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Abstract. The quantitative integration of geophysical mea-
surements with data and information from other disciplines
is becoming increasingly important in answering the chal-
lenges of undercover imaging and of the modelling of com-
plex areas. We propose a review of the different techniques
for the utilisation of structural, petrophysical, and geological
information in single physics and joint inversion as imple-
mented in the Tomofast-x open-source inversion platform.
We detail the range of constraints that can be applied to
the inversion of potential field data. The inversion exam-
ples we show illustrate a selection of scenarios using a re-
alistic synthetic data set inspired by real-world geological
measurements and petrophysical data from the Hamersley
region (Western Australia). Using Tomofast-x’s flexibility,
we investigate inversions combining the utilisation of petro-
physical, structural, and/or geological constraints while il-
lustrating the utilisation of the L-curve principle to deter-
mine regularisation weights. Our results suggest that the util-
isation of geological information to derive disjoint interval
bound constraints is the most effective method to recover
the true model. It is followed by model smoothness and
smallness conditioned by geological uncertainty and cross-
gradient minimisation.

1 Introduction

Geophysical data provide detailed information about the
structure and composition of the Earth’s interior otherwise
not accessible by direct observation methods, and thus these
data play a central role in every major Earth imaging initia-
tive. Applications of geophysical modelling range from deep
Earth imaging to study the crust and the mantle to shallow
investigations of the subsurface for the exploration of nat-
ural resources. Recent integration of different geophysical
methods has been recognised as a means to reduce inter-
pretation ambiguity and uncertainty. Further developments
introduce uncertainty estimates from other geoscientific dis-
ciplines such as geology and petrophysics to produce more
reliable and plausible models. Various techniques integrating
different geophysical techniques have been developed with
the aim to produce more geologically meaningful models, as
reviewed by Parsekian et al. (2015), Lelièvre and Farquhar-
son (2016), Moorkamp et al. (2016), Ren and Kalscheuer
(2019), and Meju and Gallardo (2016), and several kinds of
optimisation for such problems exist (Bijani et al., 2017).
In the natural resource exploration sector, the calls of We-
gener (1923), Eckhardt (1940), and Nettleton (1949) for the
development of comprehensive, thorough multi-disciplinary
and multi-physical integrated modelling have been acknowl-
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edged by the scientific community, and data integration is
now an area of active research, to quote André Revil’s pref-
ace of the compilation of reviews proposed by Moorkamp
et al. (2016): “The joint inversion of geophysical data with
different sensitivities [...] is also a new frontier”. The inte-
gration of multiple physical fields (both geophysical and ge-
ological) is particularly relevant for techniques relying on po-
tential field gravity and magnetic data, as these constitute the
most commonly acquired and widely available geophysical
data types worldwide. The need for integrated techniques is
partly due to the interpretation ambiguity of geophysical data
and resulting effects of non-uniqueness on inversion. There-
fore, effective inversion of potential field data necessitates
the utilisation of constraints derived from prior information
extracted from geological and petrophysical measurements
or other geophysical techniques whenever available.

A number of methods for the introduction of geological
and petrophysical prior information into potential field inver-
sion have been developed. For example, when limited geo-
logical information is available, the assumption is that spa-
tial variation of density and magnetic susceptibility are co-
located. This can be enforced through simple structural con-
straints encouraging structural correlation between the two
models using Gramian constraints (Zhdanov et al., 2012)
or the cross-gradient technique introduced in Gallardo and
Meju (2003). When petrophysical information is available,
petrophysical constraints can be applied during inversion to
obtain inverted properties that match certain statistics (see
techniques introduced by Paasche and Tronicke, 2007; De
Stefano et al., 2011; Sun and Li, 2011, 2015, 2016; Lelièvre
et al., 2012; Carter-McAuslan et al., 2015; Zhang and Revil,
2015; Giraud et al., 2016, 2017, 2019c; Heincke et al., 2017).
Furthermore, when geological data are available, geological
models can be derived, and their statistics can be used to de-
rive a candidate model for forward modelling (Guillen et al.,
2008; Lindsay et al., 2013; de La Varga et al., 2019), to de-
rive statistical petrophysical constraints for inversion (Giraud
et al., 2017, 2019c, d), and to restrict the range of accepted
values using spatially varying disjoint bound constraints (Og-
arko et al., 2021a) or multinary transformation (Zhdanov and
Lin, 2017).

In this paper, we present a versatile inversion platform de-
signed to integrate geological and petrophysical constraints
to the inversion of gravity and magnetic data at differ-
ent scales. We present Tomofast-x (“x” for “extendable”)
as an open-source inversion platform capable of dealing
with varying amounts and qualities of input data. Tomofast-
x is designed to conduct constrained single physics and
joint physics inversions. The need for reproducible research
(Peng, 2011) is facilitated by open-source code (Gil et al.,
2016), and thus we introduce and detail the different con-
straints implemented in Tomofast-x before providing a real-
istic synthetic application example using selected function-
alities. We illustrate the use of Tomofast-x by performing a
realistic synthetic study investigating several modelling sce-

narios typically encountered by practitioners and provide in-
formation to get free access to the source code and to run it
using the synthetic data shown in this paper. We perform sin-
gle physics inversion of gravity data and study the influence
of prior information using several amounts and types of con-
straints, and run joint inversion of gravity and magnetic data.
The flexibility of Tomofast-x is exploited to test the effect of
structural constraints combined with petrophysical and geo-
logical prior information that are yet to be demonstrated in
the published literature. A challenging geological setting is
used to examine the capability of cross-gradient constraints
within the joint inversion method. The mathematical formu-
lations of geophysical problems and solutions are detailed
throughout the paper, and sufficient information is provided
to allow the reproducibility of this work using Tomofast-x.

The remainder of the contribution revolves around two
main aspects. We first review the theory behind the inversion
algorithm and the different techniques used, with an empha-
sis on the mathematical formulation of the problem. We then
present a synthetic example inspired from a geological model
in the Hamersley province (Western Australia), where we in-
vestigate two case scenarios. In the first case, we apply struc-
tural constraints to an area where geology contradicts the as-
sumption of co-located and correlated density and magnetic
susceptibility variations. In the second case, we investigate a
novel combination of petrophysical and structural informa-
tion to constrain a single physics inversion. Finally, we place
Tomofast-x in the general context of research in geophysical
inverse modelling and conclude this article.

2 Inverse modelling platform Tomofast-x

2.1 Purpose of Tomofast-x

Tomofast-x can be used in a wide range of geoscientific sce-
narios as it can integrate multiple forms of prior informa-
tion to constrain inversion and follow appropriate inversion
strategies. Constraints can be applied through Tikhonov-style
regularisation of the inverse problem (Tikhonov and Ars-
enin, 1977, 1978). In single physics inversion, these comprise
model smallness (also called “model damping”, minimising
the norm of the model; see Hoerl and Kennard, 1970) and
model smoothness (also called “gradient damping”, minimis-
ing the norm of the spatial gradient of the model; see Li and
Oldenburg, 1996). For more detailed imaging, petrophysi-
cal constraints using Gaussian mixture models (Giraud et al.,
2019c), as well as structural constraints (Giraud et al., 2019d;
Martin et al., 2020) and multiple interval bound constraints
(Ogarko et al., 2021a), can be used depending on the re-
quirements of the study and the information available. In the
case of single physics inversion with structural constraints,
structural similarity between a selected reference model and
the inverted models can be maximised using structural con-
straints based on cross-gradients (Gallardo and Meju, 2003)
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and locally weighted gradients in the same philosophy as
Brown et al. (2012), Wiik et al. (2015), Yan et al. (2017), and
Giraud et al. (2019d). Generally speaking, in the joint inver-
sion case, the two models inverted for are linked using the
structural constraints just mentioned or petrophysical clus-
tering constraints in the same spirit as Carter-McAuslan et
al. (2015), Kamm et al. (2015), Sun and Li (2015, 2017),
Zhang and Revil (2015), and Bijani et al. (2017). In addi-
tion to the underlying assumptions defining the relationship
between the properties that have been jointly inverted, prior
information from previous modelling or geological informa-
tion can be incorporated in inversion using model and struc-
tural covariance matrices by assigning weights that vary spa-
tially. In such cases, Tomofast-x allows for utilising prior in-
formation extensively. Furthermore, Tomofast-x allows the
use of an arbitrary number of prior and starting models, en-
abling the investigation of the subsurface in a detailed and
stochastically oriented fashion. Tomofast-x was initially de-
veloped for application to regional or crustal studies (areas
covering hundreds of kilometres) and retains this capability.
The current version of Tomofast-x is now more versatile as
development is now directed toward use for exploration tar-
geting and the monitoring of natural resources (kilometric
scale).

Lastly, in addition to inversion, Tomofast-x offers the pos-
sibility to assess uncertainty in the recovered models. The
uncertainty assessments include statistical measures gathered
from the petrophysical constraints, posterior least-squares
variance matrices of the recovered model (in the least squares
with QR-factorisation algorithm – LSQR – sensu Paige and
Saunders, 1982; see Sect. 2.5), and the degree of structural
similarity between the models (for joint inversion or struc-
turally constrained inversion). From a practical point of view,
associated with the inversion algorithm is a user manual cov-
ering most functionalities and a reduced 2D Python notebook
illustrating concepts (see Sect. 7 for more information) that
can be used for testing or educational purposes. A summary
of the inverse modelling workflow of Tomofast-x is shown in
Fig. 1.

2.2 General design

The implementation we present extends the original in-
version platform “Tomofast” (Martin et al., 2013, 2018).
Tomofast-x is an extended implementation proposed and
modified by Martin et al. (2018), Giraud et al. (2019c, d),
Martin et al. (2020), and Ogarko et al. (2021a). Tomofast-x
follows the object-oriented Fortran 2008 standard and utilises
classes designed to account for the mathematics of the prob-
lem. This introduces enhanced modularity based on the im-
plementation of specific modules that can be called depend-
ing on the type of inversion required. The utilisation of
classes in Tomofast-x also eases the addition of new func-
tionalities and permits the reduction of software complexity
while maintaining flexibility. Our implementation uses an in-

dexed hexahedral solid body mesh, giving the possibility to
adapt the problem geometry, allowing the regularisation of
the problem in the same fashion as Wiik et al. (2015) or to
perform overburden stripping. By default, the sensitivity ma-
trix to geophysical measurements is stored in a sparse format
(using the compressed sparse row format) to reduce memory
consumption and for fast matrix vector multiplication.

Attention has also been given to computational aspects.
The only dependency of Tomofast-x is the message passing
interface (MPI) libraries, which eases installation and usage.
This allows optimal usage of multi-CPU systems regardless
of the number of CPUs. Parallelisation is made on the model
cells using a domain decomposition approach in space; i.e.
the model is divided into nearly equal, non-overlapping con-
tiguous parts distributed among the CPUs, hence enforcing
minimum load imbalance. Consequently, the code is fully
scalable as the maximum number of CPUs is not limited by
the number of receivers or measured data points. For large
3D models, Tomofast-x can run on hundreds of CPUs for
a typical problem with 105–106 model cells and 103–104

data points. Parallel efficiency tests reveal excellent scalabil-
ity and speed performance provided that the portions of the
model sent to the CPUs are of sufficient size. In the current
implementation, the optimum number of elements per CPU
is 512. Interested readers can refer to Appendix D for more
information.

2.3 Cost function

2.3.1 General formulation

Tomofast-x inversions rely on optimisation of a least-squares
cost function and are optimised iteratively. The choice of a
least-squares framework was motivated by flexibility in the
number of constraints and forms of prior information used in
the optimisation process.

The objective function θ is derived from the log likelihood
of a probabilistic density function 2 (see Tarantola, 2005,
chaps. 1 and 3, for details). In the case of geophysical in-
version, it is representative of the “degree of knowledge that
we have about the values of the parameters of our system”
(Tarantola and Valette, 1982), as summarised below. Let us
first define 2 as follows:

2(d,m)=2d(d,m)
∏

i∈constraints
2i(m), (1)

where 2d(d,m) is the density function over the geophysical
data d that model m represents, and 2i(m) is the density
function for the ith type of prior information available (the
“constraints” set).

On the premise that Gaussian probability densities approx-
imate the problem appropriately, 2d(d,m) can be expressed
as follows:

2d(d,m)= A exp
(
−‖Wd(d−g(m))‖

2
2
)
, A ∈ R+\{0}, (2)
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Figure 1. Modelling workflow summary (modified from Jérémie Giraud, Loop Workshop, March 2020).

where g(m) is the forward data set calculated by the forward
operator g and the matrix Wd weights the data points. Simi-
larly, we formulate the different 2i∈constraints as follows:

2i(m)= Ci exp
(
−α2

i ‖Wif(m)‖22
)
, Ci ∈ R+\{0}, (3)

where f is a function of the model and prior information. Wi

is a covariance matrix weighting of f(m), and αi contains
positive scalars that are introduced to adjust the relative im-
portance of the ith constraint term. Wi and αi are derived
from prior information or set according to study objectives.

From Eq. (3), it is clear that maximising2(d,m) is equiv-
alent to minimising its negative logarithm, θ(d,m), defined
as follows:

θ(d,m)=− log2(d,m)= α2
d‖Wd(d − g(m))‖

2
L2

+

∑
i∈constraints

α2
i ‖Wif(m)‖2L2

, (4)

which corresponds to the general formulation of a cost func-
tion as formalised in the least-squares framework; αd is a
weight controlling the importance of the corresponding data
term (i.e. gravity or magnetic) in the overall cost function.

2.3.2 Definition of regularisation constraints

Adapting the formulation of the second term of Eq. (4) to the
different types of prior information that we can accommodate
leads to the following aggregate cost function:

θ(d,m)

= ‖Wd(d − g(m))‖
2
2+α

2
m‖Wm(m−mpr)‖

2
p

+α2
g‖Wg∇m‖

2
2+α

2
x‖Wx(∇m

(1)
×∇m(2))‖22

+α2
pe‖WpeP(m)‖22+α

2
a‖Wa(m− z+u)‖

2
2, (5)

where the different terms following the data misfit term
‖Wd(d − g(m))‖

2
2 constitute constraints for the inversion

of geophysical data acting as regularisation in the fashion
of Tikhonov regularisation (Tikhonov and Arsenin, 1977).
In Eqs. (2)–(5), Wd represents geophysical data weighting.
Generally, Wd should be the data covariance. It is calculated
by Tomofast-x as follows:

Wd =

(
ndata∑
i=1
(di)

2

)−1

Iw, (6)

where Iw is a diagonal matrix equal to the identity matrix
in single domain inversion or giving the weight of one data
misfit term (i.e. gravity data) against the other (i.e. magnetic
data) in joint inversion; di is the ith datum. By convention,
we fix Iw to the identity matrix I for gravity inversion and use
Iw = Iαmag in joint inversion. In such cases, αmag is a strictly
positive scalar.

The main terms of the cost function are defined below. The
other individual terms are defined in the next subsection and
summarised in Appendix B:

– mpr refers to the prior model;

– ‖Wm(m−mpr)‖
2
p represents the smallness term (de-

tailed in Sect. 2.4.1);

– subscript p refers to the Lp norm (here taken such that
1< p ≤ 2);

– ∇ is the operator calculating the spatial gradient of the
model;

– ‖Wg∇m‖
2
2 represents the smoothness constraint on the

model (detailed in Sect. 2.4.2);
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– ‖Wx(∇m
(1)
×∇m(2))‖22 represents cross-gradient con-

straints between the models m(1) and m(2) (detailed in
Sect. 2.4.3);

– ‖WpeP(m)‖22 represents petrophysics term (clustering
constraint), into which P(m) represents petrophysical
distributions used to impose petrophysical constraints
(detailed in Sect. 2.4.4);

– ‖Wa(m− z+u)‖
2
2 is the formulation of the multiple

bound constraints using the alternating direction of mul-
tipliers method (ADMM, detailed in Sect. 2.4.5).

In the case of joint inversion, the vectors defined above are
concatenated and the matrices are expanded as follows:

g(m)=

[
gG(m

G)

gM(m
M)

]
, m=

[
m(1)

m(2)

]
=

[
mG

mM

]
,

d =

[
dG
dM

]
,

αi∈[d,m,g,x,pe,a] =

[
αG
i∈[d,m,g,x,pe,a] 0

0 αM
i∈[d,m,g,x,pe,a]

]
,

Wi∈[d,m,g,x,pe,a]

=

[
WG
i∈[d,m,g,x,pe,a] 0

0 WM
i∈[d,m,g,x,pe,a]

]
, (7)

where T denotes the transpose operator. For the more illus-
trative purposes of the joint inversion, here we take the grav-
ity and magnetic joint inversion example, where G and M
refer to gravity and magnetic problems, respectively.

In the case of single domain inversion, m(1) is the model
inverted for and is equal tomG ormM depending on the type
of geophysical data inverted, and m(2) is a reference model
that can be used to constrain inversion from a structural point
of view (see Sect. 2.4.3, and 4.3 for the theory and an exam-
ple of utilisation, respectively).

In Eqs. (5)–(7), subscript m, g, x, pe, and a refer to model,
gradient, cross-gradient, petrophysics, and ADMM bound
constraints, respectively. The different α terms are trade-off
parameters that control the importance given to the different
terms during the inversion. These terms therefore play an im-
portant role in inversion and need to be determined carefully
(see Sect. 4.1 and 4.2 for more details).

As mentioned above, the cross-gradient constraints can be
applied either to joint or single domain inversion. In the case
of ADMM constraints, single or multiple bounds can be ap-
plied to define bounds for inverted model values. Such bound
constraints can vary in space and be made of an arbitrary
number of intervals, regardless of whether they are disjointed
or not (see Sects. 2.4.5 and 4.5). Qualitatively, the case with
multiple disjoint intervals can be interpreted as applying a
dynamic smallness constraint term.

In Tomofast-x, we introduce prior information in the di-
agonal variance matrices Wi such that they are no longer

homogenous and can vary in space. Note that in the imple-
mentation of gravity and magnetic inversion, g(m)= Sm,
with S the sensitivity matrix relating to measured geophys-
ical data and corresponding recovered physical property (see
Appendix C for details about their calculation). Introducing
the sensitivity matrix SG and SM for gravity and magnetic
data, respectively, we obtain the following equation:

g(m)= Sm=
[

SG 0
0 SM

][
mG

mM

]
=

[
gG(m

G)

gM(m
M)

]
(8)

For reference, the terms defined or used here are sum-
marised in Appendix B. Tomofast-x uses the least squares
with QR-factorisation (LSQR) algorithm (Paige and Saun-
ders, 1982) to solve the least-squares problem. The full ma-
trix formulation of the problem and the related system of
equations are provided in Appendix E.

Generally, not all of the terms in Eq. (5) are used during
a single inversion. The activation of selected terms from the
cost function (setting αi > 0 and non-null Wi) depends on
the information available or on the requirements of the mod-
elling to be performed. For example, a term not used during
inversion has the corresponding weighting simply set to 0
(the corresponding matrix Wi is set to 0). Conversely, set-
ting a specific weight to a relatively large value leads to the
corresponding constraint to dominate the other terms. Such
practice is typically used in sensitivity analysis to examine
the effect of incorrectly assigned extreme weighting values
on the inversion by providing an example to aid detection of
this unintended situation.

In the following subsection, we detail the implementation
of the different terms. The terms are introduced and detailed
following the order they appear in Eq. (5).

2.4 Detailed formulation of constraints for inversion

In this section, we introduce the mathematical formulation
of constraints applied during inversion. Throughout this pa-
per, “geological information” relates to information extracted
from probabilistic geological structural modelling. Petro-
physical information relates to the statistics of the values in-
verted for (density contrast and magnetic susceptibility).

2.4.1 Smallness term

We repeat the smallness term as follows:

‖Wm(m−mpr)‖
2
p. (9)

The smallness term corresponds to the ridge regression
constraint, i.e. the smallness term of Hoerl and Kennard
(1970). To simplify the problem, the covariance matrix Wm
is assumed to be a diagonal matrix. In Tomofast-x, it is used
to adjust the strength of the constraint either globally (i.e
Wm = I ) or locally (i.e. the elements of Wm may vary from
one cell to another). In the second case, Wm can be deter-
mined using prior information such as uncertainty from geo-
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logical modelling or models and structural or statistical in-
formation derived from other geophysical techniques (e.g.
seismic attributes and probabilistic results from magnetotel-
lurics).

2.4.2 Smoothness term

The smoothness model term (Li and Oldenburg, 1996) is a to-
tal variation (TV)-like regularisation term based on an orig-
inal idea of Rudin et al. (1992). It constrains the degree of
structural complexity allowed in the inverted model. We re-
peat the term as follows:

‖Wg∇m‖
2
2. (10)

The covariance matrix Wg modulates the importance of the
term by assigning the weights to each cell. For the sake
of simplicity, the matrix Wg is commonly assumed to be a
diagonal matrix. It is commonly set as the identity matrix
(Wg = I ), but several works vary the values in space ac-
cordingly with prior information. For instance, Brown et al.
(2012) and Yan et al. (2017) use seismic models to calculate
such weights for the inversion of electromagnetic data, and
Giraud et al. (2019a), who present an application case using
Tomofast-x, invert gravity data using geological uncertainty
information to calculate Wg. In Tomofast-x, it can be set ei-
ther globally (i.e. Wg = I ) or locally (i.e. the elements of Wg
may vary from one cell to another).

2.4.3 Cross-gradient

The cross-gradient constraints were introduced as a means
to link two models that are inverted jointly by encourag-
ing structural correlation between them (Gallardo and Meju,
2004). We refer the reader to Meju and Gallardo (2016) for
a review of applications using this technique. We repeat the
term below:

‖Wx(∇m
(1)
×∇m(2))‖22. (11)

The matrix Wx modulates the importance of the term by as-
signing the weights to each cell. In previous works, it is al-
ways (to the best our knowledge) set as the identity matrix
(Wx = I ), with the exception of Rashidifard et al. (2020),
who define such weights using seismic reflectivity and ap-
ply this approach to single physics inversion of gravity data
constrained by fixed seismic velocity. In Tomofast-x, three
finite-difference numerical schemes can be chosen to cal-
culate the cross-gradient derivatives: forward, centred, and
mixed. In what follows, we use a “mixed” finite-difference
scheme, where inversion iterations with an odd number use
a forward scheme and those with even numbers use a back-
ward scheme (e.g. iteration 3 will use a forward scheme and
iteration 4 a backward scheme). This scheme was chosen as
it reduces the influence of the border effects of both the for-
ward and backward schemes on the inverted model.

2.4.4 Statistical petrophysical constraints

One strategy to enforce the petrophysical constraints using
statistics from petrophysical measurements is performed by
encouraging the statistics of the recovered model to match
that of a statistical model derived either from measurements
made from the study area or literature values. In the current
implementation of Tomofast-x, a mixture model representing
the expected statistics of the modelled rock units is used. We
use a Gaussian mixture model to approximate the petrophys-
ical properties of the lithologies in the studied area. In the
mixture model, the weight of each Gaussian can be set in the
input. We suggest using the probability of the corresponding
rock unit when this information is available. The mismatch
between the statistics of the recovered model and the mixture
model is minimised in the optimisation framework following
the same procedure described in Giraud et al. (2018, 2019b).

In the ith model cell, the likelihood term P(mi) of model
cell mi is calculated as follows for the kth lithology:

Nk = ωkN (mi |µk,σ k) (12)

P(mi)=− log

(
nf∑
k=1

Nk

)
+ log(maxNk=1...nf), (13)

where
ωk =

1
nf

everywhere in the absence of spatially-
varying prior information (a)

ωk = ψk,i in the ith cell using prior information (b),
(14)

N symbolises the normal distribution, and nf is the total
number of rock formations observed in the modelled area.

In practice, an expectation maximisation algorithm
(McLachlan and Peel, 2000) can be used to estimate the
meanµk and standard deviation σ k of the petrophysical mea-
surements.

In Eqs. (12)–(14), ωk is the weight assigned to the Gaus-
sian distribution representative of the petrophysics of the kth
lithology in the mixture. In Eq. (14a), the weight ωk as-
signed to each lithology is constant across the model, while
in Eq. (14b) the weight ψk,i is derived from information de-
rived from another modelling technique (geology, seismic,
electromagnetic methods, etc.) and varies spatially.

We note that a small number of Gaussian distributions
might not be suitable to approximate certain types of distri-
butions like bimodal (magnetic susceptibility) or lognormal
(electrical resistivity) distributions. However, we point out
that increasing the quality of such an approximation depends
on the number of Gaussian distributions used for approxima-
tion (McLachlan and Peel, 2000).

2.4.5 Disjoint bound constraints using the ADMM
algorithm

The objective of the disjoint bound constraints is to optimise
Eq. (5) while ensuring that in every model cell m1≤i≤nm the
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inverted value lies within the prescribed bounds such that
mi ∈ Bi , defined as follows (Ogarko et al., 2021a):

Bi =

Li⋃
l=1
[ai,l,bi,l], with bi,l > ai,l, ∀l ∈ [1,Li], (15)

where ai,l and bi,l are the lower and upper bounds for the
ith model cell and l is the lithology index; Li ≤ nf is the
total number of bounds allowed for the considered cell, cor-
responding to the number of distinct rock units allowed by
such constraints. During inversion, such multiple bound con-
straints on the physical property values inverted for are grad-
ually enforced using the ADMM algorithm. Implementation
details are beyond the scope of this paper, but more informa-
tion is provided in Appendix E, and we refer the reader to
Ogarko et al. (2021a) for details. Details about the general
mathematical formulation of the ADMM algorithm can be
found in Dykstra (1983), chap. 7 in Bertsekas (2016), and in
Boyd et al. (2011).

Note that the application of the ADMM bound constraints
can be interpreted as being analogous to clustering con-
straints where (taking the example of the kth model-cell) the
following conditions are met:

1. the centre values depend on both the current model m
at any given integration and petrophysical information
defining a and b;

2. the weight assigned to each centre value changes from
one iteration to the next as a function of the distance
between mk and the closest bound, and the number of
iterations mk has remained outside Bk .

2.4.6 Depth weighting and data weighting

To balance the decreasing sensitivity of potential field data
with the depth of the considered model cell, Tomofast-x of-
fers the possibility for the calculation of the depth-weighting
operator. The first one, which we use in this paper, utilises
the integrated sensitivities technique following Portniaguine
and Zhdanov (2002). For each model cell i, a weight Dii is
introduced:

Dii =

(
ndata∑
k=1

(Ski)
2

) 1
4

. (16)

The second option relies on the application of an inverse
depth-weighting power law function following Li and Old-
enburg (1998) and Li and Chouteau (1998) for gravity and
Li and Oldenburg (1996) for magnetic data:

Dii =

(
1

zi + ε

)β
, (17)

where zi is the depth of the ith model cell and ε is introduced
to ensure numerical stability, such that z� ε; the value of

β depends on the type of data considered (gravity or mag-
netic). For more details about the use of depth weighting and
selection of values of β, the reader is referred to the refer-
ences provided in this subsection. The application of depth
weighting as a preconditioner to the matrix system of equa-
tion solved for during inversion is shown in Appendix E.

2.5 Posterior uncertainty metrics

Uncertainty information is an important building block of
modelling and a critical aspect of decision making (Scheidt
et al., 2018). When available, uncertainty information can be
communicated and used in subsequent modelling or for de-
cision making (see examples of Ogarko et al., 2021a, who
use uncertainty information in the model recovered by an-
other method as input to their modelling using Tomofast-x).
Tomofast-x allows the calculation of metrics reflecting the
degree of uncertainty in the models before and after inver-
sion. It allows monitoring the evolution of the different terms
of the cost function during inversion. Tomofast-x also calcu-
lates uncertainty metrics that are specific to the kind of con-
straints used in inversion:

– the posterior covariance matrix of modelm as estimated
by the LSQR algorithm (Paige and Saunders, 1982,
p. 53, for details and Sect. A1.1 for a brief introduction),

– the value of the cross-gradient in each cell,

– the individual Nk values (Eq. 12) of the different Gaus-
sians making up the Gaussian mixture used to define the
petrophysical constraints.

The implementation of this series of indicators was per-
formed with the intent to provide metrics for posterior anal-
ysis in detailed case studies. More information about these
posterior uncertainty indicators is provided in Appendix A,
which details functionalities of Tomofast-x not explored
here.

3 Synthetic model and data

In this section, we introduce how the data used for synthetic
modelling were derived, and we present examples of using
prior information derived from geological modelling. The
process of simulating a realistic field case study is described
with the design of the numerical experiment.

3.1 Geological framework

The original geological model is based on a region in the
Hamersley province (Western Australia). It was built using
the map2loop algorithm (Jessell et al., 2021b) to parse the
raw data and the Geomodeller® implicit modelling engine
for geological interpolation (Calcagno et al., 2008; Guillen et
al., 2008) to model the contacts, stratigraphy, and orientation
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Figure 2. True model used for geologic modelling and geophysi-
cal inversion. The top panel shows the map view. The black line
represents the surface coordinates of the 2D profile considered here
for illustration of Tomofast-x’s utilisation. The values given on ei-
ther side of the colour bar indicate the density contrast and magnetic
susceptibility attached to each rock unit. Note that several rock units
present similar density contrast or magnetic susceptibilities, making
them undistinguishable using either gravity or magnetic inversion.

data measurement in the area (see the geographical location
in Fig. 2). Data used to generate the model comprise the
2016 1 : 500000 Interpreted Bedrock Geology map of
Western Australia (https://catalogue.data.wa.gov.au/dataset/
1-500-000-state-interpreted-bedrock-geology-dmirs-016,
last access: 2 December 2020) and the WAROX outcrop
database (https://catalogue.nla.gov.au/Record/7429427,
last access: 2 December 2020). Geological modelling was
assisted by interpretation of the magnetic anomaly grid
compilations at 80 m and the 400 m gravity anomaly
grid from the Geological Survey of Western Aus-
tralia (https://www.dmp.wa.gov.au/Geological-Survey/
Regional-geophysical-suvey-data-1392.aspx, last access: 2
December 2020). More information about data availability
is provided in Sect. 7.

In what follows, we use an adapted version of the origi-
nal structural geological framework of the selected region by
increasing the vertical dimensions of the model cells and as-
suming a flat topography. The resulting reference geological
model used to generate the physical properties for geophys-

Figure 3. True synthetic density contrast (a) and magnetic suscep-
tibility (b) model used for the simulation of geophysical data. The
black line represents the surface coordinates of the 2D profile con-
sidered here. The voxels represent lithologies 10 through 15, colour-
coded with their respective density contrast and magnetic suscepti-
bility values.

ical modelling measurements is shown in Fig. 2 in terms of
its geological units.

In addition to the modification of the structural model, we
make adjustments to the original density values derived from
field petrophysical measurements by reducing the differences
between the density contrasts of different rock units. By do-
ing so, we increase the interpretation ambiguity of inversion
results and decrease the differentiability of the different rock
units. The same procedure is applied to magnetic susceptibil-
ity to make accurate imaging using inversion more challeng-
ing. The three-dimensional (3D) density contrast and mag-
netic susceptibility models used to generate the gravity and
magnetic data are shown in Fig. 3.

3.2 Geophysical simulations and model discretisation

The core 3D model is discretised intoNx×Ny×Nz = 103×
113× 33 cells of dimensions equal to 999× 996× 745 m3.
For both gravity and magnetics, we generate one geophys-
ical measurement per cell along the horizontal axis, lead-
ing to Nx×Ny = 11639 data points for each method, and
add 10 padding cells in each horizontal direction to limit nu-
merical border effects in the forward calculation, leading to
a total of 123× 133× 33= 539847 model cells. We simu-
late a ground gravity survey by locating the measurements
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1 m above ground level, and aeromagnetic data acquired by
a fixed-wing aircraft flying 100 m above surface. To test the
robustness of our inversion code to noise content in the data,
the geophysical data inverted here are contaminated by noise.

The noise component was generated as follows. For each
gravity measurement, we first add a perturbation value ran-
domly sampled from the standard normal distribution of the
whole data set multiplied by 9 % of the measurement’s am-
plitude. We then add a second perturbation value randomly
sampled from the standard normal distribution with an am-
plitude of 3 mGal (2 % of the dynamical range). These values
were derived manually to obtain a realistic noise contamina-
tion. To simulate small-scale spatial coherence in the noise
generated in this fashion, we then apply a two-dimensional
Gaussian filter to the 2D noise map obtained from the previ-
ous step. We then apply a two-dimensional median filter to
the resulting noise-contaminated gravity data to simulate de-
noising. For magnetic data, we apply the same procedure,
using 12.5 % of the measurement’s amplitude for the first
step and 15 nT (1 % of the dynamical range) for the sec-
ond step. Similarly to gravity data, these values were derived
manually; no levelling noise was simulated. For compari-
son, the noise-free and contaminated synthetic measurements
are shown in Fig. 4. The resulting noise standard deviation
σnoise for gravity and magnetic data are equal to 1.2 mGal
and 8.5 nT, respectively.

The gravity data modelled here correspond to the com-
plete Bouguer anomaly. Magnetic data are simulated using
the magnetic strength of the Hamersley province (53 011 nT,
which approximates the International Geomagnetic Refer-
ence Field in the area) reduced to the pole.

To complete the 3D modelling procedure, a series of
100 structural geological models are generated using Monte
Carlo perturbations of the geological measurements (folia-
tion and contact points between geological units) constrain-
ing the geological structures. This was performed using the
Monte Carlo Uncertainty Estimator (MCUE) technique of
Pakyuz-Charrier et al. (2018, 2019). The result is an ensem-
ble of models that all fit the geological measurements within
a given set of prior uncertainty parameters. The ensemble is
thus assumed to represent the geological model space, rather
than just a single “best-guess” model. Probabilities for the
occurrence of different rock units can be calculated from the
ensemble and used to constrain geophysical inversion (see
examples of Giraud et al., 2017, 2019a; Ogarko et al., 2021a).
More specifically, MCUE is useful to obtain the probability
ψi,l of occurrence of the different lithologies l for every ith
model cell and to calculate the related uncertainty indicators
(Sect. 3.3). Detailing the probabilistic geological modelling
procedure and analysing the results in 3D is beyond the scope
of this paper and interested readers are referred to Lindsay et
al. (2012), Pakyuz-Charrier et al. (2018), Wellmann and Cau-
mon (2018), and references therein.

In this contribution, we simulate a case study where mod-
elling is carried out along the 2D profile materialised by the

black line in Figs. 3 and 4, extracted from the 3D modelling
framework as detailed in the next subsection.

3.3 2D model simulation in a 3D world

As mentioned above, we perform the inversion of geophys-
ical data along a 2D profile for simplicity and to simulate
the challenging case of 2D data acquired in a 3D geological
setting, in a part of the model where subhorizontal or gen-
tly dipping features can be observed. The philosophy of the
numerical study presented here is summarised in Fig. 5.

The 2D geological Sect. considered is shown in Fig. 6
(the black line marked in Figs. 3 and 4). Geological cer-
tainty is estimated using a measure of the dispersion away
from the perfectly uninformed case where the all rock units
are equiprobable. In each model cell, this measure, which we
write as σ ′ψ , is calculated as a function of the standard devi-
ation σψ of the probability ψ of observing the different rock
units as follows:

σ ′ψ =
√

1/card− σψ , (18)

where card is the geological cardinality of the model. It is
equal to the number of possible rock units observed in one
location across the entire ensemble. From Eq. (18), σ ′ψ is
maximum where rock units are well constrained and mini-
mum where the model is the most uncertain. This geological
certainty metric is shown in Fig. 6 for the 2D section consid-
ered in this example.

The probabilities of observation of the different lithologies
are shown in Fig. 7. Note that for the purpose of the tests
we perform on gravity data inversion, we reduce the set of
probabilities by grouping rock units into fictitious units with
the same density contrasts as single rock units. This reduces
the number of rock units to six units that can be distinguished
by gravity inversion, as several units may be assigned the
same density contrast.

The geophysical data we use for inversion are extracted
along the line marked in Figs. 3 and 4. The geophysical data
and reference (true) petrophysical model extracted in this
fashion are shown in Fig. 8. Care was taken not to use the
same mesh for both generating the synthetic data set and its
inverse modelling.

To inverse model the data shown in Fig. 8, we gener-
ate a mesh centred on the profile (oriented along the y di-
rection) and add padding to either side and the northern
and southern extremities. The resulting model comprises
nx× ny × nz = 13× 133× 33 cells of dimensions equal to
2998× 996× 745 m3. Note that we increased the model cell
size in the direction perpendicular to the profile. The gravity
and magnetic data sets along the profile each comprise 113
data points evenly distributed along the line.

While we focus on a 2D section extracted from a 3D model
presented here (see location in Figs. 3 and 4), the 3D model
and the associated gravity and magnetic data sets shown here
are made publicly available (see Sect. 7).
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Figure 4. Noise (a, d) added to the data calculated from the true model (b, e) and resulting noisy data (c, f) for the gravity (a–c) and magnetic
(d–f) data sets. The contour lines shown correspond to the ticks shown in the palette’s colour bar. The black line represents the location
profile we use for the inversions performed here.

Figure 5. Summary of experimental protocol for synthetic study
and testing of different functionalities of Tomofast-x.

4 Application example: sensitivity analysis to
constraints and prior information

In the examples shown below, we first perform single do-
main and joint (multiple domain) inversion (using the cross-
gradient constraint) assuming identity matrices for Wm, Wg,
and Wx. We then investigate the influence of prior informa-
tion on single domain inversion by combining structural and
petrophysical information in the case of gravity inversion.
The combination of petrophysical and structural constraints
derived from geology is tested. The intention is to address
knowledge gaps in the literature that describe the effects of
parameterisation of such constraints.

Figure 6. Two-dimensional slice extracted from the 3D model
along the profile: geological reference model (a) and the σ ′ψ metric
(b). Here, the geological uncertainty metric considered is the stan-
dard deviation of the probability of the different lithologies as per
Eq. (18).

4.1 Experimental protocol

It is necessary to determine the appropriate weights α as-
signed to the terms defining the constraints applied during
inversion to optimise the cost function in Eq. (5). The α val-
ues that define the weights of the different terms in the cost
function constitute hyperparameters of the inverse problem.
Appropriate estimation of these hyperparameters is neces-
sary to approximate the optimum value of the global misfit
function. To this end, we use the L-curve principle (Hansen
and O’Leary, 1993; Hansen and Johnston, 2001; Santos and
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Figure 7. Observation probabilities for the rock units that present differencing density contrasts. Units 3 and 4 are nearly absent from the
section (see maximum probability area marked by the arrow).

Figure 8. Two-dimensional slice extracted from the 3D model: gravity data and density contrast (a) and magnetic data and magnetic suscep-
tibility (b).

Bassrei, 2007) for each of the cases presented below. We
perform series of inversions, sampling α values spanning
the plausible range of potential choices using a heuristic ap-
proach.

When two constraint terms are used in inversion (i.e. with
α > 0), we extend the L-curve approach to the two-parameter
cases. In such cases, the optimum values for the α weights
are determined by applying the L-curve criterion using L-
surfaces (or elbow surface) instead of L-curves (Belge et al.,
2002) (we note that the L-curves as plotted here can also
be referred to as “Tikhonov curves” in the case where data
misfit is plotted as a function of regularisation value). The
optimum value for the α weight of the two constraint terms
is therefore obtained by identification of the inflection point
of the surface made up of the variations of the data misfit
as a function of the weights under consideration. We chose
this approach for its simplicity and note that there exist other

techniques that use an automated process, such as the gener-
alised cross-validation technique (Craven and Wahba, 1978).
We refer the reader to Farquharson and Oldenburg (2004) for
a general introduction and Giraud et al. (2019b) and Martin
et al. (2020) for an application of this principle to inversions
using Tomofast-x. The role the L-surface analysis plays in
the synthetic case presented here is reminded in the work-
flow shown in Fig. 5. In our analysis, we set the objective
value for the data misfit ‖Wd(d−g(m))‖

2
2 to be equal to the

objective data misfit 2obj
d (d,m), defined as follows:

2
obj
d (d,m)≥

ndataσnoise∑ndata
i=1 (di)

2
, (19)

so that the data is reproduced with a level of error superior or
equal to the estimated noise level of the data. Here, this leads
to 2obj

d = 5.01× 10−4 for gravity inversion and to 2obj
d =

1.55× 10−4 for magnetic data inversion.
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Table 1. Optimum values of (αm, αg) estimated from L-surface
analysis.

αm αg

Gravity inversion 2.1× 10−7 1.8× 10−4

Magnetic inversion 3.22× 104 4.52× 106

For the sake of consistency in our study of the influence of
constraints on inversion, we set mpr = 0 kgm−3 for gravity
data inversion and mpr = 0 SI for magnetic data inversion.

4.2 Homogenously constrained potential field
inversions

We first perform single physics inversion following the com-
mon strategy of constraining the model using smallness and
smoothness constraints. Obtaining a good approximation of
the optimum values of these parameters gives insights into
the numerical structure of the problem. It constitutes valu-
able knowledge when using other kinds of constraints, and
we consider it good practice to run such inversion prior to us-
ing more advanced constraints. Here, the first α parameters
to determine are αm and αg, for both gravity and magnetic
data inversion, assuming identity Wm and Wg matrices so
that the constraints are applied homogenously over the entire
model.

We generate grids in the (αm,αg) plane using αm ∈

[10−8,10−6
] and αg ∈ [10−6,10−3

] for gravity inversion,
and αm ∈ [103,105

] and αg ∈ [103,108
] for magnetic data

inversion. These ranges were determined empirically and as-
sumed to comprise the optimums. In this subsection, all ma-
trices W in Eq. (5) are set as the identity matrix.

For accurate estimation, the (αm, αg) values are sampled
more finely closer to the estimated optimum values. The re-
sulting L-surfaces are shown in Fig. 9, where the vicinity of
the optimum value of (αm, αg) is shown with a green dot.
From these values, we estimate the optimum values of (αm,
αg) reported in Table 1.

The models corresponding to values in Table 1 are shown
in Fig. 10.

The values of αm and αg obtained for such constraints
can be used as a starting point in subsequent inversions to
understand the influence of prior information when varying
amounts and types of prior information are available about
the structure of the subsurface or its petrophysics. For in-
stance, in what follows we will investigate the utilisation of
geological information to define Wm and Wg (Eqs. 9 and 10,
respectively) and see how it can combined with petrophys-
ical data to define B (Eq. 15) (see the following subsection
where we use global and structural and/or petrophysical in-
formation). In the case of structural constraints relying on the
spatial derivatives of model values (cross-gradient values or
local smoothness), the value of αm may be kept constant and

while the other α parameters (αg or αx) are adjusted. Con-
versely, αg may be kept and αm set to 0 for the utilisation of
petrophysical constraints acting on the model values them-
selves instead of the spatial derivatives (ADMM or statistical
petrophysical constraints). Here, we restrict our analysis to
two α values being strictly superior to zero, thereby account-
ing for prior information in up to two constraints terms in the
definition of the regularisation term in Eq. (5).

4.3 Joint inversion using the cross-gradient constraint

We start from the previous step to perform joint inversion
using the cross-gradient constraint. Keeping the αm weight
constant and equal to the values determined from single do-
main inversion, it remains necessary to estimate the optimum
values of the cross-gradient constraint weight, αx, and the
relative importance given to the gravity and magnetic data
misfit terms (setting αG

= 1, it remains to determine αM).
We therefore investigate values in the (αx,α

M) plane, which
we sample in the same fashion as in the previous subsection.
The resulting surfaces are shown in Fig. 11.

In contrast to the single physics inversion shown in Fig. 9,
it appears from Fig. 11 that the two hyperparameters to be de-
termined here, αx and αM, influence the inversion differently.
While the contour levels of the magnetic data misfit show a
linear trend in the (αx,α

M) plane, it is clearly non-linear in
the case of gravity data misfit. This difference might be ex-
plained by the fact that the cross-gradient is a second-order
regularisation (product of two spatial derivatives of model
values) linking two models that are otherwise decoupled. In
addition, this suggests that in cases differing from this one,
the hyperparameter selection may be non-unique. Neverthe-
less, the value of the optimum value is unambiguous in our
case and can be determined easily. From Fig. 11 we obtain
(αx,αmag)= (1.995×104, 2.57×10−5). The corresponding
inversion results are shown in Fig. 12.

Compared to Fig. 12, we observe that the application
of the cross-gradient constraint leads to adjustments of the
model ensuring more structural consistency between density
contrast and magnetic susceptibility, illustrating the appli-
cability of the approach presented here. Also note that the
model is also visually closer to the true model from approx-
imately 7520 km northing and above. However, despite the
increased structural consistency between the density contrast
and magnetic susceptibility models, some of the structures
of the model are not recovered accurately. For instance, the
basin-shape structure around 7500 km northing mirrors the
actual geological structure (see Fig. 8) and is an effect of
non-uniqueness on inversion. In this case, this illustrates the
need for prior information in our inversion. While joint in-
version of gravity and magnetic data using the cross-gradient
constraint improves imaging comparatively with an inver-
sion constrained only using smallness and smoothness con-
straints, prior geological information or petrophysical infor-
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Figure 9. Elbow surfaces for gravity and magnetic inversions (top row) and a plot of the data misfit term as a function of the α weights
(bottom row). Each plot uses a total of 1260 points sampling the (αm,αg) plane. The black lines show the contour values corresponding to

the ticks shown in the palette’s colour bar, which shows the value of the data misfit term. The red line materialises the contour value of 2obj
d ,

guiding the selection of the optimum (αm, αg) values, and the green dot materialises the vicinity of the curve’s inflection point.

Figure 10. Results from separate inversions using smallness and
smoothness constraints. The starting and prior models are equal to
zero everywhere, and the smoothness constraint is applied homoge-
neously.

mation may be necessary to alleviate the remaining uncer-
tainty.

4.4 Smallness and smoothness constraints using
geological information

In this subsection, a sensitivity analysis to prior information
in inversion is performed through a series of scenarios where
geological structural information is introduced to adjust the
smallness and smoothness constraints through Wm and Wg,
respectively. In what follows, we apply this approach to grav-
ity inversion.

The influence of geological information in defining the
smallness and smoothness terms (detailed in Sects. 2.4.1 and
2.4.2) is analysed by investigating three additional scenarios
allowed by the utilisation of either homogenous or geolog-
ically derived Wm and Wg matrices. In each case, we start
from the (αm, αg) weights estimated in Sect. 4.2 from the
analysis of the L surface, which we adjust to obtain the geo-
physical misfit sufficiently close to objective values. We re-
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Figure 11. Determination of the optimum (αx,α
M) parameters in the case of the joint inversion using the cross-gradient constraint. Top view

of the elbow surfaces for gravity (a) and magnetic (b) inversions (top row) and a plot of the data misfit term as a function the α weights
(bottom row). The solid lines show the contour values of the data misfit; values are given by the colour bar on the side. The solid red line
shows the contour level of 2obj

d for the corresponding data set (gravity or magnetic), while the dashed line shows the same quantity for the
other data set. The green dot marks their intersection, indicating the optimum (αx,α

M) values.

Figure 12. Joint inversion results obtained from utilisation of the
cross-gradient constraint.

state that αm and αg weight the overall contribution of the
model smallness and smoothness, respectively, in the cost
function (Eq. 5).

In the first scenario we investigate (scenario b in Table 2),
geological uncertainty information is used to define Wm

while keeping Wg homogenous. This allows us to test the
influence of geological prior information on the smallness
term. The values of the diagonal variance matrix Wm are
calculated using the geological certainty metric σ ′ψ (Eq. 18,
shown in Fig. 6b for the 2D section modelled here) and keep
Wg homogenous.

Contrary to the previous tests (see Sect. 4.2) where Wm =

Inm , we find the following result for the kth model cell:

(Wm)kk = (σ
′
ψ )k. (20)

Because 0≤ (σ ′ψ )k ≤ 1 ∀k, we have the following result:

tr(Wm)=

nm∑
i=1
(σ ′ψ )i ≤ tr(Inm)= nm. (21)

Consequently, setting Wm in this fashion and keeping αm
constant translates to a lower overall relative importance
of the smoothness term in the least-squares cost function
(Eq. 5), thereby moving away from the trade-off inferred
from the L-curve principle (Sect. 4.2). To mitigate this, we
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Figure 13. Results from gravity inversion constrained by: (a) ho-
mogenous smallness and homogenous smoothness constraints,
(b) geologically-derived smallness and homogenous smoothness
constraints (c) homogenous smallness and geologically-derived
smoothness constraints, (d) geologically-derived smallness and
geologically-derived smoothness constraints.

adjust αm to a value α′m such that

α′m = αm

√
nm∑nm

i=1(σ
′
ψ )i

, (22)

which equates (α′m)
2tr(Wm) with (αm)

2nm so that the over-
all weight assigned to the smallness term remains the same
with and without geological structural information (left-hand
side and right-hand side of inequality in Eq. 20, respectively).
Because the values of ‖Wmm‖ depend on both Wm and m,
which vary in space and also depend on the other terms of
the cost function, minor adjustments of the value of α′m are
necessary to reach the objective value of data misfit. In this
example, this leads to tune the suggested α′m = 8.4×10−7 to
α′m = 8.85×10−7 (keeping αg constant). The corresponding
inverted model is shown in Fig. 13b. The corresponding α
weights are repeated in Table 2.

In the second scenario we test (scenario c in Table 2), ge-
ological uncertainty information is then used to define Wg
while keeping Wm homogenous. This allows us to test the

influence of geological prior information on the smooth-
ness term. Following the same procedure as for the small-
ness term, we adjust the suggested α′g = 3.6× 10−4 to α′g =
4.1× 10−4. The corresponding inverted model is shown in
Fig. 13c. Finally, we test the case where both Wm and Wg
are defined using geological information in the form of σ ′ψ .
Starting from values of α′m and α′g used in the previous
tests, minor tuning is performed, leading to α′m = 6.1×10−7

and α′g = 6.0× 10−4 inversion results in the model shown in
Fig. 13d.

As can be seen in Fig. 13 by comparing Fig. 13a–b with
Fig. 13c–d, the utilisation of geological structural informa-
tion to adjust the smoothness regularisation strength spatially
has more impact on inversion than adjusting the smallness
term. While incorporating prior geological information in
Wm constrains the model to a certain extent, using Cv to
derive Wg has more influence on the inverted model than for
Wm, with resulting models that are closer to the reference
model.

Comparing Fig. 13c and d indicates that the use of geo-
logical uncertainty information to adjust the smallness regu-
larisation strength spatially (through Wm) in addition to the
model smoothness term (through Wg) modifies inversion re-
sults further towards the reference model. Figure 13d, which
results from inversion using prior information in both con-
straint terms, provides the model closest to the reference.
While most interfaces are well-recovered when using geo-
logical information to define both Wg and Wm, the recovered
density contrasts remain affected by the ambiguity inherent
to gravity data in the presence of subhorizontal geological
units (around 7460 km northing). This suggests that in this
example, more prior information might be useful in recover-
ing the causative model more truthfully, especially in cases
where potential field inversion is ambiguous (e.g. subhori-
zontal interfaces for gravity inversion). This is the object of
the next subsection, which describes a new single physics
inversion scenario where petrophysical constraints are com-
bined with structural constraints and geological information.

4.5 Structural and petrophysical constraints

In addition to the definition of matrices Wm and Wg, geolog-
ical information can be combined with petrophysical knowl-
edge to define the range of density values allowed in in-
version. This is achieved with spatially varying bound con-
straints on the property inverted for density contrast in this
case (see Sect. 2.4.5). Here, such bounds are defined using
multiple intervals, each one corresponding to the range of
density contrast values expected for a geological unit. Such
bounds can be defined globally (homogenously) where all in-
tervals are allowed everywhere in the model or locally when
prior information about the presence of the rock units is avail-
able. In this work, we use the probability of occurrence of the
different rock units to derive bounds that vary in space ac-
cordingly with the probability of observation of each of the
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Table 2. The α values derived for simultaneous usage of local and global smallness and smoothness constraints. Scenario (a) is a reminder
of the values obtained in Sect. 4.2 when only global constraints are used.

αm αg

Global smoothness, global smallness constraints (a) 2.1× 10−7 1.8× 10−4

Global smoothness, local smallness constraints (b) 8.85× 10−7 1.8× 10−4

Local smoothness, global smallness constraints (c) 2.1× 10−7 4.1× 10−4

Local smoothness, local smallness constraints (d) 6.1× 10−7 6.0× 10−4

rock units. In a given cell, only the bound values correspond-
ing to rock units with a probability 9 > 0 are considered.
Starting from Eq. (15), such spatially varying bounds Bk of
the kth model cell are obtained as follows:

Bk =

nf⋃
l=1

9k,l>0

[ak,l,bk,l], (23)

where a and b correspond to lower and upper bounds. We
consider narrow bounds such that bk,l = ak,l + ε, with ε�
ak,l , to encourage inversion to use density contrasts that
closely resemble values defined a priori. Equation (23) corre-
sponds to the application of a Boolean operator to the prob-
abilities 9k=1...nf in every cell to divide the studied area into
domains defined by rock units with a probability 9 >9th.
In such cases, the ADMM bound constraints act as a proxy
for a prior models that have been dynamically constrained by
petrophysical information.

Four additional scenarios are tested to determine the influ-
ence of prior information on inversion to accommodate the
addition of both the damping gradient and ADMM bound
constraint term. The use of prior information is illustrated in
Fig. 14.

At a given iteration, the ADMM bound constraint en-
courages inverted values to evolve inside one of the pre-
scribed intervals depending on the current modelm. As men-
tioned above, we can then make the analogy with a small-
ness term that is dynamically updated. For this reason, we
treat the ADMM bound constraints in the same fashion as
the smallness term, which we apply simultaneously to the
model smoothness term.

Following the same protocol as Sect. 4.1 to determine αg
and αa, we first perform inversion without the use of geo-
logical information in the form of the probabilities for the
occurrence of different rock units or metrics that can be de-
rived from them (Fig. 14a, i.e. with Wg and Wa equal to
the identity matrix and the corresponding regularisation term
weighted by αg and αa, respectively). It is therefore neces-
sary to determine the value of αg and αa (Eq. 5). We per-
form an L-surface analysis and sample values in the (αg,αa)

plane to estimate the optimum values for these hyperparam-
eters (see Fig. 15). Values of αg vary from 1.585× 10−7 and
1.585× 10−5, and values of αa vary from 2.484× 10−5 and
2.484× 10−7. The resulting L-surface is shown in Fig. 15.

Table 3. The α values derived for simultaneous usage of global and
local smoothness and ADMM bound constraints. Cases (a) through
(d) correspond to cases (a) through (d) in Fig. 14.

αg αa

Global constraints (a) 2.2× 10−5 1.3× 10−7

Global ADMM, local gradients (b) 3.3× 10−4 2.6× 10−7

Local ADMM, global gradients (c) 1.1× 10−4 3.6× 10−7

Local ADMM, local gradients (d) 3.1× 10−4 3.25× 10−7

From Fig. 15, we estimate the hyper-parameters (αg,αa)

to be (αg,αa)= (2.2×10−5,1.3×10−7) in the case no geo-
logical information is used, meaning that both constraints are
applied homogenously across the model.

From there, we follow the same procedure as described
above (Sect. 4.1 and 4.2) to obtain an estimate for the val-
ues of αa and αg in the different configurations shown in
Fig. 14b–d. The resulting inverted models are shown in
Fig. 16, and the estimates of (αg,αa) are provided in Table 3.

Figure 16 shows that the use of ADMM facilitates recov-
ery of better-defined interfaces between rock units than in
previous inversions (Figs. 10, 12, and 13), and decreases
the misfit with the causative model (shown in Fig. 6).
Unsurprisingly, without the use of geological information
(Fig. 16a) inversion results remain inconsistent with geology
in several parts of the model, especially around the position
7500 km northing. The inconsistent results can be partly mit-
igated by using geologically derived smoothness constraints
(Fig. 16b). In comparison, however, Fig. 16c shows that use
of geological information to determine the bounds recovers
features much closer to the causative model.

While Fig. 16d shows the more robust results overall,
Fig. 16c and d present generally similar features. This in-
dicates that in this case geological uncertainty information
in structural constraints only allows the refining of features
largely controlled by the utilisation of the ADMM con-
straints. This statement is supported by Fig. 16, where the
comparison cases (a and b) and (c and d) reveal that the ef-
fect of using geological information to define bounds domi-
nates over the effect of using uncertainty to define structural
constraints.

The comparison of cases (a and b) and (c and d) in Fig. 16
can be extrapolated to Figs. 13 and 16 to compare constraints
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Figure 14. Tested combinations for the utilisation of prior information into inversion. Bold frames indicate the utilisation of geological
information to define the constraints.

Figure 15. Elbow surfaces for gravity inversions. A total of 840
points sampling the (αg,αa) plane were used. The black lines show
the contour values corresponding to the ticks shown in the palette’s
colour bar, which shows the value of the data misfit term. The red
line indicates the contour value of 2obj

d = 5.008× 10−4, guiding
the selection of the optimum (αg,αg) values, and the green point
indicates the curve inflection point.

more broadly. This is discussed in Sect. 5.1, which presents
a short comparative analysis of all gravity inversion results.

5 Discussion

5.1 Sensitivity analysis summary: comparison of
constrained inversions

Tomofast-x was developed with the intent of providing prac-
titioners with an inversion platform accounting for vari-
ous forms of prior information and geophysical data sets.
We have tested a series of constraints involving joint in-
version and geological and petrophysical information. The
inverted density contrast models for inversion using global
smallness and smoothness constraints, joint inversion using
the cross-gradient technique, geologically derived smallness
and smoothness constraints, and ADMM bound constraints
(both global and using geological information) are shown in
Fig. 17. We remind that all models shown here produce a
similar data misfit 2obj

d accordingly with Eq. (19).
Firstly, it appears from Fig. 17 that regardless of the type of

constraints considered, the utilisation of geological informa-
tion (cases b, d, e, g–i) to derive spatially varying constraints
for the W matrix of both terms used provides the models that
are visually closest to the true model. In this category, the
utilisation of petrophysical information in the ADMM bound
constraints provides (cases h–i) models that are closest to the
true model (the lowest model misfit values are indicated in
the titles of the panels in Fig. 17). Secondly, the comparison
of cases (a) and (d), (b) and (e), (f) and (g), and (h) and (i)
indicates that while it has a less significant influence on the
results, incorporating geological information in the definition
of the smoothness term also influences inversion results sig-
nificantly. Lastly, comparison of cases (a) and (b) and (d) and
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Figure 16. Results from gravity inversion using (a) global ADMM
clustering and homogenous smoothness constraints, (b) global
ADMM clustering and geologically derived smoothness con-
straints, (c) ADMM clustering and geologically derived smoothness
constraints, and (d) geologically derived ADMM clustering and ge-
ologically derived smoothness constraints. For visual comparison,
the true model is repeated at the bottom.

(e) suggests that the utilisation of geological information to
adjust the smallness strength spatially has an effect on in-
version that is the lowest with the cross-gradient constraints
(where structural information is passed on from another geo-
physical data set).

From the results shown in Sect. 4.2 through 4.5 and com-
pared in Fig. 17, it is possible to make a qualitative ranking
of the constraints according to their influence on the result-
ing model (from the most important influence to the least im-
portant influence): ADMM bound constraints > smoothness
constraints > smallness constraints > cross-gradient con-
straints.

This observation is also corroborated by the values of
the root-mean-square misfit between the true and inverted
model. We note that this ranking remains speculative as it
might apply only to models sharing similarities with the case
we investigated.

From these observations we also deduce that when geo-
logical uncertainty information is added to the definition of
constraints (i.e. σ ′ψ for defining Wm and Wg and probabil-
ities for defining B), the term of the cost function with the
highest influence on the process will determine the main fea-
tures of the model, which will be adjusted by the other term.

Tomofast-x was developed with the intent of providing
practitioners with an inversion platform allowing various
forms of prior information and geophysical data. Constraints
that represent uncertainty and our level of epistemic knowl-
edge provide useful constraint to inversion. This is encour-
aging as the Tomofast-x platform addresses a gap in inver-
sion schemes that rely on a single model, with the model
being as similar as possible to the target region, an often im-
possible requirement to meet. Thus, Tomofast-x opens ad-
ditional research avenues to the community that are widely
acknowledged but remain largely unaddressed. Conceptual
uncertainty relating the prior assumptions made about tec-
tonic event history of the region, and thus the structure under
study, can be analysed. Different event histories and topolo-
gies can be considered, giving a wider scope to the model
space, and allowing the geophysics to invalidate implausible
histories, while giving us pause to consider other histories
that may be less likely but that are nonetheless possible.

5.2 Outlook for future developments

Another research avenue under consideration is the integra-
tion of results from probabilistic modelling of seismic and
electrical data into Tomofast-x. As stated in the introduction,
one of the goals born in mind during the design of Tomofast-
x is interoperability. Current work involves the integration of
Tomofast-x into the Loop1 open-source 3D probabilistic ge-
ological and geophysical modelling platform (Ailleres et al.,
2019), in an effort to unify geological and geophysical mod-
elling at a more fundamental level than the more common
cooperative approaches. Ongoing developments include the
possibility to adjust weight assigned to the ADMM bound
constraints accordingly with uncertainty levels in prior infor-
mation used to define spatially varying intervals.

Future research includes the utilisation of implicit geolog-
ical modelling (in the sense of Calcagno et al., 2008) with
Tomofast-x to define geological structures and rules that in-
version will be encouraged to follow. It also comprises the in-
corporation of topological laws previously used a posteriori
(Giraud et al., 2020) directly into inversion. The electrical ca-
pacitance tomography component of Tomofast-x (Martin et
al., 2018), which we have not detailed here, can be extended

1https://www.loop3d.org/ (last access: 7 September 2021)
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Figure 17. General comparison of all inversion results obtained from gravity inversion. The legend identifies the different types of inversion
shown. We repeat the true model at the bottom. The model misfit indicated on each panel is calculated as the root mean square of the
difference between the inverted and true models.

to acoustic (seismic) or electromagnetic data inversions that
rely on the resolution of similar non-linear inversion prob-
lems. It opens the door to more versatility in the code and
can be applied to joint inversion in similar ways but on more
than two physical domains.

In addition, future developments comprise the collabora-
tive and joint inversion of seismic and potential field data. It
is planned to develop an interface between Tomofast-x and
Unisolver (not yet released as open source by its authors),
which is an extension of Seimic_Cpml code (Komatitsch and
Martin, 2007; Martin et al., 2010, 2019), where integrated
seismic imaging solvers are implemented. Unisolver is a
multi-purpose 2D and 3D seismic imaging platform based
on high-order finite-difference and finite-volume discretisa-
tion and non-linear seismic data inversion procedures. Such
an interface would allow performing collaborative or joint
inversion of seismic and gravity or magnetic data and could
obtain the resulting models on the same mesh while benefit-
ting from Tomofast-x’s various functionalities. This will be
an easy way to provide Tomofast-x with separate seismic in-
formation on the fly like sensitivity kernels as another physi-
cal domain.

In the implementation presented here, only the truncation
of the matrix system based on maximum distance threshold-
ing was discussed. It is planned to reduce memory require-
ments using the wavelet compression of the matrix system
of the inverse problem in the same fashion as Martin et al.
(2013).

We have shown a number of tests using a selected set
of functionalities of Tomofast-x. However, more or differ-
ent tests could be done. For instance, an interesting research
avenue is to exploit Tomofast-x’s capability to read an arbi-
trary number of prior and starting models to test the geolog-
ical archetypes that can be identified by clustering of the set
of geological models probabilistic geological modelling can
produce (Pakyuz-Charrier et al., 2019). Additional features
of Tomofast-x, the testing of which lies beyond the scope of
this paper, are Jacobian matrix truncating and different kinds
of depth weighting and their effects on the different types
of inversion. Finally, we have not used posterior uncertainty
indicators listed in Sects. 2.5 and A1 as the paper focusses
on the inversion capabilities of Tomofast. However, the out-
put results of Tomofast-x allow us to study uncertainty in the
same fashion as Giraud et al. (2017, 2019c) where some of
them are used.

Results obtained using the cross-gradient technique for
joint inversion of gravity and magnetic data showed that it
can improve imaging of geological structures. However, our
study also revealed some of the limitations of this method. In
the synthetic example, structurally coherent features of the
resulting model contradict the geology of the true model. In
addition, our L-curve (or L-surface) analysis suggests that the
determination of the optimum α weights of the cost function
using the cross-gradient technique may be affected by non-
uniqueness and that multiple sets of weights could equally
satisfy the L-curve criterion. One interpretation is that this
method remains affected by uncertainty and could be pro-
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ducing several families of models fitting geophysical data
equally well. This observation differs from similar analysis
performed in the case of joint inversion using petrophysi-
cal constraints, where such potential ambiguity was not sug-
gested by the L-surfaces (Giraud et al., 2019c). These im-
pressions, however, require a more detailed investigation and
constitute a new research avenue.

In our sensitivity analysis, we have produced a series of
models that can be considered geophysically equivalent be-
cause they fit the geophysical data equally well. These mod-
els are the result of deterministic inversion, where prior in-
formation guides inversion towards one of the modes of the
probability density function describing the problem (Eq. 1)
or modifies them. It is therefore safe to assume that each
mode is representative of an archetype of models from the
geophysical data’s null space. This highlights the interest of
using “null-space shuttles”, allowing navigation of the null
space (Deal and Nolet, 1996; Muñoz and Rath, 2006; Vasco,
2007; Fichtner and Zunino, 2019) to explore the space of
possible models without extensive sampling and to assess
the robustness of the result. In addition, the plots of the L-
curves corresponding to the problem we presented suggest
the presence of multiple optima in the hyperparameter space
(weights α), which it might be interesting to investigate in
future research, especially in the joint inversion case.

6 Conclusions

We have introduced the open-source joint inversion plat-
form Tomofast-x and demonstrated its capabilities with a re-
alistic data set taken from the Hamersley region in central
Western Australia. The geophysical theoretical background
of Tomofast-x was explained in depth to guide users in un-
derstanding and using the modelling approach implemented
in the source code.

We leveraged the modularity of Tomofast-x to study the
sensitivity of inversion to prior structural, geological, and
petrophysical information; joint inversion; and the code’s
scalability. We tested a new combination of constraints incor-
porating geological structural information in the smoothness
term and dynamic prior model definition using petrophysical
knowledge (ADMM bound constraints), a feature usually not
available to most inversion software. Our sensitivity analy-
ses on prior information and different constraints reveal that
constraints using petrophysics (ADMM bound constraints)
dominate over gradient-based constraints (smoothness and
cross-gradient constraints), which in turn exert more influ-
ence on inversion than smallness constraints. This shows the
importance of prior information in inversion and illustrates
the need to study the space of geophysically equivalent mod-
els.

The examples described here were designed to replicate a
typical, rigorous approach to the development of a geoscien-
tific model and be relevant to real-world application. The aim
to ensure rigour and reproducibility of the result presented is
facilitated by the release of the source code, data sets, and
a reduced modified Python version of the algorithm that ac-
company this paper.
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Appendix A: Other functionalities of Tomofast-x

A1 Posterior uncertainty indicators

A1.1 Posterior LSQR variance matrix

At the first and last iteration of the inversion, the diagonal
elements of the posterior covariance matrix of the recovered
model are calculated in Tomofast-x (see Sect. 2.5). The vari-
ances are part of the outputs of Tomofast-x for further anal-
ysis by the user, such as the estimation of uncertainty in the
recovered property model.

A1.2 Jacobian of the cost function

Tomofast-x offers the possibility to examine the Jacobian
matrix of the cost function (Eq. 5), which encapsulates the
contribution of several constraint terms (see for example
Eq. 5), by calculating its derivative with respect to the model
m, ∂θ(d,m)/∂m. This feature takes advantage of the LSQR
solver. In the LSQR algorithm, ∂θ(d,m)/∂m is calculated
at the beginning of each iteration when approximating a so-
lution to the system of equations (Appendix E). The value
of ∂θ(d,m)/∂m can then be calculated before or after ap-
plication of the depth-weighting operator. It is computed as
the product of the transpose of the matrix representing the
left-hand side of the system of equations to be solved by
the vector of the corresponding quantities to minimise data
misfit, cross-gradients, damping terms, etc. (constituting the
right-hand side of the corresponding equation, as shown in
Appendix E). Importantly, its dimension is equal to the num-
ber of model parameters. It is therefore possible to store it
on disk to provide a measure of the sensitivity of the data
and the different terms of the misfit function to model varia-
tions at depth or in any part of the computational domain. By
computing ‖∂θ(d,m)/∂m‖, it is possible to study the conver-
gence of the algorithm, with small values indicating conver-
gence. In addition, it is a metric that measures the stability of
the algorithm and which is useful to determine whether the
system of equations is well conditioned.

A1.3 Identification of rock units

Membership analysis of the inverted model can be performed
when statistical petrophysical constraints were applied to in-
version from the values of Nk reached after inversion con-
verged. Membership values can be used to assess inverted
models by reconstructing a rock unit model from the recov-
ered inverted physical properties (Doetsch et al., 2010; Sun et
al., 2012; Giraud et al., 2019c). Rock units labels can also be
assigned to model cells when the ADMM bound constraints
have converged. It allows attaching a petrophysical property
interval to each model cell, allowing direct identification of
rock types.

A1.4 Cross-product of gradients

The cross-product of model gradients in 3D can be stored
after inversion and its L2 norm is given after each inversion
cycle. It allows us to assess the degree of structural similarity
between the models and to delineate areas showing specific
structural similarities or dissimilarities.

A2 Jacobian matrix truncation

Tomofast-x offers the possibility to use a moving sensitiv-
ity domain approach (Čuma et al., 2012; Čuma and Zhdanov
2014), limiting the sensitivity domain to a cylinder, the ra-
dius of which is chosen by the user, to reduce computational
requirements (the option for a sphere is also present in the
source code but commented in the current version). The un-
derlying assumption is that cells beyond a given distance
exert a negligible influence on the measurement. Generally
speaking, this radius is provided by the users and should be
chosen carefully.

A3 Lp norm

Tomofast-x also offers the possibility of performing data in-
version using a Lp norm (1< p ≤ 2) to define the smallness
term, as it has been proposed for electrical capacitance to-
mography (ECT) in Martin et al. (2018) in the framework
of Tomofast-x. The Lp norm inverse problem is non-linear
and can be solved iteratively using L2 minimisation. In the
Lp norm case, the regularisation parameter can be approxi-
mated by a p-power law of the model at each point of the
computational domain and must also be recomputed at each
new inversion cycle. When the Lp norm is introduced for
p < 2, this procedure allows us to obtain sharper models
with better interface definition and determine stronger con-
trasts for the specific cases under study. If p = 2, the small-
ness term is reduced to L2 norm minimisation (the commonly
used Tykhonov-like regularisation) as used in this work. The
choice of other values such that 1< p ≤ 2 is at the discretion
of the user or depending on prior information.

A4 Electrical capacitance tomography

Detailing electrical capacitance tomography (ECT) is beyond
the scope of this paper, but we can apply to joint gravity and
magnetic inversion the functionalities that have been intro-
duced to solve the ECT inverse problem based on L2 data
misfit norm and Lp (1< p ≤ 2) damping term minimisation
(see Sect. A3). In Tomofast-x, ECT is based on the finite-
volume method for the forward problem and on a non-linear
and iterative LSQR method to solve the inverse problem. As
in propagative and diffusive geophysical inverse problems in
frequency domain, the sensitivity matrix and the damping
term depend on the current model and must be recomputed at
each new iteration. We refer the reader to Martin et al. (2018)
for more details on this technique. Note that algorithms de-
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veloped in relation to this method can easily be extended to
propagative and diffusive geophysical inverse problems.

Appendix B: Summary of the notation and terms used
in the paper

Symbol Definition

Subscripts and superscripts

d refers to “data”, i.e. “mag” or “grav”
m model
pr refers to “prior”
g gradient
x cross-gradient
pe refers to “petrophysics”
a ADMM
G gravity
M magnetics

Model and physical quantities

m property model inverted for
z ADMM variable
u ADMM variable
ω membership value in Gaussian mixture
ψ membership value in Gaussian mixture (from geology)
µ mean value of petrophysical properties
σ standard deviation of petrophysical properties
ε positive threshold real number such that z� ε

ndata number of geophysical data points
nf number of rock formations
d geophysical data
β exponent for depth-weighted power law

Mathematical operators or notations

g(.) geophysical forward operator
P(·) petrophysical distribution operator
∇· gradient operator
Lp Lp norm
L2 L2 norm (sum-of-squares)
S geophysical data sensitivity matrix

diagonal matrices W

Wd diagonal matrix where all elements are equal to the inverse of the sum of squares of the data
Wm smallness term covariance matrix
Wg smoothness term covariance matrix
Wx cross-gradient term covariance matrix
Wpe petrophysical term covariance matrix
Wa ADMM term covariance matrix
D depth-weighting operator

weighting terms α

αm model
αg gradient
αx cross-gradient
αpe petrophysics
αa multiple bound constraints
αG weight assigned to the gravity inverse problem (used only in joint inversion)
αM weight assigned to the magnetic inverse problem (used only in joint inversion)
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Appendix C: Forward gravity and magnetic data
calculation

In this Appendix we summarise the forward calculation of
gravity and magnetic data as performed in Tomofast-x. In
practice, Tomofast-x calculates forward data using input data
expressed in units from Système International (SI), expressed
in kilograms, metres, and seconds. The gravity field f of a
distribution of density anomalies 1ρ over a volume of rock
V at a location r ′ = [x′,y′,z′] can be expressed as follows:

f (r)=G

∫ ∫ ∫
V

1ρ(r)
r − r ′

|r − r ′|3
dV, (C1)

where r = [x,y,z] defines the location of mass density
anomaly 1ρ(r) and G is the universal gravity constant.
While Tomofast-x is implemented in such a way that the
three spatial components of f can be obtained, we consider
only the vertical direction here, which we simply write as f
for sake of clarity (note that here, when taken for the whole
model, f = gG). In our implementation, the volume V is dis-
cretised in Nm rectangular prisms (model cells) of constant
density. Discretised, Eq. (C3) then rewrites as follows:

f (x,y,z)= G
∑Nm

k=1
1ρk

×
zk − z

′

((x− xk)2+ (y− yk)2+ (z− zk)2)
3
2

×1xk1yk1zk, (C2)

where 1xk , 1yk , and 1zk define the dimensions of the kth
rectangular prism. In our discretisation, we assume a model
constituted of nx × ny × nz cells, with nx , ny , and nz rep-
resenting the number of cells in each direction. This leads
to the computation of f using the following formulation of
Eq. (C1):

f (x,y,z)=

nx∑
i=1

ny∑
j=1

nz∑
k=1

1ρi,j,kSi,j,k, (C3)

where, using the formulation of Blakely (1995), the elements
of the sensitivity matrix S are given as follows:

Si,j,k = G
2∑

m=1

2∑
q=1

2∑
t=1
(−1)m+q+t

×

[
ζtatan

( ξmηq

ζtRm,q,t

)
− ξm log(Rm,q,t + ηq)− ηq log(Rm,q,t + ξm)

]
,

(C4)

where ξm, ηq , and ζt are the coordinates of the vertices of the
prism and

Rm,q,t = [(x− ξm)
2
+ (y− ηq)

2
+ (z− ζt )

2
]

1
2 . (C5)

In Tomofast-x, the total magnetic field anomaly is calcu-
lated by summing the responses of the prisms making up the
model, following Bhattacharyya (1964, 1980). The regional
magnetic field is denoted F = (Fx,Fy,Fz), and the magneti-
sation is denoted M = (Mx,My,Mz). We write F = ‖F‖
and M = ‖M‖. Note that remnant magnetisation is not ac-
counted for.

Using the formalism of Blakely (1995), we denote1T the
magnitude of the total magnetic field anomaly generated by
a prism oriented parallel to the x, y, and z axes of the mesh
similarly to the gravity case. We have the following equation:

1T (x,y,z)=

nx∑
i=1

ny∑
j=1

nz∑
k=1

χi,j,kSi,j,k, (C6)

where χ is the magnetic susceptibility. The sensitivity S is
given as follows:

Si,j,k = µ0F

2∑
m=1

2∑
q=1

2∑
t=1
(−1)t+1

×

[
αyz

2
log

(
Rm,q,t − ξm

Rm,q,t + ξm

)
+
αxz

2
log

(
Rm,q,t − ηq

Rm,q,t + ηqm

)
−αxy log(Rm,q,t + ζt )

−MxFxatan
(

ξmηq

ξ2
m+Rm,q,tζt + ζ

2
t

)
−MyFyatan

(
ξmηq

R2
m,q,t +Rm,q,tζt − ξ

2
m

)
+MzFzatan

(
ξmηq

Rm,q,tζt

)]
, (C7)

where, ξm=1,2, ηq=1,2, and ζt=1,2 are the coordinates of the
vertices of the prism along the x, y, and z directions, respec-
tively. The other terms of Eq. (C7) are defined below:

αxz = FxMz+FzMx, (C8)
αxy = FxMy +FyMx, (C9)
αyz = FyMz+FzMy . (C10)
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Appendix D: Scaling tests

Although Tomofast-x can run on personal computers in a few
seconds or minutes for 2D inversions and small 3D volumes
(typically a few minutes on a laptop for models smaller than
approx. 100 000 model cells), it necessitates a supercomputer
for realistically sized 3D case studies (e.g. models exceeding
500 000 model cells and 10 000 geophysical data points).

We assess Tomofast-x’s parallel efficiency using the strong
scaling as an indicator. The strong scaling curve is given
by plotting the number of CPUs as a function of user time.
It is complemented by the relative speedup curve t1/tncpu ,
where t1 and tncpu are the user times to complete inver-
sion using the number of CPUs ncpu = 1 and a given num-
ber of CPU ncpu, respectively. We performed the scaling
tests on the EOS machine from the CALMIP supercom-
puting centre (https://www.top500.org/site/50539/, https://
www.calmip.univ-toulouse.fr/spip.php?article388 – the lat-
ter being in French only, both last accessed on 10 November
2020).

The full-sized model we used is made ofNxNyNz = 128×
128×32= 524288 cells (i.e. 219 cells), which we reduce by
a factor of 2 by reducing the physical domain incrementally
to NxNyNz = 32× 32× 32= 32768 cells (i.e. 215 cells) to
be able to use it on a single CPU for the purpose of paral-
lelisation efficiency analysis. In the configuration we use, the
number of data points modelled is equal to Ndata =NxNy .

Figure D1. Strong scaling (a), relative speedup (b), and number of elements per CPU plots for a number of CPUs equal to 1, 2, 4, 8, 16, 32,
64, 128, 256, and 512. The line marked “ideal law” indicates perfect scalability for the tests that were performed.

Figure D1a shows the parallelisation efficiency. It reveals
that the scaling is nearly perfect for up to 16 CPUs, that it
is very good for 32 CPUs, and that it deteriorates above 64
CPUs. This corresponds to relative speedups (ratio between
run time for a single CPU and a given number of CPUs)
of about 14.5, 25, and 40 (Fig. D1b), respectively. For the
cases using 64, 128, and 256 CPUs, speedup increases from
40 to 65, indicating that overhead inter-processor commu-
nication time for ncpu ≥ 64 increasingly impacts the total
computation time for this (small) problem size. This is no-
ticeable in Fig. D1a and b, as both curves seem to adopt
an asymptotic behaviour for the largest numbers of CPUs.
This illustrates the deterioration of performances due to inter-
processor communications (Kumar et al., 1994). The deteri-
oration of performances due to inter-processor communica-
tions is due to the number of elements (or model cells) pro-
cessed by each CPU becoming smaller, while the number of
elements involved in communications increases; ultimately,
the time spent in pure computations in each core becomes
smaller than the time spent in inter-processor communica-
tions.
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The efficiency curves (e.g. Fig. D1a and b) allow us to
determine the minimum number of elements per CPU that
run efficiently (Hammond and Lichtner, 2010). The case of
ncpu = 64 marks an inflection point in Fig. D1b, correspond-
ing to point of diminishing return equal to a number of el-
ement per CPUs of 512. This indicates that for this par-
ticular configuration, it is preferable to run inversions with
ncpu ≤ 64 to maximise parallel efficiency. For better under-
standing and interpretation of scaling and speedup, we repeat
that the number of elements nel per CPU as a function of ncpu
is as follows:

nel =
NxNyNz

ncpu
. (D1)

As a general rule, we recommend respecting the condition
of nel ≥ 512. For a smaller number of elements, the allo-
cated resources are used in a suboptimum manner. Note
that the memory requirements vary proportionally with
NxNyNzNdata = nmnd, and thus no Jacobian matrix com-
pression is used.

Appendix E: Matrix formulation of least-squares
problem and resolution of the inverse problem

This Appendix introduces the matrix formulation of Eq. (5)
and its resolution.

We can write the system of equations to be solved in the
least-squares sense as follows.

Sm
αmWmm

αgWg∇m

αpeWpeP(m)

αxWx(∇m
(1)
×∇m(2))

αaWam

=


d

αmWmmpr
0

αpeWpePmax
0

αaWa(z−u)

 (E1)

At iteration k, the system of the equation is linearised
around the current model. It is solved for the optimum up-
date of the current model mk model update as described be-
low. Models m(1)k and m(2)k are set accordingly with the type
of inversion considered.

In Tomofast-x, depth-weighting D is applied as a sensi-
tivity matrix preconditioner. The resulting system is solved
using the LSQR algorithm (Paige and Saunders, 1982) as fol-
lows.

D−1S
αmD

−1Wm

αgD
−1Wg

∂∇mk
∂m

αpeD
−1WpeP

′(mk)

αxD
−1Wx

∂
∂m
(∇m

(1)
k ×∇m

(2)
k )

αaD
−1Wa


1mk+1

=−



g(mk)− d

αmWm(mk −mpr)

αgWg∇mk
αpeWpe(P (mk)−Pmax)

αxWx(∇m
(1)
k ×∇m

(2)
k )

αaWa(mk − z
k
+uk)

 (E2)

At each kth inversion cycle, we solve this system of equa-
tions and calculate the model update the model as follows:

1mk+1 =D
−11mk+1. (E3)

The model mk can then be updated to obtain mk+1.

mk+1 =mk +1mk+1 (E4)

Following Ogarko et al. (2021a), u0
= 0 and z0

= 0. The
updated ADMM variables zk+1 and uk+1 are calculated us-
ing the ADMM algorithm introduced by Boyd (2010):

zk+1
= πB(mk+1+u

k), (E5)

uk+1
= uk +mk+1− z

k+1, (E6)

where πB is a projection onto the bounds B such that

πB(x)= [πB1(x1),πB2(x2), . . .,πBn(xn)], with (E7)
πBi (xi)= arg min

y∈Bi
‖xi − y‖2, (E8)

The value of the starting model m0 is provided by the user.
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Code and data availability. The source code for Tomofast-x
as used in this paper can be found in Ogarko et al. (2021b,
https://doi.org/10.5281/zenodo.4454220). The latest version
of Tomofast-x is available at https://github.com/TOMOFAST/
Tomofast-x (last access: 7 September 2021).

The geological model, a description of the input data, and
the geophysical models are given in Jessell et al. (2021a,
https://doi.org/10.5281/zenodo.4431796). It also contains a data
set using the same model projected onto a finer mesh of ap-
proximately 4.2 M cells and 80 000 geophysical data. The data
sets are licensed under the Attribution-ShareAlike 4.0 International
(CC BY-SA 4.0) license (see https://creativecommons.org/licenses/
by-sa/4.0/legalcode, last access: 7 September 2021, for details).
Tomofast-x’s source code is licensed under the MIT License (https:
//opensource.org/licenses/MIT, last access: 7 September 2021).
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