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Abstract. The search for a long-term benchmark for land-
surface models (LSMs) has brought tree-ring data to the at-
tention of the land-surface modelling community, as tree-ring
data have recorded growth well before human-induced envi-
ronmental changes became important. We propose and eval-
uate an improved conceptual framework of when and how
tree-ring data may, despite their sampling biases, be used as
century-long hindcasting targets for evaluating LSMs. Four
complementary benchmarks – size-related diameter growth,
diameter increment of mature trees, diameter increment of
young trees, and the response of tree growth to extreme
events – were simulated using the ORCHIDEE version r5698
LSM and were verified against observations from 11 sites
in the independent, unbiased European biomass network
datasets. The potential for big-tree selection bias in the In-
ternational Tree-Ring Data Bank (ITRDB) was investigated
by subsampling the 11 sites from European biomass net-
work. We find that in about 95 % of the test cases, using
ITRDB data would result in the same conclusions as us-
ing the European biomass network when the LSM is bench-
marked against the annual radial growth during extreme cli-
mate years. The ITRDB data can be used with 70 % confi-
dence when benchmarked against the annual radial growth of
mature trees or the size-related trend in annual radial growth.

Care should be taken when using the ITRDB data to bench-
mark the annual radial growth of young trees, as only 50 %
of the test cases were consistent with the results from the
European biomass network. The proposed maximum tree di-
ameter and annual growth increment benchmarks may en-
able the use of ITRDB data for large-scale validation of the
LSM-simulated response of forest ecosystems to the transi-
tion from pre-industrial to present-day environmental condi-
tions over the past century. The results also suggest ways in
which tree-ring width observations may be collected and/or
reprocessed to provide long-term validation tests for land-
surface models.

1 Introduction

Earth system models integrate numerical sub-models of at-
mospheric circulation, ocean dynamics and biogeochemistry,
sea ice dynamics, and biophysical and biogeochemical pro-
cesses at the land surface. Climate projections made by Earth
system models have been a cornerstone of the all Assess-
ment Reports of the Intergovernmental Panel on Climate
Change (IPCC, 2013) and, as such, have made a tremen-
dous impact on global environmental policy (Paris Agree-
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ments, 2015). The credibility of projections of the future cli-
mate from any Earth system model in part relies on the abil-
ity of each of its above-mentioned four sub-models to ac-
curately reproduce the past (McGuffie and Henderson-Sell-
ers, 2005). Although long-term changes that date back to
pre-industrial conditions (Luo et al., 2012) have been doc-
umented for vegetation distribution through pollen-based re-
constructions (Cao et al., 2019), land-surface models (LSMs)
currently lack a long-term benchmark for forest ecosys-
tem functioning. The absence of long-term benchmarks is
thought to contribute substantially to uncertainties in sim-
ulated future global carbon stocks in soil and vegetation
(Friedlingstein et al., 2006, 2014) and, as such, to climate
projections (Fig. S1a).

Tree-ring records provide annual information on histori-
cal tree growth and physiology in relation to environmental
conditions, including during the time before human activities
started to affect the atmospheric carbon dioxide (CO2) con-
centration (Fritts, 2012; Hemming et al., 2001). Even though
trees grown in the absence of a clear annual rhythm of veg-
etative and dormant seasons may not develop distinct tree
rings, as observed for many species from the humid trop-
ics, tree-ring records have been proposed as a large-scale
and long-term benchmark for the land-surface component
of Earth system models (Fig. S1b; See Sect. 5.3 for more
details) (Babst et al., 2014a, b, 2017, 2018; Zuidema et al.,
2018).

Until now, tree-ring records have often been collected to
reconstruct past climate and hydrological variability from
sites where trees grow near the colder or drier fringes of
their distribution (Briffa et al., 2004; D’Arrigo et al., 2008).
The most comprehensive archive of publicly shared tree-
ring data is the International Tree-ring Data Bank (ITRDB),
with more than 4000 locations from 226 species across most
forested biomes (Fig. S2) (Grissino-Mayer and Fritts, 1997;
Zhao et al., 2019). However, a shortage of site metadata and
the prevailing geographical, species, and tree selection sam-
pling biases resulting from targeting climate-sensitive trees
has limited the use of the ITRDB archive to infer long-
term changes in forest growth (Bowman et al., 2013; Briffa
and Melvin, 2011; Klesse et al., 2018; Zhao et al., 2019).
Compared with tree-ring records that were collected for
the purpose of benchmarking LSMs, such as the European
tree-ring network of biomass plots (hereafter called “Euro-
pean biomass network”; Klesse et al., 2018) that is avail-
able through the database of the BACI project (BACI, 2020),
the aforementioned issues may limit the information content
of the ITRDB records. This incomplete information content
should, however, be balanced against the associated benefits
in terms of time gain and resource savings when reusing the
large ITRDB dataset.

If tree rings are to be used as benchmarks for LSMs,
the models must demonstrate skilful simulations of tree-
ring width (TRW). Over the past few decades, the major
physiological and ecological processes that are responsible

for annual tree-ring growth have become sufficiently well-
understood to be formalized in mathematical models with
different levels of detail. The first TRW models (Wilson and
Howard, 1968) described processes at the cell level: cell di-
vision, cell enlargement, and cell wall thickening. Later, the
carbon and water balance of trees was added (Fritts et al.,
1999) as well as a parameterization of the influences of cli-
mate on cambial activity (Vaganov et al., 2006). These mod-
els were capable of reproducing short-term radial growth at
the tree level. Further developments introduced a notion of
turgor and hormone regulation for cell growth (Drew et al.,
2010; Hölttä et al., 2006; Leuzinger et al., 2013; De Schepper
and Steppe, 2010; Steppe et al., 2006).

At the same time, the spatial scale of models simulating
wood formation based on cell dynamics was extended to the
stand level by simplifying the representation of processes.
In these models, photosynthate availability, air temperature,
and soil water content were used to constrain wood cell
growth and successfully reproduced observations (Deleuze
and Houllier, 1998; Hayat et al., 2017; Wilkinson et al.,
2015). Further simplifications were proposed by simulating
the radial growth of trees based solely on carbon allocation
(Deleuze et al., 2004; Merganičová et al., 2019) rather than
cell dynamics, with the latter being computationally too ex-
pensive for large-scale vegetation models (Li et al., 2014;
Misson, 2004; Sato et al., 2007). Hence, a variety of ap-
proaches are now available to describe TRW growth in for-
est models, dynamic vegetation models, and LSMs, but to
the best of our knowledge, there is currently no land-surface
component of any Earth system model with such capability.

This study articulates an improved conceptual framework
for benchmarking simulated radial growth against ITRDB
tree-ring data, addressing limitations in the models, the data,
and the methods to compare models and data. The aims are
to (1) use current understanding of tree-ring growth to derive
the minimal requirements for benchmarking LSMs against
tree-ring records archived in the ITRDB, (2) review poten-
tial issues of using the ITRDB to benchmark LSMs, (3) pro-
pose solutions for a meaningful comparison of LSMs against
ITRDB records, and (4) verify the proposed solutions by
benchmarking a LSM using data from a European biomass
network (BACI, 2020) that is not prone to sampling biases
related to dendroclimatic research. The organization of this
paper follows these aims, and dependencies between these
aims and the workflow of this study are detailed in Fig. 1.

2 Background: model requirements, data limitations,
and benchmarks

2.1 Minimal requirements for land-surface models to
mechanistically simulate TRW

The conceptual linear aggregate model of tree growth (Cook
and Kairiukstis, 1990) considers that the observed TRW at
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Figure 1. Workflow of this study and the dependencies between the different sections of the paper. Each colour represents a different aim of
the study. The arrow shows that the outcomes of the first three aims have to be combined to verify the proposed benchmarks. In this study,
“virtual tree” refers to a tree that does not exist in the data but is constructed from the data in varying ways. Section 2.3 provides detailed
descriptions of the different virtual trees used.

Figure 2. Main drivers of the linear aggregate conceptual model of tree-ring growth (Cook and Kairiukstis, 1990) and the equivalent processes
in land-surface models. The dotted lines connect related components. Note that both the aggregation and the land-surface model come with
errors, uncertainties, and unaccounted for processes that are not explicitly modelled.

year t (in mm) consists of five additive growth contributions
(Fig. 2, left column) and, as such, provides a framework for
simulating tree-ring widths with (semi-)mechanistic model
approaches (Fig. 2):

i. Size-dependent growth is the dominant signal in raw
tree-ring measurements (Cook et al., 1995). Conceptu-
ally, an almost constant volume of wood due to more
or less constant primary production (Hirata et al., 2007)
being added to the trunks year after year (Nash, 2011).
The annual diameter increment of the trees decreases as

the trunk grows wider because a given wood volume has
to be distributed over an increasing surface area as both
the circumference and height of the stem are increasing.
In reality, however, self-thinning tends to reduce stand
density and competition for resources. Thus, the trees
left can increase their crown volume and their primary
production (Oliver and Larson, 1996) which largely
compensates for the size-dependent decrease in TRW
and contributes to the observed almost constant TRW
of tall trees. Several of the common allocation schemes
used in LSMs account for size-dependent growth and
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stand self-thinning (Franklin et al., 2012; Wolf et al.,
2011).

ii. Climate-dependent growth reflects the sensitivity of tree
growth to radiation, temperature, phenology, and water
availability (Fritts, 2012) and is accounted for in LSMs,
as it represents the core purpose of this type of model.
LSMs often rely on the Farquhar model for the ra-
diation and temperature dependency of photosynthesis
(Farquhar, 1989), and on the McCree–de Wit–Penning
de Vries–Thornley approach for the temperature depen-
dence of respiration (Amthor, 2000). They account for a
decoupling of photosynthesis and growth by the use of
a labile carbon pool (Friend et al., 2019; Naudts et al.,
2015; Zaehle and Friend, 2010). Plant water availabil-
ity is represented through either simple transfer func-
tions or, more recently, by accounting for the hydraulic
architecture of the simulated trees (Bonan et al., 2014;
Naudts et al., 2015).

iii. Endogenous disturbances refer to within-stand resource
competition and are being increasingly simulated in
LSMs, albeit often by empirical approaches (Haverd
et al., 2013; Moorcroft et al., 2001; Naudts et al., 2015).
From a benchmarking point of view, simulating individ-
uals of different size or cohorts within a single forest is
essential to reproduce the sampling biases present in the
ITRDB (see Sect. 2.2 and 2.3).

iv. Chronic exogenous disturbances such as increasing at-
mospheric CO2 concentration (LaMarche et al., 1984)
and nitrogen (N) deposition (Magnani et al., 2007) are
well-developed, as they are among the main purposes
of using LSMs. The effect of CO2 fertilization on pho-
tosynthesis is accounted for in the photosynthetic sub-
model, whereas nitrogen dynamics are accounted for
through static or dynamic stoichiometric approaches
(Vuichard et al., 2019; Zaehle and Friend, 2010). Al-
though abrupt disturbances such as fires, pests, and
storms are increasingly being simulated by LSMs (Chen
et al., 2018; Yue et al., 2014) and leave marks in TRW
(Bowman et al., 2009; Bräuning et al., 2016), such as
fire scars and missing rings, they are of limited use for
benchmarking against TRW data. The timing of such
events largely depends on the simulated diagnostics,
for example, fuel wood build-up, insect population dy-
namics, and soil moisture, which could strongly devi-
ate from the observed timing in decadal to century-long
simulation periods. Thus, simulated stand demograph-
ics should be the basis for benchmarking against obser-
vations rather than secular changes such as infrequent
disturbances described above.

v. The final term in the aggregate tree-growth model con-
stitutes all processes and interactions between processes
not previously accounted for in the LSM, and will make
up the model error.

This aggregate tree-growth model provides the conceptual
basis for tree-ring standardization and climate signal extrac-
tion methods used in dendrochronology (Briffa and Melvin,
2011; Cook and Kairiukstis, 1990). These methods rely on
the assumptions that the sampled trees capture the common
growth variability of the stand (e.g growth responses to cli-
mate variability and resource competition) and that the con-
tribution of each major driver can be statistically identified
as either signal or noise. Alternative approaches based on
Liebig’s law of the minimum (Stine, 2019) have been pro-
posed to attribute TRW to its major drivers. In practice, ob-
served TRW records cannot always be fully decomposed
in the absence of metadata because several drivers might
not leave a unique fingerprint in growth. However, size-
dependent growth and climate sensitivity have been observed
to comprise the primary contributions of variance in the lin-
ear aggregate model (Hughes et al., 2011).

In addition to accurate process representation, LSMs will
need to be driven by historical climate, atmospheric CO2
concentrations, and N deposition. In general, commonly used
century-long climate reanalyses such as NCEP (Kalnay et al.,
1996), 20CR (Compo et al., 2011), and CERA-20C (Laloy-
aux et al., 2018) are based on the assimilation of instrumen-
tal observations in climate simulations and are, thus, inde-
pendent of climate estimates derived from tree rings or other
proxy data. Nevertheless, random and systematic errors in
the reanalyses increase as data availability decreases, particu-
larly in remote areas with a low density and temporal depth of
meteorological stations. Given that local climate effects may
have contributed to the TRW, it might be desirable to correct
the bias in reanalysis with present-day site-specific climate
observations where they exist (Ols et al., 2018). When LSMs
are forced by actual climate observations, reproducing the
observed climate sensitivity in tree rings would add credibil-
ity to the land-surface simulation – if the forcing data and the
LSM and TRW models are all realistic and unbiased.

Given the above, LSMs that intend to use TRWs as a
benchmark should at the minimum simulate the following:
(1) size-dependent growth, (2) dynamic plant phenology,
(3) differently sized trees within a stand, and (4) responses to
chronic exogenous environmental changes (Fig. 2). Whereas
responses to chronic exogenous environmental changes are
the reason LSMs exist and are therefore to some extent ac-
counted for by all current LSMs, size-dependent growth and
size differentiation within a stand are, at present, only ac-
counted for in a few LSMs, for example, CLM (ED) (Fisher
et al., 2015), ORCHIDEE (Naudts et al., 2015), and LPJ-
GUESS (Smith, 2001). The ORCHIDEE model (revision
5698) meets the aforementioned minimum requirements and,
therefore, will be used in this study.
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Figure 3. Example of a typical data record in the ITRDB dataset.
Each dataset in ITRDB consists of incremental cores from multiple
trees (tens to several hundred, depending on the dataset) with vary-
ing ages and growth rates. In this figure, observations are from a
pine forest in Germany, archived as germ214 (Neuwirth et al., 2007)
(Table S3). The diameter of individual trees was reconstructed by
summing the annual tree ring from the dataset. Note the presence of
both fast-growing relatively young trees (dark grey lines) and slow-
growing older trees (light grey lines).

2.2 Challenges of using ITRDB data as a long-term
benchmark

A typical record in the ITRDB consists of TRW measure-
ments of incremental cores from tens of individual trees from
the same site and species. Each record may have different
starting and ending dates and, thus, a different length (Fig. 3).
If a core reaches the pith of the trunk, the annual tree diame-
ter can be reconstructed (Bakker, 2005); however, even then,
diameter reconstruction may come with some uncertainty be-
cause trunks are not perfectly round. If the core does not con-
tain the pith, which is often the case for large trees, the lack
of information about the rings near the pith adds uncertainty
to the diameter and age reconstruction (Briffa and Melvin,
2011). In this case, the diameter increment could still be re-
constructed (by subtracting the measured TRW from the di-
ameter of the tree) if the trunk diameter at the time of sam-
pling is known, but these metadata are rarely recorded in den-
droclimatic collections and are not stored in the ITRDB.

The predominant sampling design in the ITRDB targets
the trees that are presumed to be the oldest; these trees should
give the longest time series and are, therefore, the most use-
ful to reconstruct the climate variability prior to instrumental
records. Thus, the ITRDB is likely to over-represent large
trees (Brienen et al., 2012; Nehrbass-Ahles et al., 2014) rela-
tive to the population demographics at the time of sampling.
This big-tree selection bias makes the ITRDB unsuitable to
upscale the growth of individual trees to larger spatial do-
mains, i.e. stand, forest, or the region (Babst et al., 2014a;
Nehrbass-Ahles et al., 2014), but does not affect the value of
the ITRDB archive for documenting individual tree growth
as long as tree size and dominance effects are explicitly con-
sidered.

Tree-ring datasets often contain cores of individuals from
different cohorts. The presence of slow- and fast-growing
trees within the same cohort (illustrated by the grey lines
in Fig. 3) is another source of bias (Melvin, 2004; Zuidema
et al., 2011). Slow-growing trees tend to live longer than
fast-growing trees in the same cohort (Mencuccini et al.,
2005; Schulman, 1954). Owing to survivorship being biased
towards slow-growing individuals (Bowman et al., 2013),
TRW records are likely to underestimate the mean tree
growth of a stand in long-passed centuries, as fast-growing
trees would have died off before the samples were taken
(Brienen et al., 2012).

2.3 Solutions for the challenges and virtual trees

Despite its known biases, poorly described sampling proto-
cols, or protocols that were not rigorously enforced, infor-
mation contained in TRW records of the ITRDB can still be
used for benchmarking LSMs.

Without additional data, data–model comparison cannot
correct for the big-tree selection bias in the ITRDB; however,
this bias can be accommodated through models that simu-
late multiple tree diameter classes by comparing the largest
simulated diameter class with the observed ITRDB tree-ring
records (illustrated by the respective bold blue line and black
dotted line in Fig. 4a)

Likewise, data–model comparison cannot correct biases
from slow-growing trees’ survivorship, but we propose to en-
hance the consistency between modelled and observed TRWs
by making use of site-specific virtual trees. Virtual trees are
created from observations by combining data from different
individuals to obtain a time series of TRW with the desired
property (details on the desired properties are given below)
that reflects stand-level characteristics. By definition, virtual
trees are not observed as data sequences in the ITRDB ob-
servations but are rather extracted from site-level data. As
tree-ring observations for a single site consist of samples
from multiple individual trees (individual trees are shown by
grey lines in Fig. 4), constructing a single virtual tree for a
given site facilitates data–model comparisons. Because vir-
tual trees are dependent on the chosen desired property, mul-
tiple data–model comparisons are possible for each site. In
Sect. 2.4, we propose four different benchmarks based on
the ITRDB data, which make use of three virtual-tree target
properties:

– Tree-age-aligned average virtual tree – the average
virtual tree of a stand aligned by tree age is calcu-
lated as the time series for the average ring width af-
ter aligning the age of the individual trees (Fig. 4a).
Age-aligned TRWs are widely used to calculate a statis-
tic known as the mean regional curve of the sampled
stand (Briffa and Melvin, 2011). This assumes that size-
related growth is the dominant driver of tree growth (see
Sect. 2.1 and 2.4, point i).
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Figure 4. Using virtual trees to account for challenges related to the use of ITRDB datasets when evaluating land surface. (a) Data–model
comparison may overcome the big-tree selection bias by comparing only the simulated largest diameter class (bold blue line) for evaluation
rather than all diameter classes (thin blue lines), with the compiled average virtual tree (black dotted line). Grey lines represent individual
trees from observations. (b) The observed tree-ring records are a mixture of relatively slow-growing trees (light grey lines) and fast-growing
trees (dark grey lines). Fast-growing trees do not attain the same age as slow-growing trees because they tend to die earlier. Using all trees
without further consideration in the calculation of the average virtual tree (black dotted line) would lead to an underestimation of tree growth
at the time of stand establishment, resulting in a flawed comparison with the simulated tree growth (blue lines). (c) However, aligning
observations by the age of individual trees before compiling the largest virtual tree (black dotted line) results in a very different virtual tree
compared with Fig. 4b. The largest virtual tree better reconstructs tree growth during stand establishment, thereby facilitating data–model
comparison. Note the change in the x axis label between panels (b) and (c). Observations taken from a pine forest in Germany, archived as
germ214 (Neuwirth et al., 2007) (Table S3). Simulation were run with ORCHIDEE r5698.

– Calendar-year-aligned average virtual tree – the aver-
age virtual tree of a stand aligned by calendar year is
calculated by ordering individual tree-ring series by cal-
endar year (Fig. 4b), and the average observed diameter
is calculated for each year. Thus, alignment by calendar
year reflects the real temporal evolution of the stand.
This virtual tree can be used to better cope with a dif-
ference in simulated and observed forest structure by
compiling a representative and comparable tree with the
simulated tree (see Sect. 2.4, point ii).

– Tree-age-aligned largest virtual tree – the largest vir-
tual tree of a stand is calculated after aligning individual
trees by their age (Fig. 4c). The recommendation to re-
move the age trend from tree-ring records (Cook et al.,
1995) confirms the assumption underlying the align-
ment by age, i.e. that size-dependent age exceeds the
growth trends due to long-term environmental changes.
Subsequently, the age-aligned TRWs can be used to
compile a virtual fast-growing tree that has the maxi-

mum observed diameter of all trees for a given tree age
(note the difference in the weight of the dark grey lines
from virtual trees in Fig. 4b and c). Thus, the virtual
fast-growing tree gives a better idea of the true mean
tree growth in old stands. (see Sect. 2.4, point iii.)

The proposed data–model comparison largely relies on the
concept of virtual trees, as these virtual trees can better ac-
count for known sampling biases of the ITRDB datasets and
different aspects of TRW, and they facilitate the comparison
of simulations and observations at the stand level. The pro-
posed definitions and uses of virtual trees, which were partly
customized to ORCHIDEE r5698, are evaluated in Sect. 4.
Except for LSMs with an individual tree-based stand defini-
tion (Sato et al., 2007), benchmarking other models against
ITRDB data will also have to consider the use of virtual trees
and may have to adjust the proposed definitions to the pecu-
liarities of the LSM under evaluation.

Geosci. Model Dev., 14, 5891–5913, 2021 https://doi.org/10.5194/gmd-14-5891-2021
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2.4 Benchmarks for comparing observed and
simulated tree-ring widths

If a LSM explicitly accounts for the main contributors to
TRW, i.e. size effects and climate sensitivity (Hughes et al.,
2011), meaningful benchmarking against specific aspects of
the observations becomes feasible in spite of the aforemen-
tioned biases in the ITRDB. Our technical framework con-
siders four complementary aspects of the observations: (i) the
size-related growth trend in tree rings, (ii) the diameter incre-
ment of mature trees, (iii) the diameter increment of young
trees, and (iv) extreme-growth events. Each of these aspects
formed the basis of a benchmark:

i. Size-related diameter growth – the size-related growth
trend in the diameter increment can be assessed by cal-
culating the average virtual tree for a stand aligned by
tree age (examples shown in Figs. 4a and 5a and b) and
subtracting this virtual tree from the simulated TRWs of
the largest diameter class (Fig. 5c). Subsequently, linear
regression is used to quantify the temporal trend in the
residuals (examples shown in Fig. 5d). If the simula-
tions and observations have similar size-related trends,
the temporal trend in the residuals will be close to zero.
Furthermore, the root mean square error (RMSE) be-
tween the simulations and observations is calculated
and normalized by the length of the time series used
to calculate the difference in observed and simulated
growth trends. A skilled model is expected to simulta-
neously show no trend in the residuals and a low RMSE.

ii. Diameter increment of mature trees – in LSMs that
account for within-stand competition, larger trees will
consistently grow faster than smaller trees due to the
way that competition is formalized (Bellassen et al.,
2010; Haverd et al., 2013). In reality, growing con-
ditions can suddenly become favourable for trees that
have previously been suppressed, resulting in fluctuat-
ing growth rates (see dark grey lines in Fig. 4b). This
discrepancy between simulated and observed competi-
tion can be accounted for in the benchmark by using
the observations to compile a virtual tree of the stand
aligned by calendar year, taking the average tree diam-
eter of all samples to construct the virtual tree (Figs. 4b
and 6a and b). Following the big-tree selection bias
(Sect. 2.2), it can be assumed that the observed trees
are representative of the biggest trees from a given site.
Hence, the virtual tree can be compared with the largest
diameter class from the model. The survivorship bias
of slow-growing individuals has the strongest impact
when assessing TRW in century-old trees (Sect. 2.2).
When analysing recent decades, both the fast- and slow-
growing trees are still alive and could have been sam-
pled; therefore, the first 5 decades were excluded for
better comparison (Fig. 6c, d). The 50-year threshold in
this study is somewhat arbitrary but reflects the obser-

vation that the fastest changes in tree growth occur in
the first few decades in most of the selected time se-
ries. When benchmarking against other TRW data, this
threshold could be adjusted to better fit the observed
growth dynamics for other tree species and/or other re-
gions. The RMSE and trend of the residuals between the
virtual tree and the largest diameter class simulated are
calculated (Fig. 6d, e, f). A skilled model is expected to
simultaneously show no trend in the residuals and a low
RMSE.

iii. Diameter increment of young trees – the diameter in-
crement of young trees can be assessed by calculating
the largest virtual tree of the stand. The maximum age
of a virtual tree equals the shortest observed individual
TRW record for the stand, as it represents the age in-
tersection between the TRW records for all individuals
in the stand. The largest virtual tree is clearly biased to-
wards higher observed diameters, compensating for the
loss of observed high diameters in field sampling due to
the fact that the old fast-growing trees died well before
sampling took place (Figs. 4c and 7a and b). The first
3 decades of growth of the virtual tree are then com-
pared to the simulated growth of the largest diameter
class (Fig. 7c, d) by calculating the RMSE and trend of
the residuals (Fig. 7d, e, f). As for the previous bench-
mark, the threshold is somewhat arbitrary and was set
to focus the analysis on the first decades in which di-
ameter growth is generally faster compared with later
decades. Note that the thresholds for young and ma-
ture trees are separated by 20 years during which the
observations are not considered in either benchmark.
When needed, these thresholds could be adjusted to bet-
ter match local tree growth, but it is recommended to
keep the separation between the thresholds to account
for the transition in diameter growth from young to ma-
ture trees. A skilled model is expected to simultaneously
show no trend in the residuals and a low RMSE. By us-
ing different approaches to evaluate the growth of young
(this benchmark) and mature trees (the previous bench-
mark), the comparison accounts for the observation that
the drivers of ring growth change as the trees grow taller
(Cook, 1985).

iv. Extreme-growth events – for this benchmark, extreme
growth is defined coarsely as the first and last quartiles
in TRW ordered by calendar year. For the purpose of es-
timating extremes, we seek the average virtual trees and
LSM simulations to most accurately and precisely char-
acterize the interannual variability. In the present study,
use of the 1951–2000 interval produces LSM simula-
tions forced by climate and nutrient loading estimates
best constrained by dense, recent climate observations
(see Sect. 3), and therefore minimizing the contribu-
tion of forcing uncertainty to LSM simulation uncer-
tainty; in the TRW observations, it also leverages non-
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Figure 5. Example of the major steps for calculating the metrics of the benchmark for the size-related trend in diameter increment. The
size-related trend in diameter increment can be assessed by calculating a time series for the average ring width after aligning the age of the
individual trees (a, b). Observations are shown as grey lines, and the simulation is shown as blue lines. The largest diameter class from the
simulation is presented by the bold line. The black dotted lines represent the virtual tree based on the observations. The TRWs of this virtual
tree are then subtracted from the simulated TRWs of the largest diameter class (c). Subsequently, a linear regression is used to quantify the
temporal trend in the residuals (d). The green line denotes the model residuals, and the green dotted line is the linear regression of the model
residuals. Furthermore, the root mean square error (RMSE) between the simulations and observations is calculated (b; RMSE between blue
line and black dotted line) and normalized by the length of the time series to calculate the difference in observed and simulated growth trends.
Observations and the simulation are from a Pinus sylvestris site in Finland, archived as finl052 (Meriläinen et al., 2004). For this example,
the calculated RMSE (b) is 0.39 mm, and the slope of residuals (d) is −0.002 mm yr−1.

juvenile tree-ring series of more than 50 years which do
not require detrending and are expected to most accu-
rately reflect the climate sensitivity. Subsequently, for
each site, individual tree records are averaged to ob-
tain a single time series (Fig. 8a). Model skill for es-
timating the distribution of growth arising from climate
variability is evaluated by comparing the observed and
simulated 25th and 75th percentiles of TRWs for the
largest diameter class, which is the diameter class show-
ing the strongest climate sensitivity (Fig. 8e, f). Addi-
tionally, model skill for reproducing the timing of indi-
vidual extreme-growth events is evaluated by compar-
ing simulated to observed virtual standardized TRW for
the exact years during which extreme growth was ob-
served (Fig. 7a, b, c, d; Rammig et al., 2015). For both
the amplitude and timing of growth extremes, the simi-
larity between simulations and observations was calcu-
lated as the RMSE of the distance from the 1 : 1 line
(Fig. 8c, d, e, f). A skilled model is expected to simul-

taneously show low RMSE for both the amplitude and
timing of extreme years.

3 Materials and methods

3.1 The land-surface model ORCHIDEE

ORCHIDEE (Ducoudré et al., 1993; Krinner et al., 2005)
is the land-surface model of the IPSL (Institute Pierre Si-
mon Laplace) Earth system model (Dufrêne et al., 2005).
Hence, by design, it can be coupled to an atmospheric gen-
eral global circulation model or become a component in a
fully coupled Earth system model. In a coupled set-up, the
atmospheric conditions affect the land surface, and the land
surface, in turn, affects the atmospheric conditions. However,
when a study focuses on changes in the land surface rather
than on the interactions with climate, it can also be run as
a stand-alone land-surface model. In both configurations the
model receives atmospheric conditions, such as precipitation,
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Figure 6. Example of the major steps in calculating the metrics of the benchmark for the diameter increment in mature trees. Individual
tree records are ordered by calendar year, and the average observed diameter is calculated for each year (a). Observations are shown as grey
lines, and the simulation is shown as blue lines. The largest diameter class from the simulation is presented by the bold blue line. Black
dotted lines represent the yearly average of observations. Note that the x axis in Fig. 6 is different from Fig. 5. Under the assumption that the
observed trees are the biggest trees from a given site, the virtual tree is compared with the largest diameter class from the model (b, c). Given
that both the fast- and slow-growing trees are still alive and could have been sampled for the most recent decades, only the recent decades
(10 decades, in this example) of the virtual-tree growth are compared to the simulations (d). The RMSE (d; black arrows) and trend of the
residuals between the virtual tree and the largest diameter class simulated are calculated (e, f). From the whole period shown in panels (a)
to (d) (1828–1976), the first 50 years were excluded, and panels (e) and (f) zoom in on the last 10 decades. The green line denotes the
residuals, and the green dotted line is the linear regression of the model residuals. Observations and simulation are from a Pinus sylvestris
site in Scotland, archived as brit021 (Schweingruber, 1995). In this case, the RMSE (d) and the slope of residuals (f) were calculated as
33.65 mm and 0.68 mm yr−1 respectively.

air temperature, air humidity, winds, incoming solar radia-
tion, and CO2, as input; this combination of different input is
known as the climate forcing. Both configurations can cover
any area ranging from global to regional domains and even
down to a single grid point for the stand-alone case.

Although ORCHIDEE does not enforce a spatial or tem-
poral resolution, the model does use a predefined spatial grid
and equidistant time steps. The spatial resolution is an im-

plicit user setting that is determined by the resolution of
the climate forcing. Although the temporal resolution is not
fixed, the processes were formalized at given time steps: half-
hourly (i.e. photosynthesis and energy budget), daily (i.e. net
primary production), and annually (i.e. vegetation dynam-
ics). Hence, meaningful simulations have a temporal reso-
lution between 1 min and 1 h for the energy balance, water
balance, and photosynthesis calculations.
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Figure 7. Example of the major steps in calculating the metrics of the benchmark for diameter increment in young trees. After aligning the
TRW records of the individual trees by their age, a virtual tree is constructed by taking the maximum observed diameter of all trees for each
year (a). Observations are shown as grey lines, and the simulation is shown as blue lines. The largest diameter class from the simulation
is presented by the bold line. Black dotted lines represent the yearly maximum of the observations. The growth of the virtual tree is then
compared to the simulated growth of the largest diameter class (b) by calculating the RMSE (c) and trend of the residuals (e, f). The x axes of
panels (e) and (f) zoom in on the selected period, the green line denotes the model residuals, and the green dotted line is the linear regression
of the model residuals. These calculations are limited to the first decades of the time series (d) to compensate for the bias caused by the
fact that the old fast-growing trees died well before sampling took place. By using different approaches to evaluate the growth of young
(this benchmark) and mature trees (the previous benchmark), the comparison accounts for the observation that the drivers of ring growth
change when the trees grow taller (Cook, 1985). Observations and simulation are from Pinus sylvestris site in Scotland, archived as brit021
(Schweingruber, 1995). The calculated RMSE (d) was 21.86 mm, and the slope of residuals (f) was 0.88 mm yr−1 for this example.

ORCHIDEE builds on the concept of meta-classes to de-
scribe vegetation distribution. By default, it distinguishes
13 meta-classes (one for bare soil, eight for forests, two
for grasslands, and two for croplands). Each meta-class can
be subdivided into an unlimited number of plant functional
types (PFTs). When simulations make use of species-specific
parameters and age classes, several PFTs belonging to a sin-
gle meta-class will be defined. Biogeochemical and biophys-
ical variables are calculated for each PFT or groups of PFTs

(e.g. all tree PFTs in a pixel drawn from the same description
of soil hydrology, known as a soil water column).

ORCHIDEE is not an individual-based model but instead
currently represents forest stand complexity and stand dy-
namics with diameter and age classes. Each class contains
a number of individuals that represent the mean state of the
class. Therefore, each diameter class contains a single mod-
elled tree that is replicated multiple times and distributed at
random throughout the PFT area. At the start of a simula-
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Figure 8. Example of the major steps in calculating the metrics of the benchmark for extreme-growth events. In this benchmark, extreme
growth is defined as the first and last quartiles in TRW ordered by calendar year and averaged over the individual trees’ records (a). The
red shaded area and ticks represent observations exceeding the 75th percentile, and the blue shaded area and ticks represent observations
below the 25th percentile (a). The TRW simulated for the largest diameter class are then extracted for the years identified in panels (a)
and (b). Both observations and simulations were normalized to remove the difference in the range of values between configurations. These
normalized values correspond to the x and y axis in panels (c) and (d) for the observations and simulations respectively. Subsequently,
the similarity between simulations and observations was tested by calculating the distance from the 1 : 1 line (shown in green in panel d),
which is equivalent to the RMSE for years with extreme growth (d). An additional metric is calculated in a similar way but by using
both the 25th percentile and the 75th percentile of extreme values of the simulations and observations regardless of the year (e, f). This test
identifies if the simulation can reproduce the amplitude of TRW. The observations and simulations were not normalized to assess the absolute
amplitude. Possible uncertainties from using reconstructed climate forcing were avoided by limiting the calculations of both metrics to the
past 5 decades for which climate observations are available. Observations and simulation are from Pinus sylvestris site in Spain, archived
as spai006 (Schweingruber, 2020). In this test case, the RMSE for extreme years (d) was 0.57 mm, and the RMSE for extreme growth
(amplitude; f) was 0.03 (scaled).

tion, each PFT contains a user-defined number of stem di-
ameter classes. This number is held constant throughout the
simulation, whereas the diameter boundaries of the classes
are adjusted to accommodate for temporal evolution in the
stand structure. By using flexible class boundaries with a
fixed number of diameter classes, different forest structures
can be simulated. An even-aged forest, for example, is sim-
ulated with a small diameter range between the smallest and

largest classes. All classes will then effectively belong to the
same stratum. An uneven-aged forest is simulated by apply-
ing a large range between the diameter classes. Therefore,
different diameter classes will effectively represent differ-
ent strata. The limitations of this approach become appar-
ent when the TRW data and simulations are compared by
calendar year, as the model does not track individual trees.
Although the dimensions of each model tree itself are well
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Figure 9. Schematic representation of the verification process for
the RMSE metric. Before the verification, two types of datasets
were prepared: big-tree data (limited to the 15 % biggest trees) and
all-tree data. In this example, the simulated TRW was multiplied
with a verified modifier such that it minimized the RMSE between
the simulated and observed TRW for the 15 % biggest trees (see
Sect. 3.2 for details). The same multiplier was then applied to the
all-tree data, and the RMSE was calculated. Finally, the decrease or
increase in RMSE with the multiplier was compared to the RMSE
obtained without the multiplier. The other two modifiers, which are
detailed in Sect. 3.3, follow a similar approach.

defined, the amount of radiation it receives (and therefore the
amount of carbon produced) is determined by the statistical
distribution of all model trees in that grid cell.

Vegetation structure is then used for the calculation of the
biophysical and biogeochemical processes of the model such
as photosynthesis, plant hydraulic stress, and the radiative
transfer model. The r5698 version of ORCHIDEE (Sect. S1),
used in this study, combines the dynamic nitrogen cycle of
ORCHIDEE r4999 (Vuichard et al., 2019; Zaehle and Friend,
2010) and the explicit canopy representation of ORCHIDEE
r4262 (Chen et al., 2016; Naudts et al., 2015; Ryder et al.,
2016). It simulates carbon, water, energy, and nitrogen fluxes,
allows for size-dependent allocation across three diameter
classes within a forest stand, and has been parameterized
and tested for the simulation of TRW series via radial tree
growth estimation. A detailed overview of earlier develop-
ments (Krinner et al., 2005; Naudts et al., 2015; Vuichard
et al., 2019) that resulted in the emerging capability of OR-
CHIDEE r5698 to match the aggregate tree growth model
(Fig. 2) is given in the Supplement (Sect. S1).

3.2 Simulations: forcing and model parameterization

In this study, offline ORCHIDEE simulations for the 20th
century are forced with the merged and homogenized grid-
ded CRU-NCEP climate dataset (Viovy, 2016); the grid-
ded nitrogen deposition product from the Chemistry-Climate
Model Initiative (CCMI) (Eyring et al., 2013); a gridded ni-
trogen fertilization product for N2O (Lu and Tian, 2017);

an observation-based time series of global atmospheric CO2
concentrations (Keeling et al., 1996); and forest manage-
ment followed the reported management status for each of
11 sites simulated (Sect. S3) for comparison, via the virtual-
tree benchmarks, with observations (Sect. 3.3). Simulations
were started from a 300-year-long spin-up, which was re-
quired for equilibrium with respect to the slow carbon and
nitrogen pools in the soil. The spin-up was concluded with a
forest clear-cut, such that the start year and the length of each
simulation matched the observed stand age for the validation
dataset (Sect. 3.3).

During model development, two global (number of diam-
eter classes and ratio for number of trees per each diameter
class; see Sect. 3.1) and six PFT-specific parameters (fpower,
fσ , kα_r , kα_s , kβ_r , and kβ_s ; Table S1) were manually ad-
justed to jointly reproduce the TRW data of 11 ITRDB sites:
aust112 (Strumia, 2005), cana106 (Archambault and Berg-
eron, 2002), chin037 (PAGES 2k Consortium, 2013), finl055
(Melvin, 2005), fran4 (Tessier, 1996), id007 (Briffa and
Schweingruber, 2002), japa011 (Davi et al., 2011), mo009
(Bell et al., 2002), nepa003 (Krusic and Cook, 2005), spai055
(Briongos and Cerro-Barja, 2007), and turk027 (Griggs et al.,
2006). Thus, sites belonging to the same PFT were simu-
lated by making use of a single PFT-specific parameter set.
In other words, no site-specific parameters were applied. All
other parameters were set to default values. As configured,
the model distinguished five diameter classes for simulated
trees. The smallest and largest diameter classes each con-
tained 15 % of the total number of simulated trees. The three
intermediate classes contained 21 %, 27 %, and 21 % of sim-
ulated trees respectively. Agreement between simulated and
observed TRW was assessed visually.

3.3 Verification

The European biomass network contains TRW samples
from “fixed-plot sampling”. The database was established
within multiple research projects and made publicly available
through the EU Horizon 2020 project BACI (BACI, 2020). It
currently archives 48 datasets covering temperate and semi-
boreal climates (Fig. S2) that have been collected from a va-
riety of research efforts in Eurasia (Klesse et al., 2018). All
trees larger than 5.6 cm in diameter at breast height had to be
sampled in a 10–40 m radius plot, depending on stand den-
sity, in order to be archived in the European biomass network
database (Babst et al., 2014b). The European biomass net-
work is, therefore, considered to be free of the big-tree selec-
tion bias that has plagued the ITRDB, although other known
biases (e.g. slow-growing tree survivorship bias) may still be
present. Thus, the records from the European biomass net-
work are suited to evaluate the validity of using virtual trees
constructed from ITRDB records to cope with the aforemen-
tioned sampling biases.

We selected sites from the European biomass network
based on the following criteria: (1) the site had to be dom-
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inated by a single species for enhanced compatibility with
ORCHIDEE, which is monospecific by design; and (2) the
stand age should exceed 50 years as a requirement to apply
all four proposed benchmarks (Sect. 2.4). The benchmarks
were applied to a common evergreen and a common decidu-
ous species. Hence, within the filtered sites, only sites dom-
inated by Picea abies or Fagus sylvatica were retained, re-
sulting in 12 sites out of the total of 48 sites. CIM, a site
dominated by Fagus sylvatica, was removed from the selec-
tion (decreasing the final number of sites to 11) because only
one tree out of 61 trees was aged over 100 years, resulting in
a diameter distribution that was not at all compatible with the
default diameter distribution of the model. The details of the
selected sites are given in Table S3 in the Supplement.

The European biomass network data were additionally
used to verify whether the big-tree selection bias that is
present in the ITRDB data invalidates its use for benchmark-
ing LSMs. The verification checked whether changes in pa-
rameter values or model process representation that would be
required to make the model output better match the ITRDB
data would also result in a better match between the model
output and the all-tree data from the European biomass net-
work. If this were the case, benchmarking LSMs against
ITRDB data would result in model changes that would en-
hance the model’s capability to simulate tree growth, thereby
justifying the conclusion that ITRDB data can be used for
LSM benchmarking despite the known biases.

Therefore, the verification used the data from the Euro-
pean biomass network in two different ways. First, all trees in
the European biomass network dataset were used (hereafter
called “all-tree data”) to calculate the four proposed bench-
marks at the site level. The results of these benchmarks were
used as the reference in the verification. Second, only big
trees were subsampled from the data (hereafter called “big-
tree data”), and all four benchmarks were calculated against
this subsample of data. Big trees were defined as the top 15 %
of the trees based on their diameter, and the 15 % threshold
was taken to match the diameter distribution in ORCHIDEE,
where by definition the largest diameter class contains 15 %
of the trees.

The “big-tree” verification required three additional steps
(Fig. 9). In the first step, the simulated TRW values from
the largest diameter class were transformed by modifiers to
minimize the two metrics of each benchmark (Sect. 2.4; Ta-
ble S2). The different benchmarks may use different met-
rics, i.e. the RMSE and slope of the residuals were used
as the metrics for benchmarking size-related growth trend,
growth of mature trees, and growth of young trees, whereas
extreme growth and TRW amplitude were used as the metrics
for benchmarking extreme growths (Table S2). In the sec-
ond step, the same modifiers were then applied to all simu-
lated diameter classes, and all four benchmarks. Hence, two
metrics were calculated using all-tree data for each bench-
mark. In the third and final step, the actual verification tested
whether – for a given metric and a given benchmark – the

modifier improved simulations for the big-tree sample and
for the all-tree data. Improvement of a specific metric of a
benchmark was quantified by subtracting the original value
for that metric from its modified value for all-tree data. Thus,
a negative value indicated an improvement. If all three con-
ditions were satisfied, the benchmarks of the big-tree and
all-tree data were said to be consistent, implying that using
this benchmark in combination with the ITRDB data would
reveal the same model shortcomings as benchmarking OR-
CHIDEE against TRW data from all-tree networks. Across
the 11 sites and for each of the four proposed benchmarks
and both benchmark metrics, sites where the test improved
for both datasets were counted to estimate the confidence in
using ITRDB in benchmarking LSMs.

As this study aims to propose benchmarks making use
of the ITRDB study rather than improving the ORCHIDEE
model, the modifiers were applied to the model output di-
rectly. This approach has the advantage of remaining concep-
tual, avoiding the need to optimize specific model parameters
or rewrite or add processes in the model code. Different mod-
ifiers were used to accommodate the differences between the
metrics: (1) the RMSE or amplitude of a benchmark was
minimized by multiplying the simulated TRW with a mod-
ifier (Fig. 9); (2) the slope of the residuals of a benchmark
was minimized by subtracting a trend modifier from the sim-
ulated growth trend; and (3) the years of the simulated TRW
were rearranged such that they matched the ranked order of
observed extreme TRWs.

4 Results

Verification of ORCHIDEE-based TRW simulations was ap-
plied at the 11 sites selected from the European biomass
network (Sect. 3.3), via estimation of the four benchmarks
(Sect. 2.4) from simulations and observations as well as their
evaluation via the two skill metrics per benchmark, for a to-
tal of 88 test case comparisons (Table 1, Fig. S3). We first
describe the results of big-tree bias estimation and modifier
estimation in general, and then detail each of the individual
benchmarks in the remainder of this section.

4.1 Big-tree bias estimation

Despite its simplicity, the use of modifiers was found to be
robust as it improved all metrics of the four proposed bench-
marks at each of the 11 sites when verifying against the big-
tree data. Applying the same modifiers to the all-tree data
improved the match between the simulations and observa-
tions in 72 % of the test cases (63 out of the 88 test cases;
Table 1). We note that this overall result hides large differ-
ences between tree species. The verification appeared to be
more successful for beech with an overall confidence level of
84 % (27 out of 32 test cases) compared with spruce with an
overall confidence level of 64 % (36 out of 56 test cases).
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Table 1. Verification of the benchmarks and their metrics. Each cell represents the result from a single site. The values show the difference
for each metric before and after optimization. Bold cells show the cases where the optimization for the all-tree data was consistent with the
optimization result of the big-tree data. (See Table S3 for more information.)

Size- Diameter increment Diameter increment
Benchmark dependent growth of mature trees of young trees Extreme growth

Metrics RMSE of
TRW (mm)

Slope of
residuals
(mm yr−1)

RMSE of
diameter
(mm)

Slope of
residuals
(mm yr−1)

RMSE of
diameter
(mm)

Slope of
residuals
(mm yr−1)

RMSE of
amplitude
(mm)

RMSE of
extreme-
growth
timing (–)

Picea abies DEO
(−0.005)

DEO
(0.000)

DEO
(−75.97)

DEO (0.78) DEO (8.11) DEO (1.47) DEO
(−0.04)

DEO
(−0.60)

DVN
(−0.182)

DVN
(0.000)

DEO
(−161.69)

DVN
(−0.69)

DVN
(−11.96)

DVN
(−0.42)

DVN (0.02) DVN
(−0.77)

GIU
(−0.600)

GIU
(−0.007)

GIU
(−131.25)

GIU
(−0.68)

GIU
(−39.96)

GIU
(−1.30)

GIU
(−0.32)

GIU
(−0.96)

HD2
(0.009)

HD2
(−0.002)

HD2
(15.60)

HD2 (0.53) HD2 (1.95) HD2 (0.56) HD2
(−0.04)

HD2
(−0.97)

SCH
(0.029)

SCH
(−0.004)

SCH
(−182.46)

SCH
(−0.96)

SCH
(57.55)

SCH (5.49) SCH
(−0.15)

SCH
(−1.29)

SOB
(−0.008)

SOB
(0.001)

SOB
(−20.22)

SOB (0.49) SOB (9.32) SOB (1.29) SOB
(−0.08)

SOB
(−1.54)

TIC
(−0.151)

TIC
(−0.001)

TIC (24.47) TIC (1.52) TIC
(−10.33)

TIC
(−0.28)

TIC
(−0.19)

TIC
(−1.63)

Fagus
sylvatica

CAN
(−0.046)

CAN
(−0.004)

CAN
(−74.03)

CAN
(−1.27)

CAN
(−5.91)

CAN (0.16) CAN
(−0.07)

CAN
(−1.17)

SOR
(0.007)

SOR
(−0.005)

SOR
(−116.26)

SOR
(−1.62)

SOR (2.69) SOR
(−1.13)

SOR
(−0.04)

SOR
(−1.01)

TER
(−0.060)

TER
(−0.000)

TER
(−3.73)

TER
(−0.09)

TER
(−15.93)

TER (0.25) TER
(−0.07)

TER
(−0.99)

ZOF
(−0.183)

ZOF
(−0.000)

ZOF
(−42.72)

ZOF (0.02) ZOF
(−11.98)

ZOF
(−0.05)

ZOF
(−0.17)

ZOF
(−1.11)

4.2 Verification by benchmark

When benchmarking size-related growth, conclusions would
be similar in 16 out of 22 cases (73 %), regardless of whether
ORCHIDEE was benchmarked against the big-tree data or
the all-tree data. Some sites such as DEO and DVN showed
positive differences close to zero, suggesting that simula-
tions with ORCHIDEE r5698 matched the observed size-
related growth trend reasonably well, leaving limited room
for improvement. One site (SCH) showed a positive dif-
ference because it contained two slow-growing trees which
lived roughly 40 years longer than the rest of trees but whose
diameters were too small to be contained in the big-tree sam-
ple (Fig. S4). Except for this site, the other sites showed
marginal inconsistencies or showed improved simulated out-
put against the two datasets. Thus, the size-related trend in

tree growth can be derived from either the big-tree or the all-
tree data.

For the mature-tree benchmark, big-tree data can be used
with 68 % (15 out of the 22) confidence for benchmarking
against LSMs. At 5 out of 11 sites, the all-tree data and the
big-tree data yield different results. Two sites (HD2 and TIC)
for which inconsistencies between the big-tree and all-tree
data were observed for both metrics have 36 %–44 % of small
trees in their size distribution, compared with an average of
28 % at the other nine sites. The proportion of small trees in
the observation was estimated by counting trees in the small-
est bin when trees were divided into five size classes similar
to the model. The site labelled as ZOF has a bimodal size dis-
tribution with the biggest number of trees in the 1st and 4th
diameter classes (35 % and 32 % respectively). The default
size distribution in ORCHIDEE has 15 % of its trees in the
smallest size class and 21 % of its trees in the 4th size class.
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At two other sites, DEO and SOB, the growth rate for big
trees was higher in the observations (0.95 and 0.50 for the
slope of residuals respectively), as the difference in big trees
and small trees was bigger in the observations (Fig. S5b);
despite this, the average simulation at these sites matched
well with the average diameter trend as shown by the calcu-
lated slope of residuals: 0.08 and 0.09 respectively (Fig. S5a).
These results suggest that the mature-tree benchmark is sen-
sitive to the stand structure.

With 50 % (11 out of 22) confidence in using the big-tree
data in benchmarking LSMs, the young-tree benchmark ap-
pears to be the most demanding in terms of its data. At the
DEO, HD2, and SOB sites, inconsistencies between bench-
marking the big-tree data and the all-tree data stemmed from
(1) the similarity between simulations and observations, with
a RMSE of around 10 mm; and (2) the fact that the differ-
ence between big trees’ and small trees’ growth was larger
in the observations (Fig. S6). The site labelled as SCH con-
tained two extremely fast-growing young trees resulting in a
very fast-growing virtual tree in the optimized model output
(Fig. S7). For SOR, the difficulties may have come from the
model itself, more specifically from difficulties in simulating
the carbon allocation (Fig. S8). These results suggest that a
variety of issues decreases the confidence in using big-tree
data for young-tree benchmarking.

For the extreme-growth benchmark, big-tree data can be
used with 95 % (21 out of the 22) confidence for bench-
marking LSMs. The observed consistency between bench-
marking the big-tree data and the all-tree data suggests that
extreme growth happens in the same years, irrespective of
which dataset is being used. The DVN site showed the small-
est RMSE for amplitude when it was calculated with the
all-tree data (0.02), but the site has the biggest ratio of big-
trees to all-trees for amplitudes compared with the simulation
(1.30, Fig. S9). In other words, if the simulation is adjusted
to the big trees in the observation, as the difference between
subsampled big-tree and all-tree is larger in the observations,
the average simulation becomes bigger than the average ob-
servation (see Figs. S5 and S6). This result suggests that the
extreme-growth benchmark is the least demanding bench-
mark in terms of sampling design.

5 Discussion

5.1 LSM verification: beyond tree-ring width

Until now, verification of LSMs against tree-ring width
records has relied primarily on interannual variation in simu-
lated net primary productivity as a proxy for site-level TRW
chronologies (Klesse et al., 2018; Kolus et al., 2019; Ram-
mig et al., 2015; Zhang et al., 2018). Although such an in-
direct approach is appropriate, to a certain extent, for vali-
dating the capability of LSMs to simulate interannual vari-
ability and for studying patterns and mechanism of change

over longer timescales, the observations will need to be de-
trended to remove the size-related growth signal, adding con-
siderable uncertainty to the verification process (Bunde et al.,
2013; Cedro, 2016; Nicklen et al., 2019; Stine, 2019). Rec-
ognizing Cook’s conceptual model of aggregate tree growth
(Fig. 2), we propose to move beyond the net primary pro-
duction proxy by explicitly simulating and validating stem
radial growth demographics. By doing so, we enrich the ver-
ification by including the effects of potentially confounding
factors such as forest structure, age and size trends (Alexan-
der et al., 2018; Nickless et al., 2011; Jiang et al., 2018),
phenology (Shen et al., 2020), and sampling biases (Babst
et al., 2014a), in addition to climate and environmental forc-
ing (Klesse et al., 2018; Zuidema et al., 2020; Li et al., 2014;
Rollinson et al., 2017).

Targeting both size-structured and age-structured informa-
tion in observations and simulations (Fig. 3), we have pro-
posed the use of four verification benchmarks created from
observations and potentially simulated by LSMs, with each
of them defined by two complementary metrics (Fig. 2; Ta-
ble S2):

i. The size-trend benchmark targets the long-term trend
in TRW. This trend contains information about onto-
genetic growth during establishment and endogenous
competition from canopy closure (Cook and Kairiuk-
stis, 1990). Although this trend is removed in many den-
drochronological studies to amplify the climate signal
contained in TRW (Briffa and Melvin, 2011), we sug-
gest testing the skill of the model in reproducing it be-
cause it is important to constrain biomass production.
Benchmarking a suitable LSM against observed size-
related trends in TRW may help to develop, evaluate,
or parameterize allometric relationships and changes in
simulated stand density (Fig. 4a).

ii. The mature-tree benchmark tests the capability of the
model in simulating annual growth of a mature forest.
As this benchmark aligns the observations by calendar
year (Fig. 4b), it may reflect the effects of long-term
environmental changes, if there were any and if the ob-
servational record is long enough to express them (Hess
et al., 2018; Panthi et al., 2020). As a skilled LSM is
expected to reproduce plant responses to long-term en-
vironmental change, this benchmark could be used to
develop, evaluate, and parameterize the processes that
simulate endogenous disturbances and plant responses
to factors such as increasing atmospheric CO2 concen-
trations, atmospheric N deposition, and warming.

iii. Tree growth during stand establishment can be tested
with the young-tree benchmark. The growth of estab-
lishing trees differs from that of mature canopy trees,
and this difference has been accounted for by using sep-
arate benchmarks for young and mature stands (Fig. 4c).
This benchmark could be used to develop, evaluate, or
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parameterize allometric growth of young trees as well
as tree mortality prior to canopy closure.

iv. The extreme-growth benchmark tests the occurrence
and range of extreme-growth events. Previously, inter-
annual variability in TRW has been used to evaluate
the climate sensitivity of LSMs. Interannual variability
has a limitation because we cannot expect the model to
simulate the timing of endogenous or exogenous dis-
turbances, such as fire, pest, and disease outbreak, or
the death of big trees leading to sudden growth re-
leases in adjacent trees. By forming a benchmark from
the extrema of the empirical distribution of incremental
growth in mature trees (e.g. as evident from Fig. 5a; see
also Figs. 9, S8, and S9), we create a direct comparison
with the simulated demographics of trees, as observed
over a contemporaneous time interval. This benchmark
could be used to develop, evaluate, or parameterize the
plant water stress and the temperature dependency of
plant growth in the model.

The metrics of the first three benchmarks are the root mean
square error (RSME) and slope (Figs. 5, 6, 7). The RMSE ex-
amines if the model reproduces the absolute values of TRWs.
However, even though a model might reproduce the value
of TRWs well, it is still expected to simulate the long-term
trend in TRW that comes from climate changes or endoge-
nous competition. This latter aspect is quantified by the slope
metric. For the large-scale models such as a LSM and for
sites with little high-quality site information, correctly sim-
ulating growth trends should be prioritized over matching
the end points in tree diameter. Because the benchmark for
extreme-growth events was not intended to test the capabil-
ity of LSMs to simulate growth trends, the slope of residuals
was not included. As a skilled model is expected to simulate
not only the timing of extreme growth but also the magnitude
of it, the metrics for this benchmark were designed to both be
evaluated using the RMSE (Fig. 9).

5.2 Toward LSM verification using the ITRDB

Regardless of the approach to LSM verification, the largest
publicly available archive of tree-ring records, the ITRDB,
is prone to sampling biases (Klesse et al., 2018; Zhao et al.,
2019). Although it may be difficult to correct the data for
these biases, our benchmarks present two solutions for com-
paring LSM output to ITRDB observations of raw ring width.
Simulating a size-structured population of trees enables the
comparison of the observations relative to a benchmark for
a tall simulated tree, which compensates for the tendency
of dendroclimatic sampling to select the oldest trees in a
stand, which may turn out to be the larger trees. Although
the ITRDB does not contain the site metadata that would be
required to make this comparison exact (i.e. the diameter and
true age distribution of the sampled stand), the use of the
tall-tree benchmark protects against comparing the observed

mean of a biased sample to the observed mean in unbiased
simulation demographics. The second solution relies on the
observation that the variation due to size-related growth by
far exceeds the variation due to environmental changes and
helps to constrain the survivor bias, which is derived from the
growth of young fast-growing trees that died a long time ago
and are therefore absent from records made from present-
day sampling of old growth forests (Brienen et al., 2017).
The benchmarks proposed here provide a tool to start using
ITRDB TRWs as a much-needed large-scale constraint on
the maximum tree diameter and annual growth for the tran-
sition from pre-industrial to present-day environmental con-
ditions.

Our verification approach estimated the level of confi-
dence for each benchmark from the fraction of cases for
which scaling simulations to observational benchmarks for
big-tree data would result in improved model performance
for observational benchmarks for all-tree data. In other
words, big-tree-biased verification data should not degrade
model performance relative to all-tree verification data, and
such tests were performed using the European biomass net-
work dataset (BACI, 2020). The results, then, might inform
the use of the ITRDB, which is suspected to contain large-
tree bias, for large-scale verification of LSMs on decadal to
centennial timescales (Fig. S1b).

Verification results (Table 1) show that if the output of OR-
CHIDEE is benchmarked against data with imposed big-tree
bias, there is 70 % confidence that the benchmark will pro-
duce similar conclusions as reached from the use of all-tree
data (Table 1, columns 1 and 2). This level of confidence is
perhaps sufficient to support benchmarking a LSM against
tens to hundreds of ITRDB sites in aggregate. The same
level of confidence is likely too low to benchmark a LSM,
or any ecosystem model, against a single ITRDB data series,
as there is a 30 % chance that parameter tuning or model im-
provements following the benchmarking will not verifiably
improve the model. Given the limited spatial extent, species
content, and environmental range of the European biomass
network used in this study, the levels of confidence represent
temperate and hemi-boreal forests, a subset of the ITRDB
range, and the actual distribution of forests (Fig. S2). The
validity of the use of the ITRDB data from boreal and trop-
ical forests will need to be verified as suitable data become
available.

Across all species, benchmarking against extreme events,
mature trees, and the size-related growth appeared to be the
least sensitive to big-tree bias (Table 1; 63 out of 88 cases
in bold font). Benchmarking against young trees will ben-
efit from using data free of the big-tree selection bias (Ta-
ble 1, compare the bold values reported in columns 1–4 and
7–8 to those in columns 5–6). This finding suggests lim-
ited utility of ITRDB data to verify simulations using the
young-tree benchmarks. Because the true diameter distribu-
tion is not contained in the ITRDB, it is neither possible to
select only ITRDB sites for which the actual diameter distri-
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bution matches ORCHIDEE’s distribution nor to adjust the
diameter distribution in ORCHIDEE to the observed distri-
bution (Figs. S4–S7). Matching observed and simulated dis-
tributions appears to be essential when benchmarking the
growth of young trees. The same finding suggests, however,
that forest inventory data for which the diameter distribu-
tion is known but only a few big trees were cored would be
a reliable data source for benchmarking LSM. The higher
fraction of modifier-improved ORCHIDEE simulations for
beech (87 %) relative to spruce (64 %) (Table 1, compare the
bold values in rows 1–7 to the bold values in rows 8–11)
suggests that the validity of the assumptions underlying the
use of ITRDB data partly depends on tree species. Unfortu-
nately, in this study, the variety of species was too limited to
generalize this result in terms of plant functional types.

Even when benchmarks calculated from observations and
simulations are not in agreement, they may nevertheless be
used to identify ways in which to improve the observational
database or the simulation model. Considering the compari-
son of the observed to simulated interquartile range (Fig. S9),
we see that the GIU site is amongst the most poorly simu-
lated sites. However, we found that the simulation could be
improved for both metrics of all four benchmarks through the
use of modifiers (Table 1, third row), despite the difference
in simulated and observed stand structure (Fig. S10). In addi-
tion, we also found that inconsistencies between big-tree data
and all-tree-based benchmarks may appear even when the
simulated mean TRWs approach observed means (Figs. S4–
S7). This suggests that (1) ITRDB data can be used as a first
approximation to benchmark the growth of young and mature
trees in LSMs, and (2) as the model improves, the need for
unbiased datasets will increase, as biases in observed stand
structure and growth rates could hamper the use of young-
and mature-tree benchmarks in particular.

5.3 Outlook

Tree-ring records of incremental growth that are suitably
described in terms of benchmarks might complement well-
established but short-term benchmarks for LSMs (Randerson
et al., 2009), such as forest inventory data (Bellassen et al.,
2010; Naudts et al., 2015), eddy covariance measurements
(Blyth et al., 2010; Williams et al., 2009), free-air CO2 en-
richment experiments (De Kauwe et al., 2013), and satellite
observations of vegetation activity (Chen et al., 2011; De-
marty et al., 2007). The novel benchmarks proposed here
may also provide new targets for evaluating LSMs’ perfor-
mance, as the metrics could be used in the objective func-
tion of any data assimilation technique (Peylin et al., 2016)
to rigorously account for the information contained in TRW
datasets. The value of tree-ring records for LSM verification
might be further enhanced by (i) developing new, unbiased
networks, such as the European biomass network, to both
complement and identify biases in the ITRDB; (ii) adding
their stable isotope ratios to verification benchmarks that

may be simulated by isotope-enabled LSMs (Levesque et al.,
2019; Barichivich et al., 2021); and (iii) combining their use
with high-frequency but short-term eddy covariance mea-
surements (Pappas et al., 2020; Teets et al., 2018), experi-
mental data from plant growth under pre-industrial CO2 con-
centrations (Temme et al., 2015), and proxies of atmospheric
composition (Campbell et al., 2017).

6 Conclusion

We have proposed and evaluated the use of four benchmarks
and two metrics that leverage observed demographics to pro-
vide more nuanced verification targets for LSMs that sim-
ulate both demographic responses and their environmental
forcing on decadal to centennial timescales. Using small but
relatively unbiased European biomass network datasets, we
identify the extent to which presumed biases in the much
larger ITRDB might degrade the validation of LSMs. We
find that size, mature-tree, and extreme-growth verification
benchmarks are relatively insensitive to big-tree bias, but the
use of young-tree benchmarks for verification of LSMs may
require the development of new unbiased observational TRW
datasets and/or the innovative use of independent verification
data.

Code and data availability. In line with GMD requirements,
the model code has been archived and made accessible:
https://doi.org/10.14768/20200228001.1 (Luyssaert, 2019). The
scripts required for reproducing the figures, the ORCHIDEE
simulations, and the intermediate results are available at
https://doi.org/10.5281/zenodo.4899742 (Jeong et al., 2021). The
BACI dataset is freely available online at http://www.baci-h2020.
eu/ (last access: 16 August 2021, BACI, 2020) but requires registra-
tion by email.

The ITRDB dataset can be accessed through https:
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