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Abstract. This study develops a neural-network-based ap-
proach for emulating high-resolution modeled precipitation
data with comparable statistical properties but at greatly re-
duced computational cost. The key idea is to use combina-
tion of low- and high-resolution simulations (that differ not
only in spatial resolution but also in geospatial patterns) to
train a neural network to map from the former to the latter.
Specifically, we define two types of CNNs, one that stacks
variables directly and one that encodes each variable before
stacking, and we train each CNN type both with a conven-
tional loss function, such as mean square error (MSE), and
with a conditional generative adversarial network (CGAN),
for a total of four CNN variants. We compare the four new
CNN-derived high-resolution precipitation results with pre-
cipitation generated from original high-resolution simula-
tions, a bilinear interpolater and the state-of-the-art CNN-
based super-resolution (SR) technique. Results show that the
SR technique produces results similar to those of the bilin-
ear interpolator with smoother spatial and temporal distri-
butions and smaller data variabilities and extremes than the
original high-resolution simulations. While the new CNNs
trained by MSE generate better results over some regions
than the interpolator and SR technique do, their predictions
are still biased from the original high-resolution simulations.
The CNNs trained by CGAN generate more realistic and
physically reasonable results, better capturing not only data
variability in time and space but also extremes such as in-
tense and long-lasting storms. The new proposed CNN-based
downscaling approach can downscale precipitation from 50
to 12 km in 14 min for 30 years once the network is trained
(training takes 4 h using 1 GPU), while the conventional dy-

namical downscaling would take 1 month using 600 CPU
cores to generate simulations at the resolution of 12 km over
the contiguous United States.

1 Introduction

Earth system models (ESMs) integrate the interactions of at-
mospheric, land, ocean, ice, and biosphere and generate prin-
cipal data products used across many disciplines to charac-
terize the likely impacts and uncertainties of climate change
(Heavens et al., 2013; Stouffer et al., 2017). The computa-
tionally demanding nature of ESMs, however, limits their
spatial resolution mostly to between 100 and 300 km. Such
resolutions are not sufficient to fully resolve critical physi-
cal processes such as clouds, which play a key role in de-
termining the Earth’s climate by transporting heat and mois-
ture, reflecting and absorbing radiation, and producing rain.
Moreover, ESMs cannot assess stakeholder-relevant local
impacts of significant changes in the attributes of these pro-
cesses (at scales of 1–10 km; Gutowski et al., 2020). Higher-
resolution simulations covering the entire globe are emerging
(e.g., Miyamoto et al., 2013; Bretherton and Khairoutdinov,
2015; Yashiro et al., 2016), including the U.S. Department of
Energy’s 3 km Simple Cloud-Resolving E3SM Atmosphere
Model (E3SM Project, DOE, 2018). They are expected to
evolve relatively slowly, however, given the challenges of
model tuning and validation as well as data storage at un-
familiar scales (Gutowski et al., 2020).

Downscaling techniques are therefore used to mitigate the
low spatial resolution of ESMs. Figure 1 illustrates several
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approaches. Statistical downscaling is computationally effi-
cient and thus can be used to generate multimodel ensem-
bles that are generally considered to be required for captur-
ing structural and scenario uncertainties in climate modeling
(Hawkins and Sutton, 2009; Deser et al., 2012; Mearns et al.,
2012; Mezghani et al., 2019). However, statistical downscal-
ing works only if the statistical relationship that is calibrated
with the present climate is valid for future climate conditions
(Fowler et al., 2007). This “stationarity assumption” cannot
always be met in practice (Wang et al., 2018). In addition,
typical statistical downscaling is limited by the availability of
observations, which may lack both spatial and temporal cov-
erage. Furthermore, observations may contain errors, posing
challenges for developing a robust model to project future
climate.

Dynamical downscaling, in contrast, uses ESM outputs as
boundary conditions for regional climate model (RCM) sim-
ulations to produce high-resolution outputs. The RCM typi-
cally resolves atmospheric features at a spatial resolution of
10–50 km (depending on factors such as the size of the stud-
ied domain) with parameterized physical atmospheric pro-
cesses that in many cases are similar to those used in the
ESMs. This approach has the value of being based on phys-
ical processes in the atmosphere (e.g., convective scheme,
land surface process, short/long wave radiation) and provides
a description of a complete set of variables over a volume of
the atmosphere. Running an RCM is computationally expen-
sive, however, and typically cannot be applied to large ESM
ensembles (Kirchmeier-Young et al., 2019), especially when
simulating at the high spatial resolution required to explic-
itly resolve the convection that cause precipitation storms.
For example, a 30-year simulation over a region covering the
central and eastern United States with the Weather Research
and Forecasting (WRF V4.1.3) model takes 4380 core hours
at 50 km resolution but 374 490 core hours at 12 km resolu-
tion and 5.4 million core hours at 4 km resolution (i.e., 1224
times more computing resource than at 50 km) on the Intel
Broadwell partition of the Bebop cluster at Argonne National
Laboratory.

Another recently proposed approach to downscaling uses
deep neural networks (DNNs), specifically DNN-based
super-resolution (SR) techniques. A DNN consists of sev-
eral interconnected layers of nonlinear nodes with weights
determined by a training process in which the desired out-
put and actual output are repeatedly compared while weights
are adjusted (LeCun et al., 2015). DNNs can approximate
arbitrary nonlinear functions and are easily adapted to novel
problems. They can handle large datasets during training and,
once trained, can provide fast predictions (e.g., Liu et al.,
2019, 2020a, b). In digital image processing, DNN-based SR
(Dong et al., 2014; Yang et al., 2014) describes various algo-
rithms that take one or more low-resolution images and gen-
erate an estimate of a high-resolution image of the same tar-
get (Tian and Ma, 2011), a concept closely related to down-
scaling in climate modeling. They employ a form of DNN

called a convolutional neural network (CNN; LeCun et al.,
1998) in which node connections are configured to focus on
correlations within neighboring patches. Another DNN vari-
ant, the generative adversarial network (GAN; Goodfellow
et al., 2014), has been used to improve feature loss or real-
ism of the super-resolution CNNs (Ledig et al., 2017).

SR methods have recently been applied to the challenging
problems of downscaling precipitation (Vandal et al., 2017;
Geiss and Hardin, 2020) and wind and solar radiation (Sten-
gel et al., 2020), quantities that can vary sharply over spatial
scales of 10 km or less depending on location. Downscaling
with an SR model proceeds as follows (Vandal et al., 2017;
Stengel et al., 2020): (1) take high-resolution data (either cli-
mate model output or gridded observations) and upscale the
data to a low resolution; (2) build an SR model using the orig-
inal high-resolution and the upscaled low-resolution data;
and (3) apply the trained SR model to new low-resolution
data, such as from an ESM, to generate new high-resolution
data. This general approach has achieved promising results
but also has problems. The trained SR model often per-
forms well when applied to low-resolution data (upscaled
from high-resolution data) and compared with the same high-
resolution data, capturing both spatial patterns and sharp gra-
dients (Geiss and Hardin, 2020), especially when using a
GAN (Stengel et al., 2020). This result is not surprising,
given that the high- and low-resolution data used to develop
the SR are from the same source. When applied to new low-
resolution data such as from an ESM, however, the SR may
generate plausible-looking fine features but preserves all bi-
ases that exist in the original ESM data, especially biases in
spatial distributions and in time series such as diurnal cycles
of precipitation, both of which are important for understand-
ing the impacts of heavy precipitation.

Here we describe a new learned multiresolution dynami-
cal downscaling approach that seeks to combine the strengths
of the dynamical and DNN-based downscaling approaches.
Two datasets (i.e., low- and high-resolution simulations)
rather than one (i.e., only high-resolution with its upscal-
ing for the SR method) are used to develop the new CNN-
based downscaling approach. As shown in Fig. 1, these two
datasets are both generated by dynamical downscaling with
an RCM driven by the same ESM as boundary conditions but
at different spatial resolutions. We then use the CNN to ap-
proximate the relationship between these two datasets, rather
than between the original and upscaled versions of the same
data as the SR downscaling does. The output of the CNNs
is expected to generate fine-scale features as in the original
high-resolution data, because the algorithm is built based on
both high and low resolution. Our goal in developing this ap-
proach is to enable generation of fine-resolution data (e.g,
12 km in this study) based on relatively coarse-resolution
RCM output (e.g., 50 km in this study) with low compu-
tational cost. The combination of high computational effi-
ciency and high-resolution output would allow for building
more robust datasets for meeting stakeholder needs in infras-
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Figure 1. Four downscaling approaches discussed in the text. Orange and blue rectangles are input and output, respectively, of each down-
scaling approach, and grey rounded rectangles are computational steps. In our learned multiresolution dynamical downscaling approach
(right), we use the outputs from low- and high-resolution dynamical downscaling runs driven by the same ESM as boundary conditions to
generate {Low, High} training data pairs for a CNN that, once trained, will map from low-resolution dynamically downscaled outputs to a
high resolution.

tructure planning (e.g., energy resource, power system oper-
ation) and policy making, where higher spatial resolution (1–
10 km) is usually desired. In contrast to statistical downscal-
ing, this approach does not rely on any observations; thus, it
can downscale any variables of interest from RCM output for
different disciplines. Moreover, because the approach is built
on dynamically downscaled simulations, these datasets are
not bound by stationarity assumptions. It is noteworthy that
“upsampling” and “downscaling” both refer to resolution in-
creases (from low to high resolution), while “downsampling”
and “upscaling” both refer to resolution decreases (from high
to low resolution). Since this is an interdisciplinary study,
different terms are used in different contexts but refer to the
same meanings.

2 Data and method

This study focuses on precipitation, which is highly variable
in time and space and is often the most difficult to com-
pute in ESMs (Legates, 2014). Downscaling of ESMs with
RCMs has generally reduced the bias in precipitation projec-
tions, often due to an increase in the model spatial resolu-
tion that allows for resolving critical terrain features such as
changes in topography and coastlines (Wang et al., 2015; Zo-
bel et al., 2018; Chang et al., 2020). In addition, precipitation
data at high spatial resolution is needed for a variety of cli-
mate impact assessments, ranging from flooding risk to agri-
culture (Maraun et al., 2010; Gutowski et al., 2020). Precip-
itation data produced by RCMs at each model time step can
be viewed as a two-dimensional matrix or image. However,
these precipitation visualizations are different from typical
photographic images. For example, the precipitation gener-
ated by dynamical downscaling at low and high spatial res-
olutions can be different even if the RCMs used to generate
them differ only in spatial resolution. This situation appears
often in the precipitation data produced by RCMs running at

different spatial resolutions using the same initial and bound-
ary conditions, and it poses a great challenge for developing
DNNs for downscaling. In the following subsections we de-
scribe in detail the dataset we used for our study, and we
discuss our deep learning methods.

2.1 Dataset

The data used in this study are 1-year outputs from two
RCM simulations using the Weather Research and Forecast-
ing model version 3.3.1, one at 50 km resolution and one
at 12 km resolution, both driven by National Centers for
Environmental Prediction U.S. Department of Energy Re-
analysis II (NCEP-R2) for the year 2005. These two sim-
ulations were conducted separately, not in nested domains,
with output every 3 h for a total of 2920 time steps in each
dataset. Our study domain covers the contiguous United
States (CONUS), with 512×256 grid cells for the 12 km sim-
ulation and 128× 64 grid cells for the 50 km simulation.

The two WRF simulations share the same configuration
and physics parameterizations; they differ only in their spa-
tial resolutions. This difference has two direct effects on the
precipitation pattern. One is that the higher-resolution re-
sults can better resolve physical processes when compared
with lower resolution. For example, we can expect the high-
resolution simulation to have improved performance for pro-
cesses that are scale dependent, such as convection and plan-
etary boundary layer physics (Prein et al., 2021). The other
effect is that the higher-resolution model resolves terrain
and hence terrain-influenced rainfall, land–sea interface, and
coastal rainfall better than the coarse-resolution model does
(Komurcu et al., 2018). The difference in spatial resolution
also has indirect effects on the precipitation pattern. For ex-
ample, because these two simulations are not nested, they
cover slightly different domains, even though they maintain
the same region (CONUS) in the interior. This minor differ-
ence in domain position can change the large-scale environ-
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ment and translate into diverse conditions for the develop-
ment of the mesoscale processes that produce precipitation
(Miguez-Macho et al., 2004). In addition, the difference in
spatial resolution leads to the two simulations using different
computing time steps (120 s versus 40 s), which can cause
precipitation differences due to operator splitting between
dynamics and physics in the WRF (Skamarock et al., 2005;
Skamarock and Klemp, 2008; Barrett et al., 2019). These
factors lead to precipitation differences between the 50 and
12 km WRF output, as seen in Fig. 2, which shows differ-
ences between these two datasets in daily January and July
means. The 50 and 12 km data not only have different fine-
scale features, such as in the Sierra Nevada and Appalachi-
ans, but also have different geolocations of the precipitation,
such as that over Texas in July, where the 50 km simulation
produces precipitation for 3–5 mm d−1 but the 12 km simula-
tion produces only 1–2 mm d−1. The difference in precipita-
tion between low and high resolution is the biggest challenge
for our proposed downscaling approach.

Given these datasets, we need to decide which variables
to provide as inputs to our DNN-based downscaling system.
Many factors influence the magnitude and variability of pre-
cipitation, the focus of this study. Informed by the physics of
precipitation, we include, in addition to the low-resolution
precipitation and high-resolution topography data used by
Vandal et al. (2017) for their SR model, the vertically in-
tegrated water vapor (IWV) or precipitable water, sea level
pressure (SLP), and 2 m air temperature (T2) as inputs (Ta-
ble 1) since we find these variables show high pattern cor-
relations with precipitation along the time dimension. Each
variable possesses rich spatial dependencies, much like im-
ages, although climate data are more complex than images
because of their sparsity, dynamics, and chaotic nature. For
each grid cell, we use a fixed threshold (0.05 mm every 3 h)
for the minimum precipitation amount, so as to avoid zeros
and drizzles being passed to the neural network. Similarly,
we define a 99.5th percentile for the maximum precipitation
over each grid cell, so as to avoid extremely large precipita-
tion values being passed to the neural network and skews the
loss function. Our proposed DNN-based downscaling tech-
nique is different from the traditional statistical downscaling
methods, particularly regression-based models, which vec-
torize spatial data and remove the spatial structure.

2.2 Stacked variables

We design different model architectures and loss functions
to make best use of the input variables when training the
CNNs to capture the relationship between the precipitation
generated by the low- and high-resolution simulations. In this
case, we directly stack all selected variables (precipitation,
T2, IWV, SLP) to form a three-dimensional tensor as input
to the CNN model; see Fig. 3. We call the resulting method
Direct-Simple hereafter. This approach of directly stacking
climate variables as different input channels has been used in

other downscaling studies (e.g., Vandal et al., 2017). Unlike
those previous studies, however, we use an inception module
as a building block because it can provide different receptive
fields at each layer (Szegedy et al., 2015). We use kernels
of size 1× 1, 3× 3, and 5× 5 (Fig. 4) to build the inception
module in order to mitigate the challenge of learning the re-
lationship between the low- and high-resolution simulations
when precipitation occurs in different locations in the two
datasets.

From a physical perspective, the inception module makes
sense because the precipitation at a location or area is influ-
enced by the conditional variables not only at that particu-
lar location but also at adjacent locations depending on the
types of weather system. For example, precipitation associ-
ated with tropical cyclones (with low SLP centers) over the
southeastern United States is usually produced at the eastern
or northeastern side of the cyclone center, where the moisture
is brought from the Atlantic Ocean or Gulf of Mexico to the
northern inland. In addition, stacking the variables considers
the coupling effect of all the variables that simultaneously
influence the occurrence of precipitation but whose relative
importance can be different. Therefore, we apply channel at-
tention (Woo et al., 2018) so that the CNN can learn to focus
on the important physical factors that influence the precipita-
tion. On the other hand, the precipitation is extremely sparse
in space, with many zeros, posing challenges for the train-
ing process. To account for the sparsity of data, we apply a
spatial attention (Woo et al., 2018) mechanism to allow the
model to learn to emphasize or suppress and refine interme-
diate features effectively so as to focus on important areas
with relatively large precipitation values. This makes physi-
cal sense because capturing large precipitation events is crit-
ical for climate impact applications, more so than drizzle or
no-precipitation days.

2.3 Encoded variables

Stacking all variables as different channels in a CNN is sim-
ple and straightforward. However, combining these variables
that are significantly different in scales, distribution shapes,
sparsity, and units as shown by Table 1 can make the training
process challenging. Thus, we develop an encoded variable
CNN in which dedicated convolution layers are provided for
each variable to extract features before stacking. This ensures
that when we stack, the feature maps extracted from each
variable have similar characteristics. We call the resulting
method Encoded-Simple hereafter and refer to Direct-Simple
and Encoded-Simple collectively as the Simple models.

Specifically, as shown in Fig. 5, we design convolution
layers for each of the four variables and stack (i.e., concate-
nate in the channel axis) their feature maps. We process the
topography data similarly but stack the feature maps after
the second upsampling operation, that is, when the feature
map size becomes 512× 256. From a physics perspective,
Encoded-Simple is similar to Direct-Simple except that there
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Figure 2. Averaged daily precipitation (mm per day) in January and July of 2005 using 50 km (a, b) and 12 km (c, d) WRF output. The
50 km precipitation data not only miss fine-scale features, especially over complex terrain such as Sierra Nevada and Appalachians shown
by 12 km, but also generate precipitation in different locations, such as July precipitation over Texas.

Figure 3. Model architecture for Direct-Simple and the generator of Direct-CGAN. CBAM: Convolutional Block Attention Module (Woo
et al., 2018). TConv: Transposed convolution. The inception module is shown in Fig. 4.

Table 1. Inputs and outputs for the new CNNs developed in this
study. The range column shows the top and bottom 0.1 % of the
variable over the study domain for the time series of 3-hourly data
in year 2005. All data are produced by the WRF model.

Input (units) Range

50 km, 3-hourly precipitation (mm/3 h) [0.05, 13.62]
50 km, 3-hourly SLP (hPa) [990.97, 1039.34]
50 km, 3-hourly IWV (cm) [1.56, 116.46]
50 km, 3-hourly T2 (K) [241.75, 310.35]
12 km, topographic height (m) [0, 3204.51]

Output
12 km, 3-hourly precipitation (mm/3 h) [0.05, 15.66]

Figure 4. Details of the inception module used in Fig. 3.

are dedicated convolution layers to learn to extract features
from each variable during the training process. From the deep
learning perspective, this process is friendlier to training, and
thus we expect better results from Encoded-Simple than from
Direct-Simple. In this study we consider spatial attention for
the feature map of each variable before stacking them (i.e.,
concatenate in the channel axis) and then channel attention
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Figure 5. Encoder module used in the Encoded-Simple and the gen-
erator of Encoded-CGAN models to prepare the low-resolution in-
put data prior to passing the data to the network of Fig. 3.

(the relative importance of different input variables), because
the spatial feature of precipitation is sparse and less uniform
and is a critical factor for judging the model performance.

2.4 Super-resolution model

To compare the performance of our proposed learned mul-
tiresolution dynamical downscaling approach with that of
the state-of-the-art SR technique, we develop an SR model
based on the original 12 km WRF modeled precipitation and
an upscaled 12 km-to-50 km dataset. The SR model devel-
opment does not need other environmental variables as used
in our new CNN approaches. It does not involve the 50 km
precipitation data either; thus, the difference between the 12
and 50 km WRF outputs (as discussed earlier and shown in
Fig. 2) is not a challenge in the way that it was for the learned
multiresolution dynamical downscaling approach. We then
(1) apply the trained SR model to the upscaled 50 km dataset
and compare the SR-measured 12 km data with the original
12 km data. This step is to assess the effectiveness of the SR
model. For example, when comparing SR-measured 12 km
data and original 12 km data, we find a spatial correlation
greater than 0.98 for all the quantiles and almost the same
distribution shapes between the two datasets, indicating that
the SR model we develop is effective and robust. (2) We ap-
ply the SR model to our 50 km WRF output for the testing
period and compare the resulting SR-generated 12 km data
with the original 12 km data. If the SR model can downscale
a 50 km dataset to one with similar properties to 12 km WRF
output, with much less computational cost than running the
12 km model in conventional dynamical downscaling, then
the SR approach is useful for generating high-resolution and
high-fidelity precipitation based on low-resolution precipita-
tion.

2.5 Loss functions

A DNN’s loss function guides the optimization process used
to update weights during training. Thus the choice of loss
function is crucial to DNN effectiveness. For the Direct-

Simple and Encoded-Simple models introduced above, we
first consider two loss functions commonly used in compu-
tational vision: the L1 norm (mean absolute error) and L2
norm (mean square error: MSE). Since precipitation data
are sparse, those losses may not be able to generate results
that are driven primarily by large gradients, such as localized
heavy precipitation.

The generative adversarial network (GAN) is a class of
machine learning framework in which two neural networks,
generator and discriminator, contend with each other to pro-
duce a prediction. In our context, the generator network per-
forms CNN by mapping input patches of coarse data to the
space of the associated higher-resolution patches. The dis-
criminator attempts to classify proposed patches as real (i.e.,
coming from the training set) or fake (i.e., coming from the
generator network), i.e., basically a binary classifier. The two
networks are trained against each other iteratively, and over
time the generator produces more realistic fields, while the
discriminator becomes better at distinguishing between real
and fake data. Therefore, GANs provide a method for in-
serting physically realistic, small-scale details that could not
have been inferred directly from the coarse input images (Liu
et al., 2020a).

GANs, as originally formulated, use a vector of random
numbers (latent variables) as the only input to the gener-
ator. Instead, we use actual precipitation amounts and the
conditional variables as inputs, forming a conditional GAN
(CGAN) framework (Mirza and Osindero, 2014) for train-
ing the generator. The two neural networks (generator and
discriminator) are trained simultaneously, with the generator
using a weighted average (their weights are hyperparame-
ters) of the `1-norm (results with the `2-norm are worse) and
adversarial loss as its loss function, defined as

`(θG)=−
wa

m

m∑
i=1

D(G(v1,v2, . . .))+
wc

m

∥∥Yi −Y i∥∥1, (1)

where wa and wc are weights for the adversarial loss and
`1-norm, respectively; m is the minibatch size; v1,v2, . . . are
coarse-grained conditional variables including precipitation,
IWV, SLP, and T2;D is the discriminator and is binary cross
entropy applied to a sigmoid output with binary class la-
bels; G is the generator; θG denotes the trainable parame-
ters (i.e., weights) of the generator; v1,v2, . . . are input vari-
ables; Y is the precipitation at time grid cell i; and Y i is the
regional average precipitation. Based on a hyperparameter
study, we selected values of 1 and 5 for wa and wc, respec-
tively. We used Binary Cross Entropy as the loss function
of the discriminator. Therefore, in addition to the L1-norm
loss used to retain low-frequency content in the images, our
target generator is trained to generate high-resolution precip-
itation patterns that are indistinguishable from the real high-
resolution precipitation patterns generated by the discrimina-
tor. Once trained, only the generator is used for downscaling
low-resolution precipitation data. We incorporate CGAN into
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both Direct-Simple and Encoded-Simple to obtain two new
models that we refer to respectively as Direct-CGAN and
Encoded-CGAN hereafter. We also use CGAN (with actual
precipitation amounts) for training the SR model, producing
a model described earlier and that we refer to as SR-CGAN.

2.6 Implementation and model training

We implement our model with the PyTorch machine learning
framework. We use 3-hourly data from January to Septem-
ber of the year 2005 for model training and validation (e.g.,
hyperparameter tuning to control overfitting) and the re-
maining 3 months (October, November, December) for test-
ing the model performance. The Adam optimizer and one
NVIDIA V100 GPU are used for model training. The train-
ing is computationally intensive, taking for example about
4 h for Encoded-CGAN using one NVIDIA V100 GPU for
8000 iterations and a minibatch size of 32. Training time
can be reduced by parallelism, for example to less than an
hour on 8 GPUs. Once the model is trained, it takes less
than a minute on one GPU to downscale 3 months of coarse-
resolution precipitation data. Both training and inference for
downscaling can be further accelerated using purposely built
AI systems (Liu et al., 2021; Abeykoon et al., 2019) when
dealing with large datasets, e.g., downscaling variables of the
Energy Exascale Earth System Model (E3SM Project, DOE,
2018, 2020) for higher spatial–temporal resolution.

2.7 Evaluation metrics

We compare the 12 km precipitation field generated by the
CNN models against two different sets of WRF precipita-
tion outputs: one from WRF run at a grid spacing of 12 km
(referred to as Ground Truth), and a second generated by in-
terpolating output from a 50 km run to 12 km (referred to as
Interpolator). We use the 12 km WRF modeled precipitation
as Ground Truth because the CNNs are designed to achieve
the performance of these data by approximating the relation-
ship between coarse- and fine-resolution precipitation data.
We examine the statistical distribution of precipitation using
MSE and the probability density function (PDF) by aggregat-
ing all the grid cells over CONUS and smaller regions. MSE
is computed for each time step for the testing period:

`mse =
1
N

N∑
i=1

(
YH
i −Gθ

(
Y L
i

))2
, (2)

where N is the total number of grid cells over the study do-
main, and YH

i and Y L
i are the precipitation at grid cell (i)

simulated by WRF at high (12 km) and low (50 km) resolu-
tion respectively. YH

i is used as Ground Truth in this case.Gθ
is the deep neural network parameterized with θ that mod-
els the relationship between low- and high-resolution simula-
tions. We calculate the MSE across CONUS and also in each
of seven subregions defined by the National Climate Assess-

ment (NCA; Melillo et al., 2014), as shown in Fig. 6 (lower
right).

To measure the similarity between the PDFs of Ground
Truth, Interpolator, and the CNN models, we employ the
Jensen–Shannon (J–S) distance (Osterreicher and Vajda,
2003; Endres and Schindelin, 2003), which measures the dis-
tance between two probability distributions. The J–S distance
is computed by

JSD(P,Q)=

√
D(P ||M)+D(Q||M)

2
, (3)

where P and Q are the two probability distributions to be
evaluated (i.e., distribution of RCM-simulated 12 km and
CNN-downscaled 12 km precipitation, respectively), M is
the mean of P and Q, and D is the Kullback–Leibler di-
vergence (Kullback and Leibler, 1951) calculated with

D(P ||M)=
∑
x∈X

P(x) log
(
P(x)

M(x)

)
, (4)

where x is the bin we apply for the PDFs; here x =

0,1,2, . . .,30. We calculated the J–S distance (ranges from
0 to 1) between PDFs of the five CNN predictions and
Ground Truth, with small (large) distance indicating that
the CNN predictions have similar (different) distributions
to Ground Truth. The J–S distance takes into account not
only the median or the mean but also the entire distribu-
tion including the scale and the tails, which is important be-
cause variability changes are equally important, especially
for threshold-defined extremes, whose frequency is more
sensitive to changes (Vitart et al., 2012).

We also investigate the geospatial pattern of J–S distance,
as well as mean, standard deviation, and extreme values of
precipitation over time. To measure whether the CNN mod-
els capture the spatial variability in these values of Ground
Truth, we calculate the pattern correlations between each pair
of the data, namely, Ground Truth versus Interpolator and
Ground Truth versus each of the CNN models. Higher cor-
relation indicates that the spatial variability in Ground Truth
due to local effects (e.g., terrain) and synoptic-scale circula-
tions are captured well by Interpolator and the CNN models.

While these metrics examine precipitation either at the
level of individual model grid cells or at a regional scale by
aggregating all the information together into one metric, they
cannot determine model performance in rainstorm character-
istics such as frequency, duration, intensity, and size of indi-
vidual events. This information is all confounded in local or
spatially aggregated time series. To overcome this limitation,
we use a feature-tracking algorithm developed for rainstorm
objects in particular (fully described in Chang et al., 2016),
and we identify events using information from the precipita-
tion field only. The algorithm applies almost-connected com-
ponent labeling in a four-step process to reduce the influence
of the chaining effect and allow grouping of physically rea-
sonable events. The algorithm accounts for splits in individ-
ual events during their evolution and does not require that all
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Figure 6. PDFs from Ground Truth, Interpolator, and CNN-predicted precipitation calculated based on grid cells and time steps over CONUS
and seven subregions. The subregions are based on those used in the national climate assessment: Northeast (NE), Southeast (SE), Midwest
(MW), Southwest (SW), Northwest (NW), Northern Great Plains (NGP), and Southern Great Plains (SGP).

precipitation be contiguous. In principle, such methods can
decompose precipitation bias and distinguish between biases
in the duration, intensity, size, and number of events. The du-
ration of each event, in units of time steps, is

D = Te− Tb+ 1, (5)

where Tb and Te are the beginning and ending time step, re-
spectively. The lifetime mean size Slife for an individual pre-
cipitation event is calculated as the sum of the entire area (in
km2; derived by number of grid cells×144) associated with
an event over its lifetime divided by D. The lifetime mean
precipitation intensity is calculated by

Ilife =
Vtot

Slife
, (6)

where Vtot is the total precipitation volume (in m3; derived
by amount×144000) over the event lifetime.

3 Results

We now evaluate the efficacy of the five CNN methods by
comparing their predictions with the original WRF output
at a grid spacing of 12 km (Ground Truth), the output of a
12 km bilinear interpolation from the 50 km data (Interpola-
tor), and the state-of-the-art SR-CGAN model output. We ex-
pect some of the CNN models developed by this study to gen-
erate more accurate results than Interpolator and SR-CGAN

when using the same coarse-resolution RCM-modeled pre-
cipitation as input, because our CNN models are developed
to approximate the relationship between the coarse- and the
fine-resolution precipitation data.

3.1 MSE

Table 2 summarizes the MSE comparing the CNN-predicted
precipitation with Ground Truth and Interpolator for the 50th
and 99th percentiles picked from the testing period. The SR-
CGAN model in general shows similar MSE to that of Inter-
polator, while the Simple models show smaller MSEs than
that of Interpolator over several regions especially for the
99th percentile of the precipitation. There are many time
steps and regions for which Direct-CGAN and Encoded-
CGAN show larger MSEs than Interpolator and Simple mod-
els. The reason is that the Simple models are trained specif-
ically to optimize this content-based loss, resulting in fields
that are safer – that is, overly smoothed predictions of high-
resolution precipitation. The CGAN models, in contrast,
change the landscape of the loss function by adding the ad-
versarial term to the L1-norm (Eq. 1), which is more physi-
cally consistent with the training data, and by inserting sig-
nificantly more small-scale features that better represent the
nature of the true precipitation fields. However, these features
also cause the high-resolution fields to deviate from Ground
Truth in an MSE sense since they cannot be inferred from the
low-resolution input.
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Table 2. MSEs (mm/3 h), calculated across all grid cells over the entire CONUS and seven subregions (Eq. 2), at the 50th and 99th percentiles
picked from all time steps. The MSEs of the CGAN models are not necessarily smaller than those of the Simple models, especially for heavier
precipitation, which has larger MSEs.

CONUS Southwest Northeast Midwest S Great Pl. Northwest N Great Pl. Southeast

Interpolator 0.242, 1.07 0.065, 2.26 0.038, 4.94 0.043, 4.35 0.004, 4.22 0.173, 3.3 0.062, 2.44 0.032, 4.41
SR-CGAN 0.251, 1.01 0.067, 2.13 0.033, 5.73 0.041, 4.49 0.004, 4.27 0.162, 3.01 0.065, 2.75 0.031, 5.4
Direct-Simple 0.201, 0.96 0.061, 1.45 0.044, 4.0 0.046, 3.82 0.007, 3.51 0.165, 2.75 0.052, 2.3 0.033, 4.27
Encoded-Simple 0.206, 1.03 0.058, 1.8 0.036, 4.57 0.04, 4.26 0.004, 4.73 0.171, 2.74 0.052, 2.29 0.033, 4.81
Direct-CGAN 0.21, 1.05 0.058, 1.93 0.036, 4.87 0.044, 4.81 0.003, 4.74 0.168, 3.27 0.055, 2.44 0.029, 4.95
Encoded-CGAN 0.223, 1.03 0.062, 1.87 0.037, 4.3 0.04, 4.62 0.003, 5.4 0.155, 3.02 0.055, 2.86 0.029, 5.79

3.2 Probability density function

To better validate that Direct-CGAN and Encoded-CGAN
have learned the appropriate distribution for the precipita-
tion data, we assess the PDFs of precipitation for the five
CNN models across all time steps over the entire CONUS
and the seven subregions. For a certain region, we take
into account all the grid cells and the time steps (with-
out any averages in space or time) for the density function.
As shown in Fig. 6, Ground Truth usually has longer tails
than Interpolator and SR-CGAN have. SR-CGAN shows al-
most identical distribution to Interpolator, with smaller den-
sities for the large precipitation than Ground Truth, and
larger J–S distance from Ground Truth compared with the
four new CNN models developed here. According to the
J–S distance (Table 3), Direct-Simple and Encoded-Simple
show closer distributions to Ground Truth than Interpola-
tor and SR-CGAN do over some subregions such as South-
west, Northeast, Southern Great Plains, and Northwest, but
they are still similar to or even worse than Interpolator over
other regions, underestimating the heavier precipitation over
the Northern Great Plains, Midwest, and Southeast. Direct-
CGAN and Encoded-CGAN produce better precipitation dis-
tributions over these three subregions and show smaller J–
S distance from Ground Truth than Interpolator, SR-CGAN,
and the Simple models. This finding indicates that although
Direct-Simple and Encoded-Simple obtain lower grid-cell-
wise error than Direct-CGAN and Encoded-CGAN do, they
cannot capture the small-scale features (i.e., local extremes
in time and space) that better represent the nature of the pre-
cipitation fields. In fact, we also investigate the differences
in the lower part of the PDFs and find that Direct-CGAN
and Encoded-CGAN are closer to Ground Truth than Inter-
polator, SR-CGAN, and the Simple models over many sub-
regions.

3.3 Geospatial analysis of other measures

To investigate whether the five CNNs can capture the geospa-
tial pattern of PDF distributions, mean, standard deviation,
and top 5 % precipitation seen in the Ground Truth, we con-
duct geospatial evaluations of these measures because they

assess the performance of CNNs in a more accurate manner.
For example, if the location of a heavy precipitation event is
misrepresented in the CNN predictions, bias can be seen in
geospatial maps but not in the PDF plot for a specific region
(Fig. 6).

First, we present J–S distance maps which quantify the
similarity of the PDFs (based on time series) over each grid
cell between Ground Truth and the six predictive models.
As shown in Fig. 7, Interpolator and SR-CGAN show sim-
ilar J–S distance from Ground Truth with larger values over
Northwest and Southeast. The Simple models show larger J–
S distance from Ground Truth than Interpolator, SR-CGAN
and the CGAN models do. Encoded-CGAN shows the small-
est J–S distance from Ground Truth among the six predictive
models, indicating it captures the precipitation distribution
more accurately than other approaches do.

Second, we compare the mean state of precipitation for
each dataset over all the grid cells. As shown in Fig. 8, Inter-
polator shows a smoother precipitation pattern than Ground
Truth does, with underestimation of heavy precipitation over
the very northwestern part of CONUS, and overestimation of
relatively light precipitation over other regions. SR-CGAN
shows almost the same spatial pattern as Interpolator does.
The fine-scale features added by SR-CGAN do not seem to
help improve the underestimation of precipitation over the
very Northwest. The pattern correlations between Ground
Truth and Interpolator and between Ground Truth and SR-
CGAN are also similar (0.866 and 0.871). The Simple mod-
els generate smaller-scale features, which are especially seen
over the very Northwest, and the bias in precipitation along
the western coast are smaller than in Interpolator and SR-
CGAN. The pattern correlation between Ground Truth and
Direct-Simple and that between Ground Truth and Encoded-
Simple are improvements over Interpolator from 0.866 to
0.937 and 0.945, respectively. However, there is still an un-
derestimation of high values (> 1.7 mm) over Northwest.
The precipitation patterns over the central and eastern United
States generated by the Simple models are similar to those of
Interpolator and SR-CGAN, with overestimation of light pre-
cipitation (0.1–0.5 mm) over southeastern and northeastern
states such as Louisiana and Mississippi. The Direct-CGAN
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Table 3. J–S distance (Eq. 3) measuring the similarity of the PDFs between Ground Truth and six predictive models (Interpolator and
CNN-based models) over CONUS and seven subregions.

CONUS Southwest Northeast Midwest S Great Plains Northwest N Great Plains Southeast

Interpolator 0.164 0.325 0.241 0.229 0.210 0.372 0.275 0.151
SR-CGAN 0.162 0.325 0.174 0.219 0.187 0.348 0.255 0.150
Direct-Simple 0.200 0.275 0.069 0.293 0.149 0.247 0.336 0.188
Encoded-Simple 0.166 0.208 0.083 0.149 0.038 0.168 0.305 0.160
Direct-CGAN 0.081 0.209 0.138 0.130 0.152 0.202 0.239 0.103
Encoded-CGAN 0.039 0.107 0.187 0.069 0.115 0.060 0.271 0.125

Figure 7. J–S distance (Eq. 3) measuring the similarity of the PDFs between Ground Truth and six predictive models for the testing period
(October–December).

shows smaller precipitation bias than the Simple models
do over Northwest; and both Direct-CGAN and Encoded-
CGAN show smaller precipitation bias than Interpolator, SR-
CGAN, and Simple models do over the Great Plains and the
southeastern states. The pattern correlation between Ground

Truth and Direct-CGAN and that between Ground Truth and
Encoded-CGAN are improved over Interpolator from 0.866
to 0.943 and 0.951, respectively. The improvements of the
pattern correlation by the CGAN models indicate that they
can better capture the spatial variability of the mean precip-
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Table 4. Pattern correlations between Ground Truth and six predic-
tive models (Interpolator and the CNN-based models).

Mean SD Top 5

Interpolator 0.866 0.845 0.861
SR-CGAN 0.871 0.836 0.854
Direct-Simple 0.937 0.915 0.928
Encoded-Simple 0.945 0.916 0.929
Direct-CGAN 0.943 0.903 0.922
Encoded-CGAN 0.951 0.912 0.930

itation shown in Ground Truth than Interpolator and other
CNN models do.

Next, we investigate the performance of the five CNN
models for capturing higher-order statistics of precipitation,
such as standard deviation and top 5 % precipitation, since
climate modeling is as much concerned with variability as
with mean values. In Ground Truth the precipitation during
October to December over the northwestern coast shows a
standard deviation up to 2 mm every 3 h, the largest across
the entire CONUS area. Standard deviation over the east-
ern United States is also large (1–1.7 mm), while that over
Southwest is the smallest because this time period is usu-
ally very dry. All CNN models capture the geospatial pattern
of standard deviation, with the largest value over the north-
western coast, followed by moderate value over the eastern
United States and the smallest value over Southwest. How-
ever, as shown in Fig. 9, Interpolator and SR-CGAN show
similar patterns (with pattern correlations with Ground Truth
of 0.845 and 0.836, respectively) and underestimate the pre-
cipitation variability over the very northwestern coast, espe-
cially along the western coast of Washington and Oregon.
The four new CNN models developed in this study improve
the standard deviation over Northwest. The pattern correla-
tion between Ground Truth and four CNN models are also
improved to greater than 0.9 (Table 4), indicating that the
new CNN models capture not only the precipitation variabil-
ity along the time over each grid cell but also the spatial vari-
ability of the standard deviation.

Last, we evaluate the model performance in the top 5 %
precipitation (averaged across 95th percentile to the maxi-
mum) during the testing period. The northwestern coast of
Washington and Oregon and northern California have heavy
precipitation, up to 10 mm every 3 h, and some southern
states as well as the East Coast have precipitation up to 7 mm
every 3 h. As shown by Fig. 10, Interpolator and SR-CGAN
underestimate the large precipitation over both the north-
western and the eastern coast of United States; but they over-
estimate the relatively small precipitation over several south-
ern states, indicating a spatially smooth precipitation pattern.
All four CNN models developed here improve the precipita-
tion amount over northern California and over western Ore-
gon and Washington. The spatial variability of the top 5 %

precipitation is also improved by the four new CNN models,
with pattern correlation increases from 0.861 by Interpolator
to 0.92–93 by the new CNN models.

We also study the geospatial pattern of the 70th to 99th
percentiles of all the CNN-predicted precipitation by com-
paring with Ground Truth and Interpolator. The new CNNs
consistently outperform Interpolator and SR-CGAN and per-
form well for increasingly extreme precipitation events, ex-
cept for the most extreme (> 97th). Compared with Interpo-
lator, the Simple models clearly reduce the MSE and improve
the pattern correlations, especially for percentiles higher than
the 80th. In particular, Encoded-Simple outperforms Direct-
Simple. Direct-CGAN and Encoded-CGAN further improve
the pattern correlations over the Simple models and show the
best match to the Ground Truth in terms of the spatial vari-
abilities of the extreme precipitation.

3.4 Event-based precipitation characteristics

We investigate how well our different CNN models do at
identifying and tracking precipitation events. To focus on
events that are relevant to actual impact, we identify and track
the precipitation events after removing grid cells with precip-
itation less than 10 mm every 3 h. First, we count the number
of such events produced by each model during the testing pe-
riod. We find 148 events in Ground Truth, 43 events in Inter-
polator, 57 events in SR-CGAN, 33 events in Direct-Simple,
69 events in Encoded-Simple, 57 events in Direct-CGAN,
and 84 events in Encoded-CGAN. Thus, while Encoded-
CGAN does the best, all models greatly underestimate the
number of events.

To examine how well different models capture the charac-
teristics of the storms seen in Ground Truth, we track the life
cycle of storm events in each CNN prediction to determine
the total volume, duration, lifetime mean size, and lifetime
mean intensity of each event. We bin each of these charac-
teristics and calculate their frequencies, giving the results in
Fig. 11. Looking first at precipitation intensity, we see that
Ground Truth has intense precipitation events at greater than
11 mm every 3 h. While not captured by Interpolator, SR-
CGAN, or Direct-Simple, this phenomenon is captured by
Encoded-Simple and Encoded-CGAN. This finding again in-
dicates that the new CNN-based downscaling approach, es-
pecially when trained by CGAN, is useful for generating in-
tense precipitation, while Interpolator and the state-of-the-art
SR-CGAN tend to generate weaker precipitation events and
cannot capture these strong events sufficiently.

Looking next at duration, we see that while all the mod-
els capture the most frequent short-term events (0–3 h), SR-
CGAN and Direct-Simple are not able to capture the longer-
term events. For lifetime mean size, the new CNN models
tend to produce more larger events but fewer smaller events
than are seen in Ground Truth. Looking at total volume of
precipitation, we see that because the four CNN models tend
to have more intense, larger, and longer-duration events than
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Figure 8. The differences (predictive models vs. Ground Truth) of mean precipitation (mm/3 h) produced by Ground Truth, Interpolator, and
five CNN models for the testing period (October–December).

Interpolator and SR-CGAN have, they show larger precip-
itation volumes more frequently than Interpolator and SR-
CGAN, and overall they capture the large-volume precipita-
tion events better in Ground Truth. However, the four new
CNN models – and, in particular, the CGAN models – do not
show as frequent smaller-volume precipitation events as seen
in Ground Truth. These small-volume precipitation events
are captured well in Interpolator and SR-CGAN.

4 Summary and discussion

This study develops a new CNN-based approach for down-
scaling precipitation from coarse-spatial-resolution RCMs.
The downscaling approach is not constrained by the avail-
ability of observational data and can be applied to coarse-
resolution simulation outputs to generate high-resolution

precipitation maps with statistical properties (e.g., quan-
tiles, including extremes and data variability) comparable to
those seen in high-resolution RCM outputs. Because both the
coarse-resolution simulations and neural network inferences
are relatively inexpensive, our approach can greatly acceler-
ate the process of generating such simulated high-resolution
precipitation maps.

Our approach is different from the super-resolution ap-
proach to downscaling taken by previous studies. Our CNNs
are developed by using two datasets that are generated by two
sets of RCM simulations run at different spatial resolutions.
The resulting precipitation differs not only in resolution but
also sometimes in geospatial patterns. One of the reasons
is that the high-resolution modeling handles the topographic
and scale-dependent physical processes (e.g., resolved scale
convection, boundary layer phenomena, and parameterized
clouds) better than the low-resolution modeling. In addition,
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Figure 9. The differences (predictive models vs. Ground Truth) in standard deviation of precipitation (mm/3 h) produced by Ground Truth,
Interpolator, and five CNN models for the testing period (October–December).

the slightly different model domain coverage and the signif-
icantly different computing time steps can cause differences
in precipitation fields. To mitigate the challenge of learning
the relationship between the low- and high-resolution simu-
lations when precipitation occurs in different locations, we
use an inception module in the neural network to learn in-
formation from not only a target grid cell but also its sur-
roundings (so-called receptive fields) in previous layers and
generate data for that particular grid cell for the next layer. In
addition, we employ the CGAN framework, which can help
the CNN generate more physically realistic small-scale fea-
tures and sharp gradients for precipitation in space.

We compare the new CNN-derived precipitation with pre-
cipitation generated from Interpolator, which simply per-
forms bilinear interpolation from coarse- to fine-resolution
data, and that from the state-of-the-art SR-CGAN against
Ground Truth. While Interpolator and SR-CGAN perform

similarly, they are not as accurate as any of the four CNN
methods when compared with Ground Truth, with overly
smooth spatial precipitation patterns and underestimation of
heavy precipitation. In contrast, the two new CGAN-trained
CNNs produce the desired heavy-tailed shape, contributed by
more intense and longer-lasting precipitation events that are
in much better agreement with Ground Truth. In particular,
when the CNN encoder is applied to the input variables, the
output more accurately captures the spatial variabilities. To
investigate whether the improvement of Encoded models is
due to the larger number of parameters or the model architec-
ture, we conducted another experiment by adding one more
inception box (so do encoder layers) to Direct-CGAN so that
its parameters are similar to those of Encoded-CGAN. Re-
sults show that the MSE of this larger-sized Direct-CGAN
is close to the original Direct-CGAN, indicating that even
with a larger number of parameters, the performance of
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Figure 10. The differences (predictive models vs. Ground Truth) in the top 5 % (averaged across the 95th percentile to maximum) of the
precipitation amount (mm/3 h) during the testing period (October–December).

Direct-CGAN is still the same. Therefore, the improvement
of Encoded-CGAN compared with Direct-CGAN over many
subregions is most likely due to the neural network architec-
ture and not the larger number of parameters. The findings of
this study suggest that simply interpolating the coarse reso-
lution or even using the state-of-the-art SR technique to gen-
erate fine-resolution data cannot capture the statistical distri-
bution of precipitation.

The capability of generating high-resolution precipitation
by using the technique developed in this study immediately
suggests several interesting uses. For example, we can apply
the CNN models to the outputs from the North American Re-
gional Climate Change Assessment Program (NARCCAP;
Mearns et al., 2012) or North American Coordinated Re-
gional Climate Downscaling Experiments (NA-CORDEX;
Mearns et al., 2017), both of which comprise multimodel
50 km WRF ensembles, to generate high-resolution precip-

itation data for uncertainty quantification in future projec-
tions. We also believe that the CNN models can be used to
downscale output from a different RCM than that used to
train the models, if that other RCM uses similar principal
governing equations for simulated precipitation.

Although the CNNs that we have described here show
promise, several limitations remain to be addressed. For ex-
ample, we train the CNN with just 9 months of data and
test on the other 3 months of the same year. If we can train
the CNN with multiple years of data that more fully cap-
ture the interannual variability, the algorithm might perform
more robustly when applied to a new dataset. On the other
hand, if we conduct both training and testing for a differ-
ent year (e.g., use first 9 months for training, and the rest
for testing), we expect the conclusion will be similar to what
we draw from this study. It is possible though, that we may
end up with a slightly different set of hyperparameters that
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Figure 11. Relative frequency (as %) of certain event-based precipitation characteristics: (a) lifetime mean intensity, mm/3 h; (b) duration in
(3 h) time steps; (c) lifetime mean size, km2 (x axis is in log); and (d) total volume, m3 (x axis is in log), during event lifetime.

achieves the best results. This will require careful tuning and
testing of the model development. Another limitation is that
our current CNN architecture does not consider dependen-
cies between time steps; instead, it processes images for each
time step independently. Therefore, the CNN output cannot

capture temporal (here, 3-hourly) variations in precipitation
data. However, the CNNs do capture the overall data vari-
ability and extremes over each grid cell, with improvements
compared with Interpolator. Thus, peaks occurring at certain
times in Ground Truth may not be captured by the CNN pre-
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dictions, but the CNNs may have peaks with similar mag-
nitudes at other times. While this performance is not satis-
fied in weather forecasting, it is acceptable for climate-scale
simulations. In fact, in climate science the preference is to
compare the statistical distribution of weather events (e.g.,
climate) rather than actual day-to-day weather. Nevertheless,
time dependencies in data can be important; weather propa-
gates in time, and ideally precipitation should not be treated
independently.

Other studies have used a recurrent neural network struc-
ture (Leinonen et al., 2020) to permit generated outputs to
evolve in time in a consistent manner, so that the GAN gen-
erator can model the time evolution of fields and the dis-
criminator can evaluate the plausibility of image sequences
rather than single images. The 3-hourly data that we use in
this study are potentially too coarse to consider time depen-
dencies: short-duration events may disappear between time
steps, and even for long-duration events, and 3 h may be too
long to capture a smooth transition from one time step to the
next, as preferred by the learning process. The other chal-
lenge is that once the time dimension is considered, the ma-
trix will be three-dimensional, which requires significantly
larger computer memory. We plan to explore higher time–
frequency dynamical downscaling simulations on more ad-
vanced GPU machines.

Code and data availability. The source code is avail-
able at https://github.com/lzhengchun/dsgan (last access:
18 October 2021; https://doi.org/10.5281/zenodo.4730538,
Liu, 2021). The data used in this study are available at
https://doi.org/10.5281/zenodo.4298978 (Wang et al., 2020).

Author contributions. JW participated in the entire project by pro-
viding domain expertise and analyzing the results from the CNNs.
ZL designed, developed, and conducted all deep learning experi-
ments. WC conducted event-based analysis. IF, RK, and VRK pro-
posed the idea of this project and provided high-level guidance and
insight for the entire study.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This material is based upon work supported
by the U.S. Department of Energy, Office of Science, under con-
tract DE-AC02-06CH11357, and was supported by a Laboratory
Directed Research and Development (LDRD) Program at Argonne
National Laboratory through U.S. Department of Energy (DOE)

contract DE-AC02-06CH11357. Zhengchun Liu was also partially
supported by the Robust Analytic Models for Science at Extreme
Scales project under the Advanced Scientific Computing Research
program.

Financial support. This research has been supported by the
Biological and Environmental Research (grant no. DE-AC02-
06CH11357).

Review statement. This paper was edited by Simone Marras and re-
viewed by two anonymous referees.

References

Abeykoon, V., Liu, Z., Kettimuthu, R., Fox, G., and Foster, I.: Sci-
entific image restoration anywhere, in: 2019 IEEE/ACM 1st An-
nual Workshop on Large-scale Experiment-in-the-Loop Comput-
ing (XLOOP), Denver, Colorado, November 2019, IEEE, 8–13,
2019.

Barrett, A. I., Wellmann, C., Seifert, A., Hoose, C., Vogel, B., and
Kunz, M.: One step at a time: How model time step significantly
affects convection-permitting simulations, J. Adv. Model. Earth
Sy., 11, 641–658, 2019.

Bretherton, C. S. and Khairoutdinov, M. F.: Convective self-
aggregation feedbacks in near-global cloud-resolving simula-
tions of an aquaplanet, J. Adv. Model. Earth Sy., 7, 1765–1787,
2015.

Chang, W., Stein, M. L., Wang, J., Kotamarthi, V. R., and Moyer,
E. J.: Changes in spatiotemporal precipitation patterns in chang-
ing climate conditions, J. Climate, 29, 8355–8376, 2016.

Chang, W., Wang, J., Marohnic, J., Kotamarthi, V. R., and Moyer,
E. J.: Diagnosing added value of convection-permitting regional
models using precipitation event identification and tracking,
Clim. Dynam., 55, 175–192, 2020.

Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in
climate change projections: The role of internal variability, Clim.
Dynam., 38, 527–546, 2012.

Dong, C., Loy, C. C., He, K., and Tang, X.: Learning a deep convo-
lutional network for image super-resolution, in: European Con-
ference on Computer Vision, Springer, 184–199, 2014.

E3SM Project, DOE: Energy Exascale Earth Sys-
tem Mode v1.0, E3SM Project, DOE [code],
https://doi.org/10.11578/E3SM/dc.20180418.36, 2018.

E3SM Project, DOE: Energy Exascale Earth Sys-
tem Model v1.2.1, E3SM Project, DOE [code],
https://doi.org/10.11578/E3SM/dc.20210309.1, 2020.

Endres, D. M. and Schindelin J. E.: A new metric for proba-
bility distributions, IEEE T. Inform. Theory, 49, 1858–1860,
https://doi.org/10.1109/TIT.2003.813506, 2003.

Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate
change modelling to impacts studies: Recent advances in down-
scaling techniques for hydrological modelling, Int. J. Climatol.,
27, 1547–1578, 2007.

Geiss, A. and Hardin, J. C.: Radar super resolution using a deep
convolutional neural network, J. Atmos. Ocean. Tech., 37, 2197–
2207, 2020.

Geosci. Model Dev., 14, 6355–6372, 2021 https://doi.org/10.5194/gmd-14-6355-2021

https://github.com/lzhengchun/dsgan
https://doi.org/10.5281/zenodo.4730538
https://doi.org/10.5281/zenodo.4298978
https://doi.org/10.11578/E3SM/dc.20180418.36
https://doi.org/10.11578/E3SM/dc.20210309.1
https://doi.org/10.1109/TIT.2003.813506


J. Wang et al.: Fast and accurate learned precipitation downscaling 6371

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., and Bengio, Y.: Generative adversar-
ial nets, Adv. Neur. In., 2672–2680, 2014.

Gutowski Jr., W. J., Ullrich, P. A., Hall, A., Leung, L. R., O’Brien,
T. A., Patricola, C. M., Arritt, R., Bukovsky, M., Calvin, K.,
Feng, Z., Jones, A. D., Kooperman, G. J., Monier, E., Pritchard,
M. S., Pryor, S. C., Qian, Y., Rhoades, A. M., Roberts, A. F.,
Sakaguchi, K., Urban, N., and Zarzycki, C.: The ongoing need
for high-resolution regional climate models: Process understand-
ing and stakeholder information, B. Am. Meteorol. Soc., 101,
E664–E683, 2020.

Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in
regional climate predictions, B. Am. Meteorol. Soc., 90, 1095–
1108, 2009.

Heavens, N. G., Ward, D. S., and Natalie, M.: Studying and project-
ing climate change with earth system models, Nature Education
Knowledge, 4, p. 4, 2013.

Kirchmeier-Young, M., Gillett, N., Zwiers, F., Cannon, A., and
Anslow, F.: Attribution of the influence of human-induced cli-
mate change on an extreme fire season, Earths Future, 7, 2–10,
2019.

Komurcu, M., Emanuel, K., Huber, M., and Acosta, R.: High-
resolution climate projections for the northeastern United States
Using dynamical downscaling at convection-permitting scales,
Earth and Space Science, 5, 801–826, 2018.

Kullback, S. and Leibler, R. A.: On information
and sufficiency, Ann. Math. Stat., 22, 79–86,
https://doi.org/10.1214/aoms/1177729694, 1951.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based
learning applied to document recognition, P. IEEE, 86, 2278–
2324, 1998.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521,
436–444, 2015.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A.,
Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W.:
Photo-realistic single image super-resolution using a generative
adversarial network, in: IEEE Conference on Computer Vision
and Pattern Recognition, Honolulu, Hawaii, 4681–4690, 2017.

Legates, D. R.: Climate models and their simulation of precipita-
tion, Energy and Environment, 25, 1163–1175, 2014.

Leinonen, J., Nerini, D., and Berne, A.: Stochastic super-resolution
for downscaling time-evolving atmospheric fields with a gen-
erative adversarial network, arXiv [preprint], arXiv:2005.10374,
2020.

Liu, Z.: lzhengchun/DSGAN: first public/archived version, V1.0.2,
Zenodo [code], https://doi.org/10.5281/zenodo.4730538, 2021.

Liu, Z., Bicer, T., Kettimuthu, R., and Foster, I.: Deep learning ac-
celerated light source experiments, in: 2019 IEEE/ACM Third
Workshop on Deep Learning on Supercomputers (DLS), IEEE,
20–28, Denver, Colorado, November 2019.

Liu, Z., Bicer, T., Kettimuthu, R., Gursoy, D., De Carlo, F., and
Foster, I.: TomoGAN: low-dose synchrotron x-ray tomography
with generative adversarial networks: discussion, JOSA A, 37,
422–434, 2020a.

Liu, Z., Sharma, H., Park, J.-S., Kenesei, P., Almer, J., Kettimuthu,
R., and Foster, I.: BraggNN: Fast X-ray Bragg Peak Analysis Us-
ing Deep Learning, arXiv [preprint], arXiv:2008.08198, 18 Au-
gust 2020b.

Liu, Z., Ali, A., Kenesei, P., Miceli, A., Sharma, H., Schwarz,
N., Trujillo, D., Yoo, H., Coffee, R., Herbst, R., Thayer, J.,
Yoon, C. H., and Foster, I.: Bridge Data Center AI Systems with
Edge Computing for Actionable Information Retrieval, arXiv
[preprint], arXiv:2105.13967, 28 May 2021.

Maraun, D., Wetterhall, F., Ireson, A., Chandler, R., Kendon, E.,
Widmann, M., Brienen, S., Rust, H., Sauter, T., Themeßl, M.,
Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G.,
Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscal-
ing under climate change: Recent developments to bridge the gap
between dynamical models and the end user, Rev. Geophys., 48,
RG3003, https://doi.org/10.1029/2009RG000314, 2010.

Mearns, L., McGinnis, S., Korytina, D., Arritt, R., Biner, S.,
Bukovsky, M., Chang, H.-I., Christensen, O., Herzmann, D.,
Jiao, Y., Kharin, S., Lazare, M., Nikulin, G., Qian, M., Scinocca,
J., Winger, K., Castro, C., Frigon, A., and Gutowski, W.: The
NA-CORDEX dataset, version 1.0, NCAR Climate Data Gate-
way, Boulder CO, https://doi.org/10.5065/D6SJ1JCH, 2017.

Mearns, L. O., Arritt, R., Biner, S., Bukovsky, M. S., McGinnis, S.,
Sain, S., Caya, D., Correia Jr, J., Flory, D., Gutowski, W., , Takle,
E. S., Jones, R., Leung, R., Moufouma-Okia, W., McDaniel, L.,
Nunes, A. M. B., Qian, Y., Roads, J., Sloan, L., and Snyder, M.:
The North American regional climate change assessment pro-
gram: Overview of phase I results, B. Am. Meteorol. Soc., 93,
1337–1362, 2012.

Melillo, J. M., Richmond, T., and Yohe, G. W.: Climate change im-
pacts in the United States: The Third National Climate Assess-
ment, Tech. rep., U.S. Global Change Research Program, 841
pp., https://doi.org/10.7930/J0Z31WJ2, 2014.

Mezghani, A., Dobler, A., Benestad, R., Haugen, J. E., Parding,
K. M., Piniewski, M., and Kundzewicz, Z. W.: Subsampling im-
pact on the climate change signal over Poland based on simula-
tions from statistical and dynamical downscaling, J. Appl. Mete-
orol. Clim., 58, 1061–1078, 2019.

Miguez-Macho, G., Stenchikov, G. L., and Robock, A.: Spectral
nudging to eliminate the effects of domain position and geome-
try in regional climate model simulations, J. Geophys. Res., 109,
D13104, ]doi10.1029/2003JD004495, 2004.

Mirza, M. and Osindero, S.: Conditional generative adversarial nets,
arXiv [preprint], arXiv:1411.1784, 6 November 2014.

Miyamoto, Y., Kajikawa, Y., Yoshida, R., Yamaura, T., Yashiro, H.,
and Tomita, H.: Deep moist atmospheric convection in a subkilo-
meter global simulation, Geophys. Res. Lett., 40, 4922–4926,
2013.

Osterreicher, F. and Vajda, I.: A new class of metric divergences on
probability spaces and its applicability in statistics, Ann. I. Stat.
Math., 55, 639–653, 2003.

Prein, A. F., Rasmussen, R. M., Wang, D., and Giangrande, S. E.:
Sensitivity of organized convective storms to model grid spac-
ing in current and future climates, Philos. T. Roy. Soc. A, 379,
20190546, https://doi.org/10.1098/rsta.2019.0546, 2021.

Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic
atmospheric model for weather research and forecasting applica-
tions, J. Comput. Phys., 227, 3465–3485, 2008.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Wang, W., and Powers, J. G.: A description of the
advanced research WRF version 2, Tech. rep., NCAR/TN-
468+STR, 88 pp., National Center For Atmospheric Research
Boulder, 2005.

https://doi.org/10.5194/gmd-14-6355-2021 Geosci. Model Dev., 14, 6355–6372, 2021

https://doi.org/10.1214/aoms/1177729694
https://arxiv.org/abs/2005.10374
https://doi.org/10.5281/zenodo.4730538
https://arxiv.org/abs/2008.08198
https://arxiv.org/abs/2105.13967
https://doi.org/10.1029/2009RG000314
https://doi.org/10.5065/D6SJ1JCH
https://doi.org/10.7930/J0Z31WJ2
https://arxiv.org/abs/1411.1784
https://doi.org/10.1098/rsta.2019.0546


6372 J. Wang et al.: Fast and accurate learned precipitation downscaling

Stengel, K., Glaws, A., Hettinger, D., and King, R. N.: Adversarial
super-resolution of climatological wind and solar data, P. Natl.
Acad. Sci. USA, 117, 16805–16815, 2020.

Stouffer, R., Eyring, V., Meehl, G., Bony, S., Senior, C., Stevens,
B., and Taylor, K.: CMIP5 scientific gaps and recommendations
for CMIP6, B. Am. Meteorol. Soc., 98, 95–105, 2017.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A.: Going deeper
with convolutions, in: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015, 1–9, https://doi.org/10.1109/CVPR.2015.7298594, 2015.

Tian, J. and Ma, K.-K.: A survey on super-resolution imaging, Sig-
nal Image Video P., 5, 329–342, 2011.

Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R.,
and Ganguly, A. R.: DeepSD: Generating high resolution cli-
mate change projections through single image super-resolution,
in: 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax NS Canada, 1663–1672,
13–17 August 2017.

Vitart, F., Robertson, A. W., and Anderson, D. L.: Subseasonal to
Seasonal Prediction Project: Bridging the gap between weather
and climate, Bulletin of the World Meteorological Organization,
61, 23–28, 2012.

Wang, J., Swati, F., Stein, M. L., and Kotamarthi, V. R.: Model per-
formance in spatiotemporal patterns of precipitation: New meth-
ods for identifying value added by a regional climate model, J.
Geophys. Res.-Atmos., 120, 1239–1259, 2015.

Wang, J., Liu, Z., Foster, I., Kettimuthu, R., and Kotamarthi, R.:
WRF data for downscaling, used in Learned multi-resolution
dynamical downscaling for precipitation, Zenodo [data set],
https://doi.org/10.5281/zenodo.4298978, 2020.

Wang, Y., Sivandran, G., and Bielicki, J. M.: The stationarity of two
statistical downscaling methods for precipitation under different
choices of cross-validation periods, Int. J. Climatol., 38, e330–
e348, 2018.

Woo, S., Park, J., Lee, J.-Y., and So Kweon, I.: CBAM: Convolu-
tional block attention module, in: European Conference on Com-
puter Vision, 8–14 September 2018, Munich, Germany, 3–19,
2018.

Yang, C.-Y., Ma, C., and Yang, M.-H.: Single-Image Super-
Resolution: A Benchmark, in: Computer Vision – ECCV 2014,
ECCV 2014, edited by: Fleet, D., Pajdla, T., Schiele, B., and
Tuytelaars, T., Lecture Notes in Computer Science, vol. 8692,
Springer, Cham, https://doi.org/10.1007/978-3-319-10593-2_25,
2014.

Yashiro, H., Kajikawa, Y., Miyamoto, Y., Yamaura, T., Yoshida,
R., and Tomita, H.: Resolution dependence of the diurnal cy-
cle of precipitation simulated by a global cloud-system resolving
model, Scientific Online Letters on the Atmosphere, 12, 272–
276, 2016.

Zobel, Z., Wang, J., Wuebbles, D. J., and Kotamarthi, V. R.: Anal-
yses for high-resolution projections through the end of the 21st
century for precipitation extremes over the United States, Earths
Future, 6, 1471–1490, 2018.

Geosci. Model Dev., 14, 6355–6372, 2021 https://doi.org/10.5194/gmd-14-6355-2021

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.5281/zenodo.4298978
https://doi.org/10.1007/978-3-319-10593-2_25

	Abstract
	Introduction
	Data and method
	Dataset
	Stacked variables
	Encoded variables
	Super-resolution model
	Loss functions
	Implementation and model training
	Evaluation metrics

	Results
	MSE
	Probability density function
	Geospatial analysis of other measures
	Event-based precipitation characteristics

	Summary and discussion
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

