindcast-i2 and
improvements over hindcast-i1, persistence and historical
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Figure 15. Potential predictability∗ for PP. ACC of hindcast-i1 (a), 1ACC of hindcast-i1 – analysis-i1 (b), 1ACC of hindcast-i1 – per-
sistence (c) and 1ACC of hindcast-i1 – historical (d) for LY1. The middle and right columns show the same but for LY2–5 (e–h) and
LY6–9 (i–l). Synthetic observations constructed from the ensemble mean of the first 10 members of assim-i1 with coverage for 1960–2018.
Hatched areas are not locally significant; dotted areas are field significant.

clearer (Fig. 17b, d). The uninitialized prediction from his-
torical shows some skill during autumn and winter but no
skill during summer. For the Antarctic, both uninitialized
and initialized predictions perform inferior to persistence,
with hindcast-i1 performing worst (Fig. 17c, d). Neverthe-
less, assim-i1 and assim-i2, which provide the initial condi-
tions for hindcast-i1 and hindcast-i2, outperform persistence
during most of the year, except in austral winter when per-
sistence shows re-emerging skill. This suggests that model
errors are skill limiting rather than imperfect initialization in
that region.

Since regional sea ice variability is not necessarily in phase
with total hemispheric sea ice area, we define a hemispheri-
cally integrated skill score for predicting local (i.e. grid-cell
scale) sea ice conditions (Fig. 18). We first interpolate obser-
vation and model data to a common 5◦× 5◦ grid and then
reduce the space and time dimensions to a vector that is used
in the ACC computation. We apply square root grid-cell area
weighting and only consider cells with non-zero temporal

standard deviation. The squared score gives the fraction of
predicted sea ice concentration variance. A theoretical score
of one would imply perfect prediction in every location (note
the score depends on the resolution of the common grid).
In addition to monthly ACCs (Fig. 18a, c), we present 3-
monthly ACCs (Fig. 18b, d) that are smoother. For the Arc-
tic (Fig. 18a), the hindcast-i2 score reaches 0.4 during the
first lead month, outperforming the sharply dropping per-
sistence score (with 1-month e-folding scale) and remains
significantly higher than the uninitialized historical score
throughout winter and spring and marginally higher during
the remainder of the two lead years. persistence shows a re-
emergence of skill during summer and autumn that is present
but weaker in hindcast-i2. hindcast-i1 shows a score below
0.3 for the first lead month and no initialization benefit af-
ter the first spring. Consistent with these differences in hind-
cast scores, assim-i2 features consistently higher scores than
assim-i1. For the Antarctic (Fig. 18c), the initialized predic-
tions do better than the uninitialized ones (with no or negative
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Figure 16. ACC for sea ice concentration (SIC) for historical (a, d), hindcast-i1 (b, e) and hindcast-i2 (c, f) in the Arctic (a, b, c) and
Antarctic (d, e, f) for LY1. Observations are from HadISST1 (Rayner et al., 2003) over the period 1960–2018. The data are interpolated to a
regular 1◦× 1◦ grid.

skill) but for the most part fall behind persistence. assim-i2
shows notably higher and more stable skill than assim-i1, ex-
plaining better performance of hindcast-i2 over hindcast-i1.

We have demonstrated initialization benefits for predicting
sea ice up to two years ahead in NorCPM1, but can initial-
ization improve prediction of decadal trends in Arctic sea ice
decline? An analysis of Northern Hemisphere integrated sea
ice volume (SIV) provides little evidence for that (Fig. S15).
The initialized hindcasts have a tendency to simulate a flat-
ter trend than the historical experiment over the last decade,
which arguably can be interpreted as an improvement. De-
spite the lack of initialization benefit, the comparison be-
tween the two reanalysis products and their corresponding
hindcasts is instructive and illustrates the importance of fore-
cast drift correction. As mentioned in Sect. 3.1, the sea ice
state update in assim-i2 overall reduces the simulated SIV
to values closer to observations, whereas the climatology of
assim-i1 remains unaffected. Once assimilation is stopped,
the sea ice in hindcast-i2 grows back towards levels compa-
rable to the no-assimilation historical experiment. As a re-
sult, the hindcast-i2 predictions all simulate strongly posi-

tive decadal SIV trends, whereas hindcast-i1 produces flat or
negative trends more in line with observations. Adjusting for
lead-dependent forecast drift largely eliminates differences
in the decadal SIV trends between the two hindcast products.

3.2.5 Atmosphere variability

Transfer of skill from the ocean to the atmosphere and over
land is key to societally relevant climate prediction. We as-
sess the extent such transfer is realized in NorCPM1 from
ACCs of SAT, PR, 500 hPa geopotential height (Z500) and
sea level pressure (SLP).

For SAT, hindcast-i1 shows considerable first-year and
multiyear hindcast skill that exceeds persistence skill over
most land areas, except over central South America and parts
of Africa and South Asia (Fig. 19a, c). The LY1 initializa-
tion benefit (Fig. 19d) is highest over the subpolar North
Atlantic, extending from there over Scandinavia and west-
ern Siberia. Siberia is also the only region where hindcast-i2
consistently shows higher skill than hindcast-i1 (Fig. 19e).
While the1ACCs are not field significant, it is plausible that
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Figure 17. ACC for Arctic (a, b) and Antarctic (c, d) total ice area as a function of lead month for monthly averages (a, c) and 3-month
averages (b, d). The persistence forecast uses the observed October mean, while the hindcasts were initialized 1 November. Observations are
from HadISST1 (Rayner et al., 2003) and limited to the satellite era (1979–2018).

differences in sea ice initialization impact skill over adjacent
land (Ringgaard et al., 2020). For LY1, the1ACCs relative to
historical (Fig. 19d) hint ENSO-related initialization benefits
over low-latitude coastal regions as well as over northwest
North America. For LY2–5 and LY6–9, the difference maps
indicate little initialization benefit, implying that most mul-
tiyear SAT skill over land stems from the externally forced
trend in NorCPM1. However, this result can be sensitive to
the1ACC metric (Fig. S18 and related discussion in Sect. 4).

For PR, hindcast-i1 exhibits positive skill over most land
regions for all lead ranges (Fig. 20a, f, k). For LY1 it is high-
est and field significant over the western tropical Pacific and
Indonesian Archipelago (Fig. 20a). The LY1 skill difference
to historical (Fig. 20d), a measure for the benefit from initial-
ization, resembles the hindcast-i1 skill itself, suggesting only
a small contribution from the externally forced trend to the
first-year skill. For LY2–5 and LY6–9, the hindcast-i1 skill
over the western tropical Pacific, Indonesian Archipelago
and Australia is considerably reduced or disappears, whereas
it is enhanced over north Africa, North America and north-
ern Eurasia (Fig. 20f, k). It is plausible to assume that the
bulk of the multiyear skill is driven by the externally forced
changes in rainfall patterns and hydrological cycle (Dong and
Sutton, 2015), which is evidently the case over north Africa
where 1ACCs relative to historical are small or even neg-

ative (Fig. 20i, n). However, positive 1ACCs over western
North America and northern Eurasia for all lead ranges sug-
gest contributions from initialization. Most 1ACCs for pre-
cipitation are not field significant and we cannot preclude
that they are a sampling artefact. This is in particular true for
the hindcast-i2 and hindcast-i1 precipitation skill differences
(Fig. 20e, j, o).

Initialization benefits for predicting atmospheric circula-
tion variability, as diagnosed from Z500 (Fig. S16) and SLP
(Fig. S17), are most robust for LY1 owing to the influence
of ENSO. For SLP, some multiyear initialization benefits are
also present – albeit not field significant – over the extratrop-
ical Atlantic Ocean and Indian Ocean as well as the North
American and Eurasian continents. The DA update of sea
ice in hindcast-i2 slightly improves the multiyear skill in the
Arctic, though the differences are small and not field signifi-
cant.

3.2.6 Global skill evaluation

We globally summarize first-year and multiyear prediction
skills by computing ACCs over time and space for the vari-
ables assessed in previous sections (Fig. 21). Skills are com-
puted for LY1, LY2–5 and LY6–9 for the two analyses and
hindcast products and benchmarked against the uninitialized
historical predictions and persistence. The results are not
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Figure 18. Hemispheric correlation skill for Arctic (a, b) and Antarctic (c, d) ice area as a function of lead month for monthly averages (a,
c) and 3-month averages (b, d). The data are first interpolated to a 5◦× 5◦ grid and correlations are then computed jointly over space and
time, applying area weighting and only considering grid cells with non-zero temporal standard deviations. The persistence forecast uses the
observed October mean, while the hindcasts were initialized 1 November. Observations are from HadISST1 (Rayner et al., 2003) and limited
to the satellite era (1979–2018).

particularly sensitive to grid-cell variance normalization and
therefore similar to the globally averaged local (i.e. grid cell)
ACC and also qualitatively similar to the mean-square skill
score (not shown).

For SST (Fig. 21a), which is assimilated, the ACCs of
assim-i1 and assim-i2 exceed 0.8 for all lead year ranges.
After assimilation is discontinued, the values drop to 0.5 dur-
ing the hindcasts. For LY1, this is still higher than and well
separated from the 0.4 value of the historical experiment,
suggesting statistically robust benefit from initialization for
dynamical prediction with NorCPM1. Consistent with better
first-year skill in ice-covered regions, hindcast-i2 performs
slightly better than hindcast-i1, and both hindcast products
exhibit marginally higher skill than persistence for LY1 (dif-
ferences are not statistically significant). For LY2–5 and
LY6–9, the ACCs of the two analyses and initialized hindcast
products are very similar to or slightly higher than those for
LY1. For multiyear prediction, the ACC of the historical ex-
periment is on par with the initialized hindcast products, sug-
gesting a major contribution from the externally forced trend
and negligible initialization benefit. The fact that persistence
scores lower than the uninitialized historical experiment re-
veals that the skill contribution from the externally forced

trend is more than what could be expected from a linear an-
thropogenic climate trend. For T 300 (Fig. 21b), the ACCs of
the two analyses are 0.6–0.7, i.e. lower than for SST, presum-
ably due to lower data coverage and higher observation er-
ror. Similar as for SST, a clear initialization benefit manifests
for first-year prediction and only a hint of benefit for multi-
year prediction. SSH (Fig. 21c) shows initialization benefit
for first-year prediction but signs of detrimental initialization
impact for multiyear prediction. The ACC estimates for SSH
are more uncertain than for T 300, partly owing to the shorter
evaluation period.

Surface CO2 flux (Fig. 21d) and primary production
(Fig. 21e) are poorly constrained by the assimilation with the
two analyses exhibiting ACCs of 0.2 and below. It is there-
fore unsurprising that the initialized hindcasts are not skil-
ful and at best show marginal initialization benefit over like-
wise unskilful uninitialized predictions of historical. How-
ever, Ilyina et al. (2020) found a predictability of the global
air–sea CO2 fluxes of up to 6 years when combining the
members of the two hindcast sets, suggesting considerable
sensitivity to the chosen biogeochemistry skill metric, spatial
averaging, evaluation period and ensemble size. In contrast to
the hindcasts, the persistence skill for CO2 flux exceeds 0.6
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Figure 19. Prediction skill of 2 m temperature (SAT). ACC of hindcast-i1 (a), 1ACC of hindcast-i1 – analysis-i1 (b), 1ACC of hindcast-i1
– persistence (c), 1ACC of hindcast-i1 – historical (d) and 1ACC of hindcast-i2 – hindcast-i1 (e) for LY1. The middle and right columns
show the same but for LY2–5 (f–j) and LY6–9 (k–o). Observations use HadCRUT4 (Morice et al., 2012) with coverage for 1950–2019.
Hatched areas are not locally significant; dotted areas are field significant.

for LY1 and 0.3 for LY2–5, and for PP is close to 0.3 for LY1.
When using assim-i1 as observational truth for primary pro-
duction (Fig. 21f), the system suggests initialization benefit
for all lead years with hindcasts reaching ACCs close to 0.6
for LY1. Inherent issues in the marine ecosystem parameter-
ization to represent realistic variability (Tjiputra et al., 2007;
Gharamti et al., 2017) in combination with observational un-
certainties are likely causing this discrepancy.

Assimilation in NorCPM1 updates the ocean and sea ice
state but does not directly constrain the atmospheric and land
states. Nevertheless, the assimilation can improve their pre-
diction to the extent that SST and sea ice control the atmo-

spheric state. The ACCs for SAT (Fig. 21g) resemble those
for SST, but are lower, in particular for the two analyses.
Land precipitation (PR) exhibits ACCs of 0.4 independent
of lead year range for the two analyses, and 0.2 for the hind-
casts for LY1, suggesting some success in initializing ENSO.
Contrary to SAT, the historical experiment and persistence
both exhibit zero skill for PR, both for annual means and
multiyear means, despite anthropogenic spin-up of the hy-
drological cycle and other external influences. SLP (Fig. 21i)
behaves differently in that the global ACCs of persistence,
ranging between 0.3 and 0.5, are consistently higher than
those of NorCPM1. Thus, the external forcing seems to have

https://doi.org/10.5194/gmd-14-7073-2021 Geosci. Model Dev., 14, 7073–7116, 2021



7102 I. Bethke et al.: NorCPM1 and its contribution to CMIP6 DCPP

Figure 20. Prediction skill of PR. ACC of hindcast-i1 (a), 1ACC of hindcast-i1 – analysis-i1 (b), 1ACC of hindcast-i1 – persistence (c),
1ACC of hindcast-i1 – historical (d) and 1ACC of hindcast-i2 – hindcast-i1 (e) for LY1. The middle and right columns show the same but
for LY2–5 (f–j) and LY6–9 (k–o). Observations use CRU TS4.03 (Harris et al., 2020) with coverage for 1950–2018. Hatched areas are not
locally significant; dotted areas are field significant.

a significant influence on the observed SLP variability, but
NorCPM1 fails to capture it. For LY1, the ACCs of the ini-
tialized hindcasts are slightly higher than those of the his-
torical experiment, again suggesting skilful initialization of
ENSO.

We finally evaluate how well the system constrains the
temporal evolution of global means (Fig. 22). Especially in
the context of climate change attribution, it is of interest
whether DA leads to improved representation of global sur-
face warming, global sea level change and strength of the
global hydrological cycle. The initialized hindcasts outper-
form persistence and historical for SST and SAT for LY1.

Beyond that, the results show little evidence of initialization
benefit, except a marginal improvement of multiyear mean
prediction for the oceanic CO2 flux and a sizable potential
predictability∗ benefit for PP. While the initialized hindcasts
performed as well as or better than historical for globally av-
eraged skill of local SST, T 300 and SAT (Fig. 21a, b, g),
hindcast-i1 and hindcast-i2 show slightly poorer multiyear
skill than historical in their global means (Fig. 22a, b, g).
Except for SST, the reanalyses mostly outperform both per-
sistence and historical but not as clearly as for the globally
averaged skill. Interestingly the benefit from DA is consid-
erably larger for global precipitation than for global-mean
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Figure 21. Global correlation skill for sea surface temperature (SST, a), 0–300 m temperature (T 300, b), sea surface height (SSH, c), surface
CO2 flux (fCO2, d), column-integrated primary production (PP, e, f), 2 m air temperature (SAT, g), land precipitation (PR, h) and sea level
pressure (SLP, i). The ACCs are computed over time and space after weighting with the square root of the cell area. The box plots are
constructed from 1000 bootstrap ACC realizations. Potential predictability∗ of PP (f) is referenced to assim-i1.

SST, possibly indicating a strong control of well constrained
tropical – likely ENSO-related – SST variability on large-
scale precipitation. DA does not improve the match with the
16-year short observational record of global sea level. Why
exactly the globally averaged grid-cell skills (Fig. 21) show
more benefit from DA than the skills of the global means
(Fig. 22) is something that warrants further investigation.

4 Discussion

Evaluating interannual-to-multiyear variability in NorCPM1
simulations with and without DA against observations, we
found measurable initialization benefits – particularly for
first-year prediction – and only few signs of detrimental ef-
fects from DA. In this section, we will further discuss the
findings, related caveats and potential improvements.

The anomaly assimilation scheme of NorCPM1 currently
updates only the ocean and sea ice components, and the at-
mosphere and land components are only constrained to the
extent that they are affected by the surface conditions. Utiliz-
ing atmospheric observations and better constraining the at-
mospheric circulation variability has potential to improve the
ocean and sea ice initialization by producing surface fluxes
that are more consistent with the SST and SIC anomalies
during the assimilation phase. Constraining the atmospheric
circulation will also improve atmosphere and land initializa-
tion, beneficial for subseasonal-to-seasonal prediction. The
success of utilizing initial conditions from forced ocean–
sea ice simulations (Yeager et al., 2018) demonstrates the
potential in constraining surface fluxes over ocean and sea
ice for initializing multiyear climate predictions. Performing
EnKF ocean–sea ice assimilation in addition to constraining
the atmospheric variability is expected to further improve
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Figure 22. Correlation skill for global means of sea surface temperature (SST, a), 0–300 m temperature (T 300, b), sea surface height (SSH,
c), surface CO2 flux (fCO2, d), column-integrated primary production (PP, e, f), 2 m air temperature (SAT, g) and land precipitation (PR, h).
The box plots are constructed from 1000 bootstrap realizations of the correlations. Potential predictability∗ of PP (f) uses assim-i1 instead of
real observations. The plotted correlation range varies for different variables.

the predictions (Polkova et al., 2019). Utilization of atmo-
spheric observations in NorCPM’s initialization is a work in
progress. A unified EnKF-based assimilation scheme cov-
ering all ESM component would be desirable but is sub-
ject to numerous technical and scientific challenges. As an
intermediate solution, we are exploring atmospheric nudg-
ing in combination with EnKF-based ocean–sea ice assimi-
lation in NorCPM, a strategy that has been successfully ap-
plied in the Max Plank Institute Mittelfristige Klimaprognose
(MPI-MiKlip) system (Polkova et al., 2019). We will take
advantage of the availability of multiple simulation mem-
bers of the reanalysis products like ERA5 (Hersbach et al.,
2020) and CERA-20C (Laloyaux et al., 2018) and nudge the
members of the NorCPM analysis to individual members of
the reanalysis products to provide a representation of atmo-
spheric observational uncertainties and help generate ensem-
ble spread in the ocean state. We will complement the atmo-

spheric nudging with the leading average cross-covariance
technique that has been shown to further improve ocean ini-
tialization by performing a one-way (from atmosphere to
ocean) strongly coupled data assimilation (Lu et al., 2015).

NorCPM1 shows overall high multiyear prediction skill
from external forcing, with a modest and regionally limited
increase in skill from improving the initial conditions via
DA. A caveat with using ACC differences for detecting ini-
tialization benefit is that if the absolute ACCs are large, the
ACC differences become difficult to robustly detect. Smith et
al. (2019) proposed a more robust quantification method for
initialization benefit, where the forced signal of the model
is regressed out of both the model and observation data and
ACCs are computed from the residuals (the result is scaled to
account for the smaller variance of the residuals; see Sect. S2
for more details). Figure S18 compares both methods, with
the residual ACCs showing clear initialization benefit for
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SAT over land regions where 1ACCs are statistically indis-
tinguishable from zero. Like in Yeager et al. (2018), we use
1ACCs in this study to systematically compare against mul-
tiple benchmarks. The use of residual ACCs should, how-
ever, be of interest for future work, especially for assessing
the impact of DA developments on forecast skill.

While the focus of this study leans towards DA innova-
tions, future skill improvement clearly depends also on im-
proving the ESM component of NorCPM. The dynamical
model representation has been demonstrated key to skilful
climate prediction (Athanasiadis et al., 2020; Yeager et al.,
2018) and recent studies revealed a larger role of external
forcing than previously thought (Borchert et al., 2021; Kla-
vans et al., 2021; Liguori et al., 2020). The skill benefit from
DA-assisted initialization does not only relate to synchro-
nization of internal climate variability, but also to correct-
ing the externally forced climate signal at forecast initializa-
tion time – which is subject model and forcing errors. We
nevertheless expect a continuous need for, and benefit from,
improving NorCPM’s assimilation, along with improving its
ESM component. We have seen from weather and seasonal
forecasting how improvements in both models and methods
to assimilate observations (as well as observations and com-
puting power) have continued to lead to enhanced predic-
tion skill (Bauer et al., 2015). Work has started to upgrade
NorCPM’s ESM component to NorESM2-MM (Seland et
al., 2020) – featuring improved physical process parame-
terizations, a higher atmospheric resolution, a more realis-
tic AMOC and overall reduced climate biases compared to
NorESM1 – and results of this effort will be documented in
future publications. We envision that the climate prediction
evaluation and DA can increasingly inform the development
of NorESM, which traditionally focused on long-term cli-
mate projections. There is growing evidence that current gen-
eration climate models systematically underestimate the in-
fluence of SST variations and external forcing variability on
extratropical atmospheric variability, particularly related to
the North Atlantic Oscillation (e.g. Scaife and Smith, 2018;
Athanasiadis et al., 2020). While post-processing methods
relying on large ensembles have been proposed to mitigate
this shortcoming (Smith et al., 2020), improving this aspect
in the next model generation should be a key priority for the
prediction community.

The significance testing used in this study (Appendix B)
does not account for observational error. Nowadays, obser-
vational reanalyses routinely provide ensemble products that
span observational uncertainty. While they are beyond the
scope of this study, future skill evaluations should explore
ways of utilizing this ensemble information in local and field
significance testing. The addition of observational uncer-
tainty should generally lower the p values, leading to stricter
testing.

The ACC, our primary metric for quantifying skill in this
study, is sensitive to random correlation that can occur over
the evaluation period as it does not penalize for amplitude er-

rors. The mean-square skill score (MSSS), that penalizes am-
plitude errors, can be used as an alternative, potentially more
robust metric (Goddard et al., 2013, and Sect. S2). As we
found the MSSS results (Fig. S19) comparable to the ACC
results (Fig. S10), we decided to use ACC to facilitate com-
parison with previous works (e.g. Yeager et al., 2018) and
because amplitude errors stemming from the model under-
estimating the forced climate signal can to some extent be
corrected posteriori (Smith et al., 2019; Smith et al., 2020).
Our skill evaluation based on annual means does not address
seasonal effects. Separately evaluating the skill for individ-
ual seasons may help us better understand the origins of skill
and utility for society.

5 Conclusions

The Norwegian Climate Prediction Model version 1 (Nor-
CPM1) is a new climate prediction system that has con-
tributed with model output to the Decadal Climate Prediction
Project as part of the Coupled Model Intercomparison Project
phase 6 (CMIP6 DCPP). NorCPM1 combines the Norwegian
Earth System Model version 1 (NorESM1) with an ensem-
ble Kalman filter (EnKF) anomaly assimilation of sea surface
temperature and hydrographic profile observations. This pa-
per provides a description and evaluation of NorCPM1.

Compared to other dynamical climate prediction systems,
NorCPM1 distinguishes itself by its EnKF anomaly assimila-
tion that performs cross-component ocean-to-sea-ice updates
and is optimized for an ocean vertical density coordinate.
The EnKF scheme makes optimal use of the observations
by also updating unobserved variables using state-dependent
relations from the model’s simulation ensemble. The use of
these relations further minimizes shock by ensuring that all
variables are updated consistently, to the extent the system
behaves linearly. Through performing EnKF anomaly assim-
ilation and accounting for measurement and representation
errors in the observations, NorCPM1 aims at synchronizing
internal variability in a targeted and gentle manner to provide
a reliable system (i.e. where the ensemble spread reflects the
true internal variability error) that is mostly free of detrimen-
tal prediction shock. While on a grid scale this allows certain
mismatch between model and observations, our evaluation of
the assimilation experiments shows that the approach accu-
rately synchronizes the large-scale variability modes (such as
ENSO, Pacific Decadal Oscillation (PDO) and SPG strength)
that are likely to carry multiyear predictability.

The paper assessed the performance of the ESM com-
ponent of the prediction system. Upgrades of the external
forcings from CMIP5 to CMIP6 and minor code changes
have only a minor impact on the model’s climate representa-
tion relative to the original NorESM1, which contributed to
CMIP5. Spatial biases in key climate variables have mostly
remained the same, as has the global climate response to ex-
ternal forcings. The conditional bias is hence largely unal-
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tered relative to previous NorCPM configurations. Notewor-
thy biases are a 50 % too-strong Atlantic meridional over-
turning circulation, excessive Arctic sea ice with cold adja-
cent continents, warm surface biases in the subpolar North
Atlantic and Southern Ocean that are mirrored by cold biases
at lower latitudes. In turn, the model’s ENSO characteristics
and its historical global warming compare favourably to ob-
servations.

The paper assessed the performance of the assimilation
capability with two 30-member climate reanalyses products
that have been contributed to CMIP6 DCPP. Both assimilate
SST and T/S-profile observations but differ in their treat-
ment of sea ice and reference period used to construct anoma-
lies. The anomaly assimilation of NorCPM1 does not show
any detrimental effects on the climatology and generally re-
duces the RMSE of both observed and unobserved state vari-
ables (unobserved means not part of observation types that
are assimilated) in the assimilation experiments relative to
the historical experiment without assimilation. The applica-
tion of cross-component anomaly assimilation reduces a pos-
itive bias in Arctic sea ice thickness and improves synchro-
nization of sea ice variability and variability of other climate
variables, such as Southern Ocean sea surface height.

A challenge unique to anomaly assimilation is how to best
construct the anomalies. The choice of reference period has
limited impact on their correlation scores with observations,
but it has significant impact on mean and long-term trends,
e.g. in Atlantic meridional overturning circulation strength
and meridional ocean heat transport. Future NorCPM de-
velopment efforts will explore more sophisticated ways of
designing climate anomalies, e.g. following Chikamoto et
al. (2019), addressing important issues such as conditional
bias and separation of internal variability versus externally
forced signals in observations.

The assimilation shows limited success in synchronizing
variability in ocean biogeochemistry variables like net pri-
mary production or air–sea CO2 flux. This result contrasts
findings of a perfect model study (Fransner et al., 2020) with
the ESM component of NorCPM1 that suggests strong con-
trol of the physical state on interannual ocean biogeochem-
istry variability. Imperfect synchronization of physical vari-
ability, short evaluation periods, errors in observations and
errors in the model representation of ocean biogeochemistry
and its interaction with physical processes can contribute to
this discrepancy.

The paper assessed the performance of the system to pro-
duce first-year and multiyear climate predictions. We found
robust initialization benefits for first-year prediction across
a range of climate variables that at least partly are related to
skilful synchronization of ENSO variability. Predictability of
sea ice extends into the second year in the hindcast product
initialized from a reanalysis that more strongly constrains the
sea ice state.

While the externally forced trend leads to significant
multiyear prediction skill, our evaluation provides lim-

ited evidence for robust initialization benefits on multiyear
timescales but also little indication for detrimental effects
from initialization. Multiyear initialization benefit is mainly
confined to SPNA in NorCPM1, where it largely offsets neg-
ative skill in uninitialized predictions and leads to modest ab-
solute skill that is significantly lower than the skill from non-
dynamical prediction such as persistence forecast. After re-
moving the forced signal, the initialization benefit for SPNA
translates into robust benefit for temperature over adjacent
land. The comparison of two differently initialized hindcast
products reveals a high sensitivity of the AMOC to the de-
tails of the initialization approach with considerable impact
on SPNA temperatures, such as shift in mean state and long-
term trend and hindcast drift behaviour. Notwithstanding that
both products struggle predicting the circulation evolution, it
indicates the potential for improving SPNA temperature pre-
dictions by improving initialization of hydrographic anoma-
lies that condition the evolution of the large-scale ocean cir-
culation. To realize the full potential, however, would require
a model representation of the circulation with realistic mean
state, variability and sensitivity to external forcing, aspects
we will prioritize in further NorCPM development. Lead-
dependent drift correction removes much of the differences
between the two products (including a strong forecast drift in
sea ice thickness present in one of the products) and therefore
also has merits for anomaly-initialized predictions, in partic-
ular if model output is intended as input for climate impact
studies.

The initialization of the physical model states does not
robustly benefit ocean biogeochemistry predictions in Nor-
CPM1. This is unsurprising given the aforementioned poor
skill of the reanalyses used for hindcast initialization. Thus,
improving and understanding the lack of skill in the reanal-
yses is paramount to improving NorCPM’s ocean biogeo-
chemistry capability.

We found robust transfer of initialization skill benefit to
atmosphere and land for first-year prediction. As current cli-
mate models tend to underestimate atmospheric signal-to-
noise ratios, more hindcast simulation members are expected
to increase first-year skill and enable detection of multiyear
signals (Scaife and Smith, 2018; Smith et al., 2020).

In summary, we found demonstrable benefits from initial-
ization for climate prediction with NorCPM1. The initial-
ization is virtually free of detrimental effects. At this stage,
NorCPM1 primarily serves as a research tool. Based on the
forecast quality evaluation presented in this paper, further
development is needed to reach multiyear prediction skill
at a societally useful level that makes the system more fit
for operational use. To this end, the evaluation in this paper
will serve as a benchmark for further NorCPM development,
such as upgrades to the ESM component and refinements to
the assimilation approach with extension to all model com-
ponents. Deficiencies of NorCPM1 skill identified here will
guide future research and model development. The system
has demonstrated promising seasonal prediction capabilities
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(Wang et al., 2019; Kimmritz et al., 2019) and may already
contribute to skilful multiyear climate prediction with soci-
etal application in a multi-model framework (Smith et al.,
2020).

Appendix A: Choice of DA scheme

There are multiple ways to initialize hindcasts, such as ini-
tialization from existing reanalysis products produced with
an independent system (e.g. Chikamoto et al., 2019) or ini-
tialization of the ocean component by running it uncou-
pled, forced with an atmospheric reanalysis product (Yea-
ger et al., 2018). In NorCPM1, the hindcasts are initialized
from a reanalysis produced with the same ESM that assim-
ilates ocean observations with the Ensemble Kalman filter
(EnKF; Evensen, 2003). The advantage of using the same
ESM is that it avoids initialization adjustment that occurs
when changing the model. The EnKF is an advanced flow-
dependent data assimilation method where the multivariate
corrections are based on a set of observations, their uncer-
tainty and the ensemble of model realization produced by
a Monte Carlo integration from the previous analysis step.
Counillon et al. (2016) showed that the upper ocean heat con-
tent in the equatorial and North Pacific, the North Atlantic
subpolar gyre region and the Nordic Seas can be well con-
strained by assimilating SST anomalies with the EnKF. In
particular, the vertical covariance shows a pronounced sea-
sonal and decadal variability that highlights the benefit of
flow-dependent data assimilation. In NorCPM1, covariances
in the ocean are formulated in isopycnal coordinates (the na-
tive vertical coordinate of the ocean model), which allows
for deeper influence of the assimilated surface observations
than when formulating them in standard depth coordinate
(Counillon et al., 2016).

Up to now, climate prediction systems have predominantly
assimilated data independently in their respective compo-
nents, an approach referred to as weakly coupled data assim-
ilation (WCDA; Penny and Hamill, 2017). The other model
components adjust to these individual changes dynamically
in between the assimilation cycles. Allowing the assimila-
tion to update across model components is expected to out-
perform WCDA because it would enhance dynamical con-
sistency of the initial condition and expand the influence of
the observations across its own component (strongly coupled
data assimilation, SCDA; Penny and Hamill, 2017; Penny
et al., 2019). The climate system includes complex, coupled
phenomena over wide, separated spatial and temporal scales
of the Earth system components (atmosphere, ocean, land
surface, cryosphere). DA procedures, on the other hand, are
mostly designed to deal with a single dominant scale of mo-
tion or under the assumption of weak coupling (Laloyaux et
al., 2016; Sun et al., 2020). Joint OSI-SCDA of ocean and
sea ice has been successful with flow-dependent DA meth-
ods such as the EnKF. The scale separation between ocean

and sea ice is not as pronounced as between ocean and at-
mosphere. The application of flow-dependent covariance can
handle well the anisotropy and sign reversal of the covariance
at the sea ice front (Lisæter et al., 2003; Sakov et al., 2012)
and the update of the multi-category sea ice state (Masson-
net et al., 2015; Kimmritz et al., 2018). Application of the
methods has since also been tested successfully in a fully
coupled ESM (Kimmritz et al., 2018) and used for seasonal
prediction of Arctic sea ice (Kimmritz et al., 2019). A full
SCDA of the ESM is a more challenging task because of the
separation of spatial and temporal scales among atmosphere
and ocean. There have been many advances both theoreti-
cally (Lu et al., 2015; Smith et al., 2015; Tardif et al., 2015;
Sluka et al., 2016; Penny and Hamill, 2017) and on appli-
cation, e.g. the CERA reanalysis (Laloyaux et al., 2016) but
no system is yet at the stage of achieving a full SCDA. For
interannual-to-decadal timescale, the largest part of climate
predictability resides in the ocean and sea ice (e.g. Mariotti
et al., 2018). Making use of the rich atmospheric observa-
tion network will be explored in future NorCPM versions as
it can further improve the initialization of the slow modes
of variability in the ocean where observations are sparse and
generally enhance the consistency of the system.

Climate models have strong biases that are in some places
larger than the internal variability (Richter et al., 2014).
There are two common strategies in the climate prediction
communities to handle bias: full-field assimilation requiring
a subsequent post-processing to account for the model ad-
justment back to its own attractor or anomaly assimilation
where the observed anomaly (calculated relative to a refer-
ence climatology) are imposed on a biased model climatol-
ogy (Weber et al., 2015). Both methods have their advantages
and disadvantages. NorCPM1 uses anomaly assimilation be-
cause full-field assimilation is problematic with ensemble
DA (Dee, 2005): As models are attracted to their biased cli-
matological states, the model bias in the observed variables is
propagated to the non-observed variables by the multivariate
covariance matrix, which leads to a slow degradation of the
system through the consecutive assimilation cycle. A chal-
lenge when defining a climatological reference is to ensure
that the climatological reference is accurate and representa-
tive of the same variability between the model and data. Es-
timating an accurate climatology for observations becomes
problematic in regions where observations are very sparse,
limiting the possible span of a reliable climatological period.
Furthermore, while it is usually possible for the model to nul-
lify the internal variability by averaging different ensemble
members starting from different initial conditions, there is
only a single realization of the truth, and one must ensure that
the climatological period of the observation is long enough
to cancel out internal variability. Finally, it should be added
that anomaly assimilation only addresses climatological bi-
ases and conditional biases such as in the variability and in
the forced trends.
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An emerging number of climate prediction models include
ocean biogeochemistry (e.g. Séférian et al., 2014; Li et al.,
2016; Lovenduski et al., 2019; Park et al., 2019). Due to
technical challenges with implementing ocean biogeochem-
istry in DA systems related to data sparsity and the non-
Gaussian behaviour of many biogeochemical tracers, assim-
ilation of biogeochemical observations is commonly not ap-
plied in these models (e.g. Park et al., 2019). Instead, the
ocean biogeochemistry is treated passively. This has been
shown to constrain the biogeochemical variability relatively
well (Séférian et al., 2014; Li et al., 2019; Park et al., 2019).
There are, however, problems related to the update of physics
that introduces artificial mixing between surface and deep
waters, leading to excessive surface nutrient concentrations
and primary production, especially in the tropics (While et
al., 2010; Park et al., 2018). Skilful near-term predictions of
4–7 years of air–sea CO2 exchange (Li et al., 2016, 2019),
a couple of years for chlorophyll (Park et al., 2019) and
2–5 years for net primary production (NPP, Séférian et al.,
2014) have been achieved by this passive initialization of
ocean biogeochemistry. Fransner et al. (2020) showed, in a
perfect model framework, that the initial state of ocean bio-
geochemistry has little impact on the prediction skill beyond
LY1, and their work suggested that assimilation of biogeo-
chemical tracers would only give a marginal improvement in
the predictive skill of ocean biogeochemistry.

Appendix B: Skill scores and significance testing

Following Goddard et al. (2013), we use the anomaly correla-
tion coefficient (ACC) for assessing hindcast and reanalysis
performance. We use 1ACC score differences for compar-
ing our reanalysis and hindcast products and for benchmark-
ing against uninitialized predictions and persistence forecast.
As in Goddard et al. (2013), we consider lead year 1 (LY1),
lead years 2–5 (LY2–5) and lead years 6–9 (LY6–9) forecast
ranges using multiyear averages. For example, if a hindcast
is initialized in October 1960, then LY1 corresponds to the
average of 1961, i.e. the following calendar year.

If the temporal coverage of the observations is shorter than
that of the model output, we maximize the use of observa-
tions in the ACC computation. For example, if the observa-
tions start in 1993 then the ACC computation for LY6–9 will
use hindcasts starting at the end of 1983 and later. Conse-
quently, the start dates used in the ACC computation may
differ for the different forecast ranges, while the evaluation
period is fixed except in the persistence forecast. The LY1
persistence forecast uses the observational average of the pre-
vious year, while the LY2–5 and LY6–9 persistence forecasts
use the average over the four previous years. This is done be-
cause we found the effect of temporal filtering to outweigh
the shift towards older observations, resulting in persistence
skills consistently higher than if using the last month or last
year instead.

Prior to the ACC computation, we interpolate model and
observational data to a common, regular 5◦× 5◦ grid if not
stated otherwise. We do not remove the linear trend or other
estimates of the forced response, except when evaluating sur-
face carbon flux. When comparing ACCs of hindcasts (which
comprise 10 simulation members) with uninitialized predic-
tions, we only use the first 10 members of historical because
we want to isolate the benefit of initialization without con-
founding it with the effect of ensemble size on the accuracy
of the externally forced trend estimate.

We test local and field significance of skill scores and score
differences following Yeager et al. (2018). We consider a
score locally significant if the associated p value (i.e. prob-
ability for producing a random score equal to or higher than
the score tested) is below αlocal := 0.1 (i.e. 90 % confidence).
Regions that fail the local significance test are marked with
slash/on the skill score maps (e.g. Fig. 7). We derive the
p values by means of resampling the original data that are in-
terpolated to the common grid. For each obtained skill score
we construct 4000 bootstrapped scores that capture random
uncertainty stemming from temporal sampling and from hav-
ing a limited ensemble size. Using the moving block boot-
strapping technique, we resample the data (pairwise model–
observation sampling with replacement) in 5-year blocks that
may start in any year but not in the last 4 years to account for
temporal autocorrelation. The blocks are concatenated, and
the last block is truncated such that the bootstrapped time se-
ries has the same length as the original series. Additionally,
we resample (with replacement) the ensemble members used
in the computation of the ensemble means. While the com-
bination of members varies between different bootstrapped
time series, we keep it fixed within each series. We test sig-
nificance for both positive and negative scores. Following
Goddard et al. (2013), we estimate the p value for a par-
ticular skill score as the fraction of bootstrapped scores with
opposite sign of that of the score tested (e.g. if the original
score is positive and 200 out of the 4000 bootstrapped scores
are negative, then we determine p as 200/4000= 0.05). The
rationale is to utilize the spread information from the boot-
strapped distribution to calculate the probability for obtain-
ing a score equal to or higher than the score tested, under
the null hypothesis that the true score is zero. We verified
the bootstrap estimation of p values on a large set of arti-
ficially constructed series with known true correlation and
found good agreement with Monte Carlo estimated p values,
with r(pbootstrap, pMonteCarlo) > 0.95.

Local significance information has particular utility if con-
sidering a single location of interest and if the choice of this
location is not informed by the spatial score distribution. Ex-
plorative analyses, however, often simultaneously consider
multiple locations of interest and make the selection of lo-
cations dependent on the spatial score distribution as they
tend to focus on regions with the most extreme scores. In
such cases, the use of field significance is more meaningful.
Like Yeager et al. (2018), we test field significance using the
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false discovery rate (FDR) approach following Wilks (2006,
2016), which has the practical advantage that it reuses the
p values from the local significance test. The FDR algorithm
determines pFDR such that the false discovery rate in the re-
gion where p < pFDR (locations marked with dot · on the
maps) becomes approximately equal to a target FDR of 10 %.
The value of pFDR, stated on all ACC plots, is computed from
Eq. (B1) where N is the number of p values, p(i) is the ith
sorted p value and αFDR a parameter that controls the FDR.

pFDR = max
i=1,...,N

[
p(i) : p(i) ≤ (i/N)αFDR

]
, (B1)

If pFDR exists, then the test also rejects the global null hy-
pothesis that the true scores are zero everywhere at 90 %
confidence level. Assuming moderate to strong spatial corre-
lation (Wilks, 2006), we set αFDR := 2αglobal and αglobal :=

αlocal = 0.1. Consistent with intuition, pFDR tends to be close
to αlocal if most points are locally significant, while pFDR�

αlocal if only few points are locally significant. In rare situ-
ations, pFDR can become larger than αlocal (due to αFDR >

αlocal) with the consequence that scores can be field signif-
icant without being locally significant. We consider this an
artefact of the ad hoc adjustment of αFDR for spatial correla-
tion, and we set pFDR := αlocal in such case.

Code availability. The NorCPM1 code can be downloaded
from https://doi.org/10.11582/2021.00014 (Bethke, 2021a) or
https://github.com/BjerknesCPU/NorCPM1-CMIP6 (last access:
16 November 2021). The input data needed for running the code can
be downloaded from https://doi.org/10.11582/2021.00013 (Bethke,
2021b).

Data availability. The CMIP6 output of NorCPM1 is served
through the Earth System Grid Federation (ESGF). The out-
put of the CMIP baseline and historical simulations can be
accessed at https://doi.org/10.22033/ESGF/CMIP6.10843 (Bethke
et al., 2019a) and the output of the DCPP simulations
at https://doi.org/10.22033/ESGF/CMIP6.10844 (Bethke et al.,
2019b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-7073-2021-supplement.
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