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Abstract. Prediction of spatiotemporal chaotic systems is
important in various fields, such as numerical weather predic-
tion (NWP). While data assimilation methods have been ap-
plied in NWP, machine learning techniques, such as reservoir
computing (RC), have recently been recognized as promising
tools to predict spatiotemporal chaotic systems. However, the
sensitivity of the skill of the machine-learning-based predic-
tion to the imperfectness of observations is unclear. In this
study, we evaluate the skill of RC with noisy and sparsely
distributed observations. We intensively compare the perfor-
mances of RC and local ensemble transform Kalman filter
(LETKF) by applying them to the prediction of the Lorenz
96 system. In order to increase the scalability to larger sys-
tems, we applied a parallelized RC framework. Although RC
can successfully predict the Lorenz 96 system if the system
is perfectly observed, we find that RC is vulnerable to ob-
servation sparsity compared with LETKF. To overcome this
limitation of RC, we propose to combine LETKF and RC.
In our proposed method, the system is predicted by RC that
learned the analysis time series estimated by LETKF. Our
proposed method can successfully predict the Lorenz 96 sys-
tem using noisy and sparsely distributed observations. Most
importantly, our method can predict better than LETKF when
the process-based model is imperfect.

1 Introduction

In numerical weather prediction (NWP), it is required to ob-
tain the optimal estimation of atmospheric state variables us-
ing observations and process-based models, which are both
imperfect. Observations of atmospheric states are sparse and
noisy, and numerical models inevitably include biases. In ad-
dition, models used in NWP are known to be chaotic, which
makes the prediction substantially difficult. To accurately
predict the future atmospheric state, it is important to de-
velop methods to predict spatiotemporal chaotic dynamical
systems from imperfect observations and models.

Traditionally, data assimilation methods have been widely
used in geosciences and NWP systems. Data assimilation is
a generic term for approaches to estimate the state from ob-
servations and model outputs based on their errors. The state
estimated by data assimilation is used as the initial value,
and the future state is predicted by models alone. Data as-
similation is currently adopted in operational NWP systems.
Many data assimilation frameworks have been proposed,
e.g., 4D variational methods (4D-Var; Bannister, 2017), en-
semble Kalman filter (EnKF; Houtekamer and Zhang, 2016),
or their derivatives, and they have been applied to many kinds
of weather prediction tasks, such as the prediction of short-
term rainfall events (e.g., Sawada et al., 2019; Yokota et al.,
2018) and severe storms (e.g., Zhang et al., 2016). Although
data assimilation can efficiently estimate the unobservable
state variables from noisy observations, the prediction skill
is degraded if the model has large biases.
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On the other hand, model-free prediction methods based
on machine learning have received much attention recently.
In the context of dynamical system theory, previous works
have developed methods to reproduce the dynamics by in-
ferring it purely from observation data (Rajendra and Brah-
majirao, 2020), or by combining a data-driven approach
and physical knowledge on the systems (Karniadakis et al.,
2021). In the NWP context, many previous studies have suc-
cessfully applied machine learning to predict chaotic dynam-
ics. Vlachas et al. (2018) successfully applied long short-
term memory (LSTM; Hochreiter and Schmidhuber, 1997)
to predict the dynamics of the Lorenz96 model, Kuramoto–
Sivashinski Equation, and the barotropic climate model
which is a simple atmospheric circulation model. Asanjan
et al. (2018) showed that LSTM can accurately predict the
future precipitation by learning satellite observation data.
Nguyen and Bae (2020) successfully applied LSTM to gen-
erate area-averaged precipitation prediction for hydrological
forecasting.

In addition to LSTM, reservoir computing (RC), which
was first introduced by Jaeger and Haas (2004), has been
found to be suitable to predict spatiotemporal chaotic sys-
tems. Pathak et al. (2017) successfully applied RC to predict
the dynamics of Lorenz equation and Kuramoto–Sivashinski
equation. Lu et al. (2017) showed that RC can be used to es-
timate state variables from sparse observations if the whole
system was perfectly observed as training data. Pathak et
al. (2018b) succeeded in using a parallelized RC to predict
each segment of the state space locally, which enhanced the
scalability of RC to much higher dimensional systems. Chat-
topadhyay et al. (2020) revealed that RC can predict the dy-
namics of the Lorenz 96 model more accurately than LSTM
and artificial neural networks (ANNs). In addition to the ac-
curacy, RC also has an advantage in computational costs. RC
can learn the dynamics only by training a single matrix as
a linear minimization problem just once, while other neural
networks have to train numerous parameters and need many
iterations (Lu et al., 2017). Thanks to this feature, the com-
putational costs needed to train RC are lower than those of
LSTM and ANN.

However, Vlachas et al. (2020) revealed that the predic-
tion accuracy of RC is degraded when all of the state vari-
ables cannot be observed. It can be a serious problem since
the observation sparsity is often the case in geosciences and
the NWP systems. Brajard et al. (2020) pointed out this is-
sue and successfully trained the convolutional neural net-
work (CNN) with sparse observations, by combining it with
EnKF. However, their method needs to iterate the data as-
similation and training until the prediction accuracy of the
trained model converges. Although one can stop the iteration
after a few time steps, training can be computationally ex-
pensive if one waits for convergence. Bocquet et al. (2020)
proposed a method to combine EnKF and machine learning
methods to obtain both the state estimation and the surrogate
model online. They showed successful results without using

the process-based model at all. Dueben and Bauer (2018)
mentioned that the spatiotemporal heterogeneity of observa-
tion data made it difficult to train machine learning models,
and they suggested using the model or reanalysis as training
data. Weyn et al. (2019) successfully trained machine learn-
ing models using the atmospheric reanalysis data.

We aim to propose the novel methodology to predict spa-
tiotemporal chaotic systems from imperfect observations and
models. First, we reveal the limitation of the standalone use
of RC under realistic situations (i.e., imperfect observations
and models). Then, we propose a new method to maximize
the potential of RC to predict chaotic systems from imperfect
models and observations, which is even computationally fea-
sible. As Dueben and Bauer (2018) proposed, we make RC
learn the analysis data series generated by a data assimilation
method. Our new method can accurately predict from imper-
fect observations. Most importantly, we found that our pro-
posed method is more robust to model biases than the stan-
dalone use of data assimilation methods.

2 Methods

2.1 Lorenz 96 model and OSSE

We used a low-dimensional spatiotemporal chaotic model,
the Lorenz 96 model (L96), to perform experiments with var-
ious parameter settings. L96 is a model introduced by Lorenz
and Emanuel (1998) and has been commonly used in data as-
similation studies (e.g., Kotsuki et al., 2017; Miyoshi, 2005;
Penny, 2014; Raboudi et al., 2018). L96 is recognized as
a good test bed for the operational NWP problems (Penny,
2014).

In this model, we consider a ring-structured and m-
dimensional discrete state space x1,x2, . . .,xm (that is, xm is
adjacent to x1) and define the system dynamics as follows:

dxi
dt
= (xi+1− xi−2)xi−1− xi +F, (1)

where F stands for the force parameter, and we define x−1 =

xm−1, x0 = xm, and xm+1 = x1. Each term of this equa-
tion corresponds to advection, damping, and forcing respec-
tively. It is known that the model with m= 40 and F = 8
shows chaotic dynamics with 13 positive Lyapunov expo-
nents (Lorenz and Emanuel, 1998), and this setting is com-
monly used in the previous studies (e.g., Kotsuki et al., 2017;
Miyoshi, 2005; Penny, 2014; Raboudi et al., 2018). The time
width 1t = 0.2 corresponds to one day in real atmospheric
motion from the view of dissipative decay time (Lorenz and
Emanuel, 1998).

As we use this conceptual model, we cannot obtain any ob-
servational data or “true” phenomena that correspond to the
model. Instead, we adopted an observing system simulation
experiment (OSSE). We first prepared a time series by inte-
grating Eq. (1) and regarded it as the “true” dynamics (called
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Nature Run). Observation data can be calculated from this
time series by adding some perturbation:

yo
=Hx+ ε, (2)

where yo
∈ Rh is the observation value, H is the m×h ob-

servation matrix, and ε ∈ Rh is the observational error whose
each element is independent and identically distributed from
a Gaussian distribution N(0,e) for observation error e.

In each experiment, the form of L96 used to generate Na-
ture Run is unknown, and the model used to make predic-
tions can be different from that for Nature Run. The differ-
ence between the model used for Nature Run and that used
for prediction corresponds to the model’s bias in the context
of NWP.

2.2 Local ensemble transform Kalman filter

We used the local ensemble transform Kalman filter (LETKF,
Hunt et al., 2007) as the data assimilation method in this
study. LETKF is one of the ensemble-based data assimilation
methods, which is considered to be applicable to the NWP
problems in many previous studies (Sawada et al., 2019;
Yokota et al., 2018). LETKF is also used for the operational
NWP in some countries (e.g., Germany; Schraff et al., 2016).

LETKF and the family of ensemble Kalman filters have
two steps: forecast and analysis. The analysis step makes the
state estimation based on the forecast variables and observa-
tions. The forecast step makes the prediction from the current
analysis variables to the time for the next analysis using the
model. The interval for each analysis is called the “assimila-
tion window”.

Considering the stochastic error in the model, system dy-
namics can be represented as follows (hereafter the subscript
k stands for the variable at time k, and the time width be-
tween k and k+ 1 corresponds to the assimilation window):

x
f
k =M

(
xak−1

)
+ ηk,ηk ∼N (0,Q) , (3)

where xfk ∈ R
m denotes the forecast variables, xak−1 ∈ R

m

denotes the analysis variables, M : Rm→ Rm is the model
dynamics operator, η ∈ Rm is the stochastic error, and
N (0,Q) means the multivariate Gaussian distribution with
mean 0 and n×n covariance matrix Q. Since the error in the
model is assumed to follow the Gaussian distribution, fore-
casted state xf can also be considered as a random variable
from the Gaussian distribution. When the assimilation win-
dow is short, the Gaussian nature of the forecast variables
is preserved even if the model dynamics is nonlinear. In this
situation, the probability distribution of xf (and also xa) can
be parametrized by mean xf (xak) and covariance matrix Pf
(Pak ).

Using the computed state vector xfk , observation variables
can be estimated as follows:

y
f
k =H

(
x
f
k

)
+ εk, εk ∼N (0,R) , (4)

where yf ∈ Rh is the estimated observation value, H :
Rm→ Rh is the observation operator, and ε ∈ Rh is the ob-
servation error sampled from N(0,R). Although H can be
either linear or nonlinear, we assume it to be linear in this
study and expressed as a h×m matrix H (the treatment of
the nonlinear case is discussed in Hunt et al., 2007).

LETKF uses an ensemble of state variables to estimate the
evolution of xfk and Pfk . The time evolution of each ensemble
members is as follows:

x
f,(i)
k =M

(
x
a,(i)
k−1

)
, (5)

where xf,(i)k is the ith ensemble member of forecast value at
time k. Then the mean and covariance of state variables can
be expressed as follows:

x
f
k ≈

1
Ne

∑Ne

i=1
x
f,(i)
k , Pfk =

1
Ne− 1

Xfk
(

Xfk
)T
, (6)

where Ne is the number of ensemble members and Xfk is the
matrix whose ith column is the deviation of the ith ensemble
member from the ensemble mean.

In the analysis step, LETKF assimilates only the observa-
tions close to each grid point. Therefore, the assimilated ob-
servations are different at different grid points and the analy-
sis variables of each grid point are computed separately.

For each grid point, observations to be assimilated are cho-
sen. The rows or elements of yo, H, and R corresponding to
non-assimilated observations should be removed as the lo-
calization procedure. “Smooth localization” can also be per-
formed by multiplying some factors to each row of R based
on the distance between target grid point and observation
points (Hunt et al., 2007).

From the forecast ensemble, the mean and the covariance
of the analysis ensemble can be calculated in the ensemble
subspace as follows:

wak = P̃ak
(

HXfk
)T

R−1
(
yo
−Hxfk

)
,

P̃af =
[
(k− 1)I+

(
HXfk

)T
R−1HXfk

]−1

, (7)

wherewak , P̃
a
f stands for the mean and covariance of the anal-

ysis ensemble calculated in the ensemble subspace. They can
be transformed into model space as follows:

xak = x
f
k +Xfk w

a
k ,

Pak = Xfk P̃ak
(

Xfk
)T
, (8)

On the other hand, as Eq. (6), we can consider the analysis
covariance as the product of the analysis ensemble matrix:

Pak =
1

Ne− 1
Xak
(
Xak
)T
, (9)
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Figure 1. The conceptual diagram of reservoir computing architecture. The network consists of an input layer, a hidden layer called reservoir,
and an output layer.

where Xak is the matrix whose ith column is the variation
of the ith ensemble member from the mean for the analy-
sis ensemble. Therefore, decomposing P̃ak of Eq. (7) into the
square root, we can get each analysis ensemble member at
time k without explicitly computing the covariance matrix in
the state space:

Wa
k

(
Wa
k

)T
= P̃ak , xak = x

f
k +

√
Ne− 1Xfk w

a
k , (10)

where wak is the ith column of Wa
k in the first equation. A co-

variance inflation parameter is multiplied to take measures
for the tendency of data assimilation to underestimate the
uncertainty of state estimates by empirically accounting for
model noise (see Eq. 3). See Hunt et al. (2007) for a more
detailed derivation. Now, we can return to Eq. (5) and iterate
forecast and analysis step.

As in the real application, we consider the situation that the
observations are not available in the prediction period. Pre-
dictions are made by the model alone, using the latest analy-
sis state variables as the initial condition:

x
f

K+1 = M̃
(
xaK

)
, x

f

K+2 = M̃
(
x
f

K+1

)
, . . . (11)

where xfk denotes the prediction variables at time k, M̃ is
the prediction model (an imperfect L96 model), and xaK is
the mean of the analysis ensemble at the initial time of the
prediction. This way of making prediction is called an “ex-
tended forecast”, and we call this prediction “LETKF-Ext”
in this study, to distinguish it from the forecast–analysis iter-
ation of LETKF.

2.3 Reservoir computing

2.3.1 Description of reservoir computing architecture

We use reservoir computing (RC) as the machine learning
framework. RC is a type of recurrent neural network, which
has a single hidden layer called reservoir. Figure 1 shows its

architecture. As mentioned in Sect. 1, previous works have
shown that RC can predict the dynamics of spatiotemporal
chaotic systems.

The state of the reservoir layer at time step k is represented
as a vector rk ∈ RDr , which evolves given the input vector
uk ∈ Rm as follows:

rk+1 = tanh[Ark +Winuk] , (12)

where Win is the Dr×m input matrix which maps the input
vector to the reservoir space, and A is the Dr×Dr adjacency
matrix of the reservoir which determines the reservoir dy-
namics. Win should be determined to have only one nonzero
component in each row, and each nonzero component is sam-
pled from a uniform distribution of [−a,a] for some param-
eter a. A has a proportion of d nonzero components with
random values from uniform distribution, and it is normal-
ized to have the maximum eigenvalue ρ. The reservoir size
Dr should be determined based on the size of the state space.
From the reservoir state, we can compute the output vector v
as follows:

vk =Woutf (rk) , (13)

where Wout is them×Dr output matrix which maps the reser-
voir state to the state space, and f : RDr → RDr is an oper-
ator of nonlinear transformation. The nonlinear transforma-
tion is essential for the accurate prediction (Chattopadhyay et
al., 2020). It is important that A and Win are fixed and only
Wout will be trained by just solving a linear problem. There-
fore, the computational cost required to train RC is small and
it is an outstanding advantage of RC compared to the other
neural network frameworks.

In the training phase, we set the switch in Fig. 1 to
the training configuration. Given a training data series
{u0,u1, . . .,uK}, we can generate the reservoir state series
{r1,r2, . . .,rK+1} using Eq. (12). By using the training data
and reservoir state series, we can determine the Wout matrix
by ridge regression. We minimize the following square error
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function with respect to Wout:∑n

i=1
‖uk −Woutf (rk)‖

2
+β · trace

(
WoutWT

out

)
, (14)

where ‖x‖ = xT x and β is the ridge regression parameter
(normally a small positive number). Since the objective func-
tion (Eq. 14) is quadratic, it is differentiable. The optimal
value can be obtained by just solving a linear equation as
follows:

Wout = URT
(

RRT +βI
)−1

, (15)

where I is theDr×Dr identity matrix and R,U are the matri-
ces whose kth column is the vector f (rk) ,uk , respectively.

Then, we can shift to the predicting phase. Before we pre-
dict with the network, we first need to “spin up” the reser-
voir state. The spin-up process was done by giving the time
series before the initial value {u−k,u−k+1, . . .,u−1} to the
network and calculating the reservoir state right before the
beginning of the prediction via Eq. (12). After that, the out-
put layer is connected to the input layer, and the network
becomes recursive. In this configuration, the output value vk
of Eq. (13) is used as the next input value uk of Eq. (12).
Once we give the initial value u0, the network will iterate
Eqs. (12) and (13) spontaneously, and the prediction will be
yielded. At this point, RC can now be used as the surrogate
model that mimics the state dynamics:

x
f

k+1 = M̃RC

(
x
f
k ,
{
xtrain
k

}
1≤ k≤K

)
, (16)

where xfk denotes the prediction variables at time k, M̃RC is
the dynamics of RC (Eqs. 12 and 13) and

{
xtrain
k

}
1≤ k≤K =

{xtrain
1 xtrain

2 , . . .,xtrain
K } is the time series of training data.

Considering the real application, it is natural to assume
that the observation data can only be used as the training data
and the initial value for the RC prediction. In this paper we
call this type of prediction “RC-Obs”. Prediction time series
here can be expressed using Eq. (16) as follows:

x
f

K+1 = M̃RC

(
yo
K ,
{
yo
k

}
1≤ k≤K

)
,

x
f

K+2 = M̃RC

(
x
f

K+1,
{
yo
k

}
1≤ k≤K

)
, . . . (17)

where
{
yo
k

}
1≤ k≤K =

{
yo

1, y
o
2, . . .

}
is the observation time

series and yo
K is the observation at the initial time of the pre-

diction. As in Eq. (14), input and output of RC must be in the
same space. Therefore, in this case, prediction variables xfk
have the same dimensionality as yO

k , and the non-observable
grid points are not predicted by this prediction scheme.

2.3.2 Parallelized reservoir computing

In general, the required reservoir sizeDr for accurate predic-
tion increases as the dimension of the state spacem increases.

Since the RC framework needs to keep adjacency matrix A
on the memory, and to perform inverse matrix calculation of
Dr×Dr matrix (Eq. 15), an overly large reservoir size leads
to unfeasible computational cost. Pathak et al. (2018b) pro-
posed a solution to this issue, which is called the parallelized
reservoir approach.

In this approach, the state space is divided into g groups,
all of which contain q =m/g state variables:

g
(i)
k =

(
uk,(i−1)×q+1,uk,(i−1)×q+2, . . .,uk,i×q

)T
,

i = 1,2, . . .,g, (18)

where g(i)k is the ith group at time k, and uk,j is the j th
state variable at time k. Each group is predicted by a dif-
ferent reservoir placed in parallel. The ith reservoir accepts
the state variables of the ith group as well as adjacent l grids,
which can be expressed as follows:

h
(i)
k =

(
uk,(i−1)×q+1−l,uk,(i−1)×q+2−l, . . .,uk,i×q+l

)T
, (19)

where h(i)k is the input vector for the ith reservoir at time k.
The dynamics of each reservoir can be expressed as follows
according to Eq. (12):

r
(i)
k+1 = tanh

[
A(i)r(i)k +W(i)

in h
(i)
k

]
, (20)

where r(i)k , A(i), W(i)
in , and W(i)

out are the reservoir state vec-
tor, adjacency matrix, input matrix, and output matrix for the
ith reservoir. Each reservoir is trained independently using
Eq. (13) so that

g
(i)
k =W(i)

outf
(
r
(i)
k

)
, (21)

where W(i)
out is the output matrix in the ith reservoir. The pre-

diction scheme of parallelized RC is summarized in Fig. 2.
The strategy of parallelization is similar to the localization of
data assimilation. As LETKF ignores correlations between
distant grid points, parallelized reservoir computing assumes
that the state variable of a grid point at the next time step
depends only on the state variables of neighboring points. In
contrast, ordinary RC assumes that the time evolution at one
grid point is affected by all points in the state space, which
may be inefficient in many applications in geoscience such
as NWP.

2.4 Combination of RC and LETKF

As discussed so far and we will quantitatively discuss in the
Sect. 4, LETKF-Ext and RC-Obs have contrasting advan-
tages and disadvantages. LETKF-Ext can accurately predict
even if the observation is noisy and/or sparsely distributed,
while RC-Obs is vulnerable to the imperfectness in observa-
tion. On the other hand, LETKF-Ext can be strongly affected
by the model biases since the prediction of LETKF-Ext de-
pends only on the model after obtaining the initial condition,
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Figure 2. The conceptual diagram of parallelized reservoir comput-
ing architecture. The state space is separated into some groups and
the same number of reservoirs are shown parallel. Each reservoir
group accepts the inputs from the corresponding group and some
adjacent grids and predict the dynamics of the corresponding group.

while RC-Obs has no dependence on the accuracy of the
model as it only uses the observation data for training and
prediction.

Therefore, the combination of LETKF and RC has the
potential to push the limit of these two individual predic-
tion methods and realize accurate and robust prediction. The
weakness of RC-Obs is that we can only use the observa-
tional data directly, which is inevitably sparse in the real ap-
plication, although RC is vulnerable to this imperfectness. In
our proposed method, we make RC learn the analysis time
series generated by LETKF instead of directly learning ob-
servation data.

Suppose we have sparse and noisy observations for the
training data. If we take observations as inputs and analysis
variables as outputs, LETKF can be considered as an opera-
tor to estimate the full state variables from the sparse obser-
vations:{
xak

}
1≤ k≤K

=
{
D
(
yo
k

)}
1≤ k≤K , (22)

where {xak }1≤ k≤K = {x
a
1,x

a
2, . . .,x

a
K} denotes the full-state

variables (time series of the LETKF analysis ensemble
mean), yo

k is the observation, and D : Rn→ Rm represents
the state estimation operator, which is realized by LETKF in
this study. Then, RC is trained by using

{
xak
}

1≤ k≤K as the
training data set. In this way, RC can mimic the dynamics of
analysis time series computed by the forecast–analysis cycle
of LETKF. Prediction can be generated by using the analy-
sis variables at the current time step (xaK ) as the initial value.
Since RC is trained with LETKF analysis variables, we call
this method “RC-Anl”. By using the notation of Eq. (16), the
prediction of RC-Anl can be expressed as follows:

x
f

K+1 = M̃RC

(
xaK ,

{
xak
}

1≤ k≤K

)
,

x
f

K+2 = M̃RC

(
x
f

K+1,
{
xak
}

1≤ k≤K

)
, . . . (23)

Table 1. Parameter values of RC used in each experiment.

Parameter Description Value

Dr reservoir size 2000
a input matrix scale 0.5
d adjacency matrix density 0.005
ρ adjacency matrix spectral radius 1.0
β ridge regression parameter 0.0001
g number of reservoir groups 20
l reservoir input overlaps 4

where
{
xak
}

1≤ k≤K =
{
xa1,x

a
2, . . .,x

a
K

}
is the time series

of the LETKF analysis variables. The schematics of the
LETKF-Ext, RC-Obs, and RC-Anl are shown in Fig. 3. Ini-
tial values and model dynamics used in each method are
compared in Table 1.

Our proposed combination method is expected to predict
more accurately than RC-Obs since the training data always
exist in all the grid points, even if the observation is sparse.
Also, especially if the model is substantially biased, the anal-
ysis time series generated by LETKF is more accurate than
the model output itself. It means that RC-Anl is expected to
be able to predict more accurately than LETKF-Ext.

3 Experiment design

To generate Nature Run, L96 with m= 40 and F = 8 was
used, and it was numerically integrated by fourth-order
Runge–Kutta method by time width 1t = 0.005. Before cal-
culating Nature Run, the L96 equation was integrated for
1 440 000 time steps for spin-up. In the following experi-
ment, the F term in the model was changed to represent the
model bias.

Here, we assume that the source of the model bias is un-
known. When the source of bias is only the uncertainty in
model parameters, and uncertain parameters which signifi-
cantly induce the model bias are completely identified, op-
timization methods can estimate the value of the uncertain
parameters to minimize the gaps between simulation and ob-
servation. This problem can also be solved by data assimila-
tion methods (e.g., Bocquet and Sakov, 2013). However, it is
difficult to calibrate the model when the source of uncertainty
is unknown. Our proposed method does not need to identify
the source of model bias so that it may be useful especially
when the source of model bias is unknown. This is often the
case in the large and complex models such as NWP systems.

The setting for LETKF was based on Miyoshi and Ya-
mane (2007). As the localization process, the observation
points within 10 indices are chosen to be assimilated for ev-
ery grid point. The “smooth localization” is also performed
on observation covariance R. Since we assume that each ob-
servation error is independent and thus R is diagonal, the lo-
calization procedure can be done just by dividing each di-
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Figure 3. The algorithm flow of LETKF-Ext, RC-Anl, and RC-Obs. Solid and dotted lines show the flow of variables and models (either
process-based or data-driven surrogate), respectively.

agonal element of observation covariance R by the value w
calculated as follows:

w(r)= exp
(
−
r2

18

)
, (24)

where r is the distance between each observation point and
each analyzed point. For every grid point, the observation
points with w(r)≥ 0.0001 are chosen to be assimilated. In
Eq. (10), a “covariance inflation factor”, which was set to
1.05 in our study, was multiplied to P̃ak in each iteration to
maintain the sufficiently large background error covariance
by empirically accounting for model noise (see Eq. 3). En-
semble size Ne was set to 20.

The parameter values of parallelized RC used in this study
are similar to Vlachas et al. (2020) but were slightly mod-
ified. Parameter settings used in the RC experiments are
shown in Table 1. Jiang and Lai (2019) revealed that the per-
formance of RC is sensitive to ρ and it needs to be tuned. We
identified the proper value of ρ by sensitivity studies. Other
parameters do not substantially affect the prediction accu-
racy, and we selected them based on the settings in previous
works such as Vlachas et al. (2020). The nonlinear transfor-
mation function for the output layer in Eq. (13) is the same as
Chattopadhyay et al. (2020), which is represented as follows:

f (ri)=

{
ri (i is odd) ,
ri−1× ri−2 (i is even) , (25)

where ri is the ith element of r . Note that the form of the
transformation function can be flexible; one can use a dif-
ferent form of the function to predict Lorenz 96 (Chattopad-
hyay et al., 2020), or the same function can be used to predict
other systems (Pathak et al., 2017). In the prediction phase,
we used the data for 100 time steps before the prediction ini-
tial time for the reservoir spin-up.

We implement numerical experiments to investigate the
performance of RC-Obs, LETKF-Ext, and RC-Anl to predict
L96 dynamics. First, we evaluate the performance of RC-
Obs under perfect observations (all the grid points are ob-
served with no error) and quantify the effect of the observa-
tion imperfectness (i.e., observation error and spatiotemporal
sparsity), to investigate the prediction skill of the standalone
use of RC and LETKF. Second, we evaluate the performance
of RC-Anl. We investigate the performance of RC-Anl and
LETKF-Ext as the functions of the observation density and
model biases.

In each experiment, we prepare 200 000 time steps of Na-
ture Run. The first 100 000 time steps are used for the train-
ing of RC or for the spinning up of LETKF, and the rest of
them are used for the evaluation of each method. Every pre-
diction is repeated 100 times to avoid the effect of the het-
erogeneity of data. For the LETKF-Ext prediction, the anal-
ysis time series of all the evaluation data is first generated.
Then, the analysis variables for one every 1000 time step
are taken as the initial conditions and in total 100 prediction
runs are performed. For the RC-Obs prediction, evaluation
data are equally divided into 100 sets and the prediction is
identically done for each set. For the RC-Anl prediction, the
analysis time series of training data are used for training, and
the prediction is performed using the same initial condition
as LETKF-Ext. Each prediction set of LETKF-Ext, RC-Obs,
and RC-Anl corresponds to the same time range.

The prediction accuracy of each method is evaluated by
taking the average of RMSE of 100 sets for each time step.
We call this metric mean RMSE (mRMSE), and it can be
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Figure 4. The Hovmöller diagram of (a) Nature Run, (b) a predic-
tion of RC-Obs, and (c) difference between (a) and (b). Horizontal
axis shows the time steps and vertical axis shows the nodal number.
Value at each time step and node is represented by the color.

represented as follows:

mRMSE(t)=
1

100

∑100
i=1√

1
m

∑m

j=1

(
u
(i)
j (t)− x

(i)
j (t)

)2
, (26)

where t is the number of the steps elapsed from the prediction
initial time, x(i)j (t) is the j th nodal value of the ith prediction

set at time t , and u(i)j (t) is the corresponding value of Nature
Run. Using this metric, we can see how the prediction accu-
racy is degraded as time elapses from initial time (so-called
“forecast lead time”).

4 Results

Figure 4 shows the Hovmöller diagram of a prediction of RC-
Obs and Nature Run. Figure 4 also shows the difference be-
tween prediction and Nature Run, as well as the actual pre-
diction results so that we can see how long we can keep the
prediction accurate. RC is trained with perfect observation
(e = 0 at all grid points). Figure 4 shows that RC-Obs pre-
dicts accurately within approximately 200 time steps.

Figure 5 shows the time variation of the mRMSE (see
Eq. 26) of RC-Obs with perfect observation. It also shows

Figure 5. The mRMSE time series of the predictions of RC-Obs
with perfect observation. Horizontal axis shows the time step and
vertical axis shows the value of mRMSE.

that RC-Obs can predict with good accuracy for approxi-
mately 200 time steps. It should be noted that LETKF (as
well as other data assimilation methods) just replaces the
model’s forecast with the initial conditions identical to Na-
ture Run when all state variables can be perfectly observed,
and thus the prediction accuracy of LETKF-Ext will be per-
fect if we have no model bias. LETKF-Ext is much superior
to RC-Obs under this regime (not shown).

Next, we evaluated the sensitivity of the prediction skill
of both LETKF-Ext and RC-Obs to the imperfectness of the
observations. Figure 6a and b show the effect of the obser-
vation error on the prediction skill. The value of observation
error e is changed from 0.1 to 1.5 and the mRMSE time se-
ries is drawn. We can see that LETKF-Ext is more sensitive
to the increase in observation error than RC-Obs, although
LETKF-Ext is superior in accuracy to RC-Obs within this
range of observation error.

However, RC-Obs showed a greater sensitivity to the den-
sity of observation points than LETKF-Ext. Figure 7a and b
show the sensitivity of the prediction accuracy of LETKF-
Ext and RC-Obs, respectively, to the number of observed grid
points. Observation is reduced as uniformly as possible. The
observation network in each experiment is shown in Table 3.
Even though we can observe a small part of the system, the
accuracy of LETKF-Ext changed only slightly. On the other
hand, the accuracy of RC-Obs gets worse when we remove
a few observations. As assumed in the Sect. 2.4, we verified
that RC-Obs is more sensitive to the observation sparsity than
LETKF-Ext.

We tested the prediction skill of our newly proposed
method, RC-Anl, under perfect models and sparse observa-
tions. Here, we used the observation error e = 1.0. Figure 8
shows the change of the mRMSE time series of RC-Anl with
the different number of observed grid points. It indicates that
the vulnerability of the prediction accuracy to the change of
the number of observed grid points, which is found in RC-
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Figure 6. The mRMSE time series of the predictions of (a) LETKF-Ext and (b) RC-Obs with noisy observation. Each color corresponds to
the observation error indicated by the legend.

Figure 7. The mRMSE time series of the predictions of (a) LETKF-Ext and (b) RC-Obs with spatially sparse observation. Each color
corresponds to the number of the observation points.

Figure 8. The same as Fig. 4, for the RC-Anl prediction.

Obs, no longer exists in RC-Anl. Although the prediction ac-
curacy is lower than LETKF-Ext (Fig. 7a), our new method
indicates a robustness to the observation sparsity and over-
comes the limitation of the standalone RC.

Table 2. Summary of three prediction frameworks.

Name Initial value Model for prediction

LETKF-Ext LETKF analysis the model used in LETKF
RC-Obs observation RC trained with observation
RC-Anl LETKF analysis RC trained with

LETKF analysis

Moreover, when the model used in LETKF is biased, RC-
Anl outperforms LETKF-Ext. Figure 9a and b show the
change of the mRMSE time series when changing the model
biases. The number of the observed points was set to 20. The
F term in Eq. (1) was changed from the true value 8 (the F
value of the model for Nature Run) to values in [5.0,11.0] as
the model bias, and the accuracy of LETKF-Ext and RC-Anl
is plotted. The accuracy of LETKF-Ext was slightly better
than that of RC-Anl when the model was not biased (F = 8;
green line). However, when the bias is large (e.g., F = 10;
gray line), RC-Anl showed the better prediction accuracy.
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Figure 9. The mRMSE time series of the predictions of (a) LETKF-Ext and (b) RC-Anl with a biased model. Each color corresponds to
each value of the F term.

Figure 10. The mRMSE(80) of the predictions of LETKF-Ext(red)
and RC-Anl(blue) for each model bias. Horizontal axis shows the
value of the force parameter of Eq. (1) (8 is the true value) and
vertical axis shows the value of mRMSE.

We confirmed this result by comparing the mRMSE value
of RC-Anl and LETKF-Ext at the specific forecast lead time.
Figure 10 shows the value of mRMSE(80) (see Eq. 26) as
the function of the value of the F term. Both lines that show
the skill of RC-Anl (blue) and LETKF-Ext (red) are con-
vex downward and have a minimum at F = 8, meaning that
the accuracy of both prediction methods is the best when the
model is not biased. In addition, as long as the F value is in
the interval [7.5,8.5], LETKF-Ext has better accuracy than
RC-Anl. However, if the model bias becomes larger than
that, RC-Anl becomes more accurate than LETKF-Ext. As
the bias increases, the difference between the mRMSE(80) of
two methods becomes larger, and the superiority of RC-Anl
becomes more obvious. We found that RC-Anl can predict
more accurately than LETKF-Ext when the model is biased.

We also checked the robustness for the training data size.
Figure 11 shows the change of the accuracy of RC-Anl by
changing the size of training data from 100 000 to 10 000
time steps. We confirmed that the prediction accuracy did not
change until the size was reduced to 25 000 time steps. Al-
though we have used a large amount of training data (100 000
time steps; 68 model years) so far, the results are robust to the
reduction of the size of the training data.

Figure 11. The mRMSE time series of the predictions of RC-Anl
with various lengths of training data, with perfect observations and
a perfect model. Each color corresponds to the value of the size of
training data.

5 Discussion

By comparing the prediction skill of RC-Obs and LETKF-
Ext, we confirmed that RC-Obs can predict with accuracy
comparable to LETKF-Ext, if we have perfect observations.
This result is consistent with Chattopadhyay et al. (2020),
Pathak et al. (2017), and Vlachas et al. (2020), and we can
expect that RC has the potential to predict various kinds of
spatiotemporal chaotic systems.

However, Vlachas et al. (2020) revealed that the prediction
accuracy of RC is substantially degraded when the observed
grid points are reduced, compared to other machine learning
techniques such as LSTM. Our result is consistent with their
study. In contrast, Chattopadhyay et al. (2020) showed that
RC can predict the multi-scale chaotic system correctly even
though only the largest-scale dynamics is observed. Compar-
ing these results, we can suggest that the states in the scale
of dominant dynamics should be observed almost perfectly
to accurately predict the future state by RC.
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Table 3. The indices of observed grid points.

# observed
Grid point index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

40 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

38 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

36 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

30 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

20 • • • • • • • • • • • • • • • • • • • •

Therefore, when we use RC to predict spatiotemporal
chaotic systems with sparse observation data, we need to
interpolate them to generate the appropriate training data.
However, the interpolated data inevitably include errors even
if the observation data itself have no error, so it should
be verified that RC can predict accurately by training data
with some errors. Previous works such as Chattopadhyay et
al. (2020), Pathak et al. (2017), or Vlachas et al. (2020) have
not considered the impact of error in the training data. We
found that the prediction accuracy of RC degrades as the er-
ror in training data grows, but the degradation rate is not so
large (if all the training data of all the grid points are ob-
tained). We can expect from this result that RC trained with
the interpolated observation data can predict accurately to
some extent, but the interpolated data should be as accurate
as possible.

In this study, LETKF was used to prepare the training data
for RC, since LETKF can interpolate the observations and
reduce their error at the same time. We showed that our pro-
posed approach works correctly. Brajard et al. (2020) also
made a CNN learn the dynamics from sparse observation
data and successfully predict the dynamics of the L96 model.
However, as mentioned in the introduction section, Brajard
et al. (2020) iterated the learning and data assimilation until
they converge, because it replaced the model used in data as-
similation with CNN. Although their model-free method has
an advantage that it was not affected by the process-based
model’s reproducibility of the phenomena, it can be compu-
tationally expensive since the number of iterations can be rel-
atively large. By contrast, we need to train RC just one time,
because we use the process-based model (i.e., data assimila-
tion method) to prepare the training data. We overcome the
problem of computational feasibility.

Note also that the computational cost of training RC is
much lower than the other neural networks. Since the frame-
work of our method does not depend on a specific machine
learning framework, we believe that we can flexibly choose
other machine learning methods such as RNN, LSTM, ANN,
etc. Previous studies such as Chattopadhyay et al. (2020)
or Vlachas et al. (2020) revealed that these methods show
competitive performances compared to RC in predicting spa-
tiotemporal chaos. Using them instead of RC in our method
would probably give similar results. However, the advantage
of RC is its cheap training procedure. RC does not need to
perform an expensive back-propagation method for training,

unlike other neural networks (Chattopadhyay et al., 2020; Lu
et al., 2017). Therefore, RC is considered as a promising tool
for predicting spatiotemporal chaos. Although our method
has flexibility in the choice of machine learning methods, we
consider that the good performance with RC is important in
this research context.

The good performance of our proposed method supports
the suggestion of Dueben and Bauer (2018), in which ma-
chine learning should be applied to the analysis data gener-
ated by data assimilation methods as the first step of the ap-
plication of machine learning to weather prediction. As Weyn
et al. (2019) did, we successfully trained the machine learn-
ing model with the analysis data.

Most importantly, we also found that the prediction by RC-
Anl is more robust to the model biases than the extended
forecast by LETKF (i.e., LETKF-Ext). This result suggests
that our method can be beneficial in various real problems,
as the model in real applications inevitably contains some
biases. Pathak et al. (2018a) developed the hybrid predic-
tion system of RC and a biased model. Although Pathak et
al. (2018a) successfully predicted the spatiotemporal chaotic
systems using the biased models, they needed perfect ob-
servations to train their RC. The advantage of our proposed
method compared to these RC studies is that we allow both
models and observation networks to be imperfect. As in the
review by Karniadakis et al. (2021), methodologies to train
the dynamics from noisy observational data by integrating
data and physical knowledge are attracting attention. In the
NWP context, some studies proposed methods to combine
data assimilation and machine learning to emulate the sys-
tem dynamics from imperfect models and observations (e.g.,
Bocquet et al., 2019, 2020; Brajard et al., 2020; Dueben
and Bauer, 2018), and these approaches are getting popular.
Our study significantly contributes to this emerging research
field.

Although we tested our method only on the 40-
dimensional Lorenz 96 system, Pathak et al. (2018b) indi-
cated that parallelized RC can be extended to predict the
dynamics of substantially high dimensional chaos such as a
200-dimensional Kuramoto–Sivashinski equation with small
computational costs. Moreover, the applicability to the real-
istic NWP problems has also been discussed in their sequel
study (Wikner et al., 2020). These studies imply that the find-
ings of this study can also be applied to higher-dimensional
systems.
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In NWP problems, it is often the case that homogenous
observation data of high resolution are not available over a
wide range of time and space, which can be an obstacle to
applying machine learning to NWP tasks (Dueben and Bauer,
2018). We revealed that RC is robust for the temporal sparsity
of observations, and RC can be trained with relatively small
training data sets.

However, since the Lorenz 96 model (and other concep-
tual models such as the Kuramoto–Sivashinski equation) is
ergodic, it is unclear whether our method can be applied to
real NWP problems directly, which are possibly non-ergodic.
Although our proposed method has the potential to extend
to larger and more complex problems, further studies are
needed.

6 Conclusion

The prediction skills of the extended forecast with LETKF
(LETKF-Ext), RC that learned the observation data (RC-
Obs), and RC that learned the LETKF analysis data (RC-
Anl) were evaluated under imperfect models and observa-
tions, using the Lorenz 96 model. We found that the pre-
diction by RC-Obs is substantially vulnerable to the sparsity
of the observation network. Our proposed method, RC-Anl,
can overcome this vulnerability. In addition, RC-Anl could
predict more accurately than LETKF-Ext when the process-
based model is biased. Our new method is robust to the im-
perfectness of both models and observations and we might
obtain similar results in higher-dimensional and more com-
plex systems. Further studies on more complicated models or
operational atmospheric models are expected.
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