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Abstract. At the leaf level, stomata control the exchange
of water and carbon across the air–leaf interface. Stomatal
conductance is typically modeled empirically, based on en-
vironmental conditions at the leaf surface. Recently devel-
oped stomatal optimization models show great skills at pre-
dicting carbon and water fluxes at both the leaf and tree
levels. However, how well the optimization models perform
at larger scales has not been extensively evaluated. Further-
more, stomatal models are often used with simple single-
leaf representations of canopy radiative transfer (RT), such
as big-leaf models. Nevertheless, the single-leaf canopy RT
schemes do not have the capability to model optical proper-
ties of the leaves nor the entire canopy. As a result, they are
unable to directly link canopy optical properties with light
distribution within the canopy to remote sensing data ob-
served from afar. Here, we incorporated one optimization-
based and two empirical stomatal models with a compre-
hensive RT model in the land component of a new Earth
system model within CliMA, the Climate Modelling Al-
liance. The model allowed us to simultaneously simulate car-
bon and water fluxes as well as leaf and canopy reflectance
and fluorescence spectra. We tested our model by compar-
ing our modeled carbon and water fluxes and solar-induced
chlorophyll fluorescence (SIF) to two flux tower observa-
tions (a gymnosperm forest and an angiosperm forest) and
satellite SIF retrievals, respectively. All three stomatal mod-
els quantitatively predicted the carbon and water fluxes for
both forests. The optimization model, in particular, showed

increased skill in predicting the water flux given the lower er-
ror (ca. 14.2 % and 21.8 % improvement for the gymnosperm
and angiosperm forests, respectively) and better 1 : 1 com-
parison (slope increases from ca. 0.34 to 0.91 for the gym-
nosperm forest and from ca. 0.38 to 0.62 for the angiosperm
forest). Our model also predicted the SIF yield, quantitatively
reproducing seasonal cycles for both forests. We found that
using stomatal optimization with a comprehensive RT model
showed high accuracy in simulating land surface processes.
The ever-increasing number of regional and global datasets
of terrestrial plants, such as leaf area index and chlorophyll
contents, will help parameterize the land model and improve
future Earth system modeling in general.

Copyright statement. © 2021 California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

Anthropogenic emissions have resulted in an unprecedent-
edly rapid increase in the atmospheric carbon dioxide (CO2)
concentration and thus global warming (IPCC, 2014). The
land system, a big carbon sink (Quéré et al., 2018; Friedling-
stein et al., 2020), slows the increase in atmospheric [CO2]
and climate change by taking up about one-third of anthro-
pogenic emissions. Yet, whether the land system continues to
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be a carbon sink in the near future remains debatable (Anav
et al., 2013; Arora et al., 2013; Jones et al., 2013; Sperry
et al., 2019). Increasing tree mortality across the globe fur-
ther complicates this prediction (Hartmann et al., 2015). A
key to addressing this problem is to better simulate and mon-
itor the coupled carbon, water, and energy fluxes at the land
surface.

Terrestrial plants control the opening of tiny pores on
leaves, called stomata, in response to a variety of environ-
mental and physiological stimuli. Therefore, accurately rep-
resenting this process is essential in land surface simula-
tions, as stomata affect carbon and water fluxes as well as
the surface energy balance. In the past decades, many stom-
atal models, based either on statistical regressions (e.g., Ball
et al., 1987; Leuning, 1995; Medlyn et al., 2011) or optimiza-
tion theories (e.g., Cowan and Farquhar, 1977; Wolf et al.,
2016; Sperry et al., 2017; Mencuccini et al., 2019; Wang
et al., 2020), have been proposed and used to model leaf-level
stomatal responses. The empirical models are computation-
ally efficient and skillfully represent stomatal responses to
the environmental cues in the absence of water stress; thus,
they are widely used in land surface models (LSMs). How-
ever, these empirical models rely on ad hoc tuning factors
to force stomatal response to drought (Powell et al., 2013),
which introduces additional uncertainty in carbon cycle mod-
eling (Trugman et al., 2018).

In comparison, trait-based stomatal optimization models
predict stomatal behavior based on the trade-off between the
benefits of carbon gain and the risk of water loss from the
stomatal opening (Wolf et al., 2016; Wang et al., 2020). For
instance, when the soil gets drier, the risk of transporting
the same amount of water increases due to a higher risk of
xylem cavitation (Sperry et al., 2017), while the carbon gain
remains unchanged. As a result, plants ought to reduce stom-
atal opening and, thus, water loss to balance gain and risk. A
major advantage of stomatal optimization models is that they
couple environmental stress (from both the atmosphere and
soil) to plant physiology; thus, they more accurately repre-
sent mechanistic processes while also being less dependent
on statistically fitted parameters. In particular, stomatal opti-
mization models based on plant hydraulics have shown great
potential in predicting leaf- and tree-level stomatal behavior
at multiple scales, ranging from potted saplings to common
garden and natural forest stands (Anderegg et al., 2018; Ven-
turas et al., 2018; Wang et al., 2019; Liu et al., 2020). Also,
attempts to employ the optimization theory at the regional
scale have shown improved predictive skills compared with
empirical stomatal models (Eller et al., 2020; Sabot et al.,
2020). Furthermore, optimization theory can be readily ex-
tended to explain and model nighttime stomatal responses to
the environment (Wang et al., 2021).

While traits used in stomatal optimization models improve
predictive skill, the number of traits required to parameterize
these process- and trait-based models makes it impractical
to apply them at large spatial scales. As a result, stomatal

optimization models have not been rigorously evaluated at
the stand level or larger spatial scales. Eddy covariance mea-
surements of carbon, water vapor, energy exchange, and en-
vironmental conditions give a good estimate of stand-level
fluxes and provide a platform to test stomatal theories at the
ecosystem level (Baldocchi et al., 2001; Baldocchi, 2020).
Despite the often unknown plant traits and species compo-
sition within a flux tower footprint, continuous and high-
quality data make it possible to invert a suite of average
stand-level traits. However, more investigation is required to
determine how well the stomatal optimization models per-
form at the stand level, which is a gap that this paper aims to
address.

If high-quality flux tower data are used (such as a full
suite of environmental conditions and carbon and water
fluxes), the traits required to run stomatal optimization mod-
els can be inverted from flux tower observations. However,
the sparse distribution of flux towers across the globe may
be too sparse to provide a good estimate of how traits vary
globally (Schimel et al., 2015), thereby impeding the imple-
mentation of stomatal optimization theory at the landscape
level. Although it is possible to interpolate these traits us-
ing climate as a driving force, as done by Jung et al. (2020),
these interpolated parameters cannot be verified in terms of
carbon and water flux measurements directly. The growing
amount of remote sensing data, such as canopy reflectance
and fluorescence-based products, provides an alternative way
to verify model parameterization (Schimel et al., 2019). For
instance, solar-induced chlorophyll fluorescence (SIF) and
near-infrared reflectance of vegetation correlate with plant
productivity (Frankenberg et al., 2011; Sun et al., 2018; Bad-
gley et al., 2019). Furthermore, it is possible to directly com-
pare model-predicted reflectance and fluorescence spectra to
satellite observations.

To date, all stomatal optimization models are used with
simple canopy radiative transfer (RT) schemes due to their
simplicity and efficiency (including the big-leaf model,
which partitions the canopy into sunlit and shaded fractions;
Campbell and Norman, 1998). The single-leaf representation
of the canopy, however, is not adequate in modern LSMs in
terms of simulating the reflectance or fluorescence of the en-
tire canopy, which requires bidirectional radiation within the
canopy to be simulated. Therefore, more complex models
with multiple canopy layers, horizontal canopy heterogeneity
(Braghiere et al., 2021), and more detailed representations of
the canopy RT scheme are required for the purpose of sim-
ulating canopy optical parameters, such as the RT scheme
used in the Soil Canopy Observation of Photosynthesis and
Energy fluxes (SCOPE) model (Yang et al., 2017). This way,
the advantages of stomatal optimization theory and those of a
complicated multilayer canopy RT scheme are integrated, be-
ing able to better relate plant physiology to remotely sensed
canopy spectra.

Here, we aim to advance land surface modeling by incor-
porating a recently developed stomatal optimization model
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(Wang et al., 2020) and the SCOPE RT concept in the land
system of a new generation of Earth system model within
the Climate Modeling Alliance (CliMA). With the CliMA
Land model, we were able to link both plant productivity and
canopy optical parameters to stomatal optimization theory.
We evaluated our model by comparing the model-predicted
ecosystem carbon and water fluxes to flux tower measure-
ments as well as to two well-established empirical stom-
atal models, and comparing the model-predicted SIF to the
TROPOspheric Monitoring Instrument (TROPOMI) SIF re-
trievals (Köhler et al., 2018).

2 Model description

We present our first step towards bridging stomatal control,
plant hydraulics, and a comprehensive RT scheme in the
land component of a new Earth system model developed by
the Climate Modeling Alliance (CliMA). The CliMA Land
model addresses soil water movement, plant water transport,
stomatal regulation, canopy radiative transfer, and water, car-
bon, and energy fluxes in a highly modular manner (i.e., each
component can be used as a stand-alone package; see Fig. 1
for the diagram of the CliMA Land model). Code and doc-
umentation of the in development CliMA Land model are
freely and publicly available at https://github.com/CliMA/
Land (last access: 29 March 2021). In the sections below,
we introduce the model framework by highlighting improve-
ments and modifications to existing vegetation model com-
ponents. We note here that, compared with most LSMs, we
implemented more complex biophysics in CliMA Land, such
as a hyperspectral canopy radiative transfer scheme and mul-
tilayer canopy hydraulics. These detailed features, along with
the high modularity of CliMA Land (such as turning on and
off detailed features), allows users to perform research with
different complexities and at multiple levels from the leaf to
global scales (e.g., Wang and Frankenberg, 2021).

2.1 Plant architecture

In CliMA Land (v0.1), we treated a site as a uniform “mono-
species” stand. Therefore, a suite of average plant traits were
applied to the stand, and the stand-level simulation was done
using these bulk traits. CliMA Land simulates plant hy-
draulics numerically using the most comprehensive and mod-
ular plant hydraulic system to date. The average plant was
represented as a tree, and the modeled tree consisted of a
multilayer root system, a trunk, and a multilayer canopy to
match the soil and canopy setups (Fig. 2a). Each root layer
corresponds to a horizontal soil layer, and contains a rhizo-
sphere component and a root xylem in series (water flows
through the rhizosphere and then the root xylem). All root
layers are in parallel and connected to the base of the trunk.
Each canopy layer corresponds to a horizontal air layer, con-
taining a stem and leaves in series (water flows through the

stem and then the leaves). All canopy layers are in parallel
and connected to the top of the trunk. By default, we ac-
counted for gravity in root and stem (gravity not accounted
for in leaves); thus, each canopy layer has its own gravita-
tional pressure drop. However, the gravity correction can be
customized by setting the height changes of each root and
stem. We note here that the hydraulic architecture in CliMA
Land can be freely customized from a single xylem organ to a
whole plant with any finite number of root and canopy layers.
We assumed a uniformly distributed leaf area in the canopy,
both vertically and horizontally, with the leaf orientation be-
ing evenly distributed in the azimuth. At each canopy layer
and azimuth angle, we further adopted an angular distribu-
tion for the leaf inclination. By default, the leaf inclination
angle is evenly distributed from 0 to 90◦. The inclusion of
the leaf area fraction and leaf angle distribution allows us to
simulate the bidirectional radiation within the canopy.

We did not attempt to model the detailed hydraulic archi-
tecture within each root or canopy layer; thus, all transpi-
ration within a root or canopy layer was transported via a
single root or stem. All leaves in each canopy layer are in
parallel and are connected to the end of the stem. The hy-
draulic flow and pressure profile were simulated for each leaf
in each canopy layer. We simulated the flow and pressure at
steady state; therefore, the following criteria were met: the
total transpiration rate in each canopy layer was equal to the
flow rate in the stem of that layer; the total flow rate of all
canopy layers was equal to the flow rate in the trunk and the
total flow rate of all root layers; and the root xylem pressure
at the end of each root xylem was the same (namely, the pres-
sure at the tree base; Fig. 2b).

We used constant leaf physiological parameters (such as
hydraulic and photosynthetic traits) throughout the canopy,
i.e., there was no difference between leaves with different
azimuth or inclination angles. However, as we modeled the
light environment for leaves at different layers and with dif-
ferent azimuth and inclination angles, we allowed the leaves
to have different stomatal conductances and, thus, different
photosynthetic rates. We note that our modeling framework
allowed us to customize the vertical leaf area distribution,
the leaf angular distribution, and the photosynthetic capac-
ity profile vertically. Future research efforts to resolve these
distributions within the canopy would make LSMs more re-
alistic in terms of the upscaling of carbon, water, and energy
fluxes. However, for now, we used even distributions in our
model simulations due to the lack of knowledge on the true
distributions at the study sites.

2.2 Canopy radiative transfer

We used the SCOPE model RT framework (Yang et al.,
2017) to simulate the light environment within the canopy.
However, we made some modifications to make the model
more realistic. The first difference was that we accounted
for carotenoid light absorption as part of absorbed photosyn-
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Figure 1. Diagram of the CliMA Land model. CliMA Land is built on a highly modularized plant hydraulics module (labeled using 1).
The plant hydraulic system has multiple roots, each tapping water in the corresponding soil layer; an optional trunk that elevates the plant
canopy; and multiple branches, each connected to the corresponding canopy layer. The radiative transfer module within the canopy (labeled
using 2) is responsible for simulating canopy-level light scattering by accounting for leaf angular distributions (labeled using 3) and leaf-
level hyperspectral reflectance, transmittance, and fluorescence spectra (labeled using 4). The stomatal control module determines stomatal
opening at the leaf level by assessing the photosynthetic and hydraulic status of the plant (labeled using 5) as well as environmental conditions
(labeled using 6).

thetically active radiation (APAR; Frank and Cogdell, 1996;
Kodis et al., 2004; Koyama et al., 2004). In brief, the relative
absorption that is counted as APAR in SCOPE and CliMA
Land (kAPAR,SCOPE and kAPAR,CliMA, respectively) differs as
follows:

kAPAR,SCOPE =
αcab ·Ccab∑
(αiCi)

, (1)

kAPAR,CliMA =
αcab ·Ccab+αcar ·Ccar∑

(αiCi)
, (2)

where αi is the feature absorption coefficient of the trace
ingredient (cab for chlorophyll a+ b, car for carotenoid),
Ci is the content of each ingredient, and

∑
(αiCi) is the

sum of all ingredients (chlorophyll, violaxanthin and zeax-
anthin carotenoid, brown pigment, anthocyanin, water, and
dry mass). When accounting for carotenoids, APAR-related
absorption relative to the total pigment absorption increases
in the wavelength range from 400 to 550 nm (Fig. 3a). Thus,
APAR increases for all leaves in each canopy layer because
of the carotenoid absorption (an example is given in Fig. 3b).
This extra light absorption by carotenoid drives increases in
both SIF and gross primary productivity. As a result, our
modeled photosynthetic rate and fluorescence ought to be

higher than the original SCOPE model for the same model
setup.

The second difference was that we accounted for the
bidirectional reflectance distribution function effect of the
canopy horizontal structure by incorporating a clumping in-
dex (CI; Braghiere et al., 2021). As the CI impacts the ef-
fective leaf area index (eLAI for effective value, and LAI
for the true value) of an open canopy (Pinty et al., 2006;
Braghiere et al., 2019, 2020), eLAI= LAI·CI, we used eLAI
in our model, whereas the original SCOPE model used LAI.
When CI= 1, leaves are uniformly distributed in the horizon-
tal; when CI< 1, there are gaps between and within clusters
of leaves for each tree. The inclusion of a CI< 1 under low-
soil-albedo values (we used a constant soil albedo of 0.2 in
our model) results in a higher sunlit leaf fraction for every
canopy layer, lower APAR for upper canopy layers, higher
APAR for lower canopy layers, a different reflectance spec-
trum, and lower SIF (Fig. 4).

In the model simulations, we (1) calibrated the leaf chloro-
phyll fluorescence, reflectance, and transmittance spectra us-
ing the Fluspect-B model (Vilfan et al., 2016), which ad-
vances the PROSPECT model by computing the fluorescence
matrices (Jacquemoud and Baret, 1990; Jacquemoud et al.,
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Figure 2. The hydraulic system is customized to match the canopy layers to the canopy radiation model. (a) An example of a hydraulic
system with multiple root layers, a trunk, and multiple canopy layers. (b) An example of a xylem water pressure profile in the hydraulic
system when the soil water potential is −0.2 MPa for all soil layers. For better visualization, we use three root layers and three canopy layers
in this example and compute the bulk mean leaf xylem pressure for all the leaves in each canopy layer. We account for the gravitational
pressure drop in the root and stem (not in leaves) in the example; however, the gravitational pressure drop can be customized by setting
the height change of each root and stem. We note here that there is an extraxylary component downstream of the leaf xylem. However, as
the extraxylary flow does not impact xylem hydraulic conductance, it has little impact on the stomatal models that we use in our model.
Nevertheless, the extraxylary component impacts the leaf water potential at the evaporation site and the leaf water content, and one needs to
be cautious if the stomatal models are formulated using these physiology parameters.

Figure 3. The impact of carotenoid light absorption on absorbed photosynthetically active radiation (APAR). (a) The fraction of APAR light
absorption relative to all pigment absorption. The solid curve represents the scenario when both chlorophyll and carotenoid absorption are
counted as APAR. The dashed curve plots the scenario when only chlorophyll absorption is counted as APAR. (b) The APAR difference
between the two scenarios for leaves with different azimuth angles (0 to 360◦) and inclination angles (axial direction, from 0 to 90◦). The
colors indicate the increase in APAR for sunlit leaves with different angles when counting carotenoid absorption as APAR. The white line on
the color bar indicates the increase in APAR for shaded leaves. The results are from the top canopy layer out of 20 layers for a canopy with
a leaf area index of 3, a clumping index of 1, and a solar zenith angle of 30◦.

2009); (2) computed canopy optical properties (extinction
coefficients for direct and diffuse light) from leaf inclination
and azimuth distribution functions and sun-sensor geometry
(Yang et al., 2017); (3) computed scattering coefficient matri-
ces for direct and diffuse light based on the extinction coeffi-

cients and leaf reflectance and transmission spectra; (4) sim-
ulated the shortwave radiation through the canopy; (5) com-
puted a variety of integrated fluxes, such as absorbed soil
radiation and direct and diffuse APAR per layer (including
angles for direct light); (6) calculated the steady-state stom-
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Figure 4. The impact of canopy clumping on canopy radiative transfer. (a) The impact of the canopy clumping index (CI) on the sunlit
leaf fraction. (b) CI impacts on the mean sunlit and shaded leaf-absorbed photosynthetic radiation (APAR). (c) CI impacts on the canopy
reflectance spectrum. (d) CI impacts on the solar-induced chlorophyll fluorescence spectrum. The model simulation was done using a canopy
with a leaf area index of 3, 30 canopy layers, a solar zenith angle of 30◦, a viewing zenith angle of 0◦, and a constant fluorescence yield
of 1 %.

atal conductance based on different stomatal models for each
leaf angle, and then the fluorescence quantum yield from leaf
photosynthesis; and (7) computed the four-stream radiation
transport for SIF. We note here that as we include carotenoid
absorption as APAR, leaf forward and backward fluorescence
conversion matrices calculated using FLUSPECT-B model
differ from those in SCOPE; however, leaf reflectance and
transmittance spectra are the same as in SCOPE.

In the model, we represented a leaf azimuth angle from 0
to 360◦ at 10◦ increment steps (Nazim = 36) and leaf inclina-
tion angle from 0 to 90◦ at 10◦ increment steps (Nincl = 9).
At each time step, we were able to calculate the fraction of
sunlit leaf (fazim,incl) and APAR for each leaf angle combi-
nation (azimuth and inclination; e.g., Fig. 4). Therefore, we
had a total of Nazim ·Nincl+ 1 APAR values in each canopy
layer (1 for the shaded leaf fraction), and the probability of
each APAR value per layer was

pazim,incl,n =
1

Nazim ·Nincl
· fazim,incl,n (3)

pshade,n = 1−
∑

1≤azim≤Nazim;1≤incl≤Nincl

(pazim,incl,n), (4)

where pazim,incl,n is the fraction of the sunlit part for the
“azim”th azimuth angle and “incl”th inclination angle at the
“n”th canopy layer (Nlay layers in total), and pshade,n is
the fraction of the shaded part in the “n”th layer. Also, we
had canopy reflectance and fluorescence spectra from a pre-
scribed observation angle, from which we calculated SIF at
740 nm (SIF740).

2.3 Stomatal models

We used one optimization-based (Wang et al., 2020) and two
empirical stomatal models (Ball et al., 1987; Medlyn et al.,
2011) along with our modified version of the SCOPE RT
scheme. For the optimization-based stomatal model (OSM),
we calculated the steady-state stomatal conductance per leaf
per canopy layer by maximizing the difference between the
leaf-level carbon gain (represented by the net photosynthetic
rate modeled using the classic Farquhar et al., 1980, model
for C3 plants, Anet in µmolCO2 m−2 s−1) and a risk (repre-
sented via leaf hydraulics and photosynthesis):
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Anet︸︷︷︸
gain

−Anet ·
E

Ecrit︸ ︷︷ ︸
risk

, (5)

where E is the leaf-level transpiration rate (in molm−2 s−1),
and Ecrit is the critical transpiration rate for that leaf
(in molm−2 s−1), beyond which the leaf hydraulic conduc-
tance drops to 0.1 % of the maximum value (0.05 % in Sperry
and Love, 2015; Sperry et al., 2016). Note that with the as-
cent of sap along the xylem, xylem water pressure becomes
more negative (Fig. 2b), and the xylem hydraulic conduc-
tance decreases as a result of cavitation (Sperry and Tyree,
1988). The higher the leaf transpiration rate, the more neg-
ative the leaf xylem pressure is at the end of the leaf xylem
in order to match transpiration and resupply of water to the
leaf from the root system. However, leaf transpiration rate
cannot be infinitely high because of xylem cavitation at neg-
ative xylem pressures. For example, for a leaf with a given
xylem pressure at the leaf base (9base), E peaks while leaf
xylem pressure gets more and more negative (Fig. 5a), and
E higher than this peak is physically unreachable.

We defined the transpiration rate at which the leaf
xylem hydraulic conductance decreases to 0.1 % of
the maximum value as Ecrit in our model (namely at
99.9 % loss of hydraulic conductance; Fig. 5a). We used
a hybrid Bisection–Newton method algorithm provided
by ConstrainedRootSolvers.jl (https://github.com/Yujie-
W/ConstrainedRootSolvers.jl; last access: 13 April 2021) to
numerically compute Ecrit (through solving the intersection
of the gray line and xylem water supply curve in Fig. 5a).
Ecrit decreases when 9base becomes more negative (Fig. 5;
e.g., as a result of drier soil). The use of Ecrit in the risk
function (Eq. 5) allowed us to predict the stomatal response
to soil drought, as lower Ecrit resulted higher risk. See Fig. 6
for the theoretical whole-plant responses to the environmen-
tal stimuli for the OSM. Note that the risk term in Eq. (5)
has the same mathematical form as Eq. (11a) in Wang et al.
(2020), but the two differ in that Eq. (5) employs leaf-level
flow rates for use with our adapted SCOPE RT model,
whereas Eq. (11a) in the Wang et al. (2020) model employs
mean canopy flow rates for use with the two-leaf radiation
model. Therefore, Ecrit in CliMA Land differs among
canopy layers given the different gravitational pressure drop
and xylem pressure profiles.

For the Ball et al. (1987) stomatal model (BBM),
we calculated the steady-state stomatal conductance (gsw
in molm−2 s−1) using an empirical formulation:

gsw = g0+ g1 ·RH ·
Anet(βw)

Cs
, (6)

where RH is the relative humidity of the air (frac-
tion; unitless), Cs is the leaf surface CO2 concentration
(in µmolmol−1; after accounting for leaf boundary layer con-
ductance as a function of wind speed), g0 (in molm−2 s−1)

and g1 (unitless) are fitting parameters for BBM, and βw is
an empirical tuning factor that impacts leaf photosynthetic
capacity and, thus, Anet. For the Medlyn et al. (2011) model
(MED), the formulation reads

gsw = g0+ 1.6 ·
(

1+
g1
√
D

)
·
Anet(βw)

Ca
, (7)

where D is the leaf-to-air vapor pressure deficit (in kPa), Ca
is the atmospheric CO2 concentration (in µmolmol−1), and
g0 (in molm−2 s−1) and g1 (in

√
kPa) are fitting parameters

for MED. Note that these empirical stomatal models (BBM
and MED) do not respond to soil moisture. To account for the
soil moisture response, we followed the Community Land
Model Version 5 (CLM5) approach by attenuating photosyn-
thetic capacity via a stress factor (βw; Kennedy et al., 2019):

βw =
K

Kmax
, (8)

where K is the leaf hydraulic conductance calculated using
the leaf xylem pressure, and Kmax is the maximal leaf hy-
draulic conductance. The use of a tuning factor helps address
the stomatal response to soil moisture for BBM and MED.
Note here that the tuning factor is applied per leaf per canopy
layer. See Fig. 6 for the theoretical whole-plant responses
to environmental stimuli for BBM and MED. As the BBM
and MED models were used with a tuning factor on leaf
photosynthetic capacity (represented by maximal carboxy-
lation rate and maximal electron transport rate at a reference
temperature, Vcmax25, and Jmax25 at 25 ◦C, respectively), the
effective Vcmax25 used to compute photosynthetic rate was
lower in the BBM and MED models compared with the OSM
(when the three models used the same input). As a result, the
BBM and MED model-predicted stomatal conductance and
photosynthetic rate should be lower than the OSM (when the
same model input was used; Fig. 6a, c). Furthermore, if the
models are fitted to the same dataset, the BBM and MED
tend to have higher fitted Vcmax25 to compensate for the neg-
ative effect from the tuning factor. The three models also dif-
fered in their sensitivity to soil moisture, as the penalty for
the OSM increased with transpiration rate, whereas Vcmax25
would not be downregulated at relatively wet soil (e.g., soil
water potential >−1 MPa; Fig. 6b, d).

For each of the three stomatal models (BBM, MED, and
OSM), with the steady-state stomatal conductance for each
APAR value, we computed the corresponding leaf net pho-
tosynthetic rate using the classic C3 photosynthesis model
(Farquhar et al., 1980). The whole-canopy net primary pro-
ductivity (CNPP, at an instant time) can then be computed
using

CNPP=
LAI
Nlay
·

{ ∑
azim,incl,n

[
Anet ·pazim,incl,n

]
+

∑
n

[
Anet ·pshade,n

]}
. (9)
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Figure 5. Leaf critical flow rate changes with leaf base xylem pressure. (a) Leaf xylem water supply curves at two different leaf base xylem
pressures (9base; black solid curve for a 9base = 0 MPa, and black dashed curve for a 9base = −1 MPa). A xylem water supply curve is the
plot of the leaf xylem flow rate (E) vs. leaf xylem end pressure (9) at a given 9base (9 =9base when E = 0). The gray vertical line plots
the xylem pressure at which leaf xylem conductance reaches 0.1 % of the maximum. The intersection of the gray line and the xylem water
supply curve indicates the critical xylem flow rate (Ecrit). (b) Ecrit decreases with more negative 9base.

3 Model evaluation: carbon and water fluxes

3.1 Study sites

We used data from two flux tower sites to test the CliMA
Land model. The first study site is located in a subalpine for-
est of the Niwot Ridge AmeriFlux core site (US-NR1) in the
Rocky Mountains in Colorado, USA (40.03◦ N, 105.55◦W;
3050 ma.s.l.; Fig. 7). The US-NR1 flux tower is surrounded
by three dominate evergreen gymnosperm species: Abies
lasiocarpa, Picea engelmannii, and Pinus contorta (Mon-
son et al., 2002). The second study site is located in a
broadleaf forest of the Missouri Ozark AmeriFlux site (US-
MOz, MOFLUX) in Missouri, USA (38.74◦ N, 92.20◦W;
219 ma.s.l.; Fig. 7). The US-MOz flux tower site is domi-
nated by a deciduous angiosperm white oak (Quercus alba)
mixed with several other deciduous species, including sugar
maple (Acer saccharum) and hickory (Carya spp.) (Yang
et al., 2007; Wood et al., 2019). See Tables 1 and 2 for de-
tails on the US-NR1 and US-MOz sites and the values used
as model input. Hereafter, we refer the two sites as the gym-
nosperm site (US-NR1) and the angiosperm site (US-MOz).

3.2 Model simulations

The flux tower sites have half-hourly mean flux estimates, as
well as environmental conditions since 1998 (US-NR1) and
2004 (US-MOz). We chose the data from 2006 to 2019 to
test our model due to the higher data quality (we omitted the
year 2020 because the data were not yet available). We tested
our model on an annual basis by splitting the original dataset
into subsets (14 subsets for US-NR1, and 12 subsets for US-
MOz due to missing data in 2006 and 2011). For each year, at
each half-hour time step, we simulated the steady-state stom-

atal conductance and fluxes for the three stomatal models. To
reduce uncertainty, we prescribed soil moisture, leaf temper-
ature, and reported constant leaf area index (more details on
the values we used can be found in Tables 1 and 2); we then
ran offline simulations (namely, carbon, water, and energy
fluxes do not feedback to the environmental conditions). We
inverted leaf temperature using

LWout = εσT
4

leaf, (10)

where LWout is the surface-emitted longwave radiation from
the flux tower measurement, ε is the emissivity of the leaf
(0.97 following Campbell and Norman, 1998), σ is the
Stefan–Boltzmann constant (5.67× 10−8 WK−4), and Tleaf
is the mean leaf temperature (in K).

To further reduce the uncertainty in the evaluation of flux
tower data when comparing model simulations to observa-
tions, we compared the modeled carbon and water fluxes di-
rectly to flux tower estimations rather than reprocessed prod-
ucts such as gross primary productivity (GPP). Thus, we
did not perform the typical step that partitions observed net
ecosystem exchange of CO2 (NEE) into GPP and ecosystem
respiration. Instead, we partitioned the ecosystem to canopy
and non-canopy parts. We simulated NEE as the difference
between the canopy net exchange (namely CNPP) and the re-
maining respiration (wood and soil, represented by Rremain):
NEE= CNPP−Rremain. In this way, the daytime canopy net
photosynthetic rate and nighttime respiration rate were used
as CNPP, whereas the remaining respiration of wood and soil
was computed as a function of soil temperature (Tsoil):

Rremain = Rbase · f (Tsoil)= Rbase ·

(
Tsoil− 298.15

10

)Q10

, (11)

where Rbase is the respiration normalized to a reference tem-
perature (298.15 K in our model), f (Tsoil) is the temperature
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Figure 6. Responses to environmental cues of three stomatal models. The stomatal models are the Ball et al. (1987), Medlyn et al. (2011),
and Wang et al. (2020) stomatal model predictions (BBM, MED, and OSM, respectively). (a) Canopy cumulative stomatal conductance per
ground area (G) response to the atmospheric vapor pressure deficit (VPD). The red and blue dotted lines plot the responses of the BBM
and MED models without a tuning factor (β) for photosynthetic capacity, respectively. The red and blue solid lines plot the response of
the BBM and MED models with a tuning factor for photosynthetic capacity (Eq. 8), respectively. The cyan solid line plots the response
of the OSM model. The turning point around VPD= 1400 Pa is because leaf stomatal conductance hits the maximum structural limitation
(0.2 molm−2 s−1 in the example). (b) G responses to soil water potential (9soil). (c–d) Canopy net primary productivity per ground area
(CNPP, total canopy net photosynthetic rate per ground area, gross primary productivity minus canopy leaf respiration) responses to the VPD
and 9soil.

correction, andQ10 is the exponent used for temperature cor-
rection (1.4 for angiosperm and 1.7 for a gymnosperm plant
following Lavigne and Ryan, 1997).

At each time step, we (1) calculated the soil water po-
tential and leaf temperature from the flux tower measure-
ments; (2) computed the solar zenith angle based on the site
latitude and local time; (3) simulated the canopy radiative
transfer, and obtained APAR values for sunlit and shaded
leaves in each canopy layer; (4) updated environmental con-
ditions and leaf temperature per canopy layer; (5) computed
the steady-state stomatal conductance for each leaf angle in
each canopy layer using the classic C3 photosynthesis model
(Farquhar et al., 1980), and summed the canopy carbon and
water fluxes of the entire canopy; (6) modeled leaf-level flu-
orescence yield using the computed steady-state photosyn-
thetic rate with van der Tol et al. (2014) model parameters
and modeled site-level SIF740 with the updated version of

the SCOPE model; (7) calculated Rremain from soil temper-
ature using Eq. (11); and (8) compared site-level modeled
NEE and water fluxes (ET) to flux tower estimates. For the
hydraulic system, we assumed that the xylem hydraulic con-
ductance recovered when the soil rehydrated (in other words,
we did not model the drought legacy effect within or across
growing seasons).

Note that there were some missing essential parameters in
our model: site-level bulk photosynthetic capacity (namely,
Vcmax25 and Jmax25), hydraulic conductance per basal area
(namely, Kmax), and Rbase. These parameters have a large
impact on model simulations, as Vcmax25, Jmax25, and Kmax
affect stomatal opening (and, thus, canopy carbon and wa-
ter fluxes), and Rbase affects stand carbon flux. We note that
there were some Vcmax25 and Jmax25 observations for US-
MOz for a few years (Gu et al., 2015), but a complete time
series of Vcmax25 and Jmax25 was not available. Therefore,
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Figure 7. Regions chosen to filter TROPOMI SIF observations. The left panel shows a Google Earth map for the US-NR1 flux tower site
(Niwot Ridge, Colorado, USA). The right panel shows a Google Earth map for the US-MOz flux tower site (Ozark, Missouri, USA). The
blue symbols show the flux tower locations, and the shaded regions are representative of area around the flux tower site. Map data were
sourced from ©Google Earth Landsat/Copernicus.

we fitted these parameters by minimizing the mean absolute
standardized error of both carbon and water fluxes for each
year:

minimize
mean(|NEEmod−NEEobs|)

SD(|NEEobs|)

+
mean(|ETmod−ETobs|)

SD(ETobs)
, (12)

where the subscripts “mod” and “obs” represent model and
observation, respectively, and “mean” and “SD” are func-
tions to compute mean value and standard deviation, respec-
tively. Note that we fitted Vcmax25 (Jmax25 = 1.67 ·Vcmax25),
Kmax (we assumed a constant root : stem : leaf resistance ra-
tio of 2 : 1 : 1, consistent with the ratio used by Sperry et al.,
2017), and Rbase for each stomatal model to make a fair com-
parison of the three models. We only used the flux data from
the growing season of each year, and the growing season pe-
riod was defined as the time when the mean daily carbon flux
was higher than 1 µmolm−2 s−1 for 7 consecutive days. Note
that a constant Vcmax25 was used for all three models rather
than a time series. However, because of the model setup, the
OSM used a constant Vcmax25 throughout the growing sea-
son, whereas the BBM and MED used a variable effective
Vcmax25 as a result of the tuning factor to account for the
stomatal response to soil moisture. The reader is referred to
Figs. 8 and 9 for examples of the fitted results for the gym-
nosperm and angiosperm forests, respectively.

3.3 Model performance

All three stomatal models (one optimization-based and two
empirical models) were able to track the diurnal and seasonal
carbon and water fluxes (e.g., Fig. 8 for the gymnosperm site
and Fig. 9 for the angiosperm site). In general, all three mod-
els quantitatively predicted the net ecosystem carbon flux
(Figs. 8a and c, 9a and c, 10, and 11). However, predicted wa-
ter fluxes diverged across the models, as the BBM and MED
models tended to underestimate water fluxes, and the OSM
model better matched the magnitude of water flux (Figs. 8b
and d and 9b and d). The reader is referred to Figs. S1–S26
in the Supplement for the comparison of the time series of
carbon and water fluxes for each site in each growing season.

3.3.1 Fitting parameter variation

The same variables, Vcmax25, Rbase, and Kmax, were fitted
for all three stomatal models. In terms of fitting parameter
variation, the OSM generally had the lowest standard devi-
ation, whereas BBM and MED generally had a higher stan-
dard deviation (Figs. 10a, 11a; Table 3). In terms of MASE,
the OSM had the lowest error (sum of both carbon and wa-
ter fluxes), whereas the BBM and MED had a higher error
(Figs. 10b, 11b; Table 4).

While all three stomatal models had similar fitted soil res-
piration (Rbase), the models had divergent fitted photosyn-
thetic capacity (Vcmax25) and maximal hydraulic conductance
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Table 1. Site and plant information of the Niwot Ridge flux tower site.

Variable Description Reference

Site name Niwot Ridge, AmeriFlux core site US-NR1

Latitude 40.03◦ N (Latitude impacts the solar zenith angle and, thus, canopy radiation simulations.) Monson et al. (2002)

Longitude 105.55◦W Monson et al. (2002)

Elevation Height above sea level, 3050 m Monson et al. (2002)

Canopy height Canopy height, 12–13 m. A mean canopy height of 12.5 m was used in the model. As for
the tree geometry, we assumed that the trunk had a height of 6 m and the canopy spanned
from 6 to 12.5 m. We divided the canopy into 13 layers (0.5 m of height per layer). Canopy
height causes a gravitational pressure drop when computing the xylem water pressure
profile.

Bowling et al. (2018)

LAI Leaf area index, 3.8–4.2. A mean LAI of 4.0 was used in the model. LAI affects canopy
radiative transfer, and carbon and water flux aggregation.

Monson et al. (2002)

Chlorophyll Leaf chlorophyll content, 524 µmol m−2. The chlorophyll content impacts the leaf re-
flectance, transmittance, and fluorescence emission.

Zarter et al. (2006)

Tree density Trees per ground area, 4000 ha−1. Abies lasiocarpa: 16 trees per 100 m2; Picea engelman-
nii: 10 trees per 100 m2; Pinus contorta: 9 trees per 100 m2. Addressed by basal area per
ground area (namely, the basal area index). Tree density is used to normalize whole-plant
hydraulic conductance.

Bowling et al. (2018)

Weibull B/C A. lasiocarpa: B = 4.28 MPa, C= 1.47; P. engelmannii: B = 4 MPa, C= 12; P. contorta:
B = 4 MPa, C= 4. B = 4.09 MPa and C= 5.82 were used as the mean. Weibull B/C
impacts the tree’s water supply capability as well as resistance to drought-induced xylem
cavitation.

Tai et al. (2019) and
Choat et al. (2012)

Basal area Mean basal area per tree. A. lasiocarpa: 0.063 m2; P. engelmannii: 0.08 m2; P. contorta:
0.144 m2. Total basal area per ground area for the three species are 0.031 m2 m−2; thus,
a mean ground area per basal area of 32.09 m2 m−2 was used in the model. Basal area is
used to normalize whole-plant hydraulic conductance.

Sproull (2014)

Clumping index MODIS clumping index, 0.48. A constant CI was used at the test site because of the lack
of knowledge on how the CI varies with solar zenith angle at the site. The CI impacts the
canopy radiative transfer and leaf-level light conditions.

He et al. (2012)

Root depth Root depth, 0.4–1.0 m. A maximal root depth of 1 m was used. However, as we prescribed
the soil water content, the root depth was only used to calculate the gravitational pressure
drop in the roots. The root depth causes a gravitational pressure drop when computing the
xylem water pressure profile.

Monson et al. (2002)

Soil type Soil texture class, Cambisol. See Mello et al. (2005) for the detailed van Genuchten pa-
rameter for Cambisol-type soil. Soil type is used to convert soil moisture to soil water
potential.

https://soilgrids.org/
(last access:
6 November 2020)

Stomatal model Ball et al. (1987) model: g1= 9; Medlyn et al. (2011) model: g1= 2.35
√

kPa. These
empirical parameters are used to simulate stomatal responses to the environment.

De Kauwe et al. (2015)

(Kmax). In general, the empirical models required higher
Vcmax25 (Figs. 10a, 11a). The reason for this is that the em-
pirical models in the present study were used along with a
tuning factor for effective Vcmax25 (Kennedy et al., 2019).
In comparison, the stomatal optimization model weighs the
carbon gain and risk trade-off to determine stomatal opening,
and effective Vcmax25 is held constant throughout the simula-
tion. Thus, for empirical models, leaf-level effective Vcmax25

is always lower than the fitted value because of the negative
leaf xylem pressure. Given that the fitted parameters were
bulk properties of the sites, we expected them to differ from
leaf-level observations but be of the same magnitude. How-
ever, because of the limited direct measurements in the stud-
ied forest sites, we were only able to find one study reporting
a Vcmax25 that ranged from 8 to 12 µmolm−2 s−1 and a Jmax25
that ranged from 46 to 57 µmolm−2 s−1 at Niwot Ridge

https://doi.org/10.5194/gmd-14-6741-2021 Geosci. Model Dev., 14, 6741–6763, 2021

https://soilgrids.org/


6752 Y. Wang et al.: Testing stomatal models

Table 2. Site and plant information of the Missouri Ozark flux tower site (MOFLUX). See Table 1 for how each parameter is used in the
model.

Variable Description Reference

Site name Missouri Ozark AmeriFlux site US-MOz

Latitude 38.74◦ N Yang et al. (2007)

Longitude 92.20◦W Yang et al. (2007)

Elevation Height above sea level, 219.4 m Yang et al. (2007)

Canopy height Canopy height, 17–20 m. A mean canopy height of 18.5 m was used in the model. As for
the tree geometry, we assumed that the trunk had a height of 9 m and the canopy spanned
from 9 to 18.5 m. We divided the canopy into 19 layers (0.5 m of height per layer).

Yang et al. (2007)

LAI Leaf area index, 4.2 Yang et al. (2007)

Chlorophyll Leaf chlorophyll content, 57.23 µgcm−2. The value is estimated from the leaf mass per area
of Quercus alba at ambient CO2 (Norby et al., 2000) and chlorophyll content per mass of
sunlit leaves of Quercus alba (Rebbeck et al., 2012).

Norby et al. (2000) and
Rebbeck et al. (2012)

Tree density Trees per ground area, 583 ha−1. Dominated by a deciduous angiosperm white oak (Quer-
cus alba) mixed with several other deciduous species, including sugar maple (Acer saccha-
rum) and hickory (Carya spp.)

Wood et al. (2019)

Weibull B/C B = 5.703 MPa, C= 0.953 Kannenberg et al. (2019)

Basal area Basal area per ground area, 0.00242 m2 m−2 Yang et al. (2007)

Clumping index MODIS clumping index, 0.69. A constant CI was used at the test site because of the lack of
knowledge on how CI varies with solar zenith angle at the site.

He et al. (2012)

Root depth A maximal root depth of 1 m was used. However, as we prescribed the soil water content,
the root depth was only used to calculate the gravitational pressure drop in the roots.

–

Soil type Soil texture class, Weller silt loam. The van Genuchten parameters for this site were fitted
using the soil moisture retention curve, where soil moisture was from flux tower measure-
ments, and soil water potential was estimated using the predawn leaf water potential (data
from https://tes-sfa.ornl.gov/node/80; last access: 31 March 2021; Gu et al., 2015).

Yang et al. (2007)

Stomatal model Ball et al. (1987) model: g1= 9; Medlyn et al. (2011) model: g1= 4.45
√

kPa De Kauwe et al. (2015)

(Tomaszewski and Sievering, 2007). Therefore, the OSM-
estimated Vcmax25= 15 µmolm−2 s−1 seemed to be reason-
able, and as we explained, the BBM- and MED-estimated
Vcmax25 values had to be higher than the OSM estimate due
to the tuning factor.

We note that varying the effective Vcmax25 based on leaf
hydraulic conductance loss is only one form of the ad hoc
tuning factor to force stomatal responses to drought (e.g.,
see Powell et al., 2013, Trugman et al., 2018, and Kennedy
et al., 2019, for alternative formulations). The advantage of
a Vcmax25 tuning factor is that it helps account for the de-
creasing effective Vcmax25 during drought (either due to a
real drop in photosynthetic capacity or mesophyll conduc-
tance; Dewar et al., 2018) and, thus, could be more realis-
tic in water-limited scenarios; however, tuning the effective
Vcmax25 for short-term changes in leaf water potential may
harm the model performance (such as diurnal changes of leaf
water potential when there is no soil drought; Wang et al.,
2020). In comparison, the OSM used a constant Vcmax25

throughout a growing season, and it would not be able to
capture the decrease in Vcmax25 if it happens. Despite the fact
that Vcmax25 does decrease during drought (e.g., Zhou et al.,
2014, 2016), there is no direct evidence that Vcmax25 varies
linearly with leaf water potential, plant/leaf hydraulic con-
ductance, soil moisture, or soil water potential for all species.
A better understanding of how Vcmax25 varies during and af-
ter a drought will improve the accuracy of modeling carbon
and water fluxes for all stomatal models.

The fitted Kmax was comparable for all three models at
the gymnosperm site, but it was much higher for empirical
models at the angiosperm site. The reason for this contrast-
ing behavior was also the tuning factor based on hydraulic
conductivity loss. The xylem vulnerability curve in our
model was represented by a Weibull function: kx = kx,max ·

exp[−(−P/B)C], where B indicates the xylem pressure at
ca. 63 % loss of conductivity, and C indicates the steepness
of the decrease in k. Although the tested angiosperm for-
est had a higher B = 5.70 MPa compared with 4.09 MPa for
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Table 3. Fitting parameters of the three stomatal models: the Ball et al. (1987) model (BBM), the Medlyn et al. (2011) model (MED), and
the Wang et al. (2020) model (OSM). Numbers shown in the table are the mean± standard deviation. The fitted parameters include the
following: the maximum carboxylation rate at 25 ◦C (Vcmax25), root respiration at 25 ◦C (Rbase), the maximal tree hydraulic conductance
per basal area (Kmax), and the empirical stomatal parameter g1 (unitless for BBM, in

√
kPa for MED).

Site Model
Vcmax25 Rbase Kmax g1

(µmolm−2 s−1) (molm−2 s−1 MPa−1) (– or
√

kPa)

When g1 was not fitted for BBM and MED

Niwot Ridge BBM 35.4± 2.6 4.5± 0.4 0.050± 0.000 –
MED 37.7± 2.8 4.8± 0.3 0.057± 0.019 –
OSM 16.3± 2.0 4.4± 0.3 0.050± 0.000 –

MOFLUX BBM 41.8± 10.8 1.0± 0.0 4.000± 0.000 –
MED 45.2± 12.2 1.0± 0.0 4.000± 0.000 –
OSM 22.2± 3.8 1.0± 0.0 0.260± 0.178 –

When g1 was fitted for BBM and MED

Niwot Ridge BBM 21.8± 1.5 5.1± 0.5 0.093± 0.018 18.5± 1.4
MED 21.1± 1.2 4.8± 0.3 0.054± 0.013 6.5± 0.5
OSM 16.3± 2.0 4.4± 0.3 0.050± 0.000 –

MOFLUX BBM 30.4± 7.8 1.1± 0.2 4.000± 0.000 23.9± 14.5
MED 30.8± 7.9 1.1± 0.2 4.000± 0.000 16.0± 9.3
OSM 22.2± 3.8 1.0± 0.0 0.260± 0.178 –

Table 4. Statistics of the three stomatal models’ predictive skills. The models are the Ball et al. (1987) model (BBM), the Medlyn et al.
(2011) model (MED), and the Wang et al. (2020) model (OSM). The NEE section shows the regression details of the modeled vs. observed
net ecosystem carbon flux (NEE), whereas the ET section shows the regression details of the modeled vs. observed ecosystem water flux
(ET). The MASE row shows the mean absolute standardized error (mean for each year). The Pslope=1 row indicates the P value for which
the slope is not different from one. The BBM-g and MED-g columns display the results when an extra empirical parameter “g1” (Eqs. 6, 7)
is also fitted for the empirical model.

Model
Niwot Ridge MOFLUX

BBM MED OSM BBM-g MED-g BBM MED OSM BBM-g MED-g

NEE
MASE 35.1 % 32.4 % 34.5 % 33.6 % 33.4 % 42.3 % 43.8 % 44.0 % 42.2 % 42.2 %
R2 0.78 0.82 0.78 0.79 0.79 0.62 0.60 0.60 0.62 0.62
Intercept 0.32 0.37 0.47 0.32 0.37 1.16 1.04 1.12 1.41 1.44
Slope 0.88 0.90 0.84 0.83 0.79 0.63 0.63 0.52 0.59 0.60

Pslope=1 All < 0.001

ET
MASE 54.4 % 55.8 % 47.3 % 38.7 % 37.9 % 39.3 % 42.8 % 32.1 % 28.7 % 29.3 %
R2 0.58 0.66 0.58 0.64 0.66 0.74 0.72 0.73 0.75 0.73
Intercept 8.0× 10−5 8.2× 10−5 9.6× 10−5 1.4× 10−4 1.4× 10−4 2.5× 10−4 2.5× 10−4 3.9× 10−4 3.7× 10−4 3.9× 10−4

Slope 0.35 0.32 0.91 0.69 0.65 0.41 0.34 0.62 0.69 0.62

Pslope=1 All < 0.001

the gymnosperm forest, C= 0.95 of the angiosperm site was
much lower than that of gymnosperm site (5.82). As a re-
sult, the effective Vcmax25 used in the BBM and MED models
dropped dramatically at relatively lower negative soil water
potential for the angiosperm site (e.g., >−2 MPa), while the
effective Vcmax25 barely changed for the gymnosperm site.
At the default g1 setting, the empirical models underestimate

water flux; thus, the optimized Kmax would be higher to in-
crease the canopy water flux. However, we note that the error
does not change much for very high Kmax because the water
flux is mainly controlled by the g1 parameter in the empirical
models.
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Figure 8. Comparison of model-predicted carbon/water fluxes to
the US-NR1 (Niwot Ridge, evergreen gymnosperm forest) flux
tower – observations for the year 2014. (a) The gray curve plots
the daily CO2 flux in the growing season. The shaded red, blue,
and cyan curves plot the respective Ball et al. (1987), Medlyn et al.
(2011), and Wang et al. (2020) stomatal model predictions (BBM,
MED, and OSM, respectively). (b) Comparison of modeled and ob-
served daily total transpiration flux. (c) Comparison of half-hourly
modeled and observed net ecosystem carbon flux (NEE) for days
256–257 of the year 2014. (d) Comparison of modeled and observed
ecosystem water flux (ET) for days 256–257 of the year 2014.

3.3.2 Quantitative comparison

In terms of minimal under- or overestimation, the OSM
showed the highest predictive skill because of its better per-
formance with respect to predicting water fluxes. For the
gymnosperm site, combining all data and simulations from
14 growing seasons from 2006 to 2019, we found that model-
predicted carbon fluxes were generally near 1 : 1 compared
to flux tower observations for all three models (Fig. 12a,
b, c). However, the slopes of the linear regressions (red
lines in Fig. 12a, b, c) for the carbon flux were all signif-
icantly lower than 1 (despite the fact that the slopes were
close to 1; P < 0.001; more detailed statistics are given in

Figure 9. Comparison of model-predicted carbon/water fluxes to
the US-MOz (MOFLUX, deciduous angiosperm forest) flux tower
– observations for the year 2014. (a) The gray curve plots the daily
CO2 flux in the growing season. The shaded red, blue, and cyan
curves plot the respective Ball et al. (1987), Medlyn et al. (2011),
and Wang et al. (2020) stomatal model predictions (BBM, MED,
and OSM, respectively). (b) Comparison of modeled and observed
daily total transpiration flux. (c) Comparison of half-hourly mod-
eled and observed net ecosystem carbon flux (NEE) for days 256–
257 of the year 2014. (d) Comparison of modeled and observed
ecosystem water flux (ET) for days 256–257 of the year 2014.

Table 4). As for the water flux, all three models underes-
timated water fluxes compared with the flux tower obser-
vations (Fig. 12d, e), and the slopes were all significantly
lower than 1 (P < 0.001; Table 4). The stomatal optimiza-
tion model based on plant hydraulics (OSM), however, better
predicted the water flux (Fig. 12f) compared with the empir-
ical models. We found a similar pattern for the angiosperm
site (Fig. 13; Table 4). In general, the model performances
were slightly worse in MOFLUX, given the higher error in
predicted NEE and the shallower slope for both the NEE and
ET. The relatively worse performances were likely due to the
higher variation in observed NEE and ET, e.g., many NEE
observations were higher than 10 µmol m−2 s−1.
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Figure 10. Comparisons of the fitted model parameters and model
predictive skills for the US-NR1 (Niwot Ridge, evergreen gym-
nosperm forest) flux tower. (a) The red bars plot the mean of the
fitted parameters for the Ball et al. (1987) stomatal model (BBM).
The fitting parameters are the maximal carboxylation rate at 25 ◦C
(Vcmax25), the soil respiration rate at 25 ◦C (Rbase), and the maxi-
mal whole-plant hydraulic conductance (Kmax). The blue and cyan
bars plot the means for the Medlyn et al. (2011) (MED) and Wang
et al. (2020) (OSM) models, respectively. Black error bars plot the
standard deviation of the fitting parameter. (b) Comparison of mean
absolute standardized error (MASE, Eq. 12) for the carbon flux
(NEE), water flux (ET), and both NEE and ET.

Our model simulations suggest that implementing a plant
hydraulic trait-based stomatal optimization model into veg-
etation models has great potential with respect to improv-
ing the model predictive skills, particularly for the water
flux (Figs. 12, 13), adding new evidence to existing litera-
ture (e.g., Anderegg et al., 2018; Venturas et al., 2018; Wang
et al., 2019; Eller et al., 2020; Sabot et al., 2020). Moreover,
while the stomatal optimization model (Wang et al., 2020)
had lower errors than the empirical models (Ball et al., 1987;
Medlyn et al., 2011), the optimization model fitting param-
eters did not vary much (Figs. 10, 11). In comparison, the
empirical models required more variable parameterization
among years to achieve a similar error (Figs. 10a, 11a). Fur-
thermore, as the stomatal optimization model did not rely on
empirical parameters like g0 and g1, the stomatal optimiza-
tion model can be used to simulate plant carbon and water
fluxes with acclimated traits (Sperry et al., 2019). In compar-
ison, it is unclear how g0 and g1 may vary with plant traits,
adding extra uncertainties to modeling plant responses to fu-
ture climate.

3.3.3 Land model parameterization

In general, the empirical models using default CLM setups
did not perform as well as the stomatal optimization model.

Figure 11. Comparisons of the fitted model parameters and
model predictive skills for the US-MOz (MOFLUX, deciduous an-
giosperm forest) flux tower. (a) The red bars plot the mean of the
fitted parameters for the Ball et al. (1987) stomatal model (BBM).
The fitting parameters are the maximal carboxylation rate at 25 ◦C
(Vcmax25), the soil respiration rate at 25 ◦C (Rbase), and the maxi-
mal whole-plant hydraulic conductance (Kmax). The blue and cyan
bars plot the means for the Medlyn et al. (2011) (MED) and Wang
et al. (2020) (OSM) models, respectively. Black error bars plot the
standard deviation of the fitting parameter. The fitted Kmax of the
BBM and MED reaches the maximum limit of the Kmax ranges
(4 molH2Os−1 MPa−1) and is way higher than that of the OSM;
thus, the bars are cut off for comparison with the OSM. (b) Com-
parison of mean absolute standardized error (MASE, Eq. 12) for the
carbon flux (NEE), water flux (ET), and both NEE and ET.

This underperformance may result from an imperfect land
model parameterization that was adopted in our model sim-
ulations. For example, CLM uses a constant g1 for a plant
functional type regardless of where the plant grows (in a
wet or dry region); moreover, g1 is estimated using gas ex-
change measurements for well-watered plants and, thus, may
not represent a drought stress scenario very well. Further-
more, the use of a Vcmax25 tuning factor interfered with the
prescribed g1. For example, if the g1 was meant to be used
with a tuning factor that affects g1 itself rather than Vcmax25,
the use of g1 with a Vcmax25 tuning factor would make the
model more sensitive to air humidity when the plant suf-
fers from drought stress. The reason for this is that a Vcmax25
tuning factor would translate changes in leaf water potential
into changes in effective Vcmax25, and stomatal conductance
would then decrease faster in response to drier air. In this
case, the prescribed g1 needs to be higher to mitigate the in-
creased sensitivity resulting from the Vcmax25 tuning factor.

Indeed, when we fitted an extra g1 for both BBM and
MED models, we found improved predictive skills in track-
ing water flux, as the slope between modeled and observed
ET were closer to 1 (although still significantly lower than 1;
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Figure 12. Comparison of half-hourly modeled and observed carbon and water fluxes for the three stomatal models for the US-NR1 (Niwot
Ridge, evergreen gymnosperm forest) flux tower. (a) Comparison of modeled (y axis) and observed (x axis) net ecosystem carbon flux
(NEE) for the Ball et al. (1987) stomatal model (BBM). Shading represents density: the darker the hexagon, the more data that fell within
the hexagon. The red solid line plots the linear regression of the data, and the black dotted line plots the 1 : 1 line. (b) Comparison of NEE
for the Medlyn et al. (2011) model (MED). (c) Comparison of NEE for the Wang et al. (2020) model (OSM). (d) Comparison of ecosystem
water flux (ET) for the BBM. (e) Comparison of ET for the MED. (f) Comparison of ET for the OSM.

Figure 13. Comparison of half-hourly modeled and observed carbon and water fluxes for the three stomatal models for the US-MOz
(MOFLUX, deciduous angiosperm forest) flux tower. (a) Comparison of modeled (y axis) and observed (x axis) net ecosystem carbon
flux (NEE) for the Ball et al. (1987) stomatal model (BBM). Shading represents density: the darker the hexagon, the more data that fell
within the hexagon. The red solid line plots the linear regression of the data, and the black dotted line plots the 1 : 1 line. (b) Comparison
of NEE for the Medlyn et al. (2011) model (MED). (c) Comparison of NEE for the Wang et al. (2020) model (OSM). (d) Comparison of
ecosystem water flux (ET) for the BBM. (e) Comparison of ET for the MED. (f) Comparison of ET for the OSM.

Table 4; Figs. 14, 15). However, the increase in the slopes
of ET was accompanied by decreases in the slopes of NEE
(Table 4; Figs. 14, 15). As we expected, the fitted g1 was
much higher than in the CLM5 default setups (Table 3). It
is also worth noting that when g1 was fitted for the empir-

ical stomatal models, our fitting g1 was higher than CLM
defaults, and fitted Vcmax25 was also closer to the OSM (Ta-
ble 3). The changes in the fitted Vcmax25 were likely due to
the higher stomatal conductance caused by higher g1 (as the
model-predicted water fluxes increased). For example, if the
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Figure 14. Comparison of modeled and observed carbon and water fluxes for the three stomatal models when fitting an extra empirical model
stomatal model parameter for the US-NR1 (Niwot Ridge, evergreen gymnosperm forest) flux tower site. (a) Comparison of modeled (y axis)
and observed (x axis) net ecosystem carbon flux (NEE) for the Ball et al. (1987) stomatal model (BBM). Shading represents density: the
darker the hexagon, the more data that fell within the hexagon. The red solid line plots the linear regression of the data, and the black dotted
line plots the 1 : 1 line. (b) Comparison of NEE for the Medlyn et al. (2011) model (MED). (c) Comparison of NEE for the Wang et al.
(2020) model (OSM). (d) Comparison of ecosystem water flux (ET) for BBM. (e) Comparison of ET for MED. (f) Comparison of ET for
OSM. This figure differs from Fig. 12 in that g1s (Eqs. 6, 7) for BBM and MED are also fitted.

Figure 15. Comparison of modeled and observed carbon and water fluxes for the three stomatal models when fitting an extra empirical model
stomatal model parameter for the US-MOz (MOFLUX, deciduous angiosperm forest) flux tower site. (a) Comparison of modeled (y axis)
and observed (x axis) net ecosystem carbon flux (NEE) for the Ball et al. (1987) stomatal model (BBM). Shading represents density: the
darker the hexagon, the more data that fell within the hexagon. The red solid line plots the linear regression of the data, and the black dotted
line plots the 1 : 1 line. (b) Comparison of NEE for the Medlyn et al. (2011) model (MED). (c) Comparison of NEE for the Wang et al.
(2020) model (OSM). (d) Comparison of ecosystem water flux (ET) for BBM. (e) Comparison of ET for MED. (f) Comparison of ET for
the OSM. This figure differs from Fig. 13 in that g1s (Eqs. 6, 7) for the BBM and MED are also fitted.
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fitted Vcmax25 did not change when g1 was higher, the empir-
ical models would predict higher stomatal conductance and,
thus, a higher photosynthetic rate. In this case, the error be-
tween model-predicted carbon fluxes and flux tower obser-
vations would increase. As the BBM- and MED-predicted
carbon flux was already centered along the 1 : 1 line vs. flux
tower observations (as in Figs. 12a and b and 13a and b), an
unchanged Vcmax25 would result in higher biases in the car-
bon flux, harming the overall empirical model performance.
Therefore, the fitted Vcmax25 decreased, whereas g1 increased
to minimize the error between model predictions and obser-
vations.

The alteration of g1 within the empirical models shows
potential with respect to better capturing carbon and wa-
ter fluxes than the tested stomatal optimization model (Ta-
ble 4), and we believe that more site-specific g1 setups
would improve the empirical model predictive skills. How-
ever, whether the fitted parameters also apply to other forests,
and how to best represent the spatial and temporal variations
in g1 require further investigation. Nevertheless, as g1 is sup-
posed to change with time, empirical model-predicted future
carbon and water fluxes may be very uncertain. In compar-
ison, the OSM was less dependent on empirical curve-fitted
parameters and had lower variation in the fitting parameters
(Figs. 10, 11); thus, the model-predicted future carbon and
water fluxes could be more reliable. Given the underperfor-
mance of empirical models when we used a different tun-
ing factor algorithm (on photosynthetic capacity), we high-
light the fact that (1) inverted model parameters for use in
LSMs vary with the model used to fit these parameters, and
(2) using parameters inverted from one model setup in an-
other model would likely result in biases in model outputs.

Our model simulations highlighted the importance of land
model parameterization as well as the potential pitfalls in
using unpaired or untested parameter sets in land surface
modeling. As such, we recommend revisiting and recalibrat-
ing the land model parameterization based on the stomatal
model and tuning factor algorithm that was used for each
LSM based on real measurements. Comparatively, the tested
optimization model shows comparable predictive skills and
is less dependent on the empirical parameters (better than
the default CLM setups but worse than the scenario of fit-
ting an extra g1). We also emphasize that using flux tower
data to invert site-level bulk traits for use in stomatal opti-
mization has great potential with respect to advancing future
land surface modeling. We foresee how global flux tower
data could be used to estimate the missing traits, particu-
larly hydraulic traits. Furthermore, machine-learning-based
algorithms along with climatological data would help solve
the issue of sparsely distributed towers. Knowing how these
traits vary globally not only helps global simulations using
stomatal optimization theory but also provides a direct way
to assess the status of plants’ hydraulic health, thereby aiding
in the prediction of zones that are at risk of drought-induced
tree mortality and potentially shifting traits due to climate

change. Better future land model parameterization ought to
improve the land surface modeling and, thus, Earth system
modeling.

4 Model evaluation: solar-induced chlorophyll
fluorescence

4.1 Study sites

We used the TROPOMI SIF retrievals that fell within the re-
gion of the flux tower sites to test our model, excluding re-
trievals that had a cloud fraction higher than 10 % (see Fig. 7
for the region map). For the gymnosperm site, we chose re-
trievals that had at least 50 % overlap with a representative
area around the flux tower site (a total of 99 data points in
2018 and 2019); for the angiosperm site, we chose retrievals
that had at least an 80 % overlap with the representative site
region (a total of 218 points in 2018 and 2019). For each valid
TROPOMI SIF retrieval, we simulated the SIF emission us-
ing the actual sun-sensor geometry angles with our CliMA
Land model (solar zenith angle, viewing zenith angle, and
relative azimuth angle).

4.2 Model simulations

We first aligned the TROPOMI SIF retrievals with flux tower
data (e.g., if the satellite observation occurred at 12:48 LT
(local time), we aligned the data to a flux tower observation
ranging from 12:30 to 13:00 LT). With the fitted Vcmax25,
Kmax, and Rbase, we calculated the photosynthetic rate and
fluorescence quantum yield at each time step (van der Tol
et al., 2014). We then used the modeled quantum yield to
simulate the canopy SIF spectrum for the given sun-sensor
geometry. We modeled SIF at 740 nm for both the gym-
nosperm and angiosperm forests for 2018 and 2019, and
compared our model-simulated SIF740 against TROPOMI
SIF740. We simulated SIF in two scenarios: (i) a constant
LAI (same prescribed value as the carbon and water flux sim-
ulations) was used to simulate SIF throughout the year, and
(ii) a time series of LAI from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) instrument was used (data
from Yuan et al., 2011, with a spatial resolution of 1/20◦ and
a temporal resolution of 8 d).

4.3 Model performance

For both LAI scenarios (using constant site LAI or using
variable MODIS LAI), the modeled SIF captured the trend of
TROPOMI SIF retrievals well (Fig. 16; P < 0.001 for all four
linear regressions). When using variable MODIS LAI, mod-
eled SIF had better agreement with the SIF retrievals (lower
root-mean-square error, RMSE, for both forests; Fig. 16).
The statistically significant linear correlation between mod-
eled and observed SIF suggests that satellite-based remote
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Figure 16. Comparison of modeled and satellite-observed solar-
induced chlorophyll fluorescence at 740 nm (SIF740). (a) Compari-
son for the US-NR1 flux tower site (evergreen gymnosperm forest).
The black circles plot the comparison with modeled SIF using a
constant site LAI, and the cyan “+” symbols plot the comparison
using a variable MODIS LAI time series. The black line with shaded
confidence interval regions plots the linear regression for the black
circles (y = 0.40x+ 1.22, R2

= 0.17, P < 0.001). The cyan line
with shaded regions plots the linear regression for the cyan sym-
bols (y = 0.39+ 0.65, R2

= 0.14, P < 0.001). (b) Comparison for
the US-MOz flux tower site (deciduous angiosperm forest). The lin-
ear regressions are y = 0.32x+1.05, R2

= 0.54, P < 0.001 for the
black circles and y = 0.55x+ 0.67, R2

= 0.69, P < 0.001 for the
cyan symbols.

sensing data have potential with respect to constraining fu-
ture land model parameterization.

Our model captured the seasonal cycle of SIF compared to
satellite observations, underscoring the potential to constrain
land model parameterization using remote sensing products.
However, we were not able to obtain a 1 : 1 relationship be-
tween modeled and retrieved SIF given the significant in-
tercept (P < 0.001; Fig. 16). There are many potential rea-
sons for the offset, e.g., retrieval noise (some TROPOMI
SIF values were lower than zero), mismatches in the spa-
tial and temporal domain, inaccurate parameters to model
SIF (leaf biomass per area, leaf chlorophyll content, and sea-
sonal changes in leaf area index), and high sustained non-
photochemical quenching (NPQ) at Niwot Ridge due to low
temperature (accounting for the sustained NPQ will make
the modeled SIF lower in wintertime, namely the points
with lower observed SIF; Porcar-Castell, 2011; Raczka et al.,
2019). Despite all of these imperfections, we still found a
strong correlation between modeled and satellite-based SIF.
Furthermore, when we used an LAI time series (Yuan et al.,
2011), the agreement between modeled and satellite-based
SIF increased, which indicated the potential of constraining
land model parameters using remote-sensing-based results.
Future research with improved parameterization of our land
model and more accurate plant and site traits would likely
improve the model performance.

5 Conclusions

We implemented and tested a new land surface model that
couples a comprehensive canopy radiative transfer scheme
with a stomatal optimization model based on plant hydraulic
traits, and two empirical stomatal models. We investigated
how the three models performed at two flux tower sites (one
dominated by gymnosperm species, and the other dominated
by angiosperm species). We compared model-predicted car-
bon and water fluxes to flux tower estimations, and model-
predicted SIF to satellite-based TROPOMI SIF retrievals. All
three stomatal models performed well with respect to pre-
dicting site-level carbon fluxes, showing similar 1 : 1 cor-
relations and errors among all three models. However, the
stomatal optimization model showed better agreement with
water flux observations, given the improved 1 : 1 comparison
with the flux tower observations. In comparison, the empir-
ical stomatal models underestimated water fluxes and had a
higher error, probably due to the nonideal parameterization.
Our model also reproduced the seasonal pattern of canopy
SIF, with dynamic ranges most likely being different due to
heterogeneity in the area around the tower. We concluded that
the representation of the land model using the stomatal opti-
mization theory along with a more comprehensive RT model
have great potential with respect to predicting site-level car-
bon and water fluxes. Furthermore, the use of a comprehen-
sive RT scheme allows us to quantitatively and directly link
land surface processes to remote sensing, making it possible
to constrain land model parameterization with a broad range
of remote sensing datasets. The rapidly growing regional and
global datasets will make it easier to better parameterize and
evaluate land surface modeling and better predict the future
carbon cycle and climate.

Code and data availability. Flux tower datasets are freely
available at AmeriFlux (registration required; US-NR1:
https://doi.org/10.17190/AMF/1246088, Blanken et al., 2021;
US-MOz: https://doi.org/10.17190/AMF/1246081, Wood
and Gu, 2021). The gridded MODIS LAI is available at
http://globalchange.bnu.edu.cn/research/laiv6 (Yuan et al.,
2020, 2011) and has also been made available via “Gridding-
Machine.jl” (https://github.com/CliMA/GriddingMachine.jl, last
access: 27 September 2021; https://doi.org/10.22002/D1.2129,
Wang, 2021b). We refer the reader to the online documenta-
tion of “GriddingMachine.jl” for access to the datasets (along
with other high-quality gridded datasets such as TROPOMI
SIF). We coded our model and did the analysis using Ju-
lia (version 1.6.0), and the current version of the CliMA
Land model is available from the project website (under the
Apache 2.0 License): https://github.com/CliMA/Land (last ac-
cess: 29 March 2021). The exact version of the model used to
produce the results employed in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.4762775, Wang, 2021a), as are the
input data and scripts to run the model and produce the plots for all
the simulations presented (Wang, 2021a).
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