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Abstract. Recent research in data assimilation has led to the
introduction of the parametric Kalman filter (PKF): an im-
plementation of the Kalman filter, whereby the covariance
matrices are approximated by a parameterized covariance
model. In the PKF, the dynamics of the covariance during the
forecast step rely on the prediction of the covariance parame-
ters. Hence, the design of the parameter dynamics is crucial,
while it can be tedious to do this by hand. This contribu-
tion introduces a Python package, SymPKF, able to compute
PKF dynamics for univariate statistics and when the covari-
ance model is parameterized from the variance and the lo-
cal anisotropy of the correlations. The ability of SymPKF to
produce the PKF dynamics is shown on a nonlinear diffu-
sive advection (the Burgers equation) over a 1D domain and
the linear advection over a 2D domain. The computation of
the PKF dynamics is performed at a symbolic level, but an
automatic code generator is also introduced to perform nu-
merical simulations. A final multivariate example illustrates
the potential of SymPKF to go beyond the univariate case.

1 Introduction

The Kalman filter (KF) (Kalman, 1960) is one of the back-
bones of data assimilation. This filter represents the dynam-
ics of a Gaussian distribution all along the analysis and fore-
cast cycles and takes the form of two equations representing
the evolution of the mean and of the covariance of the Gaus-
sian distribution.

While the equations of the KF are simple linear algebra,
the large dimension of linear space encountered in the realm
of data assimilation makes the KF impossible to handle, and
this is particularly true for the forecast step. This limitation
has motivated some approximation of covariance matrix to
make the KF possible. For instance, in the ensemble method
(Evensen, 2009), the covariance matrix is approximated by a
sample estimation, whereby the time evolution of the covari-
ance matrix is then deduced from the forecast of each indi-
vidual sample. In the parametric Kalman filter (PKF) (Pan-
nekoucke et al., 2016, 2018b, a), the covariance matrix is ap-
proximated by a parametric covariance model; the time evo-
lution of the matrix is deduced from the time integration of
the parameters’ evolution equations.

One of the major limitations for the PKF is the design
of the parameter evolution equations. Although not difficult
from a mathematical point of view, this step requires the cal-
culation of many terms that are difficult to calculate by hand
and may involve errors in the calculation. To facilitate the
derivation of the parametric dynamics and certify the cor-
rectness of the resulting system a symbolic derivation of the
dynamics would be welcome.

The goal of the package SymPKF 1.01 is to facilitate the
computation of the PKF dynamics for a particular class of
covariance model, the VLATcov model, which is parameter-
ized by the variance and the anisotropy. The symbolic com-
putation of the PKF dynamics relies on a computer alge-
bra system (CAS) able to handle abstract mathematical ex-

1https://github.com/opannekoucke/sympkf, last access:
22 September 2021.
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pressions. A preliminary version has been implemented with
Maxima2 (Pannekoucke, 2021a). However, in order to cre-
ate an integrated framework that would include the design of
the parametric system, as well as its numerical evaluation,
the symbolic Python package SymPy (Meurer et al., 2017)
has been preferred for the present implementation. In par-
ticular, SymPKF comes with an automatic code generator to
provide an end-to-end exploration of the PKF approach from
the computation of the PKF dynamics to their numerical in-
tegration.

The paper is organized as follows. The next section pro-
vides the background on data assimilation and introduces the
PKF. Section 3 focuses on the PKF for univariate VLAT-
cov models in the perspective of symbolic computation by
a CAS. Then, the package SymPKF is introduced in Sect. 4
from its use on the nonlinear diffusive advection (the Burgers
equation) over a 1D domain. A numerical example illustrates
the use of the automatic code generator provided in SymPKF.
Then, the example of the linear advection over a 2D domain
shows the ability of SymPKF to handle 2D and 3D domains.
The section ends with a simple illustration of a multivariate
situation, which also shows that SymPKF applies to a system
of prognostic equations. The conclusion is given in Sect. 5.

2 Description of the PKF

2.1 Context of the numerical prediction

Dynamics encountered in geosciences are given as a system
of partial differential equations (PDEs):

∂tX =M(t,∂X ), (1)

where X (t,x) is the state of the system and denotes either
a scalar field or multivariate fields in a coordinate system
x= (xi)i∈[1,d], where d is the dimension the geographical
space, ∂X represents the partial derivatives with respect to
the coordinate system at any order, with the convention that
order zero denotes the field X itself, and M denotes the trend
of the dynamics. A spatial discretization (e.g., by using finite
differences, finite elements, finite volumes, spectral decom-
position) transforms Eq. (1) into

∂tX =M(t,X ), (2)

where, this time, X (t) is a vector, and M denotes the dis-
cretization of the trend in Eq. (1). Thereafter, X can be seen
either as a collection of continuous fields with dynamics
given by Eq. (1) or a discrete vector of dynamics as in Eq. (2).

Because of the sparsity and the error of the observations,
the forecast X f is only an estimation of the true state X t,
which is known to within a forecast error defined by ef

=

2https://maxima.sourceforge.io/, last access: 22 Septem-
ber 2021.

X f
−X t. This error is often modeled as an unbiased ran-

dom variable, E
[
ef]
= 0. In the discrete formulation of the

dynamics in Eq. (2), the forecast error covariance matrix is
given by Pf

= E
[
ef(ef)T

]
, where the superscript T denotes

the transpose operator. Since this contribution is focused on
the forecast step, hereafter the upper script f is removed for
the sake of simplicity.

We now detail how the error covariance matrix evolves
during the forecast by considering the formalism of the
second-order nonlinear Kalman filter.

2.2 Second-order nonlinear Kalman filter

A second-order nonlinear Kalman filter (KF2) is a filter that
extends the Kalman filter (KF) to nonlinear situations in
which the error covariance matrix evolves tangent-linearly
along the trajectory of the mean state and the dynamics of
this mean are governed by the fluctuation–mean interacting
dynamics (Jazwinski, 1970; Cohn, 1993). Hence, we first
state the dynamics of the mean under the fluctuation–mean
interaction, then the dynamics of the error covariance. Note
that the choice of the following presentation is motivated by
the perspective of using a computer algebra system to per-
form the computation.

2.2.1 Computation of the fluctuation–mean interaction
dynamics

Because of the uncertainty in the initial condition, the state X
is modelized as a Markov process X (t,x,ω), where ω stands
for the stochasticity, while X evolves by Eq. (1). Hence, ω
lies within a certain probability space (�,F,P ), where F
is σ algebra on � (a family of subsets of �, which contains
� and which is stable for the complement and the count-
able union) and P is a probability measure (see, e.g., Øk-
sendal, 2003, chap.2). X (t,x, ·) : (�,F)→ (Rn,BRn) is an
F-measurable function wherein BRn denotes the Borel σ al-
gebra on Rn, where the integer n is either the dimension
of the multivariate field X (t,x) or the dimension of its dis-
cretized version X (t). The connection between the Markov
process and the parameter dynamics is obtained using the
Reynolds averaging technique (Lesieur, 2007, chap. 4).

To perform the Reynolds averaging of Eq. (1), the first step
is to replace the random field by its Reynolds decomposi-
tion X (t,x,ω)= E[X ](t,x)+ηe(t,x,ω). In this modeling of
the random state, E[X ] is the ensemble average or the mean
state; e is an error or a fluctuation to the mean, and it is an
unbiased random field, E[e] = 0. Then, Eq. (1) reads as

∂tE[X ] + η∂te =M(t,∂E[X ] + η∂e), (3)

where η is a control of magnitude introduced to facilitate
Taylor’s expansion when using a computer algebra system.
At the second order, the Taylor’s expansion in η of Eq. (3)
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reads

∂tE[X ] + η∂te =M(t,∂E[X ])+ ηM′(t,∂E[X ])(∂e)

+ η2M′′(t,∂E[X ])(∂e⊗ ∂e), (4a)

where M′ and M′′ are two linear operators; the former (the
latter) refers to the tangent-linear model (the Hessian), and
both are computed with respect to the mean state E[X ]. The
first-order expansion is deduced from Eq. (4a) by setting
η2
= 0, which then reads as

∂tE[X ] + η∂te =M(t,∂E[X ])+ ηM′(t,∂E[X ])(∂e). (4b)

By setting η to 1, the dynamics of the ensemble average
are calculated at the second order from the expectation of
Eq. (4a) that reads as

∂tE[X ] =M(t,∂E[X ])+M′′(t,∂E[X ])(E[∂e⊗ ∂e]), (5)

where ∂e⊗∂e denotes the tensor product of the partial deriva-
tives with respect to the spatial coordinates, i.e., terms such
as ∂ke∂me for any positive integers (k,m). Here, we have
used the assumption that the partial derivative commutes
with the expectation, E[∂e] = ∂E[e], and that E[e] = 0. Be-
cause the expectation is a projector, E[E[·]] = E[·], the ex-
pectation of M(t,∂E[X ]) is itself. The second term of the
right-hand side makes the retro-action of the error appear in
the ensemble-averaged dynamics. Hence, Eq. (5) gives the
dynamics of the error–mean interaction (or fluctuation–mean
interaction).

Note that the tangent-linear dynamics along the ensemble-
averaged dynamics in Eq. (5) are obtained as the difference
between the first-order Taylor’s expansion in Eq. (4b) and its
expectation, and they read as

∂te =M′(t,∂E[X ])(∂e). (6)

Now it is possible to detail the dynamics of the error
covariance from the dynamics of the error, which tangent-
linearly evolve along the mean state E[X ].

2.2.2 Computation of the error covariance dynamics

In the discretized form, the dynamics of the error in Eq. (6)
read as the ordinary differential equation (ODE):

de
dt
=Me, (7)

where M stands for the tangent-linear (TL) model
M′(t,∂E[X ]) evaluated at the mean state E[X ]. So the dy-
namics of the error covariance matrix, P= E

[
eeT], are given

by the ODE:

dP
dt
=MP+PMT (8a)

(MT is the adjoint of M) or its integrated version

P(t)=Mt←0P0(Mt←0)
T, (8b)

where Mt←0 is the propagator associated with the time inte-
gration of Eq. (7), initiated from the covariance P0.

2.2.3 Setting of the KF2

Gathering the dynamics of the ensemble mean given by the
fluctuation–mean interaction in Eq. (5) and the covariance
dynamics in Eq. (8) leads to the second-order closure ap-
proximation of the extended KF, which is the forecast step
equations of the KF2.

Similarly to the KF, the principal limitation of the KF2 is
the numerical cost associated with the covariance dynamics
in Eq. (8): living in a discrete world, the numerical cost of
Eq. (8) dramatically increases with the size of the problem.
As an example, for the dynamics of a simple scalar field dis-
cretized with n grid points, the dimension of its vector rep-
resentation is n, while the size of the error covariance matrix
scales as n2, leading to a numerical cost of Eq. (8) between
O(n2) and O(n3).

We now introduce the parametric approximation of covari-
ance matrices, which aims to reduce the cost of the covari-
ance dynamics in Eq. (8).

2.3 Formulation of the PKF prediction

The parametric formulation of covariance evolution stands as
follows. If P(P) denotes a covariance model featured by a set
of parameters P = (pi)i∈I , then there is a set P f

t featuring the
forecast error covariance matrix so that P(P f

t ) approximates
the forecast error covariance Pf

t , i.e., P(P f
t )≈ Pf

t . Note that a
parameter pi can be a scalar or a field, e.g., a variance field.

Hence, starting from the initial condition P f
= P f

0 so that
P(P f

0)≈ Pf
0, if the dynamics of the parameters P f

t are known,
then it is possible to approximately determine Pf

t by P(P f
t )

without solving Eq. (8) explicitly. This approach constitutes
the so-called parametric Kalman filter (PKF) approximation
introduced by Pannekoucke et al. (2016, 2018a) (P16, P18).

In practice, the parametric covariance models considered
in the PKF are such that the number of parameters in P is
much lower than the number of coefficients required to repre-
sent the full covariance P(P). For instance, for the dynamics
of a scalar field discretized with n grid points, as introduced
in Sect. 2.2.3, the total number of parameters in P should be
of same order as n, e.g., 2n or 3n, so that the cost to pre-
dict the evolution of the parameters would represent 2 or 3
times the cost to predict the evolution of the scalar field. Said
differently, the cost to predict the parameters should scale in
O(n), which is much lower than the computation of Eq. (8)
in O(n2) - O(n3).

The cost of the PKF can be compared with other low-
rank methods such as the reduced-rank Kalman filter (Fisher,
1998) or the ensemble Kalman filter (Evensen, 2009), for
which an ensemble size of 100 members is often encountered
depending on the dimension of the unstable subspace and to
limit the amount of sampling noise. Hence, when each fore-
cast is made at full resolution the cost of these approaches is
100 times the cost of a prediction, which is larger than the
cost we expect for the PKF (see P16, P18). Note that low-
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rank and ensemble methods often consider the computation
of the dynamics at a lower resolution, which leads to a lower
cost than the 100 forecast at full resolution. The PKF is com-
puted at the full resolution and is free from sampling noise.

But the frugality of the covariance model is not the only
criterion. For instance, the first variational data assimilation
systems considered a covariance model based on the spectral
diagonal assumption in spectral space (Courtier et al., 1998;
Berre, 2000). This covariance model reads as Ps(Ps)=

6S−1D
(
S−1)∗6∗, where S denotes the spectral transform

with ∗ the conjugate transpose operator, and 6 is the di-
agonal matrix of standard deviation, i.e., the square root of
the variance field V . In this model, the set of parameters
Ps is given by the grid points and the spectral variances,
Ps
= (V ,diag(D)). If the shape of Ps(Ps) is n2, the number

of parameters Ps for this covariance model is 2n (n variances
in grid points, stored as the standard deviation in the diago-
nal of 6; n variances in spectral, stored in the diagonal of
D), which is quite economical. However, the resulting corre-
lation functions are homogeneous (there is the same correla-
tion function in each point), which is enough to represent cli-
matologically stationary background error statistics but not
the flow-dependent statistics as existing in the KF. While it is
possible to write the equations for the dynamics of the spec-
tral variances (e.g., for the linear waves), the limitation that
the spectral diagonal approach can only model homogeneous
correlations motivated the introduction of other covariance
models. For example, the covariance model based on the di-
agonal assumption in wavelet space (Fisher, 2004; Pannek-
oucke et al., 2007) can model heterogeneous correlations at
a low memory cost. However, the dynamics of the wavelet
variances are much more difficult to develop because of the
redundancy of the wavelet transform on the sphere.

Hence, a covariance model adapted for the PKF should
be able to represent realistic correlations and be such that
the dynamics of the parameters can be computed, e.g., a co-
variance model defined by parameters in grid points. To do
so, we now focus on the PKF applied to a particular family
of covariance models, whose parameters are defined in grid
points by the variance and the anisotropy fields: P = (V ,g),
where g will denotes the local anisotropy tensor of the local
correlation function.

3 PKF for VLATcov models

This part introduces a particular family of covariance mod-
els parameterized by the fields of variances and of the lo-
cal anisotropy tensor: the VLATcov models (Pannekoucke,
2021b). What makes this covariance model interesting is that
its parameters are related to the error field, and thus it is pos-
sible to determine the dynamics of the parameters. To intro-
duce VLATcov models, we first present the diagnosis of the
variance and of the local anisotropy tensor; then we present

two examples of VLATcov models, and we end the section
with a description of the dynamics of the parameters.

3.1 Definition of the fields of variance and of local
anisotropy tensor

From now, we will focus on the forecast error statistics, so the
upper script f is removed for the sake of simplicity. Moreover,
for a function f , when there is no confusion, the value of f
at a point x is written either as f (x) or as fx.

The forecast error being unbiased, E[e] = 0, its variance at
a point x is defined as

V (x)= E[e(x)2]. (9)

When the error is a random differentiable field, the
anisotropy of the two-point correlation function ρ(x,y)=

1√
VxVy

E[e(x)e(y)] is featured from the second-order expan-

sion,

ρ(x,x+ δx)≈ 1−
1
2
||δx||2gx , (10)

by the local metric tensor g(x) and defined as

g(x)=−∇∇Tρx, (11)

where ρx(y)= ρ(x,y), e.g.,

gij (x)=−
(
∂2
yiyj

ρx(y)
)

y=x
.

The metric tensor is a symmetric positive definite matrix, and
it is a 2× 2 (3× 3) matrix in a 2D (3D) domain.

Note that it is useful to introduce the local aspect tensor
(Purser et al., 2003), defined as the inverse of the metric ten-
sor:

s(x)= g(x)−1, (12)

where the superscript −1 denotes the matrix inverse. The as-
pect tensor at the point x is geometrically interpreted as an
ellipse whose shape coincides with that of the local correla-
tion function.

What makes the metric tensor attractive, either at a theo-
retical or at a practical level, is that it is closely related to the
normalized error ε = e

√
V

by

gij (x)= E
[
(∂xi ε)(∂xj ε)

]
(13)

(see, e.g., Pannekoucke, 2021b, for details).
Hence, using the notation introduced in Sect. 2.3, a VLAT-

cov model is a covariance model, P(P), characterized by the
set of two parameter fields, P = (p1,p2), given by the vari-
ance field and by the anisotropy field – the latter being de-
fined either by the metric tensor field g or by the aspect ten-
sor field s – i.e., P = (V ,g) or P = (V ,s). Said differently,
any VLATcov model reads as P(V ,g) or P(V ,s).

To put some flesh on the bones, two examples of VLATcov
models are now presented.

Geosci. Model Dev., 14, 5957–5976, 2021 https://doi.org/10.5194/gmd-14-5957-2021
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3.2 Examples of VLATcov models

We first consider the covariance model based on the hetero-
geneous diffusion operator of Weaver and Courtier (2001),
which is used in variational data assimilation to model het-
erogeneous correlation functions, e.g., for the ocean or for air
quality. This model has the property that, under the local ho-
mogenous assumption (when the spatial derivatives are neg-
ligible), the local aspect tensors of the correlation functions
are twice the local diffusion tensors (Pannekoucke and Mas-
sart, 2008; Mirouze and Weaver, 2010). Hence, by defining
the local diffusion tensors as half the local aspect tensors,
the covariance model based on the heterogeneous diffusion
equation is a VLATcov model.

Another example of a heterogeneous covariance model is
the heterogeneous Gaussian covariance model:

Phe.g(V ,ν)(x,y)=
√
V (x)V (y)

|νx|
1/4
∣∣νy
∣∣1/4∣∣∣ 1

2 (νx+ νy)
∣∣∣1/2

× exp
(
−||x− y||2

(νx+νy)−1

)
, (14)

where ν is a field of symmetric positive definite matrices, and
|ν| denotes the matrix determinant. Phe.g(V ,ν) is a particular
case of the class of covariance models deduced from Theo-
rem 1 of Paciorek and Schervish (2004). Again, this covari-
ance model has the property that, under local homogenous
assumptions, the local aspect tensor is approximately given
by ν, i.e., for any point x,

sx ≈ νx . (15)

Hence, as for the covariance model based on the diffusion
equation, by defining the field ν as the aspect tensor field,
the heterogeneous Gaussian covariance model is a VLATcov
model (Pannekoucke, 2021b).

At this stage, all the pieces of the puzzle are put together to
build the PKF dynamics. We have covariance models param-
eterized from the variance and the local anisotropy, which are
both related to the error field: knowing the dynamics of the
error leads to the dynamics of the VLATcov parameters. This
is now detailed.

3.3 PKF prediction step for VLATcov models

When the dynamics of the error e are well approximated
from the tangent-linear evolution in Eq. (6), the connection
between the covariance parameters and the error, represented
in Eqs. (9) and (13), makes it possible to establish the predic-
tion step of the PKF (Pannekoucke et al., 2018a), which reads
as the dynamics of the ensemble average (at the second-order
closure),

∂tE[X ] =M(t,∂E[X ])+M′′(t,∂E[X ])(E[∂e⊗ ∂e]), (16a)

coupled with the dynamics of the variance and the metric,

∂tV (t,x)= 2E [e∂te] , (16b)
∂tgij (t,x)= E[∂t

(
(∂xi ε)(∂xj ε)

)
], (16c)

where it remains to replace the dynamics of the error (and
its normalized version ε = e/

√
V ) from Eq. (6) and where

the property that the expectation operator and the temporal
derivative commutes, ∂tE[·] = E[∂t·], has been used to obtain
Eq. (16b) and (16c).

Following the discussion in Sect. 2.3, the set of Eq. (16)
is at the heart of the numerical sobriety of the parametric ap-
proach since the cost of the prediction of the parameter scales
like O(n). In contrast to the matrix dynamics of the KF, the
PKF approach is designed for the continuous world, lead-
ing to PDEs for the parameter dynamics in place of ODEs
in Eq. (8) for the full matrix dynamics. Moreover, the dy-
namics of the parameters shed light on the nature of the pro-
cesses governing the dynamics of covariances, and it does
not require any adjoint of the dynamics (Pannekoucke et al.,
2016, 2018a).

Note that Eq. (16) can be formulated in terms of aspect
tensors thanks to the definition in Eq. (12): since sg= I,
its time derivative (∂ts)g+ s(∂tg)= 0 leads to the dynamics
∂ts=−g−1(∂tg)s, and then

∂ts=−s(∂tg)s, (17)

where it remains to replace occurrences of g by s−1 in the
resulting dynamics of the mean, the variance, and the aspect
tensor.

Hence, the PKF forecast step for a VLATcov model is
given by either the system in Eq. (16) (in metric) or by its
aspect tensor formulation thanks to Eq. (17). Whatever the
formulation considered, it is possible to carry out the calcu-
lations using a formal calculation language. However, even
for simple physical processes, the number of terms in formal
expressions can become very large; e.g., it is common to have
to manipulate expressions with more than 100 terms. Thus,
any strategy that simplifies the assessment of PKF systems in
advance can quickly become a significant advantage.

In the following section, we present the splitting method
that allows the PKF dynamics to be expressed by bringing
together the dynamics of each of the physical processes, cal-
culated individually.

3.4 The splitting strategy

When there are several processes in the dynamics in Eq. (1),
the calculation of the parametric dynamics can be tedious
even when using a computer algebra system. To better use
digital resources, a splitting strategy can be introduced (Pan-
nekoucke et al., 2016, 2018a).

While the theoretical background is provided by the Lie–
Trotter formula for Lie derivatives, the well-known idea of
time splitting is easily taken from a first-order Taylor expan-
sion of an Euler numerical scheme.

https://doi.org/10.5194/gmd-14-5957-2021 Geosci. Model Dev., 14, 5957–5976, 2021
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The computation of dynamics,

∂tX = f1(X )+ f2(X ), (18)

over a single time step δt can be done in two steps following
the numerical scheme{

X ?
= X (t)+ δtf1(X (t)),

X (t + δt)= X ?
+ δtf2(X ?),

(19)

where at order δt , this scheme is equivalent to X (t + δt)=
X (t)+ δt (f1(X (t))+ f2(X (t))), which is the Euler step of
Eq. (18). Because f1 and f2 can be viewed as vector fields,
the fractional scheme, joining the starting point (at t) to the
end point (at t+δt), remains to go through the parallelogram
formed by the sum of the two vectors along its sides. Since
there are two paths joining the extreme points, starting the
computation by f2 is equivalent to starting by f1 (at order
δt); this corresponds to the commutativity of the diagram
formed by the parallelogram.

Appendix A shows that the dynamics given by Eq. (18)
imply dynamics of the error, the variance, the metric, and
the aspect written as a sum of trends. Hence, it is possible to
apply a splitting for all these dynamics.

As a consequence of the calculation of the parametric dy-
namics, calculating the parametric dynamics of Eq. (18) is
equivalent to separately calculating the parametric dynam-
ics of ∂tX = f1(X ) and ∂tX = f2(X ), then bringing together
the two parametric dynamics into a single one by summing
the trends for the mean, the variance, the metric, or the as-
pect dynamics. This splitting applies when there are more
than two processes and appears to be a general method to
reduce the complexity of the calculation.

3.5 Discussion and intermediate conclusion

However, although the calculation of the system in Eq. (16) is
straightforward, as it is similar to the calculation of Reynolds
equations (Pannekoucke et al., 2018a), it is tedious because
of the many terms involved, and there is a risk of introducing
errors during the calculation by hand.

Then, once the dynamics of the parameters are established,
it remains to design a numerical code to test whether the un-
certainty is effectively well represented by the PKF dynam-
ics. Again, the design of a numerical code is not necessarily
difficult, but with numerous terms the risk of introducing an
error is important.

To facilitate the design of the PKF dynamics and the nu-
merical evaluation, the package SymPKF has been intro-
duced to perform the VLATcov parameter dynamics and to
generate a numerical code used for the investigations (Pan-
nekoucke, 2021c). The next section introduces and details
this tool.

4 Symbolic computation of the PKF for VLATcov

In order to introduce the symbolic computation of the PKF
for the VLATcov model, we consider an example: the diffu-
sive nonlinear advection in the Burgers equation, which reads

∂tu+ u∂xu= κ∂
2
xu, (20)

where u stands for the velocity field and corresponds to a
function of the time t and the space of coordinate x and
where κ is a diffusion coefficient (constant here). This ex-
ample illustrates the workflow leading to the PKF dynamics.
It consists of defining the system of equations in SymPy, then
computing the dynamics with Eq. (16); we now detail these
two steps.

4.1 Definition of the dynamics

The definition of the dynamics relies on the formalism of
SymPy as shown in Fig. 1. The coordinate system is first de-
fined as instances of the class Symbols. Note that the time
is defined as sympkf.t, while the spatial coordinate is left
to the choice of the user, here x. Then, the function u is de-
fined as an instance of the class Function as a function of
(t,x).

In this example, the dynamics consist of a single equation
defined as an instance of the class Eq, but in the general sit-
uation in which the dynamics are given as a system of equa-
tions, the dynamics have to be represented as a Python list of
equations.

A preprocessing of the dynamics is then performed to de-
termine several important quantities to handle the dynam-
ics: the prognostic fields (functions for which a time deriva-
tive is present), the diagnostic fields (functions for which
there is no time derivative in the dynamics), the constant
functions (functions that only depend on the spatial coor-
dinates), and the constants (pure scalar terms that are not a
function of any coordinate). This preprocessing is performed
when transforming the dynamics as an instance of the class
PDESystem and whose default string output delivers a sum-
mary of the dynamics: for the Burgers equation, there is only
one prognostic function, u(t,x), and one constant, κ .

The prognostic quantities being known, it is then possi-
ble to perform the computation of the PKF dynamics, as dis-
cussed now.

4.2 Computation of the VLATcov PKF dynamics

Thanks to the preprocessing, we are able to determine the
VLATcov parameters needed to compute the PKF dynam-
ics, which are the variance and the anisotropy tensor associ-
ated with the prognostic fields. For the Burgers equation, the
VLATcov parameters are the variance Vu and the metric ten-
sor gu = (gu,xx) or its associated aspect tensor su = (su,xx).
Note that, in SymPKF, the VLATcov parameters are labeled
by their corresponding prognostic fields to facilitate their
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Figure 1. Sample of code and Jupyter notebook outputs for the definition of the Burgers dynamics using SymPKF.

identification. This labeling is achieved when the dynamics
are transformed as an instance of the class SymbolicPKF.
This class is at the core of the computation of the PKF dy-
namics from Eq. (16).

As discussed in Sect. 2.2.1, the PKF dynamics rely
on the second-order fluctuation–mean interaction dynamics
wherein each prognostic function is replaced by a stochastic
counterpart. Hence, the constructor of SymbolicPKF con-
verts each prognostic function as a function of an additional
coordinate,ω ∈�. For the Burgers equation, u(t,x) becomes
u(t,x,ω).

Since the computation of the second-order fluctuation–
mean interaction dynamics relies on the expectation op-
erator, an implementation of this expectation operator
has been introduced in SymPKF: it is defined as the
class Expectation built by inheritance from the class
sympy.Function to leverage the computational facilities
of SymPy. The implementation of the class Expectation
is based on the linearity of the mathematical expectation op-
erator with respect to deterministic quantities and its commu-
tativity with partial derivatives and integrals with respect to
coordinates different from ω, e.g., for the Burgers equation
E[∂xu(t,x,ω)] = ∂xE[u(t,x,ω)]. Note that E[u(t,x,ω)] is
a function of (t,x) only: the expectation operator converts a
random variable into a deterministic variable.

Then, the symbolic computation of the second-order
fluctuation–mean interaction dynamics in Eq. (16a) is per-

formed, thanks to SymPy, by following the steps as described
in Sect. 2.2.1. In particular, the computation also leads to the
tangent-linear dynamics of the error in Eq. (6), from which
it is possible to compute the dynamics of the variance in
Eq. (16b) and of the metric tensor in Eq. (16c) (or its as-
sociated aspect tensor version). Applying these steps and
the appropriate substitutions, this is achieved when calling
the in_metric or in_aspect Python property of an in-
stance of the class SymbolicPKF. This is shown for the
Burgers equation in Fig. 2, where the background computa-
tion of the PKF dynamics leads to a list of the three coupled
equations corresponding to the mean, the variance, and the
aspect tensor, similar to the system in Eq. (22) first obtained
by Pannekoucke et al. (2018a).

Hence, from SymPKF, for the Burgers equation, the
VLATcov PKF dynamics given in the aspect tensor read as

∂tu = κ∂2
xu− u∂xu−

∂xVu
2

∂tVu = −
2κVu
su,xx
+ κ∂2

xVu−
κ(∂xVu)

2

2Vu
−u∂xVu− 2Vu∂xu

∂tsu,xx = 2κs2
u,xxE

(
εu∂

4
xεu

)
− 3κ∂2

x su,xx

−2κ + 6κ(∂xsu,xx)
2

su,xx
−

2κsu,xx∂2
xVu

Vu

+
κ∂xVu∂xsu,xx

Vu
+

2κsu,xx (∂xVu)2

V 2
u

−u∂xsu,xx + 2su,xx∂xu

, (21)

where su,xx is the single component of the aspect tensor su
in 1D domains. Note that in the output of the PKF equations,
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Figure 2. Sample of code and Jupyter notebook outputs: systems of partial differential equations given in metric and in aspect forms produced
by SymPKF when applied to the Burgers equation (Eq. 20).

as reproduced in Eq. (21), the expectation in the dynamics of
the mean is replaced by the prognostic field; for the Burgers
equation, E[u](t,x) is simply denoted by u(t,x).

While the Burgers equation only contains two physical
processes, i.e., the nonlinear advection and the diffusion, the
resulting PKF dynamics in Eq. (21) make numerous terms
appear, which justifies the use of symbolic computation, as
mentioned above. The computation of the PKF dynamics
leading to the metric and to the aspect tensor formulation
takes about 1 s of computation (Intel Core i7-7820HQ CPU
at 2.90 GHz× 8).

In this example, the splitting strategy has not been consid-
ered to simplify the computation of the PKF dynamics. How-
ever, it can be done by considering the PKF dynamics for the
advection ∂tu=−u∂xu and the diffusion ∂tu= κ∂

2
xu, and

computed separately, then merged to find the PKF dynamics
of the full Burgers equation. For instance, Fig. 3 shows the
PKF dynamics for the advection (first cell) and for the diffu-
sion (second cell); the output can be traced back in Eq. (2),
e.g., by the terms in κ for the diffusion.

Thanks to the symbolic computation using the expectation
operator, as implemented by the class Expectation, it is
possible to handle terms such as E[εu∂4

xεu] during the com-
putation of the PKF dynamics. The next section details how
these terms are handled during the computation and the clo-
sure issue they bring.
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Figure 3. Illustration of the splitting strategy that can be used to compute the PKF dynamics and applied here for the Burgers equation: PKF
dynamics of the Burgers equation can be obtained from the PKF dynamics of the advection (first cell) and of the diffusion (second cell).

4.3 Comments on the computation of the VLATcov
PKF dynamics and the closure issue

4.3.1 Computation of terms E[∂αε∂βε] and their
connection to the correlation function

An important point is that terms such as E[ε∂αε], e.g.,
E
[
εu∂

4
xεu

]
in Eq. (21) are directly connected to the correla-

tion function ρ(x,y)= E[ε(x)ε(y)] whose Taylor expansion
is written as

ρ(x,x+ δx)=
∑
k

1
k!
E
[
ε(x)∂kε(x)

]
δxk. (22)

However, during their computation, the VLATcov PKF dy-
namics make the terms E[∂αε∂βε] appear, with |α| ≤ |β|,
where for any α, ∂α denotes the derivative with respect to
the multi-index α = (αi)i∈[1,n], with αi denoting the deriva-
tive order with respect to the ith coordinate xi of the co-
ordinate system and where the sum of all derivative order
is denoted by |α| =

∑
iαi . The issue it that these terms in

E
[
∂αε∂βε

]
are not directly connected to the Taylor expan-

sion in Eq. (22).
The interesting property of these terms is that they can be

reworded as spatial derivatives of terms in the form E [ε∂γ ε].
More precisely, any term E

[
∂αε∂βε

]
can be written from

derivative of terms in E [ε∂γ ε], where |γ |< |α| + |β|, and
the term E

[
ε∂α+βε

]
(see Appendix B for the proof). So,

to replace any term in E
[
∂αε∂βε

]
by terms in E[ε∂γ ε],

where |γ |< |α| + |β|, a substitution dictionary is computed
in SymPKF and stored as the variable subs_tree. The
computation of this substitution dictionary is performed
thanks to a dynamical programming strategy. Thereafter, the
integer |α| + |β| is called the order of the term E

[
∂αε∂βε

]
.

Figure 4 shows the substitution dictionary computed for the
Burgers equation. It appears that terms of order lower than 3
can be explicitly written from the metric (or its derivatives),
while terms of order larger than 4 cannot: this is known as
the closure issue (Pannekoucke et al., 2018a).

https://doi.org/10.5194/gmd-14-5957-2021 Geosci. Model Dev., 14, 5957–5976, 2021



5966 O. Pannekoucke and P. Arbogast: SymPKF (v1.0)

Figure 4. Substitution dictionary computed in SymPKF to replace terms such as E[∂αε∂βε] by terms in E[ε∂γ ε], where |γ |< |α| + |β|.

The term E[ε∂4
xε], which features long-range correlations,

cannot be related to the variance or to the metric and has to
be closed. We detail this point in the next section.

4.3.2 Analytical and data-driven closure

A naïve closure for the PKF dynamics in Eq. (21) would be
to replace the unknown term E

[
εu∂

4
xεu

]
by zero. However,

in the third equation that corresponds to the aspect tensor dy-
namics, the coefficient −3κ of the diffusion term ∂2

x su being
negative, it follows that the dynamics of su numerically ex-
plode at an exponential rate. Of course, because the system
represents the uncertainty dynamics of the Burgers equation
in Eq. (20) that is well posed, the parametric dynamics should
not explode. Hence, the unknown term E

[
εu∂

4
xεu

]
is crucial:

it can balance the negative diffusion to stabilize the paramet-
ric dynamics.

For the Burgers equation, a closure for E
[
εu∂

4
xεu

]
has

been previously proposed (Pannekoucke et al., 2018a), given
by

E
[
εu∂

4
xεu

]
∼

2
s2
u

∂2
x su+

3
s2
u

− 4
(∂xsu)

2

s3
u

, (23)

where the symbol ∼ is used to indicate that this is not an
equality but a proposal of closure for the term in the left-hand
side and that leads to the closed system

∂tu = −u∂xu+ κ∂
2
xu−

1
2∂xVu,

∂tVu = −u∂xVu− 2(∂xu)Vu+ κ∂2
xVu

−
κ
2

1
Vu
(∂xVu)

2
−

2κ
su,xx

Vu,

∂tsu,xx = −u∂xsu,xx + 2(∂xu)su,xx + 4κ
−2 κsu,xx

Vu
∂2
xVu+ 2 κsu,xx

V 2
u
(∂xVu)

2

+κ 1
Vu
∂xVu∂xsu,xx + κ∂

2
x su,xx

−2κ 1
su,xx

(∂xsu,xx)
2.

(24)

The closure in Eq. (23) results from a local Gaussian approx-
imation of the correlation function. Previous numerical ex-
periments have shown that this closure is well adapted to the
Burgers equation (Pannekoucke et al., 2018a). But the ap-
proach that has been followed to find this closure is quite
specific, and it would be interesting to design a general way
to find such a closure.

In particular, it would be interesting to search for a generic
way to design closures that leverage the symbolic computa-
tion, which could be plugged with the PKF dynamics com-
puted from SymPKF at a symbolic level. To do so, we pro-
pose an empirical closure that leverages a data-driven strat-
egy to hybridize machine learning with physics, as proposed
by Pannekoucke and Fablet (2020) with their neural network
generator PDE-NetGen.

The construction of the proposal relies on the symbolic
computation shown in Fig. 5.

The first step is to consider an analytical approximation
for the correlation function. For the illustration, we consider
the local correlation function to be well approximated by the
quasi-Gaussian function

ρ(x,x+ δx)≈ exp
(
−

δx2

su(x)+ su(x+ δx)

)
. (25)

Then, the second step is to perform the computation of the
Taylor’s expansion of Eq. (22) at a symbolic level. This is
done thanks to SymPy with the method series applied to
Eq. (25) for δx near the value 0 and at a given order; e.g., for
the illustration expansion is computed as the sixth order in
Fig. 5.

Then, the identification with the Taylor’s expansion in
Eq. (22) leads to the closure

E
[
εu∂

4
xεu

]
∼

3
s2
u,xx

∂2
x su,xx +

3
s2
u,xx

− 3

(
∂xsu,xx

)2
s3
u,xx

. (26)
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Figure 5. Example of a symbolic computation leading to a proposal for the closure of the unknown terms of order 4 and 5.

While it looks like the closure in Eq. (23), the coefficients are
not the same. But this suggests that the closure of E

[
εu∂

4
xεu

]
can be expanded as

E
[
εu∂

4
xεu

]
∼

a4
0

s2
u,xx

∂2
x su,xx +

a4
1

s2
u,xx

+ a4
3

(
∂xsu,xx

)2
s3
u,xx

, (27)

where a4
= (a4

0,a
4
1,a

4
2) represents three unknown reals. A

data-driven strategy can be considered to find an appro-
priate value of a4 from experiments. This has been inves-
tigated by using the automatic generator of a neural net-
work PDE-NetGen, which bridges the gap between the
physics and the machine learning (Pannekoucke and Fa-
blet, 2020) and with which the training has led to the value
a4
≈ (1.86,3.0,−3.6). Since this proposal is deduced from

symbolic computation, it is easy to build some proposals for
higher-order unknown terms as is shown in Fig. 5 for the term
E[εu∂5

xεu].

Whatever closure has been obtained in an analytical or an
empirical way, it remains to compute the closed PKF dynam-
ics to assess their performance. To do so a numerical imple-
mentation of the system of partial differential equations has
to be introduced. As for the computation of the PKF dynam-
ics, the design of a numerical code can be tedious, with a
risk of introducing errors in the implementation due to the
numerous terms occurring in the PKF dynamics. To facili-
tate the research on the PKF, SymPKF comes with a Python
numerical code generator, which provides an end-to-end in-
vestigation of the PKF dynamics. This code generator is now
detailed.

4.4 Automatic code generation for numerical
simulations

While compiled language with appropriate optimization
should be important for industrial applications, we chose
to implement a pure Python code generator, which offers a
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Figure 6. Introduction of a closure and automatic generation of a numerical code in SymPKF.

simple research framework for exploring the design of PKF
dynamics. It would have been possible to use a code gen-
erator already based on SymPy (see, e.g., Louboutin et al.,
2019), but with such code generators being domain-specific,
it was less adapted to the investigation of the PKF for arbi-
trary dynamics. Instead, we consider a finite-difference im-
plementation of partial derivatives with respect to spatial co-
ordinates. The default domain to perform the computation is
the periodic unit square with the dimension of the number of
spatial coordinates. The length of the domain can be speci-
fied along each direction. The domain is regularly discretized

along each direction, while the number of grid points can be
specified for each direction.

The finite difference takes the form of an operator F
that approximates any partial derivate at a second order of
consistency: for any multi-index α, Fαu=

0
∂αu+O(|δx|2),

where O is Landau’s big O notation. For any f , the notation
f (δx)=

0
O(δx2) means that limδx→0

f (δx)

δx2 is finite. The op-

erator F computed with respect to independent coordinates
commutes, e.g., Fxy = Fx ◦Fy = Fy ◦Fx , where ◦ denotes
the composition, but it does not commute for dependent coor-
dinates, e.g., F2

x 6= Fx ◦Fx . The finite difference of the par-
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tial derivative with respect to the multi-index is computed
sequentially, e.g., Fxxy = F2

x ◦Fy = Fy ◦F2
x . The finite dif-

ference of order α with respect to a single spatial coordinate
is the centered finite difference based on α+ 1 points.

For instance, Fig. 6 shows how to close the PKF
dynamics for the Burgers equation following P18 and
how to build a code from an instance of the class
sympkf.FDModelBuilder: it creates the class
ClosedPKFBurgers. In this example, the code is
rendered from templates thanks to Jinja3; then it is executed
at runtime. Note that the code can also be written in an ap-
propriate Python module for adapting the code to a particular
situation or to check the correctness of the generated code.
At the end, the instance closed_pkf_burgers of the
class ClosedPKFBurgers is created, raising a warning
to indicate that the value of constant κ has to be specified
before performing a numerical simulation. Note that it is
possible to set the value of kappa as a keyword argument
in the class ClosedPKFBurgers. Figure 6 also shows a
sample of the generated code with the implementation of the
computation of the first-order partial derivative ∂xVu, which
appears as a centered finite difference. Then, the sample of
code shows how the partial derivatives are used to compute
the trend of the system of partial differential equations in
Eq. (24).

The numerical integration is handled through the inheri-
tance mechanism: the class ClosedPKFBurgers inherits
the integration time loop from the class sympkf.Model
as described by the unified modeling language (UML) dia-
gram shown in Fig. 7. In particular, the class Model con-
tains several time schemes, e.g., a fourth-order Runge–Kutta
scheme. Note that in the present implementation of SymPKF,
only explicit time schemes are considered, but it could be
possible to leverage the symbolic computation to implement
other schemes more adapted to a given PDE, e.g., an implicit
scheme for the transport or the diffusion or a high-order ex-
ponential time-differencing method (Kassam and Trefethen,
2005) with which the linear and the nonlinear parts would
be automatically determined from the symbolic computation.
The details of the instance closed_pkf_burgers of the
class ClosedPKFBurgers make it appear that the closed
system in Eq. (24) will be integrated by using a RK4 time
scheme on the segment [0,D] (here D = 1) with periodic
boundaries and discretized by 241 points.

Thanks to the end-to-end framework proposed in
SymPKF, it is possible to perform a numerical simulation
based on the PKF dynamics in Eq. (23). To do so, we set
κ = 0.0025 and consider the simulation starting from the
Gaussian distribution N (u0,Pf

h) of mean u0(x)= Umax[1+
cos(2π(x−D/4)/D)]/2 with Umax = 0.5 and of covariance
matrix

3https://jinja.palletsprojects.com/en/2.11.x/, last access:
22 September 2021.

Figure 7. UML diagram showing the inheritance mechanism
implemented in SymPKF: the class ClosedPKFBurgers in-
herits from the class Model, which implements several time
schemes. Here, closed_pkf_burgers is an instance of the
class ClosedPKFBurgers.

Pf
h(x,y)= Vh exp

(
−
(x− y)2

2l2h

)
, (28)

where Vh = 0.01Umax and lh = 0.02D ≈ 5dx. The time step
of the fourth-order Runge–Kutta scheme is dt = 0.002. The
evolution predicted from the PKF is shown in Fig. 8 (solid
lines). This simulation illustrates the time evolution of the
mean (panel a) and of the variance (panel b); panel (c) rep-
resents the evolution of the correlation length scale defined
from the aspect tensor asL(x)=

√
su,xx(x). Note that at time

0, the length scale field is L(x)= lh. For the illustrations, the
variance (the length scale) is normalized by its initial value
Vh (lh).

In order to show the skill of the PKF applied to the Burg-
ers equation, when using the closure of P18, an ensemble
validation is now performed. Note that the code generator
of SymPKF can be used for arbitrary dynamics, e.g., the
Burgers equation itself. Hence, a numerical code solving the
Burgers equation is rendered from its symbolic definition.
Then an ensemble of 1600 forecasts is computed starting
from an ensemble of initial errors at time 0. The ensem-
ble of initial errors is sampled from the Gaussian distribu-
tion N

(
0,Pf

h

)
of zero mean and covariance matrix Pf

h. Note
that the ensemble forecasting implemented in SymPKF as the
method Model.ensemble_forecast (see Fig. 7) lever-
ages the multiprocessing tools of Python to use the multiple
cores of the CPU when present. On the computer used for the
simulation, the forecasts are performed in parallel on eight
cores. The ensemble estimation of the mean, the variance,
and the length scale is shown in Fig. 8 (dashed lines). Since
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Figure 8. Illustration of a numerical simulation of the PKF dynamics in Eq. (23) (solid line), with the mean (a), the variance (b), and the
correlation length scale (c), which is defined from the component su,xx of the aspect tensor by L(x)=

√
su,xx(x). An ensemble-based

validation of the PKF dynamics is shown as a dashed line. (Pannekoucke and Fablet, 2020, see their Fig. 7)

the ensemble is finite, sampling noise is visible, e.g., in the
variance at the initial time that is not strictly equal to Vh. In
this simulation, it appears that the PKF (solid line) coincides
with the ensemble estimation (dashed lines), which shows
the ability of the PKF to predict the forecast error covari-
ance dynamics. Note that the notebook corresponding to the
Burgers experiment is available in the example directory of
SymPKF.

While this example shows an illustration of SymPKF in a
1D domain, the package also applies in 2D and 3D domains,
as presented now.

4.5 Illustration of dynamics in a 2D domain

In order to illustrate the ability of SymPKF to apply in
a 2D or 3D domain, we consider the linear advection of
a scalar field c(t,x,y) by a stationary velocity field u=
(u(x,y),v(x,y)), which reads as the partial differential
equation

∂tc+u∇c = 0. (29)

As for the Burgers equation, the definition of the dynamics
relies on SymPy (not shown but similar to the definition of
the Burgers equation as given in Fig. 1). This leads to prepro-
cessing the dynamics by creating the instance advection of
the class PDESystem, which transforms the equation into a
system of partial differential equations. In particular, the pro-
cedure will diagnose the prognostic functions of dynamics,
here the function c. Then it identifies the constant functions,
which can depend on space but not on time: here, these are
the components of the velocity (u, v). The process also iden-
tifies exogenous functions and constants, of which there are
none here.

The calculation of the parametric dynamics is handled
by the class SymbolicPKF as shown in the first cell in
Fig. 9. The parametric dynamics are a property of the in-
stance pkf_advection of the class SymbolicPKF, and when
it is called, the parametric dynamics are computed once and

for all. The parametric dynamics formulated in terms of met-
ric are first computed; see the second cell. For the 2D linear
advection, the parametric dynamics are a system of five par-
tial differential equations, as is shown in the output of the sec-
ond cell: the dynamics of the ensemble average E[c], which
outputs as c for the sake of simplicity (first equation), the dy-
namics of the variance (second equation), and the dynamics
of the local metric tensor (last three equations). In compact
form, the dynamics are given by the system

∂tc+u∇c = 0, (30a)
∂tVc+u∇Vc = 0, (30b)

∂tgc+u∇gc =−gc (∇u)− (∇u)Tgc, (30c)

which corresponds to the 2D extension of the 1D dynamics
first found by Cohn (1993) (Pannekoucke et al., 2016) and
validates the computation performed in SymPKF. Due to the
linearity of the linear advection in Eq. (29), the ensemble
average in Eq. (30a) is governed by the same dynamics as in
Eq. (29). While both the variance in Eq. (30b) and the metric
are advected by the flow, the metric is also deformed by the
shear in Eq. (30c). This deformation more commonly appears
in the dynamics written in aspect tensor form, which is given
by

∂tc+u∇c = 0, (31a)
∂tVc+u∇Vc = 0, (31b)

∂tsc+u∇sc = (∇u)sc+ sc(∇u)T , (31c)

where Eq. (31c) is similar to the dynamics of the conforma-
tion tensor in viscoelastic flow (Bird and Wiest, 1995; Hame-
duddin et al., 2018).

We do not introduce any numerical simulation of the PKF
dynamics in Eq. (30) or Eq. (31), but interested readers
are referred to the 2D numerical PKF assimilation cycles
of Pannekoucke (2021b), which have been made thanks to
SymPKF.
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Figure 9. Sample of code and Jupyter notebook outputs: system of partial differential equations produced by SymPKF when applied to the
linear advection in Eq. (29).
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Figure 10. Output of the computation by SymPKF of the PKF dynamics for the simple multivariate periodic chemical reaction, corresponding
to the right-hand side of Eq. (32).

This example illustrates a 2D situation and shows the mul-
tidimensional capabilities of SymPKF. Similarly to the sim-
ulation conducted for the Burgers equation, it is possible to
automatically generate a numerical code able to perform nu-
merical simulations of the dynamics in Eq. (31) (not shown
here). Hence, this 2D domain example showed the ability of
SymPKF to apply in dimensions larger than 1D.

Before concluding, we would like to present a preliminary
application of SymPKF in a multivariate situation.

4.6 Towards the PKF for multivariate dynamics

SymPKF can be used to compute the prediction of the vari-
ance and the anisotropy in a multivariate situation.

Note that one of the difficulties with the multivariate situ-
ation is that the number of equations increases linearly with
the number of fields and the dimension of the domain; e.g.,
for a 1D (2D) domain and two multivariate physical fields,
there are two ensemble-averaged fields, two variance fields,
and two (six) metric fields. Of course this is no not a problem
when using a computer algebra system as done in SymPKF.

To illustrate the multivariate situation, only a very sim-
ple example is introduced. Inspired from chemical transport

models encountered in air quality, we consider the transport
over a 1D domain of two chemical species, whose concen-
trations are denoted by A(t,x) and (B(t,x), advected by the
wind u(x). For the sake of simplicity, the two species inter-
act following periodic dynamics as defined by the coupled
system

∂tA+ u∂xA= B, (32a)
∂tB + u∂xB =−A. (32b)

Thanks to the splitting strategy, the PKF dynamics due to the
advection have already been detailed in the previous section
(see Sect. 4.5), so we can focus on the chemical part of the
dynamics, which is given by the processes on the right-hand
side of Eq. (32). The PKF of the chemical part is computed
thanks to SymPKF and shown in Fig. 10. This time, and
as expected, multivariate statistics appear in the dynamics.
Here, the dynamics of the cross-covariance VAB = E[eAeB ]
are given by the fifth equation. The coupling brings up un-
known terms, e.g., the term E[∂xεA∂xεB ] in the sixth equa-
tion of the output shown in Fig. 10. Note that by taking into
account the multivariate situation with the dynamics of the
cross-covariance, the multivariate PKF hybridizes the con-
tinuous nature of the multivariate fields with the matrix form
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in Eq. (8a), which corresponds here to the dynamics of the
variances (VA,VB) and the cross-covariance VAB .

To go further, some research is still needed to explore
the dynamics and the modeling of the multivariate cross-
covariances. A possible direction is to take advantage of the
multivariate covariance model based on the balance operator
as often introduced in variational data assimilation (Derber
and Bouttier, 1999; Ricci et al., 2005). Note that such mul-
tivariate covariance models have recently been considered
for the design of the multivariate PKF analysis step (Pan-
nekoucke, 2021b). Another way is to consider a data-driven
strategy to learn the physics of the unknown terms from a
training based on ensembles of forecasts (Pannekoucke and
Fablet, 2020).

To conclude, this example shows the potential of SymPKF
to tackle the multivariate situation. Moreover, the example
also shows that SymPKF is able to perform the PKF compu-
tation for a system of partial differential equations. However,
all the equations should be prognostic; SymPKF is not able
to handle diagnostic equations.

5 Conclusions

This contribution introduced the package SymPKF that can
be used to conduct the research on the parametric Kalman
filter prediction step for covariance models parameterized
by the variance and the anisotropy (VLATcov models).
SymPKF provides an end-to-end framework: from the equa-
tions of dynamics to the development of a numerical code.

The package has been first introduced by considering the
nonlinear diffusive advection dynamics in the Burgers equa-
tion. In particular, this example shows the ability of SymPKF
to handle abstract terms, e.g., the unclosed terms formulated
with the expectation operator. The expectation operator im-
plemented in SymPKF is a key tool for the computation of
the PKF dynamics. Moreover, we showed how to handle a
closure and how to automatically render numerical codes.

For univariate situations, SymPKF applies in a 1D domain
as well as in 2D and 3D domains. This has been shown by
considering the computation of the PKF dynamics for the
linear advection equation on a 2D domain.

A preliminary illustration with multivariate dynamics
showed the potential of SymPKF to handle the dynamics of
multivariate covariance. But this point has to be further in-
vestigated, and this constitutes the main perspective of de-
velopment. Moreover, to perform a multivariate assimilation
cycle with the PKF, the multivariate formulation of the PKF
analysis state is needed. A first investigation of the multi-
variate PKF assimilation has been proposed by Pannekoucke
(2021b).

In its present implementation, SymPKF is limited to com-
putation with prognostic equations. It is not possible to con-
sider dynamics based on diagnostic equations, while these
are often encountered in atmospheric fluid dynamics, e.g.,
the geostrophic balance. This constitutes another topic of re-
search development for the PKF, facilitated by the use of
symbolic exploration.

Note that the expectation operator as introduced here can
be used to compute Reynolds equations encountered in tur-
bulence. This opens new perspectives for the use of SymPKF
for other applications that could be interesting, especially for
automatic code generation.
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Appendix A: Splitting for the computation of the
parametric dynamics

In this section we show that using a splitting strategy is pos-
sible for the design of the parametric dynamics. For this, it is
enough to show that given dynamics written as

∂tX = f1(X )+ f2(X ), (A1)

the dynamics of the error, the variance, the metric, and the
aspect all write as a sum of trends depending on each process
f1 and f2. We show this starting from the dynamics of the
error.

Due to the linearity of the derivative operator, the TL dy-
namics resulting from Eq. (A1) are written as

∂te = f
′

1(e)+ f
′

2(e), (A2)

where f ′1 and f ′2 denote the differential of the two func-
tions, which can be written as the sum of two trends ∂te1 =

f ′1(e) and ∂te2 = f
′

2(e), depending exclusively on f1 and f2,
respectively. For the variance’s dynamics, ∂tV = 2E [e∂te],
substitution by Eq. (A2) leads to

∂tV = ∂tV1+ ∂tV2, (A3)

where ∂tV1 = 2E
[
ef ′1(e)

]
and ∂tV2 = 2E

[
ef ′2(e)

]
depend

exclusively on f1 and f2, respectively. Then the standard
deviation dynamics, obtained by differentiating σ 2

= V as
2σ∂tσ = ∂tV ,

∂tσ =
1
σ
∂tV1+

1
σ
∂tV2, (A4)

read as the sum of two trends ∂tσ1 =
1
σ
∂tV1 and ∂tσ2 =

1
σ
∂tV2, depending exclusively on f1 and f2, respectively. It

results that the dynamics of the normalized error ε = 1
σ
e, de-

duced from the time derivative of e = σε, ∂te = ε∂tσ +σ∂tε,
read as

∂tε =
1
σ

[
f ′1(e)−

ε

2σ
∂tV1

]
+

1
σ

[
f ′2(e)−

ε

2σ
∂tV2

]
(A5)

and also expand as the sum of two trends ∂tε1 =
1
σ
[f ′1(e)−

ε
2σ ∂tV1] and ∂tε2 =

1
σ
[f ′2(e)−

ε
2σ ∂tV2], again depending

exclusively on f1 and f2, respectively. For the metric
terms gij = E[∂iε∂jε], we deduce that the dynamics ∂tgij =

E[∂i(∂tε)∂jε] +E[∂iε∂j (∂tε)] expand as

∂tgij = ∂tgij 1+ ∂tgij 2, (A6)

with ∂tgij 1 = E[∂i(∂tε1)∂jε] +E[∂iε∂j (∂tε1)] and ∂tgij 2 =

E[∂i(∂tε2)∂jε]+E[∂iε∂j (∂tε2)] where each partial trend de-
pends exclusively on f1 and f2, respectively. To this end, the
dynamics of the aspect tensor s are deduced from Eq. (17),
which expands as

∂ts= ∂ts1+ ∂ts2, (A7)

where ∂ts1 =−s(∂tg1)s and ∂ts2 =−s(∂tg2)s only depend on
f1 and f2, respectively.

To conclude, the computation of the parametric dynamics
for Eq. (A1) can be performed from the parametric dynamics
of ∂tX = f1(X ) and ∂tX = f2(X ) calculated separately, then
merged together to obtain the dynamics of the variance in
Eq. (A3), of the metric in Eq. (A6), and of the aspect tensors
in Eq. (A7).

Appendix B: Computation of terms E[∂αε∂βε]

In this section we proof the property.

Property 1. Any term E[∂αε∂βε] with |α| ≤ |β| can be re-
lated to the correlation expansion term E[ε∂γ ε], where |γ |<
|α| + |β|, and the term E

[
ε∂α+βε

]
.

–Proof. The derivative with respect to a zero αi is the
identity operator. Note that the multi-index forms a semi-
group since for two multi-indexes α and β we can form
the multi-index α+β = (αi +βi)i∈[1,n].
Now Property 1 can be proven considering the follow-
ing recurrent process, when assuming that the property
is true for all patterns of degree strictly lower than the
degree |α| + |β|.
Without loss of generality we assume αi > 0 and de-
note δi = (δij )j∈[1,n], where δij is the Kronecker symbol
(δii = 1, δij = 0 for j 6= i). From the formula

∂xi
(
∂α−δi ε∂βε

)
= ∂αε∂βε+ ∂α−δi ε∂β+δi ε (B1)

and from the commutativity of the expectation operator
and the partial derivative with respect to the coordinate
system, the result is that

E
[
∂αε∂βε

]
= ∂xiE

[
∂α−δi ε∂βε

]
−E

[
∂α−δi ε∂β+δi ε

]
, (B2)

considering the terms of the left-hand side. On one hand,
we observe that the degree of the first term is decreas-
ing to |α| + |β| − 1; from the recurrence assumption,
E[∂α−δi ε∂βε] can be expanded as terms of the form
E[ε∂γ ε]. On the other hand, the degree of the second
term remains the same, |α| + |β|, but with a shift of the
derivative order. This shift of the order can be done again
following the same process, leading after iterations to the
term E[ε∂α+βε].
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Code and data availability. The SymPKF package is free and
open-source. It is distributed under the CeCILL-B free soft-
ware license. The source code is provided through a GitHub
repository at https://github.com/opannekoucke/sympkf (last access:
22 March 2021). A snapshot of SymPKF is available at https:
//doi.org/10.5281/zenodo.4608514 (Pannekoucke, 2021c). The data
used for the simulations presented here are generated at runtime
when using the Jupyter notebooks.
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