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Abstract. Over the past decade, there has been appreciable
progress towards modeling the water, energy, and carbon cy-
cles at field scales (10–100 m) over continental to global ex-
tents in Earth system models (ESMs). One such approach,
named HydroBlocks, accomplishes this task while maintain-
ing computational efficiency via Hydrologic Response Units
(HRUs), more commonly known as “tiles” in ESMs. In Hy-
droBlocks, these HRUs are learned via a hierarchical cluster-
ing approach from available global high-resolution environ-
mental data. However, until now there has yet to be a river
routing approach that is able to leverage HydroBlocks’ ap-
proach to modeling field-scale heterogeneity; bridging this
gap will make it possible to more formally include riparian
zone dynamics, irrigation from surface water, and interac-
tive floodplains in the model. This paper introduces a novel
dynamic river routing scheme in HydroBlocks that is inter-
twined with the modeled field-scale land surface heterogene-
ity. Each macroscale polygon (a generalization of the concept
of macroscale grid cell) is assigned its own fine-scale river
network that is derived from very high resolution (∼ 30 m)
digital elevation models (DEMs); the inlet–outlet reaches of
a domain’s macroscale polygons are then linked to assemble
a full domain’s river network. The river dynamics are solved
at the reach-level via the kinematic wave assumption of the
Saint-Venant equations. Finally, a two-way coupling between
each HRU and its corresponding fine-scale river reaches is
established. To implement and test the novel approach, a
1.0◦ bounding box surrounding the Atmospheric Radiation
and Measurement (ARM) Southern Great Plains (SGP) site
in northern Oklahoma (United States) is used. The results
show (1) the implementation of the two-way coupling be-

tween the land surface and the river network leads to appre-
ciable differences in the simulated spatial heterogeneity of
the surface energy balance, (2) a limited number of HRUs
(∼ 300 per 0.25◦ cell) are required to approximate the fully
distributed simulation adequately, and (3) the surface energy
balance partitioning is sensitive to the river routing model pa-
rameters. The resulting routing scheme provides an effective
and efficient path forward to enable a two-way coupling be-
tween the high-resolution river networks and state-of-the-art
tiling schemes in ESMs.

1 Introduction

Recent years have seen a renewed effort to improve the repre-
sentation of land surface heterogeneity in Earth system mod-
els (ESMs) (Chaney et al., 2018; Newman et al., 2014; Clark
et al., 2015b; Fan et al., 2019). This effort is driven in part
by the limitations of existing upscaling parameterizations to
adequately simulate the multi-scale interactions between the
water, energy, and carbon cycles (Wood et al., 2011; Bierkens
et al., 2014). Although the desired goal might eventually be
a modeling approach that models every meter-scale grid cell
over the globe, for the foreseeable future the significant com-
putational barriers will continue to limit the feasibility of this
approach. This is especially true given the need for large-
ensemble frameworks to handle the significant structural and
parameter uncertainties that emerge in models when mov-
ing to very high spatial resolutions over large spatial extents
(Beven et al., 2015). As a result, there is a persistent need to
use reduced-order modeling approaches that are able to con-
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verge on the desired meter-scale modeling while minimizing
computational expense.

One approach widely adopted over the past decades to rep-
resent the landscape heterogeneity within Earth system mod-
els (ESMs) is the use of “tiling” schemes, which effectively
partition a macroscale grid cell into representative clusters
(e.g., forests, grasslands, etc.). This concept is similar to the
concept of hydrologic response units (HRUs) in hydrologic
models. Since their origin in the late 1980s and early 1990s
(Avissar and Pielke, 1989; Koster and Suarez, 1992), tiling
schemes have moved to include spatial variability in land
use, soil type, elevation gradients, and management prac-
tices, among others. Chaney et al. (2016b) and Newman et
al. (2014) take this a step further by designing a mechanism
to derive these tiles or HRUs by clustering available spatial
environmental datasets of the drivers of landscape hetero-
geneity. Furthermore, over the past decade, there has been
an effort to adapt these tiling schemes to enable hillslope-
scale processes (e.g., lateral flow) via Darcy flow along topo-
graphic gradients within a grid cell (Clark et al., 2015b; Fan
et al., 2019; Chaney et al., 2018; Subin et al., 2014; Swen-
son et al., 2019). These additions are making it possible for
ESMs to simulate the role of local lateral flow along topo-
graphic gradients, which has implications for modeling the
riparian ecosystems and surface energy balance partitioning.
However, the two-way interconnectivity between the mod-
eled hillslopes and their respective channels has yet to be ex-
plored.

In parallel to the development of state-of-the-art tiling
schemes, there has been significant innovation in river rout-
ing schemes within ESMs in recent years. For a comprehen-
sive review of the advances in macroscale routing schemes
the reader is referred to Shaad and Di Baldassarre (2018);
a brief overview of these advances is provided here. Early
developments in these schemes focused on the horizontal
transfer time and integration of runoff over the land sur-
face, allowing for the validation of early land surface model
(LSM) outputs against streamflow observations. This initial
work is embodied in the Impulse Response Function Unit
Hydrograph (IRF-UH) approach described in Lohmann et
al. (1996), which represented the process as linear and time-
invariant, both in grid cells and between grid cells in the
river network. Alternative approaches were proposed, focus-
ing instead on storage-based schemes to represent the spa-
tial distribution of flow. The Total Runoff Integration Path-
ways (TRIP) model presented by Oki and Sud (1998) was
the first to use a simplified form of the 1D kinematic wave
routing equation with a constant velocity for water move-
ment between grid cells, an approach that has since been
implemented in many LSMs over varying scales of global
river networks (Pappenberger et al., 2010). With recent com-
putational and data advances, these basic models have been
expanded to better utilize the outputs of general ESMs for
global predictions beyond just discharge. For example, the
recent MizuRoute model (Mizukami et al., 2016) builds

upon the approaches described above. MizuRoute combines
both approaches to model the flow from hillslope to chan-
nels through a gamma-distribution-based IRF-UH, while the
main channel routing is performed using either a kinematic
wave approximation or a linear IRF-UH method, enabling
the use of higher-resolution terrain and network data with rel-
atively coarse ESM outputs. Alternative approaches for using
high-resolution vector river networks have been proposed,
such as the Routing Application for Parallel Computation
of Discharge model (RAPID). RAPID leverages advances in
high-performance computing to create a highly efficient vec-
tor river routing scheme that uses a matrix-based version of
the Muskingum–Cunge method (David et al., 2016, 2011).

Recent macroscale routing model development has sought
to make use of advances in data and computational resources
to further enable integrations with ESMs. The Model for
Scale Adaptive River Transport (MOSART; Li et al., 2013), a
recent example of this, divides a grid cell into hillslopes, trib-
utaries, and a main channel to solve the flow of water through
the river network via the kinematic wave approximation of
the Saint-Venant equations. This decoupling of the ESM grid
from that of the routing model (network) allows for differ-
ences in scale to more accurately capture flow and channel
dynamics at any point within a given watershed. Other mod-
els have attempted to move beyond the more simplistic rep-
resentations of flow hydrodynamics to better represent flood
inundation. A recent example of this is the Catchment-based
Macro-scale Floodplain model (CaMa-Flood) (Yamazaki et
al., 2011), which discretizes the grid cells into unit catch-
ments and explicitly parameterizes the topography of the
floodplain for each unit. CaMA-Flood then simulates open
channel flow via the local inertial equation, a simplified form
of the full 1D Saint-Venant equation, allowing for an estima-
tion of water depth and area of inundation in ESM grid cells.

Although there have been significant advances in river
routing and tiling schemes over the past decade, there has
yet to be a concerted effort to couple these two concepts in
ESMs. This persistent lack of interconnectivity between the
modeled river network and the land surface leads to (1) over-
simplified sub-grid river networks (e.g., tributaries are mostly
ignored) (Jones and Schmidt, 2017; Swanson and Meyer,
2014; Rice, 2017), (2) a lack of interaction between the land
surface tiles and the river networks (e.g., simulated flood-
ing of the Nile River does not recharge the land surface)
(Shen et al., 2016; Helton et al., 2012; Bisht et al., 2017),
(3) the water moving through the sub-grid river network not
influencing the surface energy partitioning (i.e., macroscale
schemes continue to mostly treat river networks as pipes)
(Zampieri et al., 2011; Bisht et al., 2017; Sheng et al., 2017),
and (4) local-scale irrigation and water management schemes
being spatially agnostic and relying almost exclusively on the
main channel (Shaad and Di Baldassarre, 2018; Voisin et al.,
2017; Pokhrel et al., 2015). All these deficiencies compound
to illustrate a persistent weakness in Earth system models by
ignoring critical processes that are known to play an impor-
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tant role in both the natural and engineered hydrologic sys-
tems (Pokhrel et al., 2016; Fan et al., 2019). With the recent
advances in both river routing and tiling schemes, the tim-
ing is right to enable two-way interactions between the tiling
schemes and river networks in ESMs.

This study provides a path to address this persistent de-
ficiency in ESMs. This is accomplished by implementing
a reach-based routing model in the HydroBlocks land sur-
face model (Chaney et al., 2016b) and enabling a two-way
coupling with the modeled hydrologic response units. The
primary features of the novel river routing scheme include
(1) each macroscale polygon (a generalization of the con-
cept of macroscale grid cell) being assigned its own field-
scale river network delineated from digital elevations mod-
els (DEMs), (2) the fine-scale inlet–outlet reaches of the
macroscale polygons being linked to assemble the conti-
nental river networks (and to ensure conservation of mass),
(3) river dynamics being solved at the reach-level via an im-
plicit solution of the kinematic wave simplification of the
Saint-Venant equations, and (4) a two-way coupling that
is established between HRUs and the river network. The
scheme is implemented over a 1.0◦ bounding box around
the Southern Great Plains site in northern Oklahoma in the
United States. Furthermore, a series of experiments are per-
formed to understand (1) the sensitivity of the land surface
to the two-way coupling, (2) the number of HRUs that are
required to approximate the fully distributed simulation ade-
quately, and (3) the impact of the uncertainty in the routing
scheme parameters in the macroscale response.

2 Data and methods

2.1 Study domain

A 1.0◦ box in central northern Oklahoma and southern
Kansas in the United States is used to implement and test
the new routing scheme (see Fig. 1). The region is gener-
ally flat with a shallow decreasing gradient in terrain, precip-
itation, and normalized difference vegetation index (NDVI)
from west to east. The overall climate is typically dry, with
cold winters and hot summers. The Salt Fork Arkansas River,
Chikaskia River, and to a lesser extent the Arkansas River tra-
verse the region; all rivers in the domain eventually flow into
the Arkansas River. The vegetation throughout the domain
is primarily croplands with forested regions found along the
riparian areas. There are also small urban areas dispersed
throughout the region with the town of Enid in the south-
east corner being the largest. This domain contains the Atmo-
spheric Radiation and Measurement (ARM) Southern Great
Plains central facility (SGP CF) among other ARM SGP fa-
cilities. As the largest climate facility in the world, ARM
SGP collects a wealth of data on land–atmosphere inter-
actions and atmospheric processes that are used frequently
to evaluate and improve sub-grid atmospheric processes in

ESMs. Understanding the role that the interconnected land
surface and river network play in the partitioning of the sur-
face energy balance (and its role in land–atmosphere interac-
tions) is a primary motivation for using this domain in this
study.

2.2 Land surface model: HydroBlocks

HydroBlocks is a field-scale resolving land surface model
(Chaney et al., 2016b) that accounts for the water, energy,
and carbon balance to solve land surface processes at high
spatial and temporal resolutions. HydroBlocks leverages the
repeating patterns that exist over the landscape (i.e., the
spatial organization) by clustering areas of assumed simi-
lar hydrologic behavior into HRUs. The simulation of these
HRUs and their spatial interactions allows the modeling of
hydrological, geophysical, and biophysical processes at the
field scale (e.g., 30 m) over regional to continental extents
(Chaney et al., 2016b; Vergopolan et al., 2020). The core of
HydroBlocks is the Noah-MP vertical land surface scheme
(Niu et al., 2011). HydroBlocks applies Noah-MP in an
HRU framework to explicitly represent the spatial hetero-
geneity of surface processes down to field scale. At each
time step, the land surface scheme updates the hydrologi-
cal states at each HRU, and the HRUs dynamically interact
laterally via subsurface flow. In the original HydroBlocks,
subsurface flow between HRUs was modeled via a subsur-
face kinematic wave. In this implementation, following the
approach used in Chaney et al. (2018), the subsurface flow
module has been updated by computing the Darcy flux be-
tween adjacent HRUs at each subsurface level. The fluxes are
then included as divergence terms within their corresponding
subsurface level of the vertical one-dimensional solution of
Richards’ equation in Noah-MP. This allows for the flow of
water between HRUs to also be driven by capillarity and not
just the predefined topographic gradient.

2.3 Hierarchical generation of hydrologic response
units

The HRU generation scheme in the original HydroBlocks
(Chaney et al., 2016b) was not sufficient to capture the dy-
namics in riparian zones (e.g., runoff), which led to the devel-
opment of the hierarchical multivariate clustering (HMC) ap-
proach introduced in Chaney et al. (2018). This study builds
on the 2018 version of HMC to enable adequate coupling of
the land surface with the river network within HydroBlocks.
HMC uses a field-scale map (e.g., 30 m) of delineated water-
sheds and the corresponding DEM as building blocks to gen-
erate the HRUs. Prior to constructing the HRUs, following
Chaney et al. (2018), the river network and watersheds are
delineated from a 30 m DEM by first sink filling and then de-
lineating the channels using an area threshold of 10 000 m2.
The 30 m channel pixels are then grouped by reach. The wa-
tersheds are assembled by finding all 30 m pixels that flow
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Figure 1. The study area consists of a 1.0◦ box in central northern Oklahoma and southern Kansas. The domain contains the Atmospheric
Radiation and Measurement (ARM) Southern Great Plains central facility (SGP CF).

into a given reach via steepest descent. The following steps
are then taken to assemble the HRUs from these data.

1. Macroscale polygons. The large domain is partitioned
into smaller subdomains defined in this study as
macroscale polygons. A macroscale polygon is a gen-
eralization of the concept of a macroscale grid cell; it
is analogous to a grouped response unit (GRU; Clark
et al., 2015a). HMC is designed to handle any geome-
try of macroscale polygons; the only constraint is that
a given delineated watershed cannot be split between
polygons. This constraint precludes the use of a regu-
lar latitude–longitude macroscale grid. Instead, for this
study, a 0.25 arc degree grid is modified to meet this
constraint. To be more specific, the boundaries of each
0.25 arc degree grid cell are adjusted such that a wa-
tershed is assigned to the macroscale polygon where it
has the majority of its area (see Fig. 2a for an example).
Note that other domain decompositions are feasible un-
der HMC’s current architecture.

2. Clusters of watersheds. The watersheds contained
within a given macroscale polygon are clustered using
K means. The feature predictors used in the clustering
include latitude, longitude, flow accumulation area, and
the natural logarithm of the flow accumulations area.
Log-scale accumulation area was used to separate the
low-order reaches from the high-order reaches, accu-
mulation area was used to separate reaches within the
large rivers, and latitude–longitude were used to repre-
sent location-driven differences in atmosphere forcing,
land use, and soils, among others. Figure 2b shows an
example of this division for 10 clusters of watersheds

(k) of the macroscale polygons. After clustering the wa-
tersheds, to maximize similarity among the watersheds
that are assigned to a given cluster of watersheds, the
empirical cumulative distribution function (CDF) of the
30 m height above nearest drainage (HAND; Nobre et
al., 2011) values within each watershed is matched to a
representative watershed’s HAND empirical CDF. The
representative watershed’s HAND empirical CDF of a
cluster of watersheds is set to be the average of all of its
watersheds’ empirical CDFs (for a background on CDF
matching, see Reichle and Koster, 2004). Note that the
concept of a cluster of watersheds is only used for the
non-routing component of HydroBlocks.

3. Height bands. The 30 m HAND values of each clus-
ter of watersheds are discretized into height bands.
First, all 30 m pixels that belong to the channels within
a given cluster of watersheds are grouped into one
height band. Following this, the non-channel 30 m pix-
els are discretized into additional height bands by bin-
ning HAND values. The binning involves assembling
the smallest HAND values that have an areal coverage n
(user-defined) times larger than its adjacent lower height
band. For example, the height band immediately above
the channel height band will have an areal coverage
n times larger than the channel height band. The next
height band will have an areal coverage n2 larger than
that of the channel and so forth. The described method
is a simple yet robust approach to maximize spatial de-
tail of height bands near riparian zones while coarsening
upslope. Figure 2c shows the discretization into height
bands of the watersheds that belong to the cluster of wa-
tersheds 1 of the macroscale polygon 7 in the domain.
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An additional maxhb parameter is used to ensure the
number of height bands per cluster of watersheds does
not exceed this user-defined threshold (maxhb is fixed
at 100 in this study).

4. Intra-band clusters. To characterize the role of sub-
height band heterogeneity of land use, soils, and ele-
vation, among others on water and energy states and
fluxes, each height band within each cluster of water-
sheds is further divided into clusters (here called intra-
band clusters). This is accomplished by iterating per
height band and clustering all the corresponding 30 m
pixels. Given that the areal coverage of each height band
can vary; the number of intra-band clusters per height
band is set to be proportional to their fractional cov-
erage of the cluster of watersheds. The user-defined p
parameter is the average number of clusters per height
band. Figure 2d shows an example of this division for
p = 5 using latitude, longitude, land cover, and clay as
covariate features. The fractional coverage weight of p
compensates for the telescoping mesh of height bands
produced by the parameter n. The smaller height bands
next to the channel will have few intra-band clusters
while the larger ones upslope will have many more.

The multi-level hierarchy of clusters of watersheds, height
bands, and intra-band clusters leads to the definition of the
hydrologic response units (HRUs) per macroscale polygon
(Fig. 2e). In summary, each macroscale polygon is divided
into k clusters of watersheds. A given cluster of watersheds
groups together several reaches (one reach per watershed).
Note that this clustering of watersheds is only used in the
non-routing components of HydroBlocks; each reach main-
tains its unique properties in the routing scheme. All water-
sheds that belong to a given cluster of watersheds are split
first into height bands (defined by n and maxhb) and then
intra-band clusters (p). The coupling between the land sur-
face and routing modules handles the interaction between
clusters of watersheds and the simulated reaches.

2.4 River routing scheme

The river routing scheme implemented within HydroBlocks
is a reach-based implicit solution of the Saint-Venant equa-
tions with the kinematic wave assumption. The conservation
of mass across a 1D reach is given by

∂A

∂t
=
∂Q

∂x
+ S, (1)

where ∂A
∂t

is the change in the cross-sectional area of the

flow with respect to time
[
L2

T

]
, ∂Q
∂x

is the change in dis-
charge across an infinitesimally small reach length (note that
Q = uA where u is the velocity of the flow), and S is a
source–sink term of the cross-sectional area. Following the
kinematic wave assumption, uniform flow is assumed (i.e.,

s0 = sf), and thus u can be estimated at each time step for a
given reach via Manning’s equation:
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1
n
R

2
3
h S

1
2
0 , (2)

where n is Manning’s coefficient, Rh is the hydraulic radius,
and S0 is the slope of a given reach. Note that the hydraulic
radius is given by Rh =

A
P

, where P is the wetted perime-
ter. For this implementation, a compound channel composed
of a rectangular channel and a symmetric floodplain is as-
sumed (see Fig. 3). The segmented conveyance method is
used where the conveyance of both channel (c) and flood-
plain (f) components are summed, and the effective velocity
for the compound channel is computed as follows:

u=
S
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A
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)
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As shown in Fig. 3, each reach’s cross-sectional profile
is composed of a rectangular channel and a symmetric flood-
plain that is learned from the reach’s discretized height bands
(computed in Sect. 2.3). At each reach, the cross-sectional
area of the flow and the derived cross-sectional profile are
used to determine the wetted perimeters Pc and Pf and the
cross-sectional areas Ac and Af at each time step.

To solve the Saint-Venant equation with the kinematic
wave assumption at each time step, a fully implicit first-order
finite-volume upwind scheme in space and backward Euler in
time is used:

An+1
i −Ani

1t
=
Qn+1
i+1 −Q

n+1
i

1x
+ S, (4)

where the upstream Qn+1
i+1 contribution to a given reach is

the sum of the discharge of all the reaches that are immedi-
ately upstream of a given reach (Qn+1

i+1 =
∑
ju
n+1
j An+1

j ). In
other words, the upstream internal boundary of reach i is the
sum of the discharge of all reaches j that flow into reach i
(Jacovkis and Tabak, 1996). Note that 1x is the length of a
given reach in the network and will rarely be the same across
reaches. S is a source–sink term that can account for inflow
from runoff, as well as water abstractions from irrigation and
recharge of the land surface. This leads to a system of nonlin-
ear equations (per macroscale polygon) to be solved per time
step. Given the nonlinearities in the hydraulic radius calcu-
lation, as well as the need to iteratively exchange network
boundary conditions between macroscale polygons, an itera-
tive time step is implemented. In the current implementation,
a Picard iteration is used to attempt convergence at each time
step.

Similar to Mizukami et al. (2016), an impulse response
function is used to route the runoff produced at the HRU level
in HydroBlocks to its corresponding channel. HydroBlocks’
HRU delineation is first used to assemble a histogram of
travel times (constant velocity of the flow per grid cell) of
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Figure 2. (a) The domain is split into 16 macroscale polygons, where each color identifies a polygon. (b) Each macroscale polygon is
partitioned into 10 clusters of watersheds via K-means clustering. (c) The HAND data are used to discretize each cluster of watersheds from
channel to ridge; this discretization allows us to assemble the channel and non-channel height bands. Finally, each of the height bands is split
into intra-band clusters (d). The (c) and (d) methods are applied to all clusters of watersheds in (b) to assemble the final HRU map (e).

all 30 m pixels that belong to a given HRU to their closest
channel. The travel times consider a constant velocity of the
flow per grid cell (fixed to 0.1 m/s in this study). Note that
although the constant velocity parameter is set to 0.1 m/s, it
is an HRU-specific parameter that can be modified by the
user. The flow path across the landscape is computed via d8
flow direction. At each time step, the convolution of this his-
togram (∼ unit hydrograph) with the HRU runoff is used to
compute the runoff from a given time step that reaches the
channel at future time steps.

2.5 Assembling the stream network and river reach
cross-sectional profiles

For each macroscale polygon, the river network is derived at
a 30 m spatial resolution following the method described in
Chaney et al. (2018). For each river reach, the channel width
and bankfull depth are computed using the functional rela-
tionships derived for the contiguous United States described
in Bieger et al. (2015). To minimize inconsistencies between
reaches that belong to the same cluster of watersheds, the
computed channel width and bankfull depths are averaged

across all corresponding reaches. The cross-sectional profile
for each reach (not cluster of watersheds) is learned by first
extracting all the 30 m pixels in a given watershed; the pro-
file follows the height band discretization from Sect. 2.3. The
precomputed channel length is used to compute each section
of the profile’s width, given the corresponding height band’s
area within that reach. Because the spatial resolution of the
DEM (30 m) is much larger than many of the computed chan-
nel widths of the delineated streams (∼ 1 m), the additional
fractions of each channel’s colocated 30 m pixels that are not
part of the channel are assigned to the height band right above
the channel (i.e., the lowest element of the floodplain). Fig-
ure 3 shows an example of the computed profile for reach
122 in macroscale polygon 7. To avoid “step changes”, the
shown linear interpolation between the hand values of each
height band is used when computing the cross-sectional area
Af and wetted perimeter Pf of a given channel’s floodplain
(as shown in Fig. 3). A different cross-sectional profile is
made per reach in a given macroscale polygon. It is impor-
tant to note that the routing scheme is run on the complete
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Figure 3. The illustration of a river reach in the domain. Using
the HAND values, the river reaches are split into a channel (dark
blue) and floodplain component (lighter blue and greens), where
the floodplain component is a combination of the floodplains and
hillslopes. Note that a few height bands are omitted in the diagram
for simplicity. Similar profiles are assembled for each reach in each
macroscale polygon.

DEM-derived sub-grid network of river reaches and not the
clusters of watersheds (defined in Sect. 2.3).

2.6 Two-way interaction: coupling of the land surface
(HRUs) and the river reaches

This section explains how the HRUs interact with the routing
scheme’s river reaches. After the river routing scheme (i.e.,
kinematic wave) is updated for a given time step (Fig. 4a),
each reach’s derived cross-sectional profile (see Sect. 2.5)
is used to determine the inundation height over each of the
height bands of that reach. This is done by effectively pour-
ing the volume of water contained within the reach and calcu-
lating the inundation heights that correspond to a flat surface
at the top of the river. To assemble the inundation heights
for a given cluster of watersheds, the inundation heights per
height band are averaged across all watersheds that belong
to a given cluster of watersheds (Fig. 4b); these computed
inundation heights are then equally distributed to their corre-
sponding HRUs (Fig. 4c). The computed inundation height
per HRU is then added to the following time step’s update
of Noah-MP as a constant flux at the soil surface (Fig. 4d).
Water is not only able to infiltrate the soil in the HRU via
Noah-MP, but it is also able to move laterally to another HRU
via HydroBlocks’ modeling of subsurface flow (see Sect. 2.2
for more details). The total column of runoff produced dur-
ing the time step at the given HRU is set as the HRU’s new

inundation height. The difference between the old and new
inundation heights are computed (Fig. 4e) and averaged up
to the height band level (Fig. 4f). To determine the changes
of inundation height at each reach (not cluster of watersheds),
the computed differences in inundation heights at the cluster
of watersheds level are scaled to the reach level. This is ac-
complished by multiplying the change in inundation height
value by the ratio between the watershed’s original inunda-
tion height per height band and its corresponding cluster of
watersheds inundation height. These differences are then ag-
gregated into a difference in cross-sectional area1A per wa-
tershed (Fig. 4g). Finally, this difference is divided by the
model time step and added to the reach’s source–sink term
S in the routing scheme (Fig. 4h). Note that the source–
sink term also includes runoff originated from the land sur-
face that is not inundated; this water arrives at the reach via
the method described in Sect. 2.4. After updating the cross-
sectional area per reach via the river routing scheme, the two-
way coupling begins again for the next time step (Fig. 4a).

2.7 Model experiments

A series of model experiments are run over the study’s do-
main to evaluate the implementation of the two-way cou-
pling between the land surface and the routing model within
HydroBlocks. For all experiments, the model is run between
2015 and 2017 at an hourly time step. Furthermore, to pa-
rameterize and force HydroBlocks, a suite of high-resolution
datasets are used, including the 1 arcsec (∼ 30 m) USGS na-
tional elevation dataset (Gesch et al., 2009), the 1 arcsec
(∼ 30 m) POLARIS soil properties database (Chaney et al.,
2019), the 1/32◦ (∼ 3 km) Princeton CONUS Forcing (PCF)
dataset (Pan et al., 2016) that provides meteorological forc-
ing at 1 h temporal resolution, and the 1 arcsec (∼ 30 m) Na-
tional Land Dover Database (Fry et al., 2011).

Boundary conditions are provided at the domain inlets of
the Salt Fork Arkansas and Chikaskia rivers. Boundary con-
ditions for the Arkansas river are not provided since it only
covers a very small fraction of the domain in the northeast
quadrant. For the Salt Fork Arkansas River, the discharge
data from the Great Salt Plains Lake reservoir is used, and
for the Chikaskia River, the USGS station at Corbin, Kansas,
is used. The domain inlets do not exactly match up with the
location of the gauges as the observed gauges are a few kilo-
meters upstream. However, the benefits of including these
data as boundary conditions appears to outweigh not using
them.

For all experiments, the covariates used for identifying the
clusters of watersheds are latitude, longitude, flow accumula-
tion, and the natural logarithm of the flow accumulation area.
The covariates used for the intra-band clusters (i.e., HRUs)
are the 30 m resolution latitude, longitude, land cover, and
percent clay. An overview of the set of experiments run are
outlined below.
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Figure 4. Floodplain inundation scheme implemented in HydroBlocks. After the routing module is updated for a given time step (a), each
reach’s computed cross-section profile is used to determine the inundation height over each of the height bands in a given reach. The
inundation heights per height band are averaged across all watersheds in a given cluster of watersheds (b). These inundation heights are
then equally distributed to their corresponding HRUs (c). To update the land surface model component, the computed inundation heights
are added to the following time step as a constant flux at the soil surface to update the non-routing components of HydroBlocks (d). The
difference between the old and new inundation heights are computed (e) and averaged back up to the height band level (f). The differences per
height band at the cluster of watersheds level are first scaled to each watershed and then aggregated to compute the change in cross-sectional
area (g). This difference is then divided by the routing model time step and added to the routing module’s source–sink term S in the next
iteration of the routing model (h).

Exploratory simulation. A baseline simulation is run to
provide an initial overview of the features of the new model.
The parameters of the introduced HRU generation scheme
(see Sect. 2.3) are set to be k= 10, n= 2, and p = 5.

Sensitivity to the two-way coupling. To evaluate the impact
of the two-way interaction between the modeled rivers and
the land surface, two model simulations are performed. For
both simulations, the HRU generation scheme is the same
as that used for the baseline experiment. The first one uses
the default approach of not allowing the routing scheme to
interact with the land surface, while the second enables the
two-way connectivity scheme introduced in Sect. 2.6.

Convergence. Similar to the approach used in Chaney et
al. (2018), nine different model experiments are run to evalu-
ate how the HRU configuration parameters impact the model
simulations. Simulations (a)–(c) focus on inter-watershed
heterogeneity by increasing k from 1 to 5 to 10, while set-
ting p = 1 and n= 1000. Simulations (d)–(f) focus on the
discretization of the height bands by decreasing n from 5 to
3 to 2, while setting p = 1 and k = 10. Finally, simulations
(g)–(i) focus on the role of intra-band heterogeneity by in-
creasing the average number of intra-band clusters from 2 to
3 to 5, while setting n= 2 and p = 5.

Sensitivity to routing model parameters. To determine the
importance of the routing model parameters in HydroBlocks,

following the approach used in Chaney et al. (2016a), a Sobol
sensitivity analysis is performed. The Sobol sensitivity anal-
ysis (Sobol, 1993) is a method that decomposes the variance
of the model output into contributions from each parameter
(first-order index Si) and its interactions with other param-
eters (total-effect index STi). The parameter ensemble used
in the sensitivity analysis is assembled by sampling two en-
sembles of size ns from the Sobol quasi-random sequence
(Sobol, 1993) and then cross-sampled by holding one param-
eter fixed for a total of ns (ks+ 2) parameter sets, where ks is
the number of parameters. In this study, ns = 64 and ks = 5,
leading to a total of 448 parameter sets. Each parameter set
is used to run a separate HydroBlocks simulations leading to
448 different ensemble members.

The modeled time series of domain-average latent heat
flux, sensible heat flux, land surface temperature, and inun-
dation height are then compared to the baseline coupled sim-
ulation via the root-mean squared error (RMSE). These cal-
culated RMSE values are then used to compute the first-order
sensitivity indices (Si) and the total-effect sensitivity indices
(STi). The model parameters used in the sensitivity analysis
include the Manning’s roughness coefficients for the chan-
nel and floodplains (nc, and nf), the channel width (w) the
bankfull depth (b), and the uniform overland flow velocity
(v). Given that each reach is assigned its own values for nc,
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nf, w, and b when assembling the model over the domain,
to minimize complexity a set of scalar multiplier parameters
are used to scale the precomputed parameters of all reaches
uniformly. The range for all the scalar multipliers is set to
be 0.25–4. This is not the case for the uniform overland flow
velocity (v), which is sampled in logarithmic space between
0.1–1 m/s and assigned equally to each reach.

3 Results

3.1 Exploratory simulation

As an initial baseline simulation, the updated HydroBlocks
model is run between 2015 and 2017 at an hourly resolution
over the study domain using the HRU generation scheme pa-
rameters defined in Sect. 2.7. This section focuses on a simu-
lated inundation event to provide a general understanding of
the simulated land surface, routing scheme, and floodplain
dynamics. Figure 5 shows the simulated inundated height
at the peak of the flooding event on 11 August 2017 at
14:00 UTC. Note that only the central four 0.25◦ grid cells
in the domain are plotted for visual clarity. The time series
of simulated discharge at four of the reaches in the area are
shown as well. The inundation results show how flooding oc-
curs primarily in the watersheds in the northwest and south-
east grid cells. In all cases, the flooding appears to be a flash
flood event, as the main river that traverses this section (Salt
Fork Arkansas River) only barely floods. Closer inspection
of the time series of reach 14 in macroscale polygon 6 and
reach 8 in macroscale polygon 7 (both track the Salt Fork
River) shows the role that the tributaries play in increasing
the flow after reach 14 but before reach 8. The latter sec-
ondary flood wave at both reaches most likely indicates re-
gional influences provided by the boundary conditions into
the domain upstream. Since the discharge of the Salt Fork
River at the inlet to the domain originates from a reservoir,
this most likely explains the dampened flood response.

To further investigate the impact that this flooding event
has on the land surface, Fig. 6 shows the mapped simu-
lated inundation height, root zone soil moisture, and latent
heat flux over the same four central 0.25◦ grid cells on
5 August 14:00 UTC, 11 August 14:00 UTC, and 14 August
14:00 UTC. The chosen time steps coincide with a dry period
before the simulated event, right after the rain event, and a
few days after the event. A brief description of the simulated
states and fluxes for the three days is provided below.

– 5 August 2017 14:00 UTC. All rivers within the domain
are within their banks with relatively low stage height
within the channels. Not surprisingly, the root zone soil
moisture is very low throughout the entire area, with
the notable exceptions being the Salt Fork Arkansas
River (west to east), the Chikaskia River (northeast),
and the lakes throughout the region (note that, in the cur-
rent implementation, lakes are modeled separately from

the implemented river routing scheme). The tributaries
throughout the region also have higher soil moisture due
mostly to recharge from redistribution of runoff from
the land surface via the river network. A similar story
is evident in the mapped latent heat flux, with the only
noticeable difference being the higher latent heat fluxes
in the south of the domain.

– 11 August 2017 14:00 UTC. This time step falls within
the flooding event. Several tributaries of the Salt Fork
Arkansas River are flooding, and the stage height in the
Salt Fork Arkansas River is appreciably higher than that
only 6 d before. The flooding signal is immediately ap-
parent in the root zone soil moisture, where the channel
and adjacent HRUs are close to or at saturation. These
differences are not as noticeable in the latent heat flux,
most likely since the entire area is at or close to field
capacity due to the widespread rain event, and thus the
evapotranspiration is not constrained by soil moisture.

– 15 August 2017 14:00 UTC. The floodwaters have re-
ceded, and all rivers are again within their banks, al-
though the stage height of the Salt Fork Arkansas River
is still higher when compared to 8 August. Except for
the channel HRUs, root zone soil moisture has de-
creased when compared to 11 August. However, the im-
print of the flood event is still evident in the riparian
zones.

The simulated events in Figs. 5 and 6 provide a first-order
understanding of how all the pieces of the implemented land
surface and routing scheme come together to directly impact
surface fluxes, soil moisture, and flooding over the domain.

3.2 Sensitivity to the two-way coupling

Two different model experiments were run to further investi-
gate the effect of the two-way coupling on the modeled states
and fluxes. The first simulation is called “uncoupled”, and
it uses the default approach (i.e., not allowing the routing
scheme to interact with the land surface). The second sim-
ulation is called “coupled”, and it enables the connectivity
scheme introduced in Sect. 2.6.

Figure 7 shows the difference in simulated annual mean
sensible heat flux, latent heat flux, root zone soil mois-
ture, and land surface temperature over the four central
macroscale polygons in the domain. For each variable, the
results are shown for both the uncoupled and the coupled
simulations. These simulations would suggest that over this
region, the local lateral flow of subsurface flow is only one
of the contributors to sustaining the riparian zones (as rep-
resented in HydroBlocks). The redistribution of water via
surface flow, flooding, and recharge also plays a key role in
maintaining these ecosystems.

Figure 8 investigates the role of this coupling further by
plotting the time series of the spatial mean and spatial stan-
dard deviation of sensible heat flux, inundation height, latent
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Figure 5. The center panel shows the simulated inundated height over the four central macroscale polygons in the study domain on 11 Au-
gust 2017 at 12:00 UTC. The remaining four plots show the simulated discharge at four different reaches between 5 and 17 August. The
arrows point to the time step on each time series that correspond to the mapped inundation height. Note that mapped inundation height is
upscaled to a 100 m spatial resolution for visual clarity.

Figure 6. Mapped simulated inundation height, root zone soil mois-
ture, and latent heat flux over the central four macroscale poly-
gons in the study domain on three different time steps: 5 August
14:00 UTC, 11 August 14:00 UTC, and 14 August 14:00 UTC. The
chosen time steps coincide with the event shown in Fig. 5 and show
the area before, during, and after the flood event.

heat flux, land surface temperature, and root zone soil mois-
ture. In general, the results show how the coupling can lead
to differences in both the spatial means and spatial standard
deviations. The differences are more appreciable for the spa-
tial standard deviation, as would be expected from the spatial
maps from Fig. 7. While the relative change in the spatial
mean between the two is on the order of 0.1 %–2 %, the rel-
ative change in the spatial standard deviation can be around
20 %–50% for variables such as latent heat flux and sensi-
ble heat flux. The differences are more extreme during the
summer when the region is drier, and thus a recharge mech-
anism for the riparian zones will play a much more impor-
tant role (as seen in Sect. 3.1). Overall, the results appear to
show that adding a two-way coupling between the land sur-
face and routing scheme will increase the macroscale evapo-
rative fraction (and decrease the Bowen ratio).

3.3 Convergence

A convergence analysis was performed to determine how
representative the reduced-order model representation in the
updated HydroBlocks model is of the heterogeneity of the
domain. More specifically, the model was run for increas-
ingly complex HRU configurations. Simulations (a)–(c) fo-
cus on inter-watershed heterogeneity by increasing k from 1
to 5 to 10, while setting p = 1 and n= 1000. Simulations
(d)–(f) focus on the discretization of the height bands by de-
creasing n from 5 to 3 to 2, while setting p = 1 and k = 10.
Finally, simulations (g)–(i) focus on the role of intra-band
heterogeneity by increasing the average number of intra-band
clusters from 2 to 3 to 5, while setting n= 2 and p = 5.
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Figure 7. Annual mean sensible heat flux, latent heat flux, root zone soil moisture, and land surface temperature. The left column shows
the results for the uncoupled simulations (i.e., the routing scheme does not interact with the land surface), while the right column shows the
coupled simulations. Data were upscaled to a 100 m resolution for clarity.

Figure 9 illustrates how the increase in heterogeneity com-
plexity impacts the fine-scale simulated sensible heat flux.
More specifically, it shows the annual mean sensible heat flux
over the domain. The explanation of the results below is split
into understanding the role of each parameter:

a. Increasing the number of clusters of watersheds (in-
creasing k Fig. 9a–c). Initially, there are two HRUs rep-
resented per 0.25◦ grid cell: one channel and one “flood-
plain”. In this scenario, upon recharge of the floodplain,
the characteristic inundation heights are effectively an
area-weighted average between all of the inundation
heights of all reaches (remember that the flow through
each reach is still resolved in the routing scheme). In-
creasing the number of clusters of watersheds from 5
to 10 leads to differences in the connectivity between
the rivers and the land surface. Increasing the num-
ber of clusters of watersheds leads to a separation be-
tween main channels and tributaries and thus a distinc-
tion between their interaction with their respective ripar-
ian zones. Increasing the number of clusters of water-
sheds also leads to an increase in spatial heterogeneity
due to the ability to represent spatial differences in land
cover and soil properties. For example, with 10 clusters
of watersheds the southwest macroscale polygon is able
to start to represent the urban settlements, such as the
town of Enid.

b. Increasing the number of height bands (decreasing n;
Fig. 9d–f). As the n parameter decreases (ratio between

the area of a height band and its adjacent height band
below it), the number of height bands increases. This
enables a finer discretization at the channel–floodplain
interface, which in turn leads to more realistic cross-
sectional profiles per reach and thus improved flood-
plain dynamics. When the number of height bands is too
low, the inundation height that should correspond only
to the region immediately adjacent to the channel is in-
stead evenly distributed to a much larger area upslope,
thus diffusing its influence on recharge of the riparian
area.

c. Increasing the number of intra-band clusters (increas-
ing p; Fig. 9g–i). The increase of intra-band clus-
ters leads to a substantial increase in the heterogene-
ity within each macroscale polygon. The most notice-
able difference is the emergence of the urban areas and
the country roads and interstates (although these are not
clearly visible at 1.0◦). The other changes are driven by
the separation between crops, grasslands, forests, and
bare soil, as well as soil properties. Note how in this
case the boundaries between the macroscale polygons
effectively disappear.

Figure 10 formalizes the convergence analysis by show-
ing how the temporal mean of the spatial mean and standard
deviation of the plotted 30 m maps per 0.25◦ varies as a func-
tion of the number of HRUs. For all cases, the largest differ-
ences in spatial means are across the different macroscale
polygons, which illustrates the controlling role of climate
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Figure 8. Temporal differences between the coupled and uncoupled simulations between 1 January 2017 and 31 December 2018. The
explored variables include the spatial mean (X) and spatial standard deviation (σ(X)) of sensible heat flux (SH), latent heat flux (LH), root
zone soil moisture (SMC), land surface temperature (LST), runoff (R), and inundation height (IH).

and the model land characteristics in the macroscale poly-
gon mean values for the majority of the variables. This can
also be seen in Fig. 9, where the west to east gradient in
precipitation–temperature–vegetation is readily apparent in
the modeled sensible heat flux. For each case, the largest dif-
ferences in the spatial mean occur when increasing the num-
ber of clusters of watersheds. For the spatial standard devia-
tion (which can be interpreted as a metric of heterogeneity),
the changes are more abrupt, with the largest changes occur-
ring when increasing the number of clusters of watersheds.
For all macroscale polygons in the domain, the convergence
is relatively quick (although one could argue that root zone
soil moisture has not yet converged). It is encouraging that
all macroscale polygons follow similar paths and the use of
300–350 HRUs appears to be sufficient to adequately model
the fine-scale features while maintaining computational effi-
ciency – the 16 interconnected subdomains (i.e., macroscale
polygons) take 5 min per year of simulation on 16 cores. This
setup coincides with k = 10, n= 2, and p = 5, which is the
reasoning behind its use throughout the paper. It should be
noted that this convergence analysis is non-exhaustive since
it only looks at the predefined HMC parameter path config-
uration (see Sect. 2.7). For example, the role of the number
of clusters of watersheds might be different if one starts by
increasing the number of intra-band clusters instead of the
number of clusters of watersheds. Work is ongoing among
the co-authors to find the optimal path configuration to min-
imize the number of HRUs even further.

3.4 Parameter sensitivity

To assess the role of routing module parameters in the two-
way coupling, a 448 member Sobol sensitivity analysis is
run. This sensitivity experiment explores the role that the
Manning’s coefficients (channel and floodplain), the bank-
full depth, the channel width, and uniform flow velocity have
on the simulated macroscale states and fluxes. These results
focus exclusively on 1–15 July 2017 since it covers a time
period that shows a rapid wetting of the soil, followed by a
prolonged drying period – ideal environmental conditions to
explore the role of the two-way coupling.

Figure 11 illustrates the ensemble spread in the simulated
spatial mean and spatial standard deviation for a suite of
states and fluxes time series; the baseline uncoupled simula-
tion that was used in Sect. 3.2 is also shown for comparison.
The biggest difference between the uncoupled and coupled
simulations happens primarily during the dry down period,
where the latent heat spatial mean and spatial standard devi-
ation are significantly enhanced with respect to the baseline
simulation; the impact of the coupling on the spatial mean of
most variables is negligible for almost all parameter sets. The
parameter sensitivity plays an important role during the dry
periods, with the flooding and recharge components playing
a key role in these differences. As expected, the spread in the
surface fluxes is most pronounced during the middle of the
day since this is when available soil moisture will play the
largest role in transpiration. Even though there is a clear sig-
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Figure 9. Simulated annual mean sensible heat flux over the 1.0◦

SGP domain. Each panel shows the mean sensible heat flux from
the different HydroBlocks simulations. Each simulation was run
with different configurations of the revised hierarchical clustering
algorithm. Simulations (a)–(c) increase k from 1 to 5 to 10, while
setting p = 1 and n= 1000; simulations (d)–(f) decrease n from 5
to 3 to 2, while setting p = 1 and k = 10; and simulations (g)–(i)
increase the average number of intra-band clusters from 2 to 3 to 5,
while setting n= 2 and p = 5. The average number of HRUs per
macroscale polygon is shown as the title of each panel (the number
can differ per macroscale polygon).

nal in the sensitivity of the coupling to the parameters, the
general role that the river plays is consistent for most param-
eter sets.

Figure 12 takes this sensitivity analysis a step further by
exploring the role of each parameter. The results show that
for sensible heat flux, latent heat flux, root-zone soil mois-
ture, and land surface temperature, the channel width (w) and
channel bankfull depth (b) play the largest role. In the case
of the spatial mean of latent heat flux and sensible heat flux,
there are important interactions of the channel width parame-
ter (w) with other parameters. In the case of runoff, the chan-
nel Manning’s coefficient (nf) plays the largest role with im-
portant secondary interactions most likely with the channel
width (w). Finally, the inundation height is almost primarily
controlled by the channel Manning’s coefficient (nc). These
results highlight the key role of channel geometry in deter-
mining the role of river networks on the macroscale fluxes
and states; in practical terms, the role of channel width can be
simply explained by the fact that a larger surface area of wa-

ter will produce a larger latent heat flux over the domain. Al-
though further analysis is necessary, this result is most likely
irrespective of the two-way coupling. In the case of inunda-
tion height, the role of the channel Manning’s coefficient is
most likely simply due to how it defines the stage height of
the channel (and thus inundation height); these results would
most likely vary if the inundation height only factored in
floodplain water. In all cases, the role of the floodplain Man-
ning’s coefficient is minimal indicating only a short period of
time where there was inundated water on the floodplain. Fi-
nally, the role of the uniform overland flow velocity is small
but not negligible for all cases.

4 Discussion

4.1 Evaluating the two-way coupling parameterization

The primary goal of this work is to develop and implement
the two-way coupling parameterization within HydroBlocks.
Although the results show the sensitivity of the model to the
two-way coupling, it remains unclear if this parameteriza-
tion improves the macroscale modeling of surface fluxes and
inundation. Preliminary comparisons (not shown here) be-
tween domain-averaged in situ observations of surface fluxes
and land surface temperature show negligible improvements;
this is expected from Fig. 8, which shows minimal changes
in spatial means between the coupled and uncoupled simu-
lations. A more realistic evaluation of the parameterization
should involve using observations that focus on the ripar-
ian zones and floodplains, which is where the impact of this
two-way coupling will be most prominent. In the absence
of new in situ measurements, one approach is to use high-
resolution remote sensing of land surface states and fluxes.
More specifically, for land surface temperature one could use
GOES (∼ 2 km), MODIS (∼ 1 km), and Ecostress (∼ 100 m).
Other products that would be useful include field-scale evap-
otranspiration products derived from high-resolution satellite
remote sensing data (e.g., Anderson et al., 2011). Beyond
surface fluxes, the modeled inundation could be compared
to remotely sensed maps of flood extent (e.g., Horritt and
Bates, 2002) or against a hydrodynamic model (e.g., HEC-
RAS; Brunner, 2010). All of these data would provide a
more complete picture of the utility of the parameterization.
Furthermore, the added value of this parameterization will
most likely be larger in arid river basins such as the Niger
and Nile river basins; basin-wide implementations of Hy-
droBlocks over these regions would provide a more robust
macroscale evaluation of the parameterization.

4.2 Disconnect between clusters of watersheds and
reach-based river routing

One of the challenges of the two-way coupling implemented
in HydroBlocks is the spatial disconnect between the hydro-
logic response units and the river reaches. This problem is
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Figure 10. Convergence of annual mean of the spatial mean and spatial standard deviation of runoff, land surface temperature, inundation
height, root zone soil moisture, latent heat flux, and sensible heat flux for the 9 different HRU configurations. Each color denotes a different
macroscale polygon in the 1.0◦ SGP domain.

mostly due to the clustering of watersheds; each of the wa-
tersheds within a cluster of watersheds is assumed to behave
similarly, even if their river reaches are higher-order or in
a different region of a sub-polygon. The choice of cluster
predictors is made to ameliorate these challenges. As can
be seen in Fig. 2b, when assembling the clusters of water-
sheds, the watersheds are grouped based on their attributes.
For watersheds that are along the main channel, using accu-
mulation area as an attribute is able to separate these higher-
order reaches from the lower ones; however, the existing
coupling scheme still allows for water that is on the flood-
plain downstream within a given cluster of watersheds to be
placed upstream at the beginning of the time step. This unre-
alistic “diffusive” intra-cluster redistribution is the primary
limitation of this approach. For smaller-order streams, the
grouping generally disregards the higher-order stream hier-
archy. This means that lower-order streams are split between
higher-order streams, which can lead to cross-basin redistri-
bution. Future work should look into more appropriate ways
to cluster these watersheds. One could imagine only allow-
ing the clustering of watersheds to happen for lower-order
reaches; the higher-order reaches could then be left as they
are. This would effectively place the computational burden

on the main channels of a given macroscale polygon while
simplifying the tributaries. One could also only enable the
two-way coupling for clusters of watersheds that are suffi-
ciently physically consistent (e.g., main channels).

4.3 Implementing dynamic lakes, reservoirs, and
surface water abstraction

The reach-based routing scheme explored in this study pro-
vides the scaffolding to model dynamic lakes and reservoirs.
Assuming that the outflow positions of water bodies along
the channel can be assigned to a model reach and that esti-
mates of the bathymetry of the water bodies can be “burned”
into the corresponding reach cross sections, this should be
relatively straightforward to implement. The flooding com-
ponent of the existing routing scheme enables a reach’s cor-
responding valley to fill up and thus produce a first-order rep-
resentation of the time-varying lake spatial coverage. Given
that many lakes will cover multiple reaches, intra-reach wa-
ter bodies will need to be included. Although an ad hoc
parameterization could be used with the existing kinematic
wave routing scheme, future updates should move towards
a diffusive wave approach to be able to handle back flows.
Finally, given the unavoidable split of water bodies among
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Figure 11. Ensemble spread from the Sobol sensitivity analysis of the coupled routing–land surface HydroBlocks model between 1 and
15 July 2017. The shown simulated variables include the spatial mean (X) and spatial standard deviation (σ(X)) of sensible heat flux (SH),
latent heat flux (LH), root zone soil moisture (SMC), land surface temperature (LST), runoff (R), and inundation height (IH). For comparison,
the baseline uncoupled simulation is shown in blue.

macroscale polygons, careful attention will need to go to
towards inter-macroscale polygon water bodies. However,
there is no reason that the existing approach could not han-
dle it; the only increase in computational burden would be to
pass more information between macroscale polygons.

One of the primary motivations for implementing a cou-
pling between a routing scheme and the land surface in Hy-
droBlocks is to eventually enable the implementation of sur-
face water management (e.g., irrigation from surface water

abstraction and reservoir operations). The proposed imple-
mentation of lakes could be readily adapted for reservoirs.
The primary difference is that the output flows would be con-
trolled by operation rules instead of solely through lake stor-
age. Furthermore, the reach-based implicit method used in
this study would allow for surface water abstraction where
each HRU that has irrigation can draw water from either the
most accessible reservoir (as defined by the closest reach
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Figure 12. First-order (Si ) and total-effect sensitivity (STi) indices
from the Sobol sensitivity analysis of the nc (channel Manning’s
roughness coefficient), nf (floodplain Manning’s roughness coeffi-
cient), b (channel bankfull depth), w (channel width), and v (uni-
form overland flow velocity) parameters in the HydroBlocks land
surface model over the SGP site in Oklahoma. The explored simu-
lated variables are the same as those in Fig. 11.

that is categorized as a reservoir), or directly from its clos-
est channel.

4.4 Improving the modeling of channel and floodplain
dynamics

Although the routing scheme implemented in HydroBlocks
is able to represent the role of floodplains in the compound
channel flow (see Sect. 2.4), there is still a lack of proper rep-
resentation of the separation between channel and floodplain
flow. Moving forward, an alternative would be to adapt the
extended Saint-Venant equations used in HEC-RAS (Brun-
ner, 2010). This approach solves the flow on both the channel
and the floodplain by coupling two solutions of the Saint-
Venant equations via flow between the channel and flood-
plain. In addition, the implemented routing scheme uses the
kinematic wave approximation of the Saint-Venant equa-
tions. However, this assumption is not suitable for many flat
regions (e.g., Mississippi, Amazon). The simplest path for-

ward appears to be the implementation of a diffusive as-
sumption of the Saint-Venant equations. The added value of
this approach would extend beyond a more realistic move-
ment of water through the channel. It would also be useful
as lakes and reservoirs are included in HydroBlocks, which
will require the modeling of backwater effects. To address
this problem, the current scheme should be replaced with a
higher-order implicit scheme in future work. Finally, future
efforts could also drop the uniform flow velocity assump-
tion used to model overland flow along the hillslopes; this
could be amended in a future version of HydroBlocks by
calculating dynamic flow velocities (e.g., kinematic wave)
when modeling HRU to channel overland flow (similar to
MOSART, Li et al., 2013). However, given the relatively low
sensitivity of the model to this parameter (see Fig. 12), the
added value of dynamic overland flow velocities is unclear.

4.5 Leveraging existing river network databases

In this study, the river network was delineated directly from
the National Elevation Dataset (NED) 30 m elevation dataset
(Gesch et al., 2009). This was done to ensure the consistency
between the river network and the DEM, which is neces-
sary to form a rigorous coupling between the HRUs and the
river reaches. As this approach is implemented over conti-
nental to global extents, this approach should be need be re-
visited. Over the United States, follow-up work should use
the National Hydrography Dataset (NHD) (USGS, 2018).
The NHD is a vector database that defines the spatial loca-
tions and connectivity of lakes, ponds, streams, rivers, canals,
dams, and stream gages. Most importantly, this database in-
cludes the modified NED raster DEM, thus making a robust
connection between the vector reaches and associated DEM.
These data will also make it possible to consider endorheic
basins and existing reservoirs and lakes. Over global extents,
the MERIT hydro-vector database provides the clearest path
forward (Lin et al., 2021). In any case, to be able to ade-
quately use these data, there will be a need to further upgrade
the existing routing scheme. As it currently is implemented,
the existing approach is only able to couple a river with a
channel width up to the fine-scale pixel length (e.g., 30 m)
to the land surface. Future implementations will amend this
assumption to enable coarser rivers to interact with the flood-
plain.

4.6 Optimizing macroscale polygon geometries for the
two-way coupling scheme

Preliminary results suggest that the current scheme has
load balancing weaknesses on high-performance computing
(HPC) when implemented over larger domains (e.g., the con-
tiguous United States). This appears to be primarily due to
the disparate number of river reaches between macroscale
polygons. In other words, the domain decomposition (i.e.,
the geometries of the macroscale polygons) does not balance
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the sub-polygon river networks. Given the need for reaches to
communicate between macroscale polygons, the most com-
plex sub-grid river network slows down the solver over the
entire domain. A promising path forward is to optimize the
macroscale polygon geometries to enforce more balanced
sub-polygon river network topologies. This is not a new
challenge; existing macroscale vector routing schemes such
as RAPID (David et al., 2016) and MizuRoute (Mizukami
et al., 2021) have implemented optimal domain decompo-
sition strategies. However, these domain decomposition ap-
proaches are not designed for a two-way coupling between
HRUs and river reaches. When HRUs and their correspond-
ing river reaches are on different computational cores in Hy-
droBlocks, the computational slowdown due to messages
passing between computational cores generally exceeds that
due to load-balancing issues. Furthermore, the number of
HRUs per macroscale polygon can vary; this is especially
true if the number of HRUs is optimized per polygon. The
mismatch between the number of reaches and HRUs, the
need for the river reaches and HRUs of a given macroscale
polygon to be on the same computational core (or at least
same shared memory), and the unbalanced number of river
reaches across the domain are the current roadblocks for
ESM implementation that must be resolved moving forward.

4.7 Reducing sub-polygon complexity: clustering
lower-order river reaches

Beyond optimizing macroscale polygon geometries to im-
prove inter-polygon connectivity, there is a need to more ad-
equately constrain the number of sub-polygon river reaches.
Indeed, although the number of reaches per macroscale poly-
gon in this study (∼ 400 reaches per polygon) remains com-
putationally tractable, preliminary results suggest that this is
not always the case. This problem will be especially impor-
tant in ESMs where the number of sub-polygon HRUs/tiles
must be kept to under a few dozen; thus, the routing mod-
ule would consume a significant portion of the land model’s
compute time. Furthermore, the increase in the number of
reaches for coarser macroscale polygons would quickly add a
significant computational burden (e.g., 2500–20 000 reaches
per 1.0◦ grid cell). Therefore, moving forward, there is a need
to simplify the sub-polygon networks. One approach being
explored by the co-authors is to cluster the lower stream or-
ders that fall within a given macroscale polygon; these river
reaches can then be modeled as one. Given that the first-
order reaches usually take up more than half of the reaches
of a macroscale polygon, if these were clustered and the nu-
merical solver was adapted to handle this framework, this
would reduce the number of reaches significantly. This ap-
proach could be applied to all tributaries while maintain-
ing the sub-grid reaches of the main channels that traverse
the macroscale polygon (similar to the approach used in
MOSART, Li et al., 2013).

5 Conclusions

The existing lack of interconnectivity between the modeled
river network and the land surface in ESMs leads to (1) over-
simplified macroscale river networks (e.g., tributaries being
mostly ignored), (2) no existing mechanism for sub-polygon
river networks to interact with the land surface HRUs, (3) wa-
ter moving through the river network not influencing the
surface energy partitioning, and (4) sub-polygon irrigation
and water management schemes that are spatially agnos-
tic and rely mainly on the main channel. This study illus-
trates a path forward to address these persistent deficiencies
in ESMs. This is accomplished by implementing a reach-
based routing model in HydroBlocks and enabling a two-way
coupling with the modeled hydrologic response units. The
primary features of the novel river routing scheme include
(1) each macroscale polygon being assigned its own field-
scale river network delineated from DEMs, (2) the fine-scale
inlet–outlet reaches of the macroscale polygons being linked
to assemble the continental river networks, (3) river dynam-
ics being solved at the reach-level via an implicit solution of
the kinematic wave simplification of the Saint-Venant equa-
tions, and (4) a two-way coupling being established between
each cell’s sub-grid tiles and the river network. The experi-
ments run over the study domain illustrate the sensitivity of
the land surface to recharge due to floodplain dynamics and
the role that it can have on surface energy partitioning. Fur-
thermore, the appreciable sensitivity of the model to reach
characteristics reinforces the need for improved channel mor-
phology parameterizations and datasets. Finally, the imple-
mented scheme shows an appreciable impact on the mod-
eled spatial heterogeneity (e.g., spatial variance) of surface
fluxes and states; however, its influence on the macroscale
spatial means is relatively small. In other words, although the
two-way coupling parameterization offers potential to pro-
vide more realistic simulated multi-scale spatial patterns, its
impact on improving the domain-average response appears
to be limited and requires further evaluation.
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