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Abstract. Catchment-scale hydrological models are widely
used to represent and improve our understanding of hydro-
logical processes and to support operational water resource
management. Conceptual models, which approximate catch-
ment dynamics using relatively simple storage and routing
elements, offer an attractive compromise in terms of predic-
tive accuracy, computational demands, and amenability to
interpretation. This paper introduces SuperflexPy, an open-
source Python framework implementing the SUPERFLEX
principles (Fenicia et al., 2011) for building conceptual hy-
drological models from generic components, with a high de-
gree of control over all aspects of model specification. Super-
flexPy can be used to build models of a wide range of spa-
tial complexity, ranging from simple lumped models (e.g., a
reservoir) to spatially distributed configurations (e.g., nested
sub-catchments), with the ability to customize all individ-
ual model components. SuperflexPy is a Python package, en-
abling modelers to exploit the full potential of the framework
without the need for separate software installations and mak-
ing it easier to use and interface with existing Python code
for model deployment. This paper presents the general archi-
tecture of SuperflexPy, discusses the software design and im-
plementation choices, and illustrates its usage to build con-
ceptual models of varying degrees of complexity. The illus-
tration includes the usage of existing SuperflexPy model ele-
ments, as well as their extension to implement new function-
ality. Comprehensive documentation is available online and
provided as a Supplement to this paper. SuperflexPy is avail-
able as open-source code and can be used by the hydrological

community to investigate improved process representations
for model comparison and for operational work.

1 Introduction
1.1 Conceptual hydrological models

Catchment-scale hydrological models are widely used to pre-
dict catchment behavior under natural and human-impacted
conditions as well as to represent and improve our un-
derstanding of internal catchment functioning (e.g., Beven,
1989). For example, catchment models underlie projections
of climate change impact on groundwater recharge and
streamflow (e.g., Eckhardt and Ulbrich, 2003), are used as
tools for hypothesis testing to identify dominant hydrolog-
ical processes (e.g., Clark et al., 2011b; Hrachowitz et al.,
2014; Wrede et al., 2015), and are used to inform agricul-
tural practices such as irrigation scheduling (e.g., McIner-
ney et al., 2018) and pesticide application (e.g., Moser et al.,
2018; Ammann et al., 2020). The typical use of hydrologi-
cal models is to simulate or forecast the streamflow response
(runoff) of a catchment to rainfall forcing; for this reason they
are often referred to as rainfall-runoff models (e.g., Morad-
khani and Sorooshian, 2009). However, their application ex-
tends to the simulation of other environmental variables such
as groundwater levels (e.g., Seibert and McDonnell, 2002)
and soil moisture (e.g., Matgen et al., 2012) as well as water
chemistry (e.g., Bertuzzo et al., 2013; Ammann et al., 2020).
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An important class of catchment models are “process-
based” models, which attempt to explicitly describe the cas-
cade of processes transforming catchment inputs (e.g., pre-
cipitation) into outputs (e.g., streamflow). These models are
an appealing choice due to their broad physical underpin-
nings as well as their ability to represent internal catchment
processes and their potential for predicting catchment re-
sponses under changing environmental conditions. Process-
based models can be classified according to the nature of
their constitutive equations (e.g., conceptual or physically
based) and their spatial resolution (e.g., lumped or dis-
tributed) (e.g., Refsgaard, 1996).

Conceptual models, where catchment dynamics are ap-
proximated using relatively simple storage and routing ele-
ments (e.g., Fenicia et al., 2011), are common in practice be-
cause they offer an attractive compromise in terms of predic-
tive accuracy, computational demands, and amenability to in-
terpretation. Common conceptual models include TopModel
(Beven and Kirkby, 1979), HBV (Lindstrom et al., 1997),
GR4]J (Perrin et al., 2003), and HyMod (Boyle, 2001).

In terms of spatial resolution, conceptual models can be
applied in a lumped configuration (treating the entire catch-
ment as a single unit) if the interest is in modeling integrated
catchment outputs (e.g., streamflow at the catchment outlet).
Alternatively, distributed configurations can be used if the
interest is in modeling hydrological behavior at internal lo-
cations (e.g., sub-catchments). In such distributed setups, the
catchment is subdivided into spatial elements such as sub-
catchments (e.g., Feyen et al., 2008; Lerat et al., 2012), hy-
drological response units (HRUs) (e.g., Arnold et al., 1998;
Fenicia et al., 2016; Dal Molin et al., 2020), or grids (e.g.,
Samaniego et al., 2010). A common strategy for developing
distributed conceptual models is to represent individual land-
scape elements using independent (non-interacting) lumped
models and then obtain total catchment outflow by aggre-
gating the outflows from these individual models, potentially
incorporating flow routing elements to represent routing de-
lays. This strategy is often referred to as “semi-distributed”
modeling (e.g., Boyle et al., 2001) and typically employs
discretization based on principles of “hydrological similar-
ity” (e.g., Sivapalan et al., 1987); HRU-based discretization
is particularly common (e.g., Leavesley, 1984). In many ap-
plications, semi-distributed modeling achieves good predic-
tive ability while greatly simplifying model representation
and reducing computational demands compared to fully inte-
grated 2D/3D distributed models such as Parflow (Maxwell,
2013) or Mike She (Refsgaard and Storm, 1995), which typ-
ically use much smaller landscape elements and explicitly
model lateral exchanges. For the purposes of this presenta-
tion, we consider semi-distributed modeling to be a special
case of distributed modeling.
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1.2 Hydrological model structure and flexible modeling
frameworks

The selection of model structure has preoccupied researchers
and practitioners since the early days of hydrological mod-
eling (e.g., Ibbitt and O’Donnell, 1971; Moore and Clarke,
1981; Jakeman and Hornberger, 1993). Although in princi-
ple the physical laws governing hydrological processes are
the same everywhere, the diversity of catchment conditions
in terms of topography, soil, geology, vegetation, and anthro-
pogenic influence results in remarkably different manifesta-
tions of these physical laws at the catchment scale. These
local differences, also termed “uniqueness of place” (Beven,
2000), considerably limit our ability to develop generalizable
hydrological hypotheses (e.g., Wagener et al., 2007).

Model structure selection has motivated multiple research
directions, including the search for a single model struc-
ture that achieves good prediction across all catchments (the
“fixed” model paradigm), and the search for model structures
best suited for specific locations and/or environmental condi-
tions (the “flexible” model paradigm). Whether in search of a
single model or multiple models, model selection necessarily
relies on a process of model development, comparison, and
refinement. Approaches to formalize this process include the
top—down approach (e.g., Sivapalan et al., 2003), the system
identification approach (e.g Young, 1998), and the method
of multiple working hypotheses (e.g., Clark et al., 2011a).
These approaches are not mutually exclusive, as the notion
of comparing multiple model representations is ubiquitous
in model development and empirical science in general.

The process of model development, comparison, and re-
finement can be facilitated using flexible modeling frame-
works, which enable hydrologists to hypothesize, implement,
and (eventually) test and refine different model structures.
Flexible frameworks have themselves developed along mul-
tiple directions according to their intended scopes of appli-
cation. For example, GEOframe-NewAge (Formetta et al.,
2014), SUMMA (Clark et al., 2015), and CHM (Marsh et al.,
2020) focus on the realm of physically based models. The
CAPTAIN toolbox (Young et al., 2009) is a general toolkit
for time series analysis. Machine learning frameworks such
as scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke
et al., 2019) can be used to construct data-driven models.

In this paper, we focus on flexible frameworks intended
for conceptual hydrological modeling. Examples of such
frameworks include FUSE (Clark et al., 2008), SUPERFLEX
(Fenicia et al., 2011), CMF (Kraft et al., 2011), PERSiST
(Futter et al., 2014), ECHSE (Kneis, 2015), MARRMoT
(Knoben et al., 2019), and RAVEN (Craig et al., 2020).

When discussing a mathematical model, it is relevant to
distinguish its conceptual principles from its software imple-
mentation. In the hydrological literature, modeling concepts
and their software implementation have been presented both
jointly and separately. For example, the original FUSE publi-
cation (Clark et al., 2008) introduced the modeling concepts,
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while subsequent work (Vitolo et al., 2016) provided an
R implementation. The original SUPERFLEX publications
presented the modeling principles (Fenicia et al., 2011) and
demonstrated its capabilities (Kavetski and Fenicia, 2011);
while Fortran and Matlab implementations were developed
as part of research work (e.g., David et al., 2019), these im-
plementations have not been published or made available as
stand-alone products. In contrast, some models, (e.g., MAR-
RMoT) have been presented with a publication describing
both the theoretical principles and the software implementa-
tion.

A software implementation should fulfill the intended
goals of the flexible framework, in particular supporting
the envisaged flexibility in terms of process representation,
spatial distribution, numerical solution methods, etc. The
software implementation should also be accessible to users
in terms of ease of installation, operation, eventual exten-
sion, etc. Existing frameworks approach these conceptual
and practical requirements with different priorities, such
as focusing on selected modeling objectives (e.g., model
mimicry) and/or limiting the range of applications (e.g., only
to lumped setups), in order to simplify the model formulation
and operation.

In terms of the application scope of a flexible framework
for conceptual hydrological modeling, we focus on the fol-
lowing “realms’:

1. lumped models;

2. distributed setups, including simulation of sub-
catchments and flows and/or processes at internal
points;

3. the ability to reproduce existing models, when neces-
sary;

4. support or extendibility for future applications, e.g.,
substance transport modeling, including water isotopes
and pesticides.

In terms of software implementation, we consider the fol-
lowing practical criteria.

1. Ease of use, including installation, learning, and opera-
tion: interoperability with external software, for exam-
ple for model calibration and uncertainty analysis, is of
obvious relevance because hydrological models are of-
ten used as parts of larger-scale projects and operations.

2. Ease of modification and extension: even a compre-
hensive software implementation will eventually re-
quire extension. For example, a modeling framework in-
tended to simulate streamflow may require extension to
simulate water chemistry. Another type of modification
might be a switch to a numerical implementation better
suited for parallel computing, etc.
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3. Computational efficiency: hydrological model applica-
tions, especially including calibration and uncertainty
quantification, may require thousands or even millions
of model runs.

4. Connection to the ecosystem of modern online tools to
facilitate model usability by both researchers and prac-
titioners: this includes online documentation (with ex-
amples and demos) and automatic workflows for unit
testing, continuous integration, and deployment.

These criteria are challenging to meet simultaneously.
Hence, implementing a flexible framework entails juggling
multiple obvious and less obvious tradeoffs. For example, the
intended flexibility of a framework may come at the expense
of ease of use, similar to how computer languages have vary-
ing degrees of abstraction from the hardware behavior. Im-
plementing a practical flexible framework therefore requires
careful code design, experimentation, and, inevitably, some
compromises.

This work pursues the flexible framework objectives de-
fined above by building upon the concept of SUPERFLEX
(Fenicia et al., 2011; Kavetski and Fenicia, 2011; Fenicia et
al., 2014, 2016). A key attractive feature of SUPERFLEX as
a modeling concept is the fine “granularity”, i.e., the degree
of flexibility, of model structures it can support, which en-
ables systematic and detailed hypothesis testing (Fenicia et
al., 2011). For example, the hydrologist should have the abil-
ity to select and combine individual model elements (e.g.,
reservoirs, lag functions) as well as to build customized ele-
ments.

The development of the proposed framework capitalizes
on the authors’ collective experience in hydrological model
design and application. The original Fortran implementation
of SUPERFLEX, hereafter referred to as SUPERFLEX-F90,
has been used in a series of case studies over the last decade,
ranging from lumped model implementations (e.g., Kavetski
and Fenicia, 2011; Fenicia et al., 2014) to distributed setups
(e.g., Fenicia et al., 2016; Dal Molin et al., 2020), interpre-
tation in the context of fieldwork insights (e.g., Wrede et al.,
2015), large-scale model intercomparisons (e.g., van Esse et
al., 2013), and the inclusion of pesticide and/or substance
transport (e.g., Ammann et al., 2020). The earlier Flex frame-
work was used in studies exploring the use of multivariate
data to refine the model structure (e.g., Fenicia et al., 2006,
2008). The modeling framework FUSE was used for a range
of experiments in process representation (e.g., Clark et al.,
2011b), data analysis (e.g., Henn et al., 2018), and numer-
ical solution (e.g., Clark and Kavetski, 2010; Kavetski and
Clark, 2010). The SUMMA framework represented an ap-
plication of flexible modeling principles to physically based
modeling. These applications have highlighted the versatility
of the SUPERFLEX principles, and of flexible modeling ap-
proaches in general, to solve increasingly complex modeling
problems but have also highlighted implementation choices
that limit the effectiveness and range of the application of
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current software (e.g., the usage of a “master template” from
which specific model structures are derived). This work pro-
vides a new implementation of SUPERFLEX that addresses
many of these limitations.

1.3 Aims

This paper introduces SuperflexPy, which is a new open-
source Python software implementation of the SUPERFLEX
principles for conceptual hydrological model development.
Particular attention is given to the challenges of implement-
ing a framework that achieves the flexibility envisaged by
SUPERFLEX and flexible frameworks in general. Our ob-
jectives are as follows:

1. to present SuperflexPy and its basic building blocks
(components): elements, units, nodes, and network
(terms with a special meaning in our framework are in-
dicated in italic);

2. to illustrate how SuperflexPy can help hydrologists im-
plement a conceptual model structure at the desired
level of internal complexity and spatial resolution — in-
cluding recreating existing models and developing new
models;

3. to provide a broad discussion of the hydrological mod-
eling software implementation challenges and of how
SuperflexPy contributes to the toolkits available to the
hydrological community.

The paper is organized as follows. Section 2 describes the
SuperflexPy architecture and building blocks and provides a
short demo (aims 1 and 2). Section 3 illustrates selected ap-
plications of the framework, including the setup of SUPER-
FLEX configurations used in earlier case studies and the use
SuperflexPy to create new elements (aim 2). Section 4 pro-
vides more technical SuperflexPy details, useful for under-
standing the usage and general potential of the framework
(aim 1). Section 5 discusses SUPERFLEX design choices in
the context of existing flexible frameworks, including current
limitations and future developments (aim 3). Finally, Sect. 6
provides a brief overall summary and conclusions.

The examples presented in the paper are generally in-
tended to provide the intuition and reasoning behind Super-
flexPy. The model documentation provides detailed informa-
tion and use instructions. The documentation is available and
maintained online (refer to the “Code availability” section);
references from the paper to the documentation point to the
static PDF version provided as a Supplement to this paper.

2 Description of SuperflexPy
2.1 General organization

The SuperflexPy framework has a hierarchical organization

CLINNT3 LLINT3

with four nested levels: “element”, “unit”, “node”, and “net-
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work”, collectively referred as “components”. These compo-
nents are shown in Fig. 1 and described below. Further prac-
tical details are provided in chap. 4 of the Supplement:

1. Element (Fig. 1a). This level represents the basic model
building block and is used to create reservoirs, lag func-
tions, and connections. An element can be used to repre-
sent an entire catchment or, more commonly, a specific
hydrological process or response mechanism within the
catchment.

The reservoir element is used to conceptualize pro-
cesses involving the storage and release of water and
other fluxes. It is described mathematically by ordinary
differential equations (ODEs):

ds
df) — g5 (S(). X(1):0). (1)
Y() = gy (S(1). X(1): 0). ®)

where S is the state variables (e.g., water storages), X
is the inputs (e.g., precipitation), Y is the outputs (e.g.,
streamflow), and g¢ and gy are specified constitutive
functions (e.g., storage—discharge relationships).

In most conceptual models, reservoir elements have a
single state variable (representing water storage); mul-
tiple state variables can be accommodated if necessary
(e.g., to keep track of snow and liquid water separately).
Mathematically, a multi-state reservoir can be repre-
sented by a system of differential equations of the form
of Egs. (1) and (2).

The solution of Eq. (1) is usually obtained numerically
using external numerical procedures referred to as “nu-
merical approximators” (see Sect. 4.3).

The lag function element is used to represent delays in
the transmission of the fluxes (e.g., routing). It is de-
scribed mathematically by a convolution integral:

T
Y(t)=X(t)*gH(t;0)=/0 Xt —1)gyu(r;0)dr, (3)

where * denotes the convolution operator, X is the input
(e.g., water flux), g is the impulse response function,
and 7 is the time of influence of g (i.e., the maximum
lag).

There is a general mathematical correspondence be-
tween reservoirs and lag functions (e.g., Nash, 1957).
SuperflexPy users can select the element specification
best suited to their specific context.

The connection element is used to connect two or more
elements whenever a direct connection is not possible.
For example, connection elements are used when a flux
needs to be split among multiple elements downstream
(splitter) or, vice versa, when multiple fluxes need to be
aggregated (junction). A particular type of connection
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Figure 1. The four hierarchical levels of SuperflexPy and their respective components. (a) Elements (e.g., reservoirs, lags, connections) are
used to represent individual hydrological processes/catchment response mechanisms. (b) Units connect multiple elements and are intended
to implement lumped catchment models. (¢) Nodes collect multiple units that operate in parallel representing different landscape elements
within a catchment. (d) Network connects multiple nodes and is used to represent distributed setups.

is represented by the “transparent” element, which sim-
ply outputs the same fluxes it receives as inputs and is
used to facilitate the connection between elements (see
description of unit below).

All connection elements are stateless and can be repre-
sented mathematically as follows:

Y1) =gc(X(1):0), “

where g describes the connectivity between input
fluxes and output fluxes and @ represents connectivity
parameters (if any).

. Unit (Fig. 1b). A unit is a collection of multiple con-
nected elements and is generally intended to implement
a lumped catchment model or an HRU in a distributed
model. Multiple reservoir and lag function elements
within a unit can be connected to each other, either di-
rectly (one-to-one connections) or using connection el-
ements such as splitters and junctions (when a single el-
ement is connected to multiple elements). The multiple
elements within a unit are arranged in layers, with the
following restrictions: (i) feedback loops between the
elements are not allowed, and (ii) elements can be con-
nected only if they belong to two consecutive layers.
Fluxes between elements in nonconsecutive layers are
passed using transparent elements. The concept of lay-
ers will be elaborated and illustrated in Sect. 5.1.1; see
also Sect. 4.2 of the Supplement. In technical terms, the
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structure formed by the elements must be a directional
acyclic graph (DAG). The motivation and implications
of these design choices on model generality and compu-
tational efficiency are elaborated in Sect. 5.1.1 and 5.2.

. Node (Fig. 1c). A node is a collection of multiple units

that operate in parallel. In the context of distributed
models, the node can be used to represent a single
catchment and the units can be used to represent multi-
ple landscape elements or HRUs within the catchment.
Each unit within a node is characterized by a weight,
which typically represents its area fraction or, more gen-
erally, its contribution to the total outflow of the node.
The weights are used to combine the output fluxes from
the units into the total output flux of the node. Another
important attribute of a node is its “area”, which is used
when multiple nodes are combined into a network (see
below).

. Network (Fig. 1d). A network connects multiple nodes

into a tree structure and is typically intended to develop
a distributed model that generates predictions at internal
sub-catchment locations (e.g., to reflect a nested catch-
ment setup). The network routes the fluxes from up-
stream nodes (leaves of the tree) to the final downstream
node (root of the tree). Routing delays in the river net-
work can be simulated by feeding node outputs into lag
function elements. The area of each node is used to de-
termine its contribution to the total outflow of the netz-
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work. Only a single network can be used in a given Su-
perflexPy model.

The hierarchical organization of SuperflexPy makes the ef-
fort required to configure it to a new problem proportional to
the problem complexity. In particular, many common model
setups can be constructed without necessarily using all levels
listed above, thus reducing configuration effort. Some repre-
sentative examples are given below:

Level 1 is sufficient to create single-element models,
e.g., a single-reservoir model or a unit hydrograph
model (e.g., Kirchner, 2009);

— Level 2 is sufficient to create a lumped model structure,
such as GR4J (Perrin et al., 2003) or Hymod (Boyle,
2001);

— Level 3 is sufficient to create a distributed model that
represents spatial heterogeneity but generates predic-
tions only at the catchment outlet (e.g., Beven and
Kirkby, 1979; Gao et al., 2014; Nijzink et al., 2016);

— Level 4 is needed only in models that generate predic-
tions at interior points, such as SWAT (Arnold et al.,
2012), GEOframe-NewAge (Formetta et al., 2014), and
distributed SUPERFLEX applications (e.g., Fenicia et
al., 2016; Dal Molin et al., 2020).

Examples of SuperflexPy models implemented at levels 2
and 4 are given later in Sect. 3. Note that the association
of specific SuperflexPy components to specific hydrological
entities, e.g., the use of units for HRUs and nodes for sub-
catchments, is not intended as a rigid prescription. Other as-
sociation choices may be favored by the modeler depending
on the required model structure and spatial connectivity.

The clarity of visual model representation is particularly
important in flexible frameworks because they can generate
many subtly different configurations (e.g., Bancheri et al.,
2019). The model schematics in this paper indicate explic-
itly every element, including reservoirs, lag functions, and
junctions (e.g., Fig. 1).

From a software design prospective, SuperflexPy em-
braces the object-oriented paradigm (e.g., Meyer, 1988). All
framework components are represented by objects that can
operate either alone or together, interacting with each other
and with external libraries (e.g., for calibration) through de-
fined interfaces. More details are provided in Sect. 4.2.

All SuperflexPy components have states and/or parame-
ters, which are controlled programmatically using dedicated
methods (refer to Sect. 4.1).

2.2 A simple illustration of SuperflexPy: creating a
new model from existing components

This section illustrates the key steps needed to configure and
run a hydrological model using the SuperflexPy framework.

Geosci. Model Dev., 14, 7047-7072, 2021

The illustration presents a distributed model intended to rep-
resent a catchment with two HRUs and three sub-catchments.
The model structure is shown in Fig. 1d. The catchment is
represented using a network, the sub-catchments are rep-
resented using nodes, and the HRUs are represented using
units. Two distinct HRU-specific model structures are speci-
fied and are implemented using elements. The corresponding
SuperflexPy code is shown in Fig. 2. An extended version of
this demo is provided in Sect. 6.5 of the Supplement.

In this example, an implementation of the necessary el-
ements with SuperflexPy already exists; therefore, the ele-
ments only need to be imported. The case where the model
structure requires elements for which an implementation is
not yet available is considered in Sect. 2.3. More complex
setups are described in Sect. 3 and in the Supplement.

We start by importing the model components re-
quired by the model structure, namely the elements
(LinearReservoir and HalfTriangularLag),
unit, node, and network. The numerical approxi-
mator ImplicitEulerPython and root finder
PegasusPython needed to solve the ODEs associ-
ated with the reservoir elements are also imported (see
Sect. 4.3 for details). The import operation is shown in
lines 1-7.

The imported components are then initialized, which en-
tails specifying the model structure (connectivity between
model components) and the initial values of parameters and
states. The initialization sequence starts with the numerical
procedures (lines 10—11) and proceeds from the lowest-level
components (elements) to the highest-level component (net-
work).

Specifically, the following steps apply:

L1. An element is initialized by specifying its parame-
ters, states, and, where relevant, the numerical solver
(lines 14-16). Each element is given an identifier (1d)
for subsequent use, as shown in Line 23.

L2. A unitisinitialized by specifying the elements that com-
pose it and the identifier (lines 19-20). As noted ear-
lier in Sect. 2.1, the connectivity between elements is
defined by conceptualizing the unit as a succession of
layers that contain the elements. More complex exam-
ples are given in Sect. 3. The parameters and states
of elements can be changed after initialization using
the methods set_parameters and set_states
of the containing units. This operation is shown in Line
23 for the LinearReservoir element.

L3. A node is initialized by specifying the units that com-
pose it, their contribution (weight) to the node output,
the influence area of the node (here, the area of the sub-
catchment), and the identifier (lines 26-28).

L4. The network is initialized by specifying the nodes that
compose it and their connectivity, called topology

https://doi.org/10.5194/gmd-14-7047-2021
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from superflexpy.implementation.elements.hymod import LinearReservoir

2 from superflexpy.implementation.elements.thur_model_hess import HalfTriangularLag
3 from superflexpy.framework.unit import Unit
4 from superflexpy.framework.node import Node
5 from superflexpy.framework.network import Network
6 from superflexpy.implementation.root_finders.pegasus import PegasusPython
7 from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
9 # Initialize computational tools
10 root_finder = PegasusPython()
11 numerical_approximator = ImplicitEulerPython(root_finder=root_finder)
12
13 # Initialize the elements
4 linear_reservoir = LinearReservoir(parameters={'k': 0.1}, states={'S0': 10.0},

~N o wm

# Initialize the units

N H
® O

NN
N =

2 # Change parameters
unit2.set_parameters({'U2_LR_k': 0.2})

N NN
(6, I O OY]

5 # Initialize the nodes

approximation=numerical_approximator, id='LR"')
lag = HalfTriangularLag(parameters={'lag-time': 3.5}, states={'lag': None}, id='LAG")

unitl = Unit(layers=[[linear_reservoir], [lag]], id='Ul")
unit2 = Unit(layers=[[linear_reservoir]], id='U2")

26 nodel = Node(units=[unitl, unit2], weights=[0.7, 0.3], area=5.0, id='N1")
27 node2 = Node(units=[unitl, unit2], weights=[0.9, 0.1], area=2.0, id='N2")
28 node3 = Node(units=[unit2], weights=[1.0], area=1.0, id='N3")

0 # Initialize the network

4 nodel.set_input([P1])
node2.set_input([P2])
node3.set_input([P3])

# Set the timestep
net.set_timestep(1.0)

&
<]

# Run the model
net.get_output()

N
N =

net = Network(nodes=[nodel, node2, node3], topology={'N1': 'N3', 'N2': 'N3', 'N3': None})

3 # Assign the inputs to the nodes (assume P1l, P2, P3 have been read)

Figure 2. SuperflexPy code implementing the simple illustrative model in Fig. 1d.

(Line 31). The connectivity is defined indicating, for
each node, the node downstream of it. A network iden-
tifier is not specified (as only a single network can be
used).

The next step is to set the model inputs and time step.
Lines 34-36 show how the inputs are assigned directly to the
nodes, enabling the model to receive spatially varying rain-
fall and potential evapotranspiration (PET). The time step is
set in Line 39 (variable time steps are also supported; see
Sect. 4.5.1 of the Supplement).

The model can now be run by calling the get_output
method of the highest-level component, as shown in Line 42.

Note that all input quantities provided to SuperflexPy, in-
cluding fluxes, time step length, parameters, states, and areas,
must have consistent units. To reduce model code complex-
ity and execution overhead, we take the perspective that unit
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checks represent pre-processing and are best handled by the
user according to their own preferences and standards. Out-
put fluxes have the same (assumed) units as input fluxes; e.g.,
if precipitation is in mm/h, then streamflow is also in mm/h.

2.3 Creating new model components with SuperflexPy

We now consider the case where the intended model struc-
ture has components beyond those already available in Su-
perflexPy.

New model components can be created by extending exist-
ing SuperflexPy components. To this end, SuperflexPy pro-
vides a library of built-in high-level components that can be
extended to achieve the desired functionality. We anticipate
that the SuperflexPy components most likely to require ex-
tension are the elements, where new constitutive functions
may be required in reservoir elements and new weight func-
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tions may be required in lag function elements. In contrast,
it is less likely that unit, node, and network functionalities
would require extension.

The extension of existing SuperflexPy elements takes ad-
vantage of the object-oriented paradigm underlying the Su-
perflexPy software design. The inheritance principle, one of
the core concepts of the object-oriented paradigm, allows the
user to construct new components by “inheriting” most of
the functionalities (methods) from existing classes. Separate
implementation is then required only for methods where the
new model differences are to be introduced. This approach
reduces substantially the amount of coding required to im-
plement a new model component.

A detailed example of this procedure is given in Sect. 3.2,
which shows how to implement a reservoir with a new
storage—discharge relationship. More examples are provided
in chap. 8 and 9 of the Supplement.

3 Examples of building hydrological models using
SuperflexPy

This section provides more detailed examples of using Su-
perflexPy to implement hydrological models, including the
use of built-in elements and the creation of new elements.
We follow a progression from simple to complex. Section 3.1
shows the implementation of model M4, a lumped model
built solely from reservoir elements and used in the origi-
nal SUPERFLEX case study (Kavetski and Fenicia, 2011).
Section 3.2 shows how to define a new element with a differ-
ent storage—discharge relationship for one of the reservoirs
of M4. Section 3.3 shows the implementation of a distributed
model from a recent application of SUPERFLEX in the Thur
catchment (Dal Molin et al., 2020).

Compared to the demo in Sect. 2.2, which was intended
to give a general sense of model building with SuperflexPy,
the examples in this section represent “realistic” applica-
tions of SuperflexPy, including setting up a spatially dis-
tributed model with multiple HRUs and more complex model
structure. Further technical details and additional examples,
including the implementation of popular conceptual mod-
els (e.g., GR4J, HYMOD), are provided in the Supplement
(chap. 8-11).

3.1 Implementing SUPERFLEX configuration M4

M4 is a simple lumped model presented in Kavetski and
Fenicia (2011). As shown in Fig. 3, M4 comprises two reser-
voirs connected in series: an “unsaturated” reservoir (UR) in-
tended to represent the partitioning of precipitation between
evaporation and runoff,and a “fast” reservoir (FR) intended
to represent subsequent streamflow generation mechanisms.

UR partitions precipitation P(UR) into a portion that enters
the UR storage and eventually evaporates through flux EI(L‘UR)
and a portion QUR) that is directed to the downstream FR
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| v

SFR

SUR LQFR

Figure 3. Schematic of model M4 used in the original SUPER-
FLEX case studies of Kavetski and Fenicia (2011).

reservoir:
ds®
T — P(UR) _ EE}UR) _ Q(UR), (5)
where
_ §(UR)
s = : (6)

S(UR)

max
- BUR)

o(UR) — p(UR) (S(UR)> ’ )

<(UR) UR)
S 1+m¢
ESJR) EEDUR) > ( ) .

SR 4Ry

®)

In Egs. (6)—(8), Sr(gf) and 8 (UR) are model parameters. The
quantity m(U® is used to approximate a “smooth” threshold
behavior; we typically fix m(V®) =0.01.

FR is a power-law reservoir:

ds®
—5 =P -0, ©)

with the storage—discharge relationship given by

« R

Q(FR) — ;FR) (S(FR)) , (10)

where k™R and « ™R are model parameters.

The inflow PR is given by the outflow from UR; i.e.,
pER) Q(UR)‘

M4 is a lumped model with multiple elements and hence
can be implemented using SuperflexPy levels L1 and L2 (ele-
ment and unit; see Sect. 2.1). Figure 4 shows the code needed
to implement M4. The numerical procedures are imported
and initialized in lines 1-2 and 7-8, respectively. Similar to
the model described in Sect. 2.2, the two model elements (UR
and FR) are already implemented. Hence, the user only needs
to import the elements (lines 1-3) and initialize their param-
eters (lines 7-13). Next, the wunit is imported (Line 4) and
initialized to contain the two reservoirs (Line 15). The model
configuration is then complete.

The loading of input data from text file(s), databases, etc.,
is separate from the configuration of SuperflexPy and can
be carried out using any suitable Python library or function.
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1 from superflexpy.implementation.root_finders.pegasus import PegasusPython
2 from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
3 from superflexpy.implementation.elements.hbv import UnsaturatedReservoir, PowerReservoir

4 from superflexpy.framework.unit import Unit
5 import numpy as np

7 root_finder = PegasusPython()

o]
]/
8 numeric_approximator = ImplicitEulerPython(root_finder=root_finder)

10 ur = UnsaturatedReservoir(parameters={'Smax': 50.0,

'Ce': 1.0, 'm': 0.01, 'beta': 2.0},

11 states={'S0': 25.0}, approximation=numeric_approximator, id='UR")

12 fr

PowerReservoir(parameters={'k': 0.1, 'alpha': 1.0}, states={'S0': 10.0},

13 approximation=numeric_approximator, id='FR")

15 model = Unit(layers=[[ur]l, [fr]], id='M4")
np.loadtxt( 'precipitation.txt")

P =
18 EP = np.loadtxt('evap_pot.txt")

18

19

20 model.set_input([P, EP])
1 model.set_timestep(1.0)
2

N
w

3 output = model.get_output()

Figure 4. SuperflexPy code implementing model M4 in Fig. 3.

In this example, we use NumPy to read time series of pre-
cipitation and PET from a text file, as shown in lines 17—
18. The corresponding SuperflexPy inputs are set using these
NumPy arrays, as shown in Line 20. Further practical details
on input—output are provided in Sect. 4.5.5 of the Supple-
ment.

The model can now be run with the given input data to
produce the model outputs, as shown in Line 23. The outputs
contain streamflow time series in the form of NumPy arrays.

3.2 Changing the equations of the fast reservoir in M4

Suppose the modeler wishes to modify model M4 by chang-

ing the storage—discharge equation of the fast reservoir given

in Eq. (10) to a new relationship:

L (FR) (S(FR))D[(FR)

O™ = — (1n
SER) 4 p(FR)

where kPR R "and bR are model parameters.

An element with this storage—discharge relationship has
not been implemented in SuperflexPy yet (as of ver-
sion 1.3.0). The following sections give two approaches for
creating such an element.

3.2.1 General approach for creating a new reservoir
with SuperflexPy

The general approach for creating a new reservoir in Su-
perflexPy is to define a new class that inherits most of its
functionality (methods) from the class ODEsElement. This
operation is illustrated in the code snippet in Fig. 5 (see
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Sect. 8.1 of the Supplement for full details). The new class
must override the following methods:

— __init__ is the constructor of the class. Its main pur-
pose is to invoke the constructor of the parent class
(lines 5-6) and to point to the method used to calcu-
late the fluxes, here, _fluxes_function_python
(see also Sect. 4.3, which illustrates the efficiency bene-
fits of using Numba-optimized methods for calculating
the fluxes).

— set_input takes the input fluxes in a predefined or-
der (here, just precipitation) and assigns them a key
(Line 15) that is then used when setting up and solving
the model equations,

— get_output invokes the functionalities implemented
by the ODEsElement to solve the element equation
over the entire simulation (all time steps). Lines 20-22
get the current state of the reservoir, invoke the ODE
solver, and set the state to its final value. Lines 24-28 get
the output flux arrays from the numerical approximator
(see Sect. 4.3). Line 30 returns a list with the output of
the element (here, the streamflow).

— _fluxes_function_python calculates the fluxes
and (optionally) their derivatives with respect to the
state for a given state, inputs, and parameters. Line 36
implements the vector version while lines 38—41 imple-
ment the scalar version. Both versions are needed by the
numerical approximator (see Sect. 4.3; further practical
details are provided in Sect. 8.1 of the Supplement).
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1 class NewFastReservoir(ODEsElement):

2

3 def __init__(self, parameters, states, approximation, id):

4

5 ODEsElement.__init__(self, parameters=parameters, states=states,

6 approximation=approximation, id=id)

7

8 # _fluxes_python is used to calculate the fluxes doing vector operations
9 self._fluxes_python = [self._fluxes_function_python]

numerical_approximator

10 # _fluxes is used to solve the ODE and it is specific to the architecture of the

11 self._fluxes = [self._fluxes_function_python]
12
13 def set_input(self, input):
14
15 self.input = {'P': input[0]}
16
17 def get_output(self, solve=True):
18
19 if solve:
20 self._solver_states = [self._states[self._prefix_states + 'S0']]
21 self._solve_differential_equation()
22 self.set_states({self._prefix_states + 'S0': self.state_array[-1, 0]})
23
24 fluxes = self._num_app.get_fluxes(fluxes=self._fluxes_python,
25 S=self.state_array,
26 S0=self._solver_states,
27 **xself.input,
28 **{k[len(self._prefix_parameters):]: self._parameters[k]
for k in self._parameters})
29
30 return [- fluxes[0][1]1]
31
32 @staticmethod
33 def _fluxes_function_python(S, S0, ind, P, k, alpha, b):
34
35 if ind is None:
36 return ([P, -(k * S*xalpha)/(S + b)], 0.0, SO + P)
37 else:
38 return ([P[ind], -(k[ind] * S**alpha[ind])/(S + b[ind])],
39 0.0,
S0 + P[ind],

28

[0.0, (k[ind] * Sx*alpha[ind])/((S + b[ind])**2) - (alphal[ind] * k[ind] *

Sxx(alpha[ind] -1))/(S + b[ind])S0O + P[ind] * dt[ind]])

Figure 5. General approach for implementing a new reservoir element NewFastReservoir by extending the class ODEsElement

(Sect. 3.2.1).

The new element NewFastReservoir is now defined
and can be used in the “new” version of M4, in lieu of the
previous element PowerReservoir. The object-oriented
features of Python are very useful here to enable the new
class NewFastReservoir to inherit most of the methods
from the base class ODEsElement. Otherwise, in addition
to the methods listed above, we would have needed to imple-
ment many other methods, e.g., for interfacing with numeri-
cal solvers and for setting element parameters and states.

3.2.2 Simplified approach for creating a new reservoir
element (from an existing element)

The same new reservoir element can be implemented
in a simpler way by noting that NewFastReservoir

Geosci. Model Dev., 14, 7047-7072, 2021

differs from PowerReservoir solely in the defini-
tion of the outflow equation. This difference affects only
one of the four methods implemented in Fig. 5, namely
_fluxes_function_python. A simpler implementa-
tion of NewFastReservoir can be therefore achieved by
inheriting this class directly from class PowerReservoir
rather than from class ODEsElement. The code in Fig. 6
illustrates this approach and implements only the method
_fluxes_ function_python. All other methods are
inherited from class PowerReservoir.

Note that this simplified implementation is a consequence
of the required modification being relatively minor, i.e., a
change solely in the constitutive function equation. More
complex modifications, such as the inclusion/exclusion of in-
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1 class NewFastReservoir(PowerReservoir):
5

@staticmethod

def _fluxes_function_python(S, S0, ind, P, k, alpha, b):

if ind is None:

7 return ([P, -(k * S**alpha)/(S + b)], 0.0, SO + P)

8 else:

9 return ([P[ind], -(k[ind] * S**alpha[ind])/(S + b[ind])],

10 0.0,

11 S0 + P[ind],

12 [0.0, (k[ind] * S**alpha[ind])/((S + b[ind])**2) - (alpha[ind] * k[ind] *

S*x(alpha[ind] -1))/(S + b[ind])SO® + P[ind] * dt[ind]])

Figure 6. Simplified approach for implementing the NewFastReservoir by inheriting directly from class PowerReservoir

(Sect. 3.2.2).

put/output fluxes (e.g., inclusion of evapotranspiration into
the PowerReservoir), would require the general implementa-
tion approach described in Sect. 3.2.1.

3.3 Implementing a distributed model

This section illustrates the implementation of an HRU-based,
distributed hydrological model, intended to simulate stream-
flow in a nested catchment. This implementation requires the
entire workflow illustrated in Sect. 2.2. The example is pro-
vided by model M02, developed in Dal Molin et al. (2020),
to provide streamflow predictions at 10 sub-catchments of
the Thur catchment in Switzerland (Fig. 7a).

Each sub-catchment receives its own forcing, namely
precipitation, potential evapotranspiration, and temperature.
Two HRU types are defined based on geology: consoli-
dated and unconsolidated formations (Fig. 7b). Both HRU
types are characterized by the same model structure, which
is shown in Fig. 8. This HRU model structure differs from
model structure M4 (Sect. 3.1) in the following additional el-
ements: (i) a “snow” reservoir, WR, which controls the parti-
tion of incoming precipitation between rainfall and snowfall
based on temperature, (ii) a lag function between UR and
FR, and (iii) a “slow” reservoir, SR, which acts in parallel to
FR and is controlled by the same equations as FR but with
different parameter values.

Similar to the simpler previous example in Sect. 3.1, this
“lumped” model structure is implemented as a unit. How-
ever, a key difference is that in the previous example the unit
represented the entire system, whereas here it is part of a
more complex system.

Given the spatial organization of the model, nodes are used
to represent sub-catchments and units are used to implement
HRU types. Note that the sub-catchments may share (one or
more) HRU types, which in SuperflexPy translates into the
nodes sharing (one or more) units. The network level is used
to connect multiple nodes and enables predictions at internal
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catchment locations. Figure 10 shows the SuperflexPy repre-
sentation of the spatial organization shown in Fig. 7.

We start by implementing the units. As seen in Fig. 8, the
HRU model structure has elements operating in parallel and,
therefore, requires the use of connections. Figure 9 shows
how the HRU model structure is “translated” into a Super-
flexPy unit. Recall, from Sect. 2.1, that elements can be con-
nected only if they belong to two consecutive layers, which
implies that “gaps” in the structure must be filled using trans-
parent elements, which output the same fluxes they receive
as inputs. Splitters and junctions are used to divide and merge
the fluxes to implement the parallel flow paths.

Comparing Fig. 8 with Fig. 9, we see how the HRU struc-
ture has been implemented within SuperflexPy. The follow-
ing implementation aspects are noted:

1. The incoming precipitation is partitioned into rainfall
and snowfall. This partitioning is done internally in the
WR element. The SuperflexPy implementation of WR
takes care of two processes: (i) partitioning of precip-
itation into rainfall and snowfall and (ii) simulation of
snow processes (accumulation and melting). The output
of WR is, logically, the sum of rainfall and snowmelt.
Alternatively, a (new) splitter element could have been
defined to partition the fluxes between UR (rainfall) and
WR (snowfall) based on temperature.

2. WR, as currently implemented, does not receive as input
PET, which is needed by the downstream element UR.
Therefore, the transfer of PET values to the UR element
is implemented using a separate path composed of three
elements, labeled “upper splitter”, “upper transparent”,
and “upper junction” (Fig. 9). This choice simplifies the
interface of element WR at the expense of a somewhat
more complicated model structure with additional ele-
ments.

3. The parallel part of the structure is composed of two ele-
ments on one branch (lag and FR) and only one element
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(a)

[ Andelfingen
I Appenzell
[ Frauenfeld
I Halden
[ Herisau
I Jonschwil
[ Mogelsberg
[ Mosnang
[ stGallen
Il Waengi

(b)

HRU
[ Consolidated
I Unconsolidated

Figure 7. Illustration of catchment discretization used for a distributed application of SuperflexPy in the Thur catchment: (a) discretization
into sub-catchments and (b) discretization into hydrological response units (HRUs) as presented in model M02 in Dal Molin et al. (2020).
The panels of this figure were originally published in Figs. 1a and 6 of Dal Molin et al. (2020). The HRU model structure is shown in Fig. 8.

g0

SFR L Qrr

Sur

Psr

l Q

L Qsr

Figure 8. Model structure used to represent the HRUs in model
MO02 in Dal Molin et al. (2020). Refer to Fig. 7 for the corresponding
HRU discretization of the Thur catchment.

Ssr

on the other branch (SR). To satisfy the requirement of
not having gaps in the unit structure, a transparent ele-
ment (Lower_transparent) is added after the SR.

The code to set up this model is detailed in Fig. 11. Sim-
ilar to the earlier example in Sect. 2.2, the user initializes
and connects all model components, proceeding sequentially
from the lowest level (elements) to the highest level (net-
work). The procedure can be summarized as follows:

1. lines 10-29 — initialize the elements needed for the
lumped model structures used in the HRUs;

2. lines 32-39 — initialize the units used to represent the
HRUEs, linking all the elements;

3. lines 42-51 — initialize the nodes used to represent the
sub-catchments; both units are assigned to nine nodes;
the Mosnang sub-catchment contains a single HRU, and
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hence only a single unit is assigned to the corresponding
node (Line 49);

4. lines 54—60 — connect the nodes using a network; the
topology of the network is defined by indicating, for
each node, the downstream one.

The network runs the nodes from upstream to downstream,
collects their outputs, and routes them to the outlet. Cus-
tomized routing functions can be implemented, as shown in
Sect. 9.1 of the Supplement. The output of the network is
a Python dictionary, with keys given by the node identifiers
and values given by the list of NumPy arrays representing the
time series of output fluxes over the simulation period.

4 Implementation details of SuperflexPy

This section presents additional technical details of Super-
flexPy needed to understand better some aspects of the func-
tioning of the framework. A more detailed and practical de-
scription is provided in the Supplement.

4.1 Parameters and states

All SuperflexPy components can have parameters and states.
Parameters specify component characteristics, whereas states
keep track of the component history. States and parameters
are set as part of initializing the model components and can
be manipulated using get and set methods provided by the
framework at all levels of its hierarchy (see the example in
Sect. 2.2).

The parameters can be either constant or variable in time.
Constant parameters represent the most common setup of
hydrological models. In conceptual hydrological modeling,
time-varying parameters have been proposed to represent
“deterministic” system variability (e.g., seasonality, Wes-
tra et al., 2014) and/or “stochastic” system variability (e.g.,
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Figure 9. SuperflexPy representation of the model structure M02 in
Fig. 8.

Kuczera et al., 2006; Reichert and Mieleitner, 2009; Renard
et al., 2011); see also earlier work in data-based mechanistic
modeling (e.g., Young, 2000).

4.2 Modular design following the object-oriented
paradigm

As noted in Sect. 2.1, SuperflexPy embraces the object-
oriented paradigm (e.g., Meyer, 1988), which is widely used
in general software and is increasingly adopted in scientific
software.

Figure 12 shows the unified modeling language (UML)
class diagram of SuperflexPy. The schematic illustrates the
classes underlying the core framework (i.e., the base classes
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that define SuperflexPy architecture) but excludes, for sim-
plicity, the specific implementations of components and nu-
merical routines. All the classes in the diagram can be ex-
tended to implement customized components; for exam-
ple, a reservoir can be implemented by extending the class
ODEsElement, a splitter can be implemented by extend-
ing the class ParameterizedElement, and a node with
a particular routing mechanism can be implemented by ex-
tending the class Node.

The object-oriented design provides several advantages in
the context of SuperflexPy:

— The inheritance principle enables the creation of new
classes by extending existing ones. Inheritance reduces
drastically the amount of new code that needs to be gen-
erated to implement a new model component (see exam-
ple in Sect. 3.2).

— Changes to a class (e.g., a component) and the cre-
ation of new classes can be carried out in isolation from
the rest of the code, as long as the interfaces between
classes are respected.

— When creating a model, only the necessary objects need
to be initialized and used. This principle makes the
model configuration effort roughly proportional to re-
quired model complexity; i.e., simple model structures
can be constructed from the minimal set of required
components.

— Objects retain their history (states), which can be ac-
cessed post-run to undertake model analysis and/or sub-
sequent computation.

— The modular nature of objects facilitates the develop-
ment and testing of new code.

These benefits make it easier to achieve clean and main-
tainable code, which is essential for any practical modeling
framework.

4.3 Numerical solution of ODEs

The mass balance of reservoir elements is described using
ordinary differential equations (ODEs), which are typically
solved (approximately) using numerical time stepping algo-
rithms. Many such algorithms have been described in the
numerical methods literature, e.g., Euler methods, Runge—
Kutta methods (e.g., Butcher and Goodwin, 2008).
SuperflexPy separates the formulation of model equations
from the solution of these equations. Specifically, flux equa-
tions are defined internally as methods of the elements (as
shown in Sect. 3.2), while the numerical algorithm to solve
the ODE:s is specified externally to the element, creating a
class specific to this task. The separation of equations and
solvers in the model specification enables the modeler, within
some restrictions, to select the numerical method without
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Figure 10. Spatial organization of the SuperflexPy model configuration used to simulate water fluxes in the Thur catchment (M02 in Dal
Molin et al., 2020). The units, used to represent the HRUs, are shown using the blue and yellow boxes. The nodes, used to represent the
sub-catchments, are shown using the green dashed boxes. The group of nodes connected together (green arrows) creates a network.

making any changes to the governing model equations (see
Sect. 5.2 of the Supplement). That said, given SuperflexPy’s
primary emphasis on enabling hydrologists to experiment
with flexible conceptual model structures, numerical flexibil-
ity is given a relatively lower level of priority and the choice
of numerical architecture of the framework is largely driven
by findings of previous studies (see below).

SuperflexPy conceptualizes the solution of its mass bal-
ance ODEs as a two-step process: (1) construct a discrete-
time numerical approximation of the ODEs (e.g., using Euler
time stepping schemes), and (2) when an implicit time step-
ping scheme is used, solve the associated nonlinear algebraic
equation(s). The procedures used for these tasks are referred
to as the “numerical approximator” and the “root finder”,
respectively. This distinction helps achieve better software
modularization, disentangling the choice of the numerical
approximator and of the root finder.

Currently, SuperflexPy provides three built-in numerical
approximators, namely the fixed-step implicit and explicit
Euler time stepping schemes (e.g., Clark and Kavetski, 2010)
and Runge—Kutta 4. Two built-in root finders are provided,
namely the Pegasus algorithm (Dowell and Jarratt, 1972) and
a hybrid Newton-bisection algorithm (Press et al., 1992).
Additional numerical routines are currently being developed.
To avoid mass balance discontinuities, as well as to ensure
better numerical stability and faster convergence, we recom-
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mend using smooth flux functions (e.g., Kavetski and Kucz-
era, 2007).

An additional approximation is employed within Super-
flexPy, namely that all model fluxes are constant within the
model time step. This approximation is consistent with the
typical format of hydrological data, such as rainfall and PET,
which are tabulated in discrete steps (e.g., daily, hourly), but
is applied not only to the forcing data but also to all inter-
nal fluxes. As such, this pragmatic approximation enables a
further simplification of the solution procedure because the
output flux from each element becomes a scalar value (per
time step). Note that first-order time stepping schemes, which
we recommend for SuperflexPy, themselves make exactly
the same assumption and are hence not impacted. However,
higher-order time stepping schemes and adaptive substep-
ping schemes would be impacted by additional first-order
discretization error because the variation in internal fluxes
within the model time step is ignored. Further details about
this pragmatic approximation are provided in Sect. 5.2 of the
Supplement.

The user can implement additional numerical algorithms,
either by coding them directly or by interfacing with external
code (e.g., ODE solvers from SciPy). Detailed instructions
are provided in Sect. 5.1 of the Supplement, which also in-
cludes a description of how to implement a numerical solver

https://doi.org/10.5194/gmd-14-7047-2021
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from superflexpy.implementation.root_finders.pegasus import PegasusPython

from superflexpy.implementation.numerical_approximators.implicit_euler import ImplicitEulerPython
from superflexpy.implementation.elements.thur_model_hess import SnowReservoir, UnsaturatedReservoir,
HalfTriangularLag, PowerReservoir

4 from superflexpy.implementation.elements.structure_elements import Transparent, Junction, Splitter

5 from superflexpy.framework.unit import Unit

6 from superflexpy.framework.node import Node
7
8

W N =

from superflexpy.framework.network import Network

9 # Initialize the elements
10 solver = PegasusPython()
11 approximator = ImplicitEulerPython(root_finder=solver)

12

13 upper_splitter = Splitter(direction=[[0, 1, None], [2, None, Nonell,

14 weight=[[1.0, 1.0, 0.0], [0.0, 0.0, 1.0]],

15 id="upper-splitter"')

16 snow = SnowReservoir(parameters={'t0': 0.0, 'k': 0.01, 'm': 2.0}, states={'S0': 0.0},
17 approximation=approximator, id='snow')

18 upper_transparent = Transparent(id='upper-transparent"')

19 upper_junction = Junction(direction=[[0, Nonel, [None, 0]], id='upper-junction')

20 unsaturated = UnsaturatedReservoir(parameters={'Smax': 50.0, 'Ce': 1.0, 'm': 0.01, 'beta': 2.0},

21 states={'S0': 10.0}, approximation=approximator, id='unsaturated')
22 lower_splitter = Splitter(direction=[[0], [0]], weight=[[0.3], [0.7]], id='lower-splitter"')

23 lag_fun = HalfTriangularLag(parameters={'lag-time': 2.0}, states={'lag': None}, id='lag-fun')

24 fast = PowerReservoir (parameters={'k': 0.01, 'alpha': 3.0}, states={'S0': 0.0},

25 approximation=approximator, id='fast')
26 slow = PowerReservoir (parameters={'k': le-4, 'alpha': 1.0}, states={'S0': 0.0},
27 approximation=approximator, id='slow')

28 lower_transparent = Transparent(id='lower-transparent"')
29 lower_junction = Junction(direction=[[0, 0]], id='lower-junction')

31 # Initialize the HRUs
32 consolidated = Unit(layers=[[upper_splitter], [snow, upper_transparent], [upper_junction],

3 [unsaturated], [lower_splitter], [slow, lag_funl],

34 [lower_transparent, fast], [lower_junction]],

35 id='consolidated')

36 unconsolidated = Unit(layers=[[upper_splitter], [snow, upper_transparent], [upper_junction],
37 [unsaturated], [lower_splitter], [slow, lag_funl],

38 [lower_transparent, fast], [lower_junction]],

39 id='unconsolidated')

40

41 # Create the catchments

42 andelfingen = Node(units=[consolidated, unsaturated], weights=[0.24, 0.76], area=403.3,
id="andelfingen')

43 appenzell = Node(units=[consolidated, unsaturated], weights=[0.92, 0.08], area=74.4, id='appenzell')

44 frauenfeld = Node(units=[consolidated, unsaturated], weights=[0.49, 0.51], area=134.4,
id='frauenfeld')

45 halden = Node(units=[consolidated, unsaturated], weights=[0.34, 0.66], area=314.3, id='halden')

46 herisau = Node(units=[consolidated, unsaturated], weights=[0.88, 0.12], area=16.7, id='herisau')

47 jonschwil = Node(units=[consolidated, unsaturated], weights=[0.9, 0.1], area=401.6, id='jonschwil')

48 mogelsberg = Node(units=[consolidated, unsaturated], weights=[0.92, 0.08], area=88.1,
id="mogelsberg")

49 mosnang = Node(units=[consolidated], weights=[1.0], area=3.1, id='mosnang')

50 stgallen = Node(units=[consolidated, unsaturated], weights=[0.87, 0.13], area=186.6, id='stgallen')

51 waengi = Node(units=[consolidated, unsaturated], weights=[0.63, 0.37], area=78.9, id='waengi')

53 # Create the network
54 thur_catchment = Network(nodes=[andelfingen, appenzell, frauenfeld, halden, herisau,

55 jonschwil, mogelsberg, mosnang, stgallen, waengil,

56 topology={'andelfingen': None, 'appenzell': 'stgallen',

57 'frauenfeld': 'andelfingen', 'halden': 'andelfingen',
58 'herisau': 'halden', 'jonschwil': 'halden',

59 'mogelsberg': 'jonschwil', 'mosnang': 'jonschwil',

60 'stgallen': 'halden', ‘'waengi': 'frauenfeld'})

Figure 11. SuperflexPy code implementing the distributed model in Figs. 9 and 10.
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Figure 12. UML class diagram showing the organization of the classes used to represent SuperflexPy components. The core framework is
presented, excluding the specific implementations of components and numerical routines.

“from scratch”, bypassing the current numerical approxima-
tor and/or root finder architecture.

As detailed next in Sect. 4.4, the choice of numerical im-
plementation, and its compatibility with optimizing compil-
ers, may have a strong impact on the overall computational
speed of the model.

4.4 Computational efficiency and language choice

Computational efficiency is a key requirement of a practical
modeling framework. Model calibration via parameter op-
timization is a common computationally demanding task re-
quired by most hydrological models, typically requiring hun-
dreds or thousands of model runs. Moreover, conceptual hy-
drological models are often used in Monte Carlo uncertainty
quantification, with comparable or even larger computational
cost (up to millions of model runs in some cases).

The choice of programming language inevitably requires
tradeoffs between computational efficiency and ease of use.
The choice of Python for SuperflexPy was motivated by
the attraction of a flexible and widely used scripting lan-
guage in conjunction with two efficient numerical libraries:
NumPy (Walt et al., 2011) and Numba (Lam et al., 2015).
NumPy provides highly efficient arrays for vectorized opera-
tions (i.e., element-wise operations between arrays). Numba
provides a “just-in-time compiler” that compiles (at runtime)
a Python method into machine code that interacts efficiently
with NumPy arrays.

The combined use of NumPy and Numba is particularly
effective when solving ODEs, where the numerical algorithm
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performs element-wise sequential operations. The built-in
SuperflexPy approaches for solving ODEs are compatible
with such numerical infrastructure and therefore enable fast
computation times. Note that switching to ODE solvers that
do not take advantage of such libraries might dramatically
increase the model runtime.

Numba offers drastic computational speedups compared to
native Python; our experimentation suggests runtime reduc-
tions by factors of up to 30. However, a drawback of Numba
is the requirement to compile the code each time it is exe-
cuted (run). For a lumped model composed of a few reser-
voirs, the Numba compilation time is of the order of a few
seconds. Therefore, Numba will outperform Python when the
simulation is long (e.g., multiple years of hourly data) and/or
when the model needs to be run a large number of times. For
example, as a broad illustration of runtimes on a standard
laptop, calibration of a HYMOD-like SuperflexPy model to
observed daily data, requiring 1000s of model runs each with
1000 time steps, takes a few seconds with the Numba im-
plementation compared to a couple of minutes with native
Python execution. Note that here we refer to the runtime
of the SuperflexPy model itself and exclude the runtime of
the calibration tool procedures; more details on benchmark-
ing are given in Sect. 5.3 of the Supplement. Examples of
the interoperability of SuperflexPy with external libraries for
model calibration (e.g., SPOTPY, Houska et al., 2015) are
given in chap. 14 of the Supplement.
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4.5 Ability to represent multiple fluxes and states

SuperflexPy can operate with multiple fluxes and state vari-
ables. In particular, connection elements, units, nodes, and
the network can accommodate an arbitrarily large number of
fluxes. The use of multiple fluxes has been already shown
in the model structure described in Sect. 3.3, where the
upper_splitter handles three different variables (pre-
cipitation, temperature, and PET). Additional examples are
provided in the Supplement (e.g., chap. 10, 11).

The capability to simulate multiple fluxes and states is in-
tended to support the future extension of SuperflexPy to new
modeling scenarios. Several such scenarios may be of in-
terest, including the transport of chemical substances (e.g.,
Fenicia et al., 2010; Ammann et al., 2020), the interaction be-
tween frozen and liquid water in a snow element (e.g., Jansen
et al., 2021), and interactions in the saturated and unsaturated
soil zones (e.g., Seibert et al., 2003).

While the current examples in SuperflexPy do not include
all the cases listed above, the framework architecture antici-
pates the need for more general simulation functionality and
has been designed to support extension to accommodate such
multi-state processes.

5 Discussion

5.1 Balancing functionality, scope, and usability in a
flexible model implementation

A software implementation that maximizes flexibility and us-
ability is challenging to achieve because flexible modeling
functionality may increase configuration effort and compu-
tational cost. Existing flexible frameworks have approached
this tradeoff with different priorities, based on their respec-
tive modeling objectives and paradigms.

The following sections offer a brief discussion of the de-
sign choices made by SuperflexPy in the context of selected
existing frameworks with a similar scope. The discussion
makes use of Tables 1 and 2, which summarize key design
choices related to usability and simulation capabilities, re-
spectively.

5.1.1 Structural flexibility

Structural flexibility refers to the flexibility in how elements
can be connected to compose the structure of the model (i.e.,
of the unit, following SuperflexPy terminology). This con-
sideration applies both to lumped and distributed models; the
flexibility in specifying the spatial organization of the model
is considered separately in Sect. 5.1.2.

Some flexible frameworks are implemented using a mas-
ter structure that incorporates all supported model configu-
rations. In these implementations, the user can choose the
flux equation(s) (e.g., FUSE, SUPERFLEX-F90) and/or ac-
tivate/deactivate specific elements (e.g., SUPERFLEX-F90)
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but cannot change the overall connectivity of model ele-
ments. To the extent that the master structure is sufficiently
general, it may not unduly restrict the practical usage of the
framework.

Other frameworks (e.g., MARRMOoT) propose a collection
of existing conceptual model structures ready to use, which
have been implemented following the same design rules in
order to allow for a fair comparison. Such frameworks are
typically intended for model intercomparison studies.

The most general frameworks allow connecting the ele-
ments freely without constraints. A distinction can be made
between frameworks that allow for mutual interactions be-
tween the elements (e.g., CMF) and frameworks that do not
allow such interactions (e.g., ECHSE).

SuperflexPy adopts the latter philosophy, allowing us to
connect the elements freely within the unit but restricting mu-
tual interactions, i.e., constraining the structure to be a DAG
(see Sect. 5.2). Moreover, we have chosen to define the DAG
as a succession of layers, listing the elements in order from
upstream to downstream and allowing for parallel flow paths
(e.g., see the model structure in Fig. 9). This “list” formu-
lation has been selected in preference to other methods for
defining a graph, e.g., connectivity matrix or adjacency list,
for the following reasons: (i) simplicity and scalability, as the
list dimension scales linearly with the number of elements, in
contrast to the connectivity matrix approach where this scal-
ing is quadratic; (ii) arguably better readability, as the ele-
ments are listed in the order they appear in the DAG; and
(iii) it guarantees a graph topology without loops. Note that
other popular modeling tools (e.g., neural networks) adopt
this type of formulation.

5.1.2 Spatial flexibility

Most frameworks (e.g., CMF, ECHSE, SUPERFLEX-F90)
support multiple types of spatial discretization (e.g., lumped,
HRUs, sub-catchments, grids). Some frameworks (e.g.,
FUSE, MARRMOoT) support solely lumped models.

SuperflexPy uses four hierarchical levels of components,
intended to facilitate the formulation of models that range in
spatial complexity from a simple lumped model to a com-
position of lumped models intended for prediction at a sin-
gle location (e.g., a catchment with several HRUs) and ulti-
mately to a distributed model capable of making predictions
at multiple internal locations. The use of a hierarchical set
of components could be contrasted with a framework based
solely on the lowest-level components, here, elements. The
use of higher-level components enables the modeler to cap-
ture explicitly the natural groupings in the catchment of in-
terest, e.g., sub-catchments and HRUs.

5.1.3 Usability

The usability of a framework can be judged according to sev-
eral aspects.

Geosci. Model Dev., 14, 7047-7072, 2021
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Table 1. Summary of usability characteristics of SuperflexPy in the context of selected flexible frameworks for conceptual hydrological modeling.*

Availability Distribution and Documentation Interface and setup I/0O format for settings Possibility of Built-in calibration and
installation and data customization uncertainty analysis
SuperflexPy Open source Python package Available Python package; Direct I/O with Python;  Possible with moderate ~ Not present
Python script to setup no binding to particular  programming expertise
formats
FUSE (Fortran) (2008) Exe or code, Stand-alone exe/code Comments in Executable Structured text files Possible but not Some versions are
by request from code (limited) with/without GUI supported coupled with optimiza-
authors or Fortran subs; systematically tion
setup files and MCMC sampling
tools
SUPERFLEX-F90 (2011)  Exe or code, Stand-alone exe Comments in CLI or DLL or Fortran ~ Structured text files Possible but not Not present

by request from
authors

code (limited)

subs; setup files

supported
systematically

CMF (2011) Open source Python package; Available Python package; Direct I/O with Python;  Customization using No; developers
code compilation for Python script to setup;  no binding to particular ~ C++; possibility recommend using
enhancements GUI only for lumped formats with Python under the SPOTpy package
models development from the same group
PERSIST (2014) Exe/web app Stand-alone executable  Exists; not public at the  Desktop app or Structured text files and ~ Possible but not Incorporates MCMC
after registra- or web app moment web app; setup files XMLs supported toolkit
tion or GUI systematically
ECHSE (2015) Open source R package to generate Available CLI; setup through text  Delimited text files Possible with moderate  Not present
C code that has to be file or CLI programming expertise
compiled
MARRMOT (2019) Open source Matlab/Octave package  Available Collection of scripts Direct I/0 with Possible with moderate ~ Not present
and functions; setup Matlab/Octave; programming expertise
with script no binding to
particular formats
RAVEN (2020) Open source Stand-alone exe-  Available Executable without Structured text files Possible but requires DDS optimization;
cutable; GUI, setup files developer-level reports model
may require NetCDF expertise; instructions performance metrics

in the documentation

usable by external
software
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* This information was collated based on published information. A brief informal review was provided by the framework developers. Abbreviations: exe — binary executable; subs — subroutines; GUI — graphical user interface; CLI — command line interface; DLL —
dynamic link library; MCMC — Monte Carlo Markov Chain; DDS — dynamic dimensioned search.
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The first aspect is how a framework is operated. Some
frameworks are stand-alone and operated through a graphi-
cal interface (e.g., PERSiIST) or the command line interface
(e.g., SUPERFLEX-F90). Other frameworks are designed as
libraries that can be called from the user code in a specific
programming language to initialize, configure, and run the
model (e.g., CMF, MARRMoT; SUPERFLEX-F90 also al-
lows this option when using the source code from Fortran).
SuperflexPy is implemented as a Python package. Models
can be created using a Python script and interfaced easily
with external libraries (examples are provided in chap. 14 of
the Supplement).

The second aspect is the scope of the framework. Most
frameworks (e.g., SUPERFLEX-F90, ECHSE) adopt, by de-
sign, the philosophy of “one tool per problem” and limit their
functionality to the simulation of hydrological processes.
Other frameworks integrate tools for parameter calibration
and sensitivity analysis, uncertainty quantification, pre- and
post-processing tasks such as input unit checks and conver-
sions, etc. (e.g., RAVEN, PERSIiST). SuperflexPy adopts the
first philosophy: it limits its functionality to hydrological
simulation.

Finally, documentation is another key aspect in the usabil-
ity of a framework. Virtually all considered frameworks pro-
vide such documentation to a varying degree of detail. Su-
perflexPy documentation is available online and explains in
detail how to use and further develop the framework.

Figure 13 illustrates the online software management tools
that are used to develop and deploy SuperflexPy. The frame-
work itself, including source code, documentation, and ex-
amples, is hosted on GitHub. Automated workflows (dashed
lines in the figure) are then used to create new releases
(PyPI), get DOIs for the software releases (Zenodo), host the
documentation (ReadTheDocs), and create runable examples
(hosted on Binder as Jupyter notebooks). From a general user
perspective, this setup improves model accessibility and re-
producibility. From a developer and contributor perspective,
it reduces the effort needed to maintain and extend the frame-
work.

5.1.4 Possibility of extension and customization

Most frameworks have open-source code and permissive li-
censes, making it possible to modify and extend their code
base. Within this category, some frameworks are specifically
intended to be customized (e.g., implementing new function-
alities) as part of their regular usage without an expecta-
tion of “developer-level” skills (e.g., ECHSE). Other frame-
works do not envisage customization in their primary scope
but can still be modified by modelers with appropriate pro-
gramming expertise in consultation with available developer
guides (e.g., RAVEN).

Some frameworks have not been released as open-source,
and the only way to access their code base for customiza-
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tion and extension is by contacting their developers (e.g.,
SUPERFLEX-F90, PERSIST).

SuperflexPy is designed to facilitate extension and cus-
tomization as part of its regular usage. New components can
be created by extending or modifying existing components,
as demonstrated in Sect. 3.2.

5.1.5 Computational efficiency

The computational efficiency of a model code, i.e., the time
required to run a simulation, depends primarily on two as-
pects, namely the programming language and the numerical
algorithms.

In terms of programming languages, most frameworks
have been implemented in C, C++, or Fortran, which enable
very fast computation. These implementations can be either
purely single-language (e.g., FUSE, RAVEN) or wrapped
within a scripting language to provide a more suitable in-
terface (e.g., CMF). Amongst the considered existing frame-
works, only MARRMOT is implemented entirely in an inter-
preted language (Matlab/Octave).

In terms of numerical algorithms, a wide range of op-
tions are available for solving differential equations. Broadly
speaking, time stepping algorithms can be classified as im-
plicit or explicit and may employ a fixed or an adaptive step
size. The choice of algorithm and its settings brings trade-
offs between solution accuracy, algorithm complexity, and
computational cost. In the context of model development and
comparison, it is important to separate the specification of
model equations from the choice of numerical solution and
to use robust numerical methods to avoid spurious artifacts
(e.g., Kavetski and Clark, 2010). The majority of frameworks
implement this separation and provide a choice of built-in
numerical algorithms.

SuperflexPy, while written entirely in Python (a nominally
slow language), makes several implementation choices to re-
duce computational costs. These choices include the use of
efficient numerical libraries (Sect. 4.4) and the solution of
the elements in succession (DAG, Sect. 5.2). This solution
of the elements “one at a time” enables the usage of robust
solvers that operate on a single ODE at a time; in such cases,
the root finder also operates on a single algebraic equation at
a time, reducing the computational effort. The choice of nu-
merical algorithm for individual elements is left to the user
(Sect. 4.3). The (recommended) built-in approximators in-
clude the implicit Euler scheme with fixed step size, which
offers stability and smoothness benefits valuable in parame-
ter estimation contexts.

5.2 Current restrictions in model structure
specification

As part of balancing the flexibility, ease of use, and compu-
tational performance of SuperflexPy, some restrictions have
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Figure 13. Organization of the SuperflexPy project, indicating the online software management tools used to develop the source code and
documentation, release product versions with associated DOIs, and provide general open access to all project components. Typical workflow
paths for users and developers are shown, respectively, in the blue and black lines and font. Dashed lines represent automated workflows.

been imposed on the connectivity between model compo-
nents.

The first restriction is that elements within a unit must form
a directional acyclic graph (DAG), with no feedback loops
from downstream to upstream elements (Sect. 2.1). This re-
striction enables the numerical solvers to proceed, at each
time step, in a single pass from upstream to downstream el-
ements and improves the computational performance of the
framework. The restriction on internal model feedbacks is
not expected to be overly limiting when developing concep-
tual hydrological models, where the fluxes from a given el-
ement typically depend only on the state in that element and
not on downstream elements. In such systems, flows occur
only in one direction, e.g., in model M4 the water flows from
UR to FR but not vice versa. A counter-example where inter-
nal model feedbacks are required is given by the bidirectional
interaction between surface water and groundwater in the hy-
porheic zone, where the exchange flux (or fluxes) depends on
both states. Such interactions can still be modeled in Super-
flexPy by introducing elements that embed feedbacks inter-
nally. For example, the hyporheic zone can be represented
using a two-state reservoir with interacting states (e.g., Seib-
ert et al., 2003). In other words, the SuperflexPy restriction
on model feedbacks applies to interactions between elements
but not to interactions within an element.
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The second restriction, which also applies at the unit level,
derives from the decision to define the DAG as a succession
of layers (Sect. 5.1.1). This choice simplifies the model def-
inition in typical use cases, when there are many elements
with relatively few connections (i.e., the DAG is “sparse”
rather than “dense”). However, the definition of a DAG as
a succession of layers requires the elements to be connected
directly one to the other, without skipping layers. Hence the
need for transparent elements, which output the inputs they
receive and are used to fill the gaps that arise when two or
more parallel flow paths have a different number of elements.
An example of such model configuration is given in Fig. 9,
where a transparent element (labeled “lower_transparent”) is
used to fill the gap in layer 7.

The third restriction is that the topology of a network must
represent a tree where any given node can connect and trans-
fer fluxes only to a single downstream node (Sect. 2.1). This
restriction has a similar motivation to the restriction of a unit
structure to a DAG and allows for a simple and efficient com-
putational implementation, which starts from the headwater
nodes and proceeds downstream one node at a time. Typical
distributed conceptual models meet this restriction, for exam-
ple as illustrated in Sect. 3.3. However, fully integrated dis-
tributed models, such as Parflow and Mike-She, do include
mutual dependencies between spatial elements, e.g., leading
to 2D or 3D groundwater flows. Such configurations are con-
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sidered beyond the scope of conceptual distributed models
and therefore are not currently supported in SuperflexPy.

5.3 Current usage and future developments

SuperflexPy is easy to install and run; it is written in pure
Python and its dependencies are limited to the packages
NumPy and Numba (Sect. 4.4). Installation can be done di-
rectly using the package installer for Python (pip) and do not
require (additional) external libraries. We stress that Super-
flexPy is not a wrapper of earlier SUPERFLEX-F90 code
but offers a completely new implementation that is not con-
strained by choices taken in the earlier code versions.

SuperflexPy has already been used for research applica-
tions. Jansen et al. (2021) performed a “model mimicry”
study where similarities and differences within the HBV
family of models were investigated. SuperflexPy was used
to construct a set of HBV-like models and compare them in
terms of the behavior of individual model components, the
impact of numerical implementation, and so forth. A list of
publications using SuperflexPy is maintained on the docu-
mentation website.

In terms of future developments, we hope that SuperflexPy
offers the broader hydrological community a versatile new
tool for research work and practical applications. Further Su-
perflexPy developments are likely to follow from such work
and collaborations, including (i) expansion of the library of
model components beyond the ones here presented (as shown
in the example in Sect. 3.2) and (ii) more fundamental devel-
opments in response to future model applications. It is impor-
tant to highlight that SuperflexPy can be used to create and
combine new model components, thereby enabling experi-
mentation with new model structures and general conceptu-
alizations. The framework, therefore, is not limited to com-
ponents and structures taken from existing models — though
such collections could be also produced. The SuperflexPy
model library may grow as new users share their implemen-
tations with the community. In order to facilitate the use of
SuperflexPy, its code is accessible on GitHub with license
LGPL-3.0 and distributed using the Python package installer
PyPI (see the code availability section at the end of this pa-
per). The online documentation provides a guide for col-
leagues interested in contributing to the framework (Sect. 2.1
of the Supplement).

6 Summary and conclusions

SuperflexPy is a new Python flexible modeling framework
for building conceptual catchment-scale hydrological mod-
els ranging from lumped to distributed configurations. Su-
perflexPy offers detailed control over each aspect of model
configuration and caters to a wide range of typical concep-
tual model applications. In order to facilitate the model build-
ing process, the framework defines its components (build-
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ing blocks) at four hierarchical levels, namely element, unit,
node, and network. These components support conceptual
model setups of increasing levels of complexity, including
but not limited to a single element model (e.g., a reservoir),
a typical lumped model (e.g., a collection of interconnected
reservoirs), a semi-distributed model designed to provide
prediction at a single outlet, and a semi-distributed model
designed to provide predictions at internal sub-catchments.
The construction of a model from components up to a given
hierarchical level does not require specifying components at
higher levels, which makes the model configuration effort
proportional to the complexity of the application and reduces
configuration and computational overheads. The framework
supports multiple states and fluxes in each component, which
facilitates future extension to applications where such func-
tionality is needed.

SuperflexPy offers an open-source implementation of the
SUPERFLEX principles (Fenicia et al., 2011) that builds on
the collective experience of the authors and their colleagues
in hydrological model design and application. The paper dis-
cusses the key design choices made in SuperflexPy, with
an emphasis on the ease of use and interfacing, availability,
amenability of extensions, and computational efficiency.

The use of the SuperflexPy framework is illustrated using
two examples that represent typical tasks in conceptual hy-
drological modeling: the implementation of a lumped model
to simulate an entire catchment and the implementation of
a distributed model to simulate a system of multiple sub-
catchments with spatially varying landscape characteristics.
We hope the framework will contribute to ongoing efforts
in the hydrological modeling community to develop more
robust and representative models. The framework is open
source, available with license LGPL-3.0 on GitHub.

Code availability. The source code of SuperflexPy, together with
documentation and examples, is hosted in the public GitHub
repository: https://github.com/dalmo1991/superflexPy (Dal Molin
et al., 2021a). Github is used for issue tracking. Package re-
leases are distributed using the Python package index: https:/
pypi.org/project/superflexpy (Dal Molin et al., 2021a). Releases
are identified using a version number based on Semantic Ver-
sioning 2.0.0 and assigned a DOI through Zenodo. The release
associated with this paper represents version 1.3.0 and has DOI
https://doi.org/10.5281/zenodo.5235158 (Dal Molin et al., 2021b).
Detailed documentation is available through Read the Docs at https:
//superflexpy.readthedocs.io (Dal Molin et al., 2021c). The Supple-
ment to this paper represents a snapshot of the documentation at the
time reported on the front page.

SuperflexPy is implemented using Python 3.7 and depends on
NumPy (version 1.19) and Numba (version 0.50).

SuperflexPy is available under the license LGPL-3.0. Users of
the framework are invited to share their modeling solutions with the
community by contributing to the GitHub repository.

https://doi.org/10.5194/gmd-14-7047-2021


https://github.com/dalmo1991/superflexPy
https://pypi.org/project/superflexpy
https://pypi.org/project/superflexpy
https://doi.org/10.5281/zenodo.5235158
https://superflexpy.readthedocs.io
https://superflexpy.readthedocs.io

M. Dal Molin et al.: SuperflexPy 1.3.0: an open-source Python framework

Data availability. No data sets were used in this paper.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-7047-2021-supplement.

Author contributions. All authors contributed to writing the paper.
MDM designed, implemented, and documented the Python pack-
age, with input from FF and DK.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank the associate editor Andrew Wick-
ert, Philipp Kraft, Riccardo Rigon, and two anonymous review-
ers for their thoughtful and constructive feedback on our paper.
We are grateful to James Craig, Martyn Futter, David Kneis,
Wouter Knoben, and Philipp Kraft for providing fast and informa-
tive responses that helped us construct Tables 1 and 2.

Financial support. This research has been supported by
the Schweizerischer Nationalfonds zur Forderung der Wis-
senschaftlichen Forschung (grant no. 200021_169003).

Review statement. This paper was edited by Andrew Wickert and
reviewed by Riccardo Rigon, Philipp Kraft, and two anonymous
referees.

References

Ammann, L., Doppler, T., Stamm, C., Reichert, P, and Fenicia,
F.: Characterizing fast herbicide transport in a small agricul-
tural catchment with conceptual models, J. Hydrol., 586, 124812,
https://doi.org/10.1016/j.jhydrol.2020.124812, 2020.

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J.
R.: Large area hydrologic modeling and assessment, Part I:
model development, J. Am. Water Res. Assoc., 34, 73-89,
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour,
K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel,
R. D., van Griensven, A., Van Liew, M. W., Kannan,
N., and Jha, M. K.: SWAT: Model Use, Calibration, and
Validation, Transactions of the ASABE, 55, 1491-1508,
https://doi.org/10.13031/2013.42256, 2012.

Bancheri, M., Serafin, F., and Rigon, R.: The Representa-
tion of Hydrological Dynamical Systems Using Extended

https://doi.org/10.5194/gmd-14-7047-2021

7069

Petri Nets (EPN), Water Resour. Res., 55, 8895-8921,
https://doi.org/10.1029/2019WR025099, 2019.

Bertuzzo, E., Thomet, M., Botter, G., and Rinaldo,
A Catchment-scale  herbicides  transport: Theory
and application, Adv. Water Resour., 52, 232-242,

https://doi.org/10.1016/j.advwatres.2012.11.007, 2013.

Beven, K.: Changing ideas in hydrology — The case of
physically-based models, J. Hydrol., 105, 157-172,
https://doi.org/10.1016/0022-1694(89)90101-7, 1989.

Beven, K. J.: Uniqueness of place and process representations in
hydrological modelling, Hydrol. Earth Syst. Sci., 4, 203-213,
https://doi.org/10.5194/hess-4-203-2000, 2000.

Beven, K. J. and Kirkby, M. J.: A physically based, vari-
able contributing area model of basin hydrology/Un
modele a base physique de zone d’appel variable de
I’hydrologie du bassin versant, Hydrol. Sci. Bull., 24, 43—
69, https://doi.org/10.1080/02626667909491834, 1979.

Boyle, D. P.: Multicriteria calibration of hydrologic models, The
University of Arizona, 2001.

Boyle, D. P, Gupta, H. V., Sorooshian, S., Koren, V., Zhang, Z.,
and Smith, M.: Toward improved streamflow forecasts: value of
semidistributed modeling, Water Resour. Res., 37, 2749-2759,
https://doi.org/10.1029/2000wr000207, 2001.

Butcher, J. C. and Goodwin, N.: Numerical methods for ordinary
differential equations, Wiley Online Library, 2008.

Clark, M. P. and Kavetski, D.: Ancient numerical daemons
of conceptual hydrological modeling: 1. Fidelity and effi-
ciency of time stepping schemes, Water Resour. Res., 46, 10,
https://doi.org/10.1029/2009WR008894, 2010.

Clark, M. P, Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J.
A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for
Understanding Structural Errors (FUSE): A modular framework
to diagnose differences between hydrological models, Water Re-
sour. Res., 44, W00b02 https://doi.org/10.1029/2007wr006735,
2008.

Clark, M. P, Kavetski, D., and Fenicia, F.: Pursuing the
method of multiple working hypotheses for hydro-
logical modeling, Water Resour. Res., 47, W09301,
https://doi.org/10.1029/2010wr009827, 201 1a.

Clark, M. P,, McMillan, H. K., Collins, D. B. G., Kavetski, D., and
Woods, R. A.: Hydrological field data from a modeller’s perspec-
tive: Part 2: process-based evaluation of model hypotheses, Hy-
drol. Process., 25, 523-543, https://doi.org/10.1002/hyp.7902,
2011b.

Clark, M. P, Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp,
D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A.
W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen,
R. M.: A unified approach for process-based hydrologic model-
ing: 1. Modeling concept, Water Resour. Res., 51, 2498-2514,
https://doi.org/10.1002/2015wr017198, 2015.

Craig, J. R., Brown, G., Chlumsky, R., Jenkinson, R. W., Jost, G.,
Lee, K., Mai, J., Serrer, M., Sgro, N., Shafii, M., Snowdon, A. P.,
and Tolson, B. A.: Flexible watershed simulation with the Raven
hydrological modelling framework, Environ. Modell. Softw.,
129, 104728, https://doi.org/10.1016/j.envsoft.2020.104728,
2020.

Dal Molin, M., Schirmer, M., Zappa, M., and Fenicia, F.: Under-
standing dominant controls on streamflow spatial variability to
set up a semi-distributed hydrological model: the case study of

Geosci. Model Dev., 14, 7047-7072, 2021


https://doi.org/10.5194/gmd-14-7047-2021-supplement
https://doi.org/10.1016/j.jhydrol.2020.124812
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.13031/2013.42256
https://doi.org/10.1029/2019WR025099
https://doi.org/10.1016/j.advwatres.2012.11.007
https://doi.org/10.1016/0022-1694(89)90101-7
https://doi.org/10.5194/hess-4-203-2000
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1029/2000wr000207
https://doi.org/10.1029/2009WR008894
https://doi.org/10.1029/2007wr006735
https://doi.org/10.1029/2010wr009827
https://doi.org/10.1002/hyp.7902
https://doi.org/10.1002/2015wr017198
https://doi.org/10.1016/j.envsoft.2020.104728

7070 M. Dal Molin et al.: SuperflexPy 1.3.0: an open-source Python framework

the Thur catchment, Hydrol. Earth Syst. Sci., 24, 1319-1345,
https://doi.org/10.5194/hess-24-1319-2020, 2020.

Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy:
The flexible language of hydrological modelling, SuperflexPy
[code], available at: https://pypi.org/project/superflexpy and
https://github.com/dalmo1991/superflexPy, last access: 18 Octo-
ber 2021a.

Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy 1.3.0,
Zenodo [code], https://doi.org/10.5281/zenodo.5235158, 2021b.

Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy, Super-
flexPy, available at: https://superflexpy.readthedocs.io, last ac-
cess: 18 October 2021c.

David, P. C., Oliveira, D. Y., Grison, F., Kobiyama, M., and
Chaffe, P. L. B.: Systematic increase in model complex-
ity helps to identify dominant streamflow mechanisms in
two small forested basins, Hydrol. Sci. J., 64, 455-472,
https://doi.org/10.1080/02626667.2019.1585858, 2019.

Dowell, M. and Jarratt, P.: The ‘Pegasus” method for
computing the root of an equation, BIT, 12, 503-508,
https://doi.org/10.1007/BF01932959, 1972.

Eckhardt, K. and Ulbrich, U.: Potential impacts of climate
change on groundwater recharge and streamflow in a cen-
tral European low mountain range, J. Hydrol., 284, 244-252,
https://doi.org/10.1016/j.jhydrol.2003.08.005, 2003.

Fenicia, F., Savenije, H. H. G., Matgen, P, and Pfister, L.: Is
the groundwater reservoir linear? Learning from data in hy-
drological modelling, Hydrol. Earth Syst. Sci., 10, 139-150,
https://doi.org/10.5194/hess-10-139-2006, 2006.

Fenicia, F., Savenije, H. H. G., Matgen, P, and Pfister,
L.: Understanding catchment behavior through stepwise
model concept improvement, Water Resour. Res., 44, 1,
https://doi.org/10.1029/2006WR005563, 2008.

Fenicia, F., Wrede, S., Kavetski, D., Pfister, L., Hoffmann, L.,
Savenije, H. H. G., and McDonnell, J. J.: Assessing the im-
pact of mixing assumptions on the estimation of streamwa-
ter mean residence time, Hydrol. Process., 24, 1730-1741,
https://doi.org/10.1002/hyp.7595, 2010.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a
flexible approach for conceptual hydrological modeling: 1. Mo-
tivation and theoretical development, Water Resour. Res., 47,
W11510, https://doi.org/10.1029/2010wr010174, 2011.

Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups,
G., Pfister, L., and Freer, J.: Catchment properties, function, and
conceptual model representation: is there a correspondence?, Hy-
drol. Process., 28, 2451-2467, https://doi.org/10.1002/hyp.9726,
2014.

Fenicia, F., Kavetski, D., Savenije, H. H. G., and Pfister, L.: From
spatially variable streamflow to distributed hydrological mod-
els: Analysis of key modeling decisions, Water Resour. Res., 52,
954-989, https://doi.org/10.1002/2015wr017398, 2016.

Feyen, L., Kalas, M., and Vrugt, J. A.: Semi-distributed param-
eter optimization and uncertainty assessment for large-scale
streamflow simulation using global optimization/Optimisation de
parametres semi-distribués et évaluation de 1’incertitude pour la
simulation de débits a grande échelle par I’ utilisation d’une opti-
misation globale, Hydrol. Sci. J., 53, 293-308, 2008.

Formetta, G., Antonello, A., Franceschi, S., David, O., and Rigon,
R.: Hydrological modelling with components: A GIS-based

Geosci. Model Dev., 14, 7047-7072, 2021

open-source framework, Environ. Modell. Softw., 55, 190-200,
https://doi.org/10.1016/j.envsoft.2014.01.019, 2014.

Futter, M. N., Erlandsson, M. A., Butterfield, D., Whitehead, P. G.,
Oni, S. K., and Wade, A. J.: PERSIST: a flexible rainfall-runoff
modelling toolkit for use with the INCA family of models, Hy-
drol. Earth Syst. Sci., 18, 855-873, https://doi.org/10.5194/hess-
18-855-2014, 2014.

Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije,
H. H. G.: Testing the realism of a topography-driven
model (FLEX-Topo) in the nested catchments of the Up-
per Heihe, China, Hydrol. Earth Syst. Sci., 18, 1895-1915,
https://doi.org/10.5194/hess-18-1895-2014, 2014.

Henn, B., Clark, M. P, Kavetski, D., Newman, A. J., Hughes,
M., McGurk, B., and Lundquist, J. D.: Spatiotemporal patterns
of precipitation inferred from streamflow observations across
the Sierra Nevada mountain range, J. Hydrol., 556, 993-1012,
https://doi.org/10.1016/j.jhydrol.2016.08.009, 2018.

Houska, T., Kraft, P.,, Chamorro-Chavez, A., and Breuer,
L.: SPOTting Model Parameters Using a Ready-
Made Python Package, PLoS One, 10, e0145180,
https://doi.org/10.1371/journal.pone.0145180, 2015.

Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink,
R., Freer, J., Savenije, H. H. G., and Gascuel-Odoux, C.: Process
consistency in models: The importance of system signatures, ex-
pert knowledge, and process complexity, Water Resour. Res., 50,
7445-74609, https://doi.org/10.1002/2014wr015484, 2014.

Ibbitt, R. P. and O’Donnell, T.: Designing conceptual catchment
models for automatic fitting methods, IAHS Publication, 101,
462-475, 1971.

Jakeman, A. J. and Hornberger, G. M.: How Much Complexity Is
Warranted in a Rainfall-Runoff Model, Water Resour. Res., 29,
2637-2649, https://doi.org/10.1029/93wr00877, 1993.

Jansen, K. F., Teuling, A. J., Craig, J. R, Dal Molin, M.,
Knoben, W. J. M., Parajka, J., Vis, M., and Melsen, L.
A.: Mimicry of a conceptual hydrological model (HBV):
What’s in a name?, Water Resour. Res., 57, €2020WR029143,
https://doi.org/10.1029/2020WR029143, 2021.

Kavetski, D. and Clark, M. P.: Ancient numerical daemons of
conceptual hydrological modeling: 2. Impact of time stepping
schemes on model analysis and prediction, Water Resour. Res.,
46, 10, https://doi.org/10.1029/2009wr008896, 2010.

Kavetski, D. and Fenicia, F.: Elements of a flexible ap-
proach for conceptual hydrological modeling: 2. Application
and experimental insights, Water Resour. Res., 47, W11511,
https://doi.org/10.1029/2011wr010748, 2011.

Kavetski, D. and Kuczera, G.: Model smoothing strategies to re-
move microscale discontinuities and spurious secondary optima
in objective functions in hydrological calibration, Water Resour.
Res., 43, W03411, https://doi.org/10.1029/2006wr005195, 2007.

Kirchner, J. W.: Catchments as simple dynamical systems:
Catchment characterization, rainfall-runoff modeling, and do-
ing hydrology backward, Water Resour. Res., 45, W(02429,
https://doi.org/10.1029/2008wr006912, 2009.

Kneis, D.: A lightweight framework for rapid de-
velopment of object-based hydrological model en-
gines, Environ. Modell. Softw., 68, 110-121,

https://doi.org/10.1016/j.envsoft.2015.02.009, 2015.
Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C.,
and Woods, R. A.: Modular Assessment of Rainfall-Runoff

https://doi.org/10.5194/gmd-14-7047-2021


https://doi.org/10.5194/hess-24-1319-2020
https://pypi.org/project/superflexpy
https://github.com/dalmo1991/superflexPy
https://doi.org/10.5281/zenodo.5235158
https://superflexpy.readthedocs.io
https://doi.org/10.1080/02626667.2019.1585858
https://doi.org/10.1007/BF01932959
https://doi.org/10.1016/j.jhydrol.2003.08.005
https://doi.org/10.5194/hess-10-139-2006
https://doi.org/10.1029/2006WR005563
https://doi.org/10.1002/hyp.7595
https://doi.org/10.1029/2010wr010174
https://doi.org/10.1002/hyp.9726
https://doi.org/10.1002/2015wr017398
https://doi.org/10.1016/j.envsoft.2014.01.019
https://doi.org/10.5194/hess-18-855-2014
https://doi.org/10.5194/hess-18-855-2014
https://doi.org/10.5194/hess-18-1895-2014
https://doi.org/10.1016/j.jhydrol.2016.08.009
https://doi.org/10.1371/journal.pone.0145180
https://doi.org/10.1002/2014wr015484
https://doi.org/10.1029/93wr00877
https://doi.org/10.1029/2020WR029143
https://doi.org/10.1029/2009wr008896
https://doi.org/10.1029/2011wr010748
https://doi.org/10.1029/2006wr005195
https://doi.org/10.1029/2008wr006912
https://doi.org/10.1016/j.envsoft.2015.02.009

M. Dal Molin et al.: SuperflexPy 1.3.0: an open-source Python framework 7071

Models Toolbox (MARRMoT) v1.2: an open-source, extend-
able framework providing implementations of 46 conceptual hy-
drologic models as continuous state-space formulations, Geosci.
Model. Dev., 12, 2463-2480, https://doi.org/10.5194/gmd-12-
2463-2019, 2019.

Kraft, P, Vaché, K. B., Frede, H.-G., and Breuer, L.: CMF:
A Hydrological Programming Language Extension For Inte-
grated Catchment Models, Environ. Modell. Softw., 26, 828—
830, https://doi.org/10.1016/j.envsoft.2010.12.009, 2011.

Kuczera, G., Kavetski, D., Franks, S., and Thyer, M.: To-
wards a Bayesian total error analysis of conceptual
rainfall-runoff models: Characterising model error using
storm-dependent parameters, J. Hydrol., 331, 161-177,
https://doi.org/10.1016/j.jhydrol.2006.05.010, 2006.

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: a LLVM-based
Python JIT compiler, Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC, Association for
Computing Machinery, Austin, Texas, 7 pp., 2015.

Leavesley, G. H.: Precipitation-runoff modeling system: User’s
manual, 4238, US Department of the Interior, U.S. Geological
Survey, Water Resources Division, 1984.

Lerat, J., Andreassian, V., Perrin, C., Vaze, J., Perraud, J.-M., Rib-
stein, P, and Loumagne, C.: Do internal flow measurements im-
prove the calibration of rainfall-runoff models?, Water Resour.
Res., 48, https://doi.org/10.1029/2010WR010179, 2012.

Lindstrom, G., Johansson, B., Persson, M., Gardelin, M., and
Bergstrom, S.: Development and test of the distributed
HBV-96 hydrological model, J. Hydrol.,, 201, 272-288,
https://doi.org/10.1016/S0022-1694(97)00041-3, 1997.

Marsh, C. B., Pomeroy, J. W., and Wheater, H. S.: The Canadian
Hydrological Model (CHM) v1.0: a multi-scale, multi-extent,
variable-complexity hydrological model — design and overview,
Geosci. Model Dev., 13, 225-247, https://doi.org/10.5194/gmd-
13-225-2020, 2020.

Matgen, P, Fenicia, F., Heitz, S., Plaza, D., de Keyser, R., Pauwels,
V. R. N., Wagner, W., and Savenije, H.: Can ASCAT-derived
soil wetness indices reduce predictive uncertainty in well-gauged
areas? A comparison with in situ observed soil moisture in
an assimilation application, Adv. Water Resour., 44, 49-65,
https://doi.org/10.1016/j.advwatres.2012.03.022, 2012.

Maxwell, R. M.: A terrain-following grid transform and
preconditioner for parallel, large-scale, integrated hy-
drologic modeling, Adv. Water Resour., 53, 109-117,
https://doi.org/10.1016/j.advwatres.2012.10.001, 2013.

Mclnerney, D., Thyer, M., Kavetski, D., Githui, F.,, Thayalaku-
maran, T., Liu, M., and Kuczera, G.: The Importance of Spa-
tiotemporal Variability in Irrigation Inputs for Hydrological
Modeling of Irrigated Catchments, Water Resour. Res., 54,
6792-6821, https://doi.org/10.1029/2017wr022049, 2018.

Meyer, B.: Object-oriented software construction, Prentice Hall,
New York, 1988.

Moore, R. J. and Clarke, R. T.: A distribution function approach
to rainfall runoff modeling, Water Resour. Res., 17, 1367-1382,
https://doi.org/10.1029/WR017i005p01367, 1981.

Moradkhani, H. and Sorooshian, S.: General review of rainfall-
runoff modeling: model calibration, data assimilation, and uncer-
tainty analysis, in: Hydrological modelling and the water cycle,
Springer, 1-24, 2009.

https://doi.org/10.5194/gmd-14-7047-2021

Moser, A., Wemyss, D., Scheidegger, R., Fenicia, F., Honti, M.,
and Stamm, C.: Modelling biocide and herbicide concentrations
in catchments of the Rhine basin, Hydrol. Earth Syst. Sci., 22,
4229-4249, https://doi.org/10.5194/hess-22-4229-2018, 2018.

Nash, J.: The form of the instantaneous unit hydrograph, Int. Assoc.
Sci. Hydrol., 3, 114-121, 1957.

Nijzink, R. C., Samaniego, L., Mai, J., Kumar, R., Thober, S.,
Zink, M., Schifer, D., Savenije, H. H. G., and Hrachowitz, M.:
The importance of topography-controlled sub-grid process het-
erogeneity and semi-quantitative prior constraints in distributed
hydrological models, Hydrol. Earth Syst. Sci., 20, 1151-1176,
https://doi.org/10.5194/hess-20-1151-2016, 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., and Antiga, L.: PyTorch: An
imperative style, high-performance deep learning library, Adv.
Neur. In., 8024-8035, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg,
V.: Scikit-learn: Machine learning in Python, J. Mach. Learn.
Res., 12, 2825-2830, 2011.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsi-
monious model for streamflow simulation, J. Hydrol., 279, 275—
289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.

Press, W. H., Teukolsky, S. A., Flannery, B. P., and Vetterling, W. T.:
Numerical recipes in Fortran 77, Vol. 1, Volume 1 of Fortran nu-
merical recipes: the art of scientific computing, Cambridge Uni-
versity Press, 1992.

Refsgaard, J.: Terminology, Modelling Protocol And Classifica-
tion of Hydrological Model Codes, in: Distributed Hydrological
Modelling, 22, p. 17, 1996.

Refsgaard, J. C. and Storm, B.: MIKE SHE, in: Computer Models of
Watershed Hydrology, edited by: Singh, V. P., Water Resources
Publications, Colorado, 809-846, 1995.

Reichert, P. and Mieleitner, J.: Analyzing input and struc-
tural uncertainty of nonlinear dynamic models with stochas-
tic, time-dependent parameters, Water Resour. Res., 45, 10,
https://doi.org/10.1029/2009wr007814, 2009.

Renard, B., Kavetski, D., Leblois, E., Thyer, M., Kuczera, G., and
Franks, S. W.: Toward a reliable decomposition of predictive un-
certainty in hydrological modeling: Characterizing rainfall er-
rors using conditional simulation, Water Resou. Res., 47, 11,
https://doi.org/10.1029/2011WR010643, 2011.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale
parameter regionalization of a grid-based hydrologic
model at the mesoscale, Water Resour. Res., 46, 5,
https://doi.org/10.1029/2008wr007327, 2010.

Seibert, J. and McDonnell, J. J.: On the dialog between experimen-
talist and modeler in catchment hydrology: Use of soft data for
multicriteria model calibration, Water Resour. Res., 38, 23-21-
23-14, https://doi.org/10.1029/2001wr000978, 2002.

Seibert, J., Rodhe, A., and Bishop, K.: Simulating interactions be-
tween saturated and unsaturated storage in a conceptual runoff
model, Hydrol. Process., 17, 379-390, 2003.

Sivapalan, M., Beven, K., and Wood, E. F.: On hydro-
logic similarity: 2. A scaled model of storm runoff
production,  Water Resour. Res., 23, 2266-2278,
https://doi.org/10.1029/WR023i012p02266, 1987.

Geosci. Model Dev., 14, 7047-7072, 2021


https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.1016/j.envsoft.2010.12.009
https://doi.org/10.1016/j.jhydrol.2006.05.010
https://doi.org/10.1029/2010WR010179
https://doi.org/10.1016/S0022-1694(97)00041-3
https://doi.org/10.5194/gmd-13-225-2020
https://doi.org/10.5194/gmd-13-225-2020
https://doi.org/10.1016/j.advwatres.2012.03.022
https://doi.org/10.1016/j.advwatres.2012.10.001
https://doi.org/10.1029/2017wr022049
https://doi.org/10.1029/WR017i005p01367
https://doi.org/10.5194/hess-22-4229-2018
https://doi.org/10.5194/hess-20-1151-2016
https://doi.org/10.1016/S0022-1694(03)00225-7
https://doi.org/10.1029/2009wr007814
https://doi.org/10.1029/2011WR010643
https://doi.org/10.1029/2008wr007327
https://doi.org/10.1029/2001wr000978
https://doi.org/10.1029/WR023i012p02266

7072 M. Dal Molin et al.: SuperflexPy 1.3.0: an open-source Python framework

Sivapalan, M., Bloschl, G., Zhang, L., and Vertessy, R.: Downward
approach to hydrological prediction, Hydrol. Process., 17, 2101-
2111, https://doi.org/10.1002/hyp.1425, 2003.

van Esse, W. R., Perrin, C., Booij, M. J., Augustijn, D. C. M., Feni-
cia, F., Kavetski, D., and Lobligeois, F.: The influence of concep-
tual model structure on model performance: a comparative study
for 237 French catchments, Hydrol. Earth Syst. Sci., 17, 4227—
4239, https://doi.org/10.5194/hess-17-4227-2013, 2013.

Vitolo, C., Wells, P.,, Dobias, M., and Buytaert, W.: fuse: An R
package for ensemble Hydrological Modelling, Journal of Open
Source Software, 1, 52, https://doi.org/10.21105/joss.00052,
2016.

Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment
Classification and Hydrologic Similarity, Geography Compass,
1, 901-931, https://doi.org/10.1111/1.1749-8198.2007.00039.x,
2007.

Walt, S. V. D, Colbert, S. C., and Varoquaux, G.: The NumPy
Array: A Structure for Efficient Numerical Computation, Com-
put. Sci. Eng., 13, 22-30, https://doi.org/10.1109/mcse.2011.37,
2011.

Geosci. Model Dev., 14, 7047-7072, 2021

Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lam-
bert, M.: A strategy for diagnosing and interpreting hydrologi-
cal model nonstationarity, Water Resour. Res., 50, 5090-5113,
https://doi.org/10.1002/2013wr014719, 2014.

Wrede, S., Fenicia, F., Martinez-Carreras, N., Juilleret, J.,
Hissler, C., Krein, A., Savenije, H. H. G., Uhlenbrook, S.,
Kavetski, D., and Pfister, L.: Towards more systematic per-
ceptual model development: a case study using 3 Lux-
embourgish catchments, Hydrol. Process., 29, 2731-2750,
https://doi.org/10.1002/hyp.10393, 2015.

Young, P.: Data-based mechanistic modelling of environmen-
tal, ecological, economic and engineering systems, Environ.
Modell. Softw., 13, 105-122, https://doi.org/10.1016/S1364-
8152(98)00011-5, 1998.

Young, P. C.: Stochastic, dynamic modelling and signal processing:
time variable and state dependent parameter estimation, Nonlin-
ear and nonstationary signal processing, in: Nonstationary and
Nonlinear Time Series Analysis, 74—114, 2000.

Young, P. C., Tych, W., and Taylor, C. J.: The Captain Tool-
box for Matlab, IFAC Proceedings Volumes, 42, 758-763,
https://doi.org/10.3182/20090706-3-FR-2004.00126, 2009.

https://doi.org/10.5194/gmd-14-7047-2021


https://doi.org/10.1002/hyp.1425
https://doi.org/10.5194/hess-17-4227-2013
https://doi.org/10.21105/joss.00052
https://doi.org/10.1111/j.1749-8198.2007.00039.x
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1002/2013wr014719
https://doi.org/10.1002/hyp.10393
https://doi.org/10.1016/S1364-8152(98)00011-5
https://doi.org/10.1016/S1364-8152(98)00011-5
https://doi.org/10.3182/20090706-3-FR-2004.00126

	Abstract
	Introduction
	Conceptual hydrological models
	Hydrological model structure and flexible modeling frameworks
	Aims

	Description of SuperflexPy
	General organization
	A simple illustration of SuperflexPy: creating a new model from existing components
	Creating new model components with SuperflexPy

	Examples of building hydrological models using SuperflexPy
	Implementing SUPERFLEX configuration M4
	Changing the equations of the fast reservoir in M4
	General approach for creating a new reservoir with SuperflexPy
	Simplified approach for creating a new reservoir element (from an existing element)

	Implementing a distributed model

	Implementation details of SuperflexPy
	Parameters and states
	Modular design following the object-oriented paradigm
	Numerical solution of ODEs
	Computational efficiency and language choice
	Ability to represent multiple fluxes and states

	Discussion
	Balancing functionality, scope, and usability in a flexible model implementation
	Structural flexibility
	Spatial flexibility
	Usability
	Possibility of extension and customization
	Computational efficiency

	Current restrictions in model structure specification
	Current usage and future developments

	Summary and conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

