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Abstract. When calibrating simulations of dust clouds, both
the intensity and the position are important. Intensity er-
rors arise mainly from uncertain emission and sedimenta-
tion strengths, while position errors are attributed either to
imperfect emission timing or to uncertainties in the trans-
port. Though many studies have been conducted on the cal-
ibration or correction of dust simulations, most of these fo-
cus on intensity solely and leave the position errors mainly
unchanged. In this paper, a grid-distorted data assimila-
tion, which consists of an image-morphing method and an
ensemble-based variational assimilation, is designed for re-
aligning a simulated dust plume to correct the position error.
This newly developed grid-distorted data assimilation has
been applied to a dust storm event in May 2017 over East
Asia. Results have been compared for three configurations:
a traditional assimilation configuration that focuses solely on
intensity correction, a grid-distorted data assimilation that fo-
cuses on position correction only and the hybrid assimilation
that combines these two. For the evaluated case, the posi-
tion misfit in the simulations is shown to be dominant in the
results. The traditional emission inversion only slightly im-
proves the dust simulation, while the grid-distorted data as-
similation effectively improves the dust simulation and fore-
casting. The hybrid assimilation that corrects both position
and intensity of the dust load provides the best initial condi-
tion for forecasting of dust concentrations.

1 Introduction

Dust storms are a result of wind erosion liberating particles
from exposed dry surfaces (World Meteorology Organiza-
tion, 2019). They occur commonly in arid or semi-arid re-
gions, e.g. North Africa, the Middle East, Southwest Asia
and East Asia (Shao et al., 2013). During dust events, fine
dust particles can be lifted several kilometres high into the
atmosphere and carried over thousands of kilometres (Zhang
et al., 2018). It is estimated that 2000 Mt dust is emitted into
the atmosphere annually (Shao et al., 2011). Such a huge
amount of atmospheric mineral dust has profound effects
on the Earth system, e.g. the cycles of energy, carbon and
water (Mahowald et al., 2010). Specifically, dust particles
are recognized in fertilizing terrestrial and ocean ecosystem
(Shepherd et al., 2016), enhancing precipitation by acting as
droplet nuclei (Benedetti et al., 2014) and interacting with
atmospheric radiation, and may therefore significantly mod-
ify the Earth radiative balance (Balkanski et al., 2007; Wu
et al., 2016). Apart from the influence on the environment,
dust storms pose a great threat to human health by carrying
thousands of tonnes of particulate matter as well as bacte-
ria, viruses and persistent organic pollutants to densely pop-
ulated regions (World Meteorological Organization, 2017;
Basart et al., 2019). Reported illnesses include dust pneumo-
nia, strep throat, cardiovascular disorders and eye sicknesses
(Shao and Dong, 2006; Ozer et al., 2007; Benedetti et al.,
2014; World Meteorological Organization, 2018). The low
visibility caused by dusts can also lead to severe disruptions
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of air and other traffic. For example, more than 1100 flights
were delayed or cancelled in Beijing after it was struck by an
extreme dust event in May 2017.

Together with growing interest in dust storms, the un-
derstanding of the physical processes associated with dust
storms has increased rapidly over the last decades (World
Meteorological Organization, 2018). Large efforts have been
made to develop dust modelling systems (Marticorena and
Bergametti, 1995; Shao et al., 1996; Marticorena et al., 1997;
Alfaro et al., 1997; Wang et al., 2000; Liu et al., 2003; Basart
et al., 2012), which mathematically simulate the life cycle
of dust including emission, transport and deposition. Large-
scale global dust transport models, e.g. CAMS-ECMWF
(Morcrette et al., 2009), or regional ones, e.g. NASA-GEOS-
5 (Colarco et al., 2010) and BSC-DREAM8b (Mona et al.,
2014), are essential parts of larger Earth system models. The
most important application of these models is to forecast dust
concentrations over a few hours to a few days in order to re-
duce the potential threats to society. Though these systems
are usually able to predict the starting and ending of a dust
event, large differences are found in emission and deposi-
tion burdens and spatial distribution of dust clouds (Huneeus
et al., 2011; Koffi et al., 2012). Dust simulations could differ
from observations by up to 2 orders of magnitude (Uno et al.,
2006; Gong and Zhang, 2008). The modelling skills are lim-
ited due to several aspects, e.g. the insufficient knowledge
of aerosol size distribution (Mokhtari et al., 2012), mismatch
in aerosol removal (Croft et al., 2012) and in particular to
the inaccurate quantification of erosive dust emission (Gong
and Zhang, 2008; Ginoux et al., 2012; Escribano et al., 2016;
Di Tomaso et al., 2017). In addition, the quality of the me-
teorological data, e.g. wind fields and soil moisture, might
strongly impact the prognostic quality of dust emission and
transport.

In addition to the efforts of upgrading the physical descrip-
tions in numerical models, data assimilation techniques have
been developed to improve simulation of dust loads. Data
assimilation aims here to estimate the state of dust concen-
trations by combining a dynamical model with available ob-
servations. An assimilation system could for example adjust
model parameters within an allowed range such that a sim-
ulation is in better agreement with the observations. Various
types of observations have been used to adjust dust simu-
lations, for example particular matter (PM) measurements
(Lin et al., 2008a; Wang et al., 2008) and visibility records
(Niu et al., 2008; Gong and Zhang, 2008) from ground-
based monitoring networks, aerosol optical depth (AOD)
from sun photometers in the global Aerosol Robotic Net-
work (AERONET), (Schutgens et al., 2012) and the satellite-
retrieved AOD (Khade et al., 2013; Yumimoto et al., 2016;
Di Tomaso et al., 2017; Dai et al., 2019). Those studies fo-
cused either on updating atmospheric dust concentrations di-
rectly or on optimizing emission parameters that lead to bet-
ter simulations. In both cases, only the intensity of either con-
centrations or emissions is adjusted, while other input param-

eters are assumed to be known, and processes of transport
and removal are assumed to be certain.

In our previous studies, ground-based PM10 (total partic-
ulate matter with diameter less then 10 µm) measurements
(Jin et al., 2018, 2019a) and geostationary satellite AOD
(Jin et al., 2019b, 2020) were assimilated with the LOTOS-
EUROS simulation model for dust storm forecasts over East
Asia. Also these studies solely focused on correcting emis-
sion intensities. Data selection (Jin et al., 2019b) and obser-
vation bias correction (Jin et al., 2019a) were important as-
pects here to ensure that the available measurements were
used correctly. In addition, an adjoint method was used to
identify potential new dust emission sources in case the em-
pirical dust emission and its uncertainty scheme cannot fully
resolve the observation (Jin et al., 2020). Severe dust storm
events in May 2017 over East Asia were used as test cases,
and the assimilation procedure was shown to improve the
simulated dust concentrations at the time of observation but
also to improve forecasts of dust levels over windows of up
to 24 h. During these studies it was noted that although the
modelling system in general provided an accurate forecast of
the dust plume, a severe position error was present when the
plume travelled over a large distance. Specifically, forecasts
by the model simulation reported the dust arrival and depar-
ture 1 to 10 h prior to reality, as is also illustrated in Sect. 3.

Position errors are a common problem in meteorology,
for example in forecasting hurricanes, thunderstorms, pre-
cipitation (Ravela et al., 2007; Nehrkorn et al., 2014, 2015)
or meteorology-governing events like wildfires (Beezley and
Mandel, 2008). In geophysical disciplines, a positional error
is often considered together with intensity errors to explain
differences between two estimates (Nehrkorn et al., 2015). A
misfit in position usually leads to significant degradation of
forecasts (Jones and Macpherson, 1997).

When discussing the accuracy of a dust forecast, the shape
and position of the plume is a key element as well as the
intensity. The position forecast determines which locations
will be affected, when the storm will arrive and for how long
it will last, while the intensity only describes the actual dust
level. A dust forecast with position misfit directly results in
incorrect timing profiles of dust loads. The information about
dust arrival and departure is sometimes more important than
the magnitude of dust load in the early warning system, but
until now it has attracted only little attention.

Facing the unresolved positional mismatch, the aforemen-
tioned data assimilation focusing solely on intensity correc-
tion is less effective, as is illustrated in Sect. 4.1.

Similarly to intensity feature misfits, positional misfits in
model simulations can also be adjusted to better resemble
observations using data assimilation techniques. Dust sim-
ulations suffer from position errors due to for example in-
correct emission timing profiles or uncertainties in the trans-
port, both driven by uncertain meteorology fields. To be able
to use data assimilation techniques for position correction,
it is essential to have a description of these uncertainties.
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However, position errors are much likely to be non-Gaussian
and not easily captured by a static error covariance model
(Nehrkorn et al., 2015). For dust simulation, position errors
could be caused by uncertainties in the transport, in partic-
ular the wind field. These uncertainties accumulate during
the time period from emission in remote desert areas to ar-
rival at observation networks in downwind populated areas.
Position discrepancies might also arise from incorrect tim-
ing profiles of emissions, which is not the case for our test
event, as is explained in Sect. 3.1. However, determining the
covariance either for transport or for emission timing profile
is difficult. Even if there is a complex covariance model that
could account for the accumulation of uncertainties along the
long track of the plume, a substantial number of observations
would then be required to constrain the optimal transport pat-
tern. Data assimilation methods based on static covariance
models are therefore often not suitable for dealing with posi-
tion errors.

Instead, techniques from the field of image processing
could be combined with data assimilation to avoid the need
for a static covariance that describes the origin of the position
error. This has been described as phase-correcting data as-
similation in numerical weather prediction (Brewster, 2003),
image-morphing ensemble Kalman filter (EnKF) for wildfire
models (Beezley and Mandel, 2008), grid distortion data as-
similation in oil reservoir modelling (Lawniczak, 2012), and
in general as position error correction in variational data as-
similation (Nehrkorn et al., 2015). The common approach
in all these applications is to reposition the simulation us-
ing an image-morphing technique, where the optimal mor-
phing parameters are adjusted to obtain the best fit with the
observations using data assimilation techniques. In an appli-
cation with dust plume simulations, the use of image morph-
ing in the data assimilation avoids the need for developing a
complex covariance model to describe uncertain transport or
emission timing.

In this study, we propose a grid-distorted data assimila-
tion method to correct position misfits in a simulated dust
plume, which is a novel approach in the context of atmo-
spheric dust modelling. The implemented method offers an
efficient way to correct for a phase misfit between a dust
simulation and available observations without changing the
transport scheme and/or the emission timing profile. The
grid-distorted data assimilation is then combined with the
emission intensity inversion described in Jin et al. (2019b)
for a hybrid method. The hybrid method is capable of op-
timizing the dust plume in case both position and intensity
misfits are presented in a dust simulation. Starting from the
initial condition using the hybrid assimilation posterior, dust
forecasting accuracy (in terms of both arrival and departure
and in actual dust load) is further ensured.

The paper is organized as follows. Section 2 introduces
the simulation model and observations used to represent the
dust intensity. Section 3 shows an example of a dust posi-
tion error in a dust simulation. The error source is explained

and identified to be the uncertainty in long-distance transport
process, and it is illustrated that this uncertainty cannot be ex-
plained from the known spread in meteorological forecasts.
In Sect. 4, the necessity of position error correction is empha-
sized first, and then the methodology of grid-distorted data
assimilation is introduced. A hybrid assimilation method is
designed by combining the grid-distorted data assimilation
and emission inversion in Sect. 5. The new method is evalu-
ated against assimilation focusing solely on emission inten-
sities or position correction. Section 6 summarizes the con-
clusion and the added value of using grid-distorted data as-
similation to resolve model position error.

2 Dust model and observations

2.1 Simulation model

In this study, the dust storm is simulated using a regional
chemical transport model, LOTOS-EUROS v2.1 (Manders
et al., 2017). LOTOS-EUROS has been used for a wide
range of applications supporting scientific research and op-
erational air quality forecasts both inside and outside Eu-
rope. At present, the operational forecasts over China are
released via the MarcoPolo–Panda projects (Timmermans
et al., 2017; Brasseur et al., 2019) through http://www.
marcopolo-panda.eu/forecast/ (last access: July 2020). Ad-
ditionally, it is also implemented in the World Meteoro-
logical Organization (WMO) Sand and Dust Storm Warn-
ing Advisory and Assessment System to provide short-time
forecasting of the dust load over the North Africa–Middle
East–Europe areas; the online forecast product is delivered
via http://sds-was.aemet.es/forecast-products/dust-forecasts/
compared-dust-forecasts (last access: July 2020).

To establish a dust simulation over East Asia, the model is
configured on a domain from 15 to 50◦N and 70 to 140◦E,
with a resolution of about 0.25◦×0.25◦. Vertically, the model
consists of eight layers, with a top at 10 km. The dust sim-
ulation is driven by European Centre for Medium-Ranged
Weather Forecasts (ECMWF) operational forecasts over 3–
12 h, retrieved at a regular longitude–latitude grid resolution
of about 7 km. An interface to the ECMWF output set is de-
signed, which not only interpolates the default 3 h ECMWF
short-term forecast meteorology to hour values but also av-
erages the forecast to fit the LOTOS-EUROS spatial resolu-
tions (Manders et al., 2017). Physical processes included are
wind-blown dust emission, diffusion, advection, dry and wet
deposition, and sedimentation.

2.2 Observation network

The observations used in this study consist of hourly PM10
concentrations from the China Ministry of Environmental
Protection (MEP) air quality monitoring network, which is
shown in Fig. 1. By now, the network has over 1700 sta-
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Figure 1. Distribution of the barren region over East Asia and the
China Ministry of Environmental Protection (MEP) observing net-
work.

tions and hence offers an opportunity to track the whole dust
plume while it moves through the region.

All these PM10 measurements are actually a sum of dust
and airborne particles (black carbon, sulfate, etc). Since the
analysed event is an extremely severe case, these PM10 mea-
surements were directly used to quantify the dust load in Jin
et al. (2019b, 2020). In this study however, an observational
bias correction is performed to make the PM10 measure-
ments fully representative of the dust loads. First, non-dust
aerosol levels are calculated using a LOTOS-EUROS sim-
ulation following the MarcoPolo–Panda configuration but
with the dust tracers disabled. Using these simulations, bias-
corrected dust observations were calculated by subtracting
the non-dust loads from the original PM10 observations. The
original PM10 measurements vs. the pure dust observations
can be seen in Figs. 2a.1 and a.2 and 7a.1 and a.2. As dust
aerosols are far more dominant during the severe dust storm,
the bias-corrected dust observations are actually very close
to the original PM10 measurements.

3 Position error

Numerical dust models are expected to provide correct tim-
ing profiles and intensity of dust loads. However, a discrep-
ancy between observations and simulations is relatively com-
mon in terms of both position and intensity. Unlike the inten-
sity estimation that has been widely investigated already, the
position error has received less attention, but it has been the
main focus of this study.

3.1 Position error in dust simulation

The test case investigated in this study is a severe dust storm
event that occurred over East Asia in May 2017. The detailed
calibration of the model simulations on this test case can
be found in Jin et al. (2019b, 2020). The dust emission oc-
curred from 2 May in the Mongolia, Gobi and Alxa deserts,
of which the location can be seen in Fig. 1. The dust par-

ticles lifted up from these regions were then transported in
the south-east direction. After 2 to 3 d of transport, the dust
plume arrived in central China, where according to the sur-
face observations a positional error was present in the simu-
lations.

The position error in the simulation is illustrated in
Fig. 2, which shows the original PM10 measurements, bias-
corrected dust observations and the a priori surface dust con-
centration (SDC) simulation on 5 May at 15:00 (China Stan-
dard Time, CST). The measurements of PM10 are strongly
elevated when the dust plume passes and could increase to
values over 2000 µgm−3. Under normal conditions the ob-
servations (non-dust aerosols) usually do not exceed values
of 200 µgm−3, and therefore the location of a dust plume is
clearly visible in the bias-corrected dust observations as well
as in these original PM10 observations. According to the ob-
servations in panel (a), the dust plume forms a band from
the west to the east over central China. The corresponding
simulation in panel (b) shows a plume with a similar shape
but at a location farther to the south-east. This is indicated
by the markers that are added to the plumes. For the obser-
vations the markers for the left part of the plume are around
35◦ N, and the right one stays around 37.5◦ N, while for the
simulation they are around 32.5 and 36◦N. The dust plume is
therefore positioned about 200 km too far to the south; with
a wind speed of 40 kmh−1 this implies a difference in arrival
time of 5 h. The simulated plume, in particular the left part,
is also broader than the rather sharp band that is seen in the
observations.

To quantify the simulation-minus-observation mismatch,
the root mean square error (RMSE) between dust simulation
and bias-corrected dust observation has been computed over
all stations in central China (marked by the black framework
in Fig. 2a). The RMSE of the a priori dust simulation is as
high as 388.1 µgm−3. This vast mismatch is attributed to the
sum of intensity and position error (mainly), as is explained
in Sect. 5.2.

3.2 Uncertainty in emission timing profile

One potential origin of the position error is an incorrect emis-
sion time profile. That is, changes in the time period over
which dust is released from the source regions could to some
extent alter the position of the simulated plume.

Actually during the first 48 h after dust emission started,
the simulated dust plume was still in northern China and
showed in general the same pattern as is visible in the ob-
servations. For example the aerosol optical depth (AOD) re-
trieved from the Himawari-8 geostationary satellite showed
that the simulated plumes are correctly positioned in north-
ern China (Jin et al., 2019b). The good phase match in gen-
eral can also be seen from a snapshot of the ground PM10
observation vs. the simulated surface dust concentration on
4 May at 15:00 CST in Fig. 3. There might already be po-
sition misfits in the dust simulation at these snapshots that
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Figure 2. Original PM10 (a.1), bias-corrected dust observations (a.2), the a priori surface dust concentration (b), maximum over the ensemble
simulations driven by ensemble meteorology (c), posterior dust simulation of the emis inversion (d), grid-distorted assim posterior (e) and
hybrid assim posterior simulation (f) at 15:00 CST on 5 May. SDC: surface dust concentration. Definitions of emis inversion, grid-distorted
assim and hybrid assim can be found in Table 1.

Figure 3. PM10 observations (a) and the a priori dust simulation (b) at 15:00 CST on 4 May. SDC: surface dust concentration.
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Figure 4. Illustration of intensity-centred assimilation only (a) versus assimilation after position error correction (b).

are not easily detected. The magnitudes of the dust concen-
tration showed discrepancies, but these could be corrected by
emission inversion through assimilation of those AOD obser-
vations or PM10 measurements. The good match in position
between simulated and observed dust plume indicates that
the emission timing profile is rather accurate too. When the
dust plume is transported farther southward, the simulated
plume starts to deviate from the available surface measure-
ments.

3.3 Uncertainty in meteorology

Another possible origin of the position error in the simu-
lations is the uncertainty in the meteorological data. In our
study, the simulation model is driven by ECMWF meteoro-
logical forecasts. The uncertainty in this input is reflected in
the ensemble forecasts that are available too (Palmer, 2019).
For the studied period, the ensemble forecast of Nmeteo = 26
different members is available, where each member is a per-
turbation of the deterministic forecast. The resolution of me-
teorological ensemble is about 30 km, which is comparable
to the LOTOS-EUROS resolution for these experiments.

To estimate the impact of the meteorological uncertainty,
the dust simulations have been repeated Nmeteo times using
input from the meteorological ensemble. The spread in sim-
ulated dust concentrations is computed in terms of the maxi-
mum over the ensemble via

cmax(x,y,z, t)=max(c1(x,y,z, t), . . .,cNmeteo(x,y,z, t)). (1)

In here, ci represents the dust concentration field that re-
sults from a simulation with the ith ensemble member. This
measure reflects for each location whether in any of the sim-
ulations a severe dust load is present. The ensemble maxi-
mum here can be used as a quick criterion: only if the dust
plume (in observational view) is covered by the maximum
is meteorological uncertainty (represented by ensemble me-
teorological inputs) likely to resolve the dust plume position
error.

A snapshot of the ensemble maximum Eq. (1) at
15:00 CST is shown in Fig. 2c. The map shows a broader
plume, which implies that some ensemble members result in
a dust plume that is more to the north and others more to

the south than the a priori forecast. The extended dust field
is however not wide enough to cover the area with increased
observation values. The uncertainty approximated using the
available meteorological ensemble therefore could not be
used to fully account for the position error. The origin might
be that the required case is not represented in the ensemble
but also because the simulated dust transport in the LOTOS-
EUROS model does not take all meteorological details into
account or is simply not accurate enough.

To resolve the position error, a complex covariance matrix
would then be required to fully account for the accumula-
tion of uncertainties along the long track of the plume. The
uncertainty in the interface that interpolates and averages the
meteorological forecast to fit our LOTOS-EUROS model res-
olution should also be taken into account here.

4 Grid-distorted data assimilation

The experiments in the previous section showed that the mis-
match between dust plume simulation and observations can-
not be easily explained by inaccurate emission timing or un-
certainty in the meteorological data available. We therefore
propose to use a griddistorteddataassimilation to correct for
the position errors without attributing this error to a specific
part of the simulation model or its input.

4.1 Necessity of position error correction

Position errors pose a great challenge for data assimilation,
where it is often easier to adjust amplitudes rather than a po-
sition. This strongly limits the forecast skill, and further im-
provement requires the correction of position errors.

The difference between assimilation of observations with
or without correction of position errors is illustrated in Fig. 4.
The panels show a hypothetical dust concentration along a
coordinate, which could be either spatial or temporal with-
out loss of generality. The a priori simulation (dashed) differs
from the observations (stars) both in amplitude and shape (lo-
cation and width in space or arrival and duration in time). The
underlying simulation model is therefore likely to be imper-
fect in either emission strength, emission timing or transport
or a combination of all of these.

Geosci. Model Dev., 14, 5607–5622, 2021 https://doi.org/10.5194/gmd-14-5607-2021
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Figure 5. Illustration of grid distortion technique: (a) original grid
map, (b) original dust concentrations as band, (c) distorted grid
map, (d) distorted dust concentrations.

The left panel illustrates a typical assimilation of observed
concentrations that adjust emission strengths only. In such
an assimilation, the a priori concentrations are just scaled
towards the observations. The posterior concentrations are
therefore closer to the observations but only where the a pri-
ori simulations have any concentrations at all. On the left
side of the axis the simulated concentrations are therefore
strongly reduced to match with the zero observations. How-
ever, if initially no dust is present in the simulations, as is the
case on the right side of the axis, then the assimilation does
not suddenly introduce dust out of nothing.

The right panel illustrates how a position error correction
could improve this. Before analysing the observations, the a
priori plume is shifted and reshaped to have the best match
with the observations, ignoring differences in amplitude. If
this repositioned plume is analysed with the available obser-
vations, the posterior result is in much better agreement with
the observations along the entire axis, also where initially
no dust was simulated. The assimilation will still adjust the
emission strengths, but these are now not adjusted to correct
for transport errors.

4.2 Grid distortion

To align the dust plume with the observations, a grid dis-
tortion method as described by Lawniczak (2012) is used.
The procedure is illustrated in Fig. 5. In transport models,
the flow equations are usually solved on a discrete grid. For
the LOTOS-EUROS model used here, the grid is Cartesian
(perpendicular in longitude and latitude) and regular in spac-
ing (panel a of the figure). Computed concentrations repre-
sent an average over a grid cell, and the simulated plume
therefore consists of a set of grid cells with a substantial dust
load. Panel (b) shows an example with a dust plume as a band
from left to right. The grid distortion smoothly transforms the
Cartesian grid into a non-Cartesian grid. That is, the corners
of the grid cells are repositioned to a nearby location such

Figure 6. Diagrams of emis inversion, grid-distorted assim and hy-
brid assim systems.

that each distorted grid cell remains connected to its origi-
nal neighbours (panel c). The dust concentration in each grid
cell (in µgm−3) is kept constant after distortion to ensure a
smooth variation in dust intensities over neighbouring cells.
The dust plume is deformed together with the grid (panel d).

In mathematical formulation, let (x,y) denote the origi-
nal Cartesian coordinates. A discrete model grid with regular
spacing 1x×1y is defined on points (xi,yj ), with i and j
the integer indices of the grid points in the x and y direction.
The grid distortion is defined as a coordinate transformation
that projects an original location (x,y) onto a new location
(λ,ψ) with

λ=3(x,y) (2)
ψ =9(x,y). (3)

Following Lawniczak (2012), the grid distortion is de-
scribed using a Poisson equation. The elliptic equation is
broadly utilized in mechanical engineering and theoretical
physics to describe how an object diffuses in space given a
charge (Hazewinkel, 1994). The repositioned grid locations
(λ,ψ) are the solutions of two 2D Poisson equations with
the charges or distortion functions P and Q on the right-hand
side:

∂23

∂x2 +
∂23

∂y2 = P(x,y) (4)

∂29

∂x2 +
∂29

∂y2 =Q(x,y). (5)
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Table 1. Definition of assimilation experiments.

Experiment Target error Description

A priori – Pure model, no assimilation
Emis inversion Intensity Emission inversion
Grid-distorted assim Position Grid-distorted data assimilation
Hybrid assim Position and intensity Emission inversion based on grid-distorted assim

The distortion functions P and Q that drive the grid distor-
tion are initially unknown, and their optimal values are to
be calculated as part of the data assimilation procedure de-
scribed in Sect. 4.3.

The second-order derivatives in Eqs. (4) and (5) are dis-
cretized on the grid using finite differences. For Eq. (4), the
discretization is
λi+1,j − 2λi,j + λi−1,j

(1x)2

+
λi,j+1− 2λi,j + λi,j−1

(1y)2
= Pi,j , (6)

and Eq. (5) gives a similar discretization. When this system
is solved for a given right-hand side, the result is a grid of 2D
locations (λi,j ,ψi,j ) corresponding to the distorted positions
of the original grid points (xi,yj ). This system can be solved
using a numerical method for linear equations. In our exper-
iments, we use the red–black ordering Gauss–Seidel method
(Saad, 2003) to solve the discrete system of linear equations.

The distorted dust plume is interpolated back to the Carte-
sian grids using the nearest searching method (Cayton,
2008) for comparison with observations (that are defined on
longitude–latitude coordinates), and to serve as initial fields
for the following simulation steps.

4.3 Distortion estimation using 4DEnVar

The grid distortion method provides a new way of reposition-
ing the dust plume without adjusting the long-distance dust
transport. We use the ensemble-based variational (4DEnVar)
data assimilation (Liu et al., 2008b) algorithm to optimize the
grid distortion.

To find the optimal distortion, the initial value and covari-
ance of P and Q need to be defined first. Each element in
the two distortion equations is assumed to have a zero mean
and a standard deviation, empirically chosen to be 0.015. To
enforce a smooth grid distortion, we also prescribe a corre-
lation c between two elements P(xi,yj ) and P(xk,yl) (and
similar for Q):

c = e−d(xi ,yj ;xk,yl)/L, (7)

where d represents the spatial distance in kilometres, and L is
an empirical length scale that is set to 1000 km. The parame-
ters used in this study (standard deviation, correlation length
scale) were chosen based on experiments for the described
dust event; for other events they might need to be revised.

In our 3D model, the grid distortion is applied in the hor-
izontal direction only, changing each layer in the same way.
This is mainly to reduce the degrees of freedom in the dis-
tortion since no information on the 3D structure of the plume
is available from the current observations (surface data and
satellite-retrieved column information). It is however also
possible to use a 3D distortion with a few degrees of free-
dom in the vertical (Nehrkorn et al., 2015) for dust events
where measurements of the vertical structure are available,
e.g. lidar backscatter coefficient (Madonna et al., 2015).

An ensemble of random distortion fields is generated using
the assumed prior value (zero) and the assumed covariance.
Each member is a vector s collecting all elements of P and
Q on the discrete grid:

[s1, . . .,sN ]. (8)

In our experiments the ensemble size N was set to 100. For
each of these ensemble members, the distorted grid (λ,ψ)
is solved from the system of the discrete Poisson equations
as described in Sect. 4.2. With this an ensemble of distorted
dust maps is formed from the a priori dust field x:

[x(s1), . . .,x(sN )], (9)

where x(si) represents the distorted dust field using distor-
tion si .

Denote the ensemble perturbation matrix or covariance
square root by

S′ =
1

√
N − 1

[s1− sb, . . .,sN − sb], (10)

where sb is the (zero) prior value. In a 4DEnVar assimi-
lation, the optimal distortion vector sa is defined to be a
weighted sum of the columns of the perturbation matrix S′
using weights from a control variable vector w:

sa = sb+S′w. (11)

The optimal control variables are then calculated through
minimizing of the cost function:

J (w)=
1
2
wTw+

1
2
(HXS′bw+d)TR−1(HXS′bw+d). (12)

In here, d is referred to as the innovation that describes the
difference between observations y and simulations on the
distorted grid:

d =Hx(sb)− y. (13)
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In here, H is the observation operator that simulates the ob-
served value on the distorted grid, which here simply takes
the model simulation from the grid cell holding the obser-
vation location. The distortion uncertainty is transferred into
the observation space through application of H on the ensem-
ble members:

HXS′b ≈
1

√
N − 1

[Hx(s1)−Hx(sb), . . .,Hx(sN )

−Hx(sb)]. (14)

The observation error covariance matrix R describes the
possible differences between simulations and observations
due to observation representation errors. R here is defined
as a diagonal matrix, in which each representation error is
set to an observation-dependent value ranging from 100 to
200 µgm−3 following Jin et al. (2018).

To ensure that the position correction is not too much influ-
enced by differences in dust intensity, both the observations y

and prior dust simulations x are normalized using their max-
imum values. Elements in R are also then scaled using the
square of the maximum observed value.

The computation of the N = 100 grid distortions is
the most time-consuming part of the 4DEnVa-based grid-
distorted data assimilation method; each of them costs
around 2 min in our computing platform (CPU: Intel
Xeon(R) E5; programming language: Python 3.7.6). The
computation of the ensemble distortions could be re-
implemented in a more efficient language but also be easily
parallelized; the grid-distorted assimilation method is there-
fore expected to be computationally efficient enough to allow
implementation in an operational forecast.

5 Dust storm data assimilation

The grid-distorted data assimilation was introduced for repo-
sitioning the simulated dust clouds. To evaluate the effective-
ness, assimilation experiments including grid distortion have
been performed and compared with a traditional assimilation
configuration focusing on intensities only and a hybrid as-
similation that combines these two.

An a priori simulation serves as a reference for all as-
similation experiments. The emission inversion assimilation
corrects for the dust intensity errors only, while the grid-
distorted assimilation only corrects for the position error. The
hybrid assimilation combines both in order to correct for the
intensity as well as the position error.

5.1 Assimilation methods

Figure 6 shows the schematic overview of the three assim-
ilation methods listed in Table 1. The left panel shows the
set-up of the emission inversion, as described in detail in Jin
et al. (2019b, 2020). The inversion combines the transport
model (LOTOS-EUROS) with a four-dimensional variation
(4DVar) data assimilation using a reduced-tangent lineariza-
tion (Jin et al., 2018). The system assumes that the processes
of dust transport and removal are simulated correctly, while
only the emission is imperfect. The uncertainty in the emis-
sions was parameterized as a sum of two sources: the un-
certainty in the friction velocity threshold and in the erosive
wind fields. The dust emission intensity in the source regions
is then optimized such that the amplitude of the simulated
concentrations is as close to the observations as possible. The
optimized emission fields could then be used to drive simu-
lations that have a better forecast skill than simulations with
the original emissions.

The grid-distorted assim is designed to adjust the position
of the simulated dust plume only. As described in Sect. 4.3,
the impact of the actual dust concentrations is avoided by
normalizing the dust simulations and observations using their
maximum values before calculation of the distortion; after-
wards, the distorted dust field is multiplied by the same max-
imum value again.

The right panel of Fig. 6 shows the set-up of the hy-
brid assim. Different from the emis inversion and grid-
distorted assim, the hybrid assim performs two assimilations
sequentially. First the grid-distorted assim is conducted for
repositioning the simulated dust plume. Then, the position-
corrected dust plume is used as a prior in the second assimi-
lation (similar to an emis inversion) to adjust the emissions to
have the best possible match between actual (not normalized)
observations and position-corrected simulations. The poste-
rior dust field from the hybrid assim is then used as the initial
condition for forecast simulations.

In all assimilation tests, only observations from the snap-
shot of 5 May at 15:00 CST are used for fair comparison. The
repositioned plume is only available for this single moment;
measurements at earlier times can therefore not be accurately
assimilated in hybrid assim since the corresponding simula-
tion still has a position error then. In the emis inversion, the
assimilation window is set from 2 May, 08:00 CST, which
fully covered the related dust emission for this event.

5.2 Optimized plume position and dust load

The a priori dust plume described in Sect. 3.1 is assimilated
with observations using the emis inversion, the grid-distorted
assim or the hybrid assim. The posterior surface concentra-
tions are shown in Fig. 2d–f, respectively. The optimized dust
plumes are evaluated by their position and the RMSE metric
that was introduced in Sect. 3.1 to quantify the difference
with observations. Note that observations that are used to
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evaluate the posterior performance are the same as those that
have been assimilated. When evaluating the method over a
longer time period (multiple dust events), validation with in-
dependent observations should be considered.

Panel (d) shows the posterior dust plume using the emis
inversion. The markers indicate that it has in general the
same position as the a priori, and hence the position error
has not been corrected yet. In terms of root mean square
error (RMSE), the emis inversion posterior simulation is
improved, but only slightly; the RMSE is reduced from
388.1 µgm−3 for the a priori simulation to 362.9 µgm−3.
The emis inversion also has little effect on the dust simu-
lation at earlier periods of the dust event, which can be found
through a comparison of the a priori and emission-inversion-
only simulations on 3 May at 13:00 CST in Fig. S1 in the
Supplement. The a priori and emis inversion also present a
relatively similar performance in the early stage.

Using the grid-distorted assim, the repositioned dust
plume in panel (e) matches well with the ground observations
shown in panel (a.2). The marker indicating the left side of
the plume is now around 35◦ N, which is in agreement with
the observations; also the markers at the centre and the right
side are now better positioned. Only the very left part of the
repositioned dust plume (west of 110◦ E) still shows a dis-
crepancy compared to the PM10 observations. This can be
explained from the fact that this part of the dust plume has
a relatively low dust load, which makes the corresponding
position error less important in the cost function Eq. (12).
In addition, a rather large grid distortion is required for this
part of the dust plume to match the measurements, which
is constrained with the assumed covariance of the distortion
function. The RMSE of the posterior simulation is now sig-
nificantly reduced to 251.1 µgm−3. Though the dust plume is
now correctly repositioned, the simulated dust concentration
does not exactly match the actual measurements. Especially
in the plume centre, the posterior simulation shows dust con-
centrations over 1200 µgm−3 that are still similar to the a
priori simulation, while the bias-corrected observations in-
dicate that the dust intensity at most stations is lower than
1200 µgm−3.

The hybrid assim posterior simulation provides the best
performance, as shown in panel (f). Not only is the dust
plume realigned with the observations, but also the ampli-
tude of the dust loads agrees better with the actual situation.
For instance, the dust concentration in the plume centre is re-
duced from 1500 to 1200 µgm−3, and in the upper left part
of the plume the concentration level is lifted from 100 to
200 µgm−3. As a result, the RMSE in the hybrid assim is
reduced to 223.4 µg m−3.

5.3 Forecasting of dust plume position

In an operational setting the posterior dust concentrations are
used as initial conditions for a forecast. Starting from the
analysis results, forecast runs have been performed. A snap-

shot of the resulting forecast of the surface dust concentra-
tions as well as the PM10 measurements, bias-corrected dust
observations and the a priori forecast at 21:00 CST on 5 May
are shown in Fig. 7.

The ground observations in panel a.1 and a.2 indicate that
the dust plume is now located along 35◦ N. In both the a pri-
ori simulation and in the forecast based on emis inversion,
the right, centre and left plume markers are about 100, 300
and 200 km farther south, respectively. However, the fore-
casts based on grid-distorted assim or hybrid assim assimi-
lation both show plumes with positions in better agreement
with the observations. The best results are obtained for the
hybrid assim, which shows better agreement for the central
and upper right part of the dust field (panel f) compared to
the grid-distorted result (panel e).

5.4 Time series at stations

Figure 8 shows times series of dust concentrations at six dif-
ferent observation sites. The locations can be found in Fig. 1
and were selected to illustrate the general results but also
challenges to be solved in future. The time series show PM10
observations (red circles), bias-corrected observations repre-
senting the dust part (red dot), the a priori forecast (black
line) and the forecasts driven by the three assimilation tests
starting from 15:00 CST on 5 May.

For all six sites, the a priori dust simulations estimate an
arrival time of the dust cloud that is at least 4 h too early. The
emis inversion focusing on intensity correction does not im-
prove the forecasting of the arrival time since it only changes
the emission strength. Ignoring the intensity of the dust load,
the temporal profiles of the dust forecasts driven by the grid-
distorted assim after 5 May at 15:00 CST are in good agree-
ment with the temporal profile of the dust observations.

For stations on the upper side of the plume, e.g. Baoji
in panel (a), the declining trend predicted by the a pri-
ori and emis inversion forecasts is well reproduced by the
grid-distorted assim. For sites where the descent pattern was
not captured by the a priori simulation, the emis inversion
helps little, while grid-distorted assim resolves the decreas-
ing trend, as can be seen in Zibo and Zhaoyuan. For stations
downwind of the plume like Xinxiang, Xuchang and Bozhou,
the dust concentrations show an up-and-down pattern caused
by the arrival and departure of the plume. The a priori and
emis inversion forecasts are unable to capture the dust pro-
file. For instance in Bozhou, the a priori simulation indicated
that the main dust plume arrived earlier than 00:00 CST on
5 May, and it started to decline from 12:00 CST. However,
the real observation showed that the dust storm actually ar-
rived around 12:00 CST, with a steady increase in concen-
tration. Starting from the grid-distorted assim, the forecast
shows concentrations with a trend similar to the observa-
tions, although the increase starts a few hours too early. The
observation-minus-simulation discrepancy is further reduced
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Figure 7. PM10 (a.1), bias-corrected dust observations (a.2), the a priori forecast (b), ensemble maximum (c) dust forecast and dust forecast
driven by emis inversion posterior (d), the grid-distorted assim posterior (e), and hybrid assim posterior simulation (f) at 21:00 CST on 5 May.
SDC: surface dust concentration.

for most stations using the hybrid assim that combines the
grid-distorted assim and emis inversion.

5.5 Evaluation of forecast skills

The forecast skill of the three assimilation algorithms is also
evaluated using the RMSE indicator that was also used for
the a priori and posterior dust simulations in Sects. 3.1 and
5.2.

During the period from 16:00 CST on 5 May to 07:00 CST
on 6 May, the a priori RMSE reached values around
300 µgm−3. The assimilation based on emis inversion helped
to decrease the RMSE of the forecast simulations with about
20 µgm−3. The improvement is limited since position errors
are dominant and still present. The grid-distorted assim is
efficient in enhancing dust forecast skills in terms of the

RMSE, which significantly reduce to less than 200 µgm−3.
When combined with emis inversion in the hybrid approach,
an additional decrease in RMSE of about 20 µgm−3 is
achieved.

These results show that the grid-distorted assim is capable
of correcting the position error in the simulated dust plume
effectively; the hybrid assim that combines the grid-distorted
assim and emis inversion provides the best initial condition
to drive the dust forecast in the short term.

6 Summary and conclusions

Evaluation of dust storm forecasts focuses on two main crite-
ria: the intensity of the dust load and the position of the cloud.
Various studies on improving dust forecasts focused mainly
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Figure 8. Time series of PM10 measurements, bias-corrected dust observations, a priori simulation and forecasting driven by the initial state
from emis inversion, grid-distorted assim and hybrid assim at Baoji (a), Xinxiang (b), Xuchang (c), Bozhou (d), Zibo (e) and Zhaoyuan (f).
The vertical dashed black line indicates the start of the forecast.

Figure 9. RMSE of the a priori dust simulation and forecasting us-
ing the initial state from emis inversion, grid-distorted assim and
hybrid assim.

on correcting the intensity only. However, positional mis-
fits are unavoidable as a result of inaccurate emission timing
profile and/or accumulation of uncertainties in long-distance
transport and therefore need to be taken into account too.

An extremely severe dust storm in May 2017 over East
Asia was used as the test case in this study. A regional chem-
ical transport model, LOTOS-EUROS, was used to repro-
duce the dust event. PM10 observations are available from the

China Ministry of Environmental Protection (MEP) air qual-
ity monitoring network; bias-correction was used to process
the original PM10 measurements to accurately represent the
dust load. The position misfits are obviously detected in the
results, especially when the simulated dust plume is trans-
ported thousands of kilometres away to central China.

The positional misfit in dust simulation could be corrected
by data assimilation too. Assimilation configurations for this
type of application usually require definition of a background
error covariance or an ensemble perturbation scheme that
could resolve the full observation–simulation positional dis-
crepancy too. This covariance could for example include the
meteorological uncertainty, as described by a meteorologi-
cal ensemble forecast. For the dust storm studied here it was
however shown that the spread in the available meteorologi-
cal ensemble and/or the way in which the simulation model
is using it is not sufficient to explain the position error in
the simulations. Therefore, a complex covariance model that
could account for the accumulation of uncertainties along
the long track of the plume would be required while using
the traditional assimilation method. Meanwhile, a substantial

Geosci. Model Dev., 14, 5607–5622, 2021 https://doi.org/10.5194/gmd-14-5607-2021



J. Jin et al.: Position correction in dust storm forecasting using LOTOS-EUROS v2.1 5619

number of measurements would then be required to constrain
the optimal transport pattern too.

Alternatively, an image-morphing method, grid distortion,
is adopted to reposition the simulated dust plume in this pa-
per. The method is then combined with 4DEnVar for a grid-
distorteddataassimilation, which focuses solely on correct-
ing the dust field position to best fit the assimilated observa-
tions. Since in reality both position and intensity errors might
be present, a hybrid assimilation algorithm is proposed. In
this hybrid system, the griddistorteddataassimilation and an
intensity-centred emission inversion are performed after each
other.

Assimilation tests using either the emission inversion or
griddistorteddataassimilation only or using the hybrid assim-
ilation have been conducted on the studied dust event. The
posterior dust simulation and the forecast are slightly im-
proved by using emission inversion. This indicates that the
traditional intensity-centred data assimilation is of little help
in the case that positional errors are present. Only using
the griddistorteddataassimilation, strongly improved poste-
rior and forecast simulations are obtained. The best results
are obtained when the hybrid assimilation is performed, with
both the position and intensity errors corrected.

The grid-distorted assimilation should be seen as an ex-
tension to traditional intensity-centred assimilation, not as
a replacement. In the presence of a position error, grid-
distorted data assimilation is a computationally efficient pre-
processing procedure to correct for errors that are not re-
solved otherwise. The method could be used to further ex-
plore 3D dust and aerosol structure by combining the 3D
grid distortion and observations with vertical layering infor-
mation.

Code and data availability. The source code and user guidance
of the CTM, LOTOS-EUROS, can be obtained from https://
lotos-euros.tno.nl (TNO, 2021). The grid-distorted data assimila-
tion algorithm is in the Python environment and is archived on
Zenodo (https://doi.org/10.5281/zenodo.4579960; Jin, 2021a). The
real-time PM10 data are from the network established by the China
Ministry of Environmental Protection and accessible to the public
at http://106.37.208.233:20035/ (China Ministry of Environmental
Protection, 2021). The observations covering the dust event are also
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