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Abstract. The assimilation of clear-sky radiance in the
European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric analysis relies on the clear-sky ra-
diances observation operator. Some of these radiances have
frequencies that make them sensitive to both the surface and
atmosphere. Because the atmospheric and surface analyses
are currently not strongly coupled, a specific treatment of the
surface is required. The observation operator specifically ex-
pects a skin temperature value at the observation location and
time as well as the profiles of the atmospheric variables along
the viewing path. This skin temperature is added to the con-
trol variable and optimised simultaneously with all of the at-
mospheric variables to produce optimal simulated radiances.

We present two approaches to add the skin temperature to
the control variable. In the current TOVS Control Variable
(TOVSCV) approach, a series of skin temperature values per
observation location is added to the control variable. Effec-
tively, in the optimisation process, the skin temperature acts
as a sink variable in observation space and is uncoupled from
the skin temperature at other locations. In the novel SKin
Temperature in the Extended Control Vector (SKTECV) ap-
proach, two-dimensional skin temperature fields are added to
the control variable. All clear-sky radiances then participate
in the optimisation of these two-dimensional fields, and the
analysis produces temporally and spatially consistent skin
temperature fields.

We compare the two approaches over two seasons of
3 months each. Overall, there is a neutral impact of the new
approach on the analysis and forecast. Moreover, there is
some evidence that the contribution of the subsurface lay-

ers should be represented in the new approach for the skin
temperature associated with the microwave instruments.

1 Introduction

Data assimilation methods used in numerical weather pre-
diction (NWP) exploit all of the available observations by
computing the difference between them and the model state
at the observation time and location. The latter is obtained by
first integrating the model state in time and then transform-
ing it into an observation equivalent using the so-called ob-
servation operator. The observation operator is dependent on
the observation type. For most of the in situ observations, the
observation operator is a simple time and space interpolation.
For other observation types, the operator can be much more
complex. For instance, a fast and accurate radiative transfer
model to simulate observations is required for satellite obser-
vations. Furthermore, the complexity of the observation op-
erator increases in an all-sky radiance assimilation context,
where cloud and precipitation absorption and scattering have
to be explicitly modelled.

In this paper, we focus on the observation operator used
to assimilate clear-sky radiances. Radiances represent the
vast majority of the data that are currently assimilated in
the European Centre for Medium-Range Weather Forecasts
(ECMWF) Integrated Forecasting System (IFS). Although
other satellite measurements make important contributions
to the ECMWF forecasting skill, microwave and infrared
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soundings are among the most important contributors when
it comes to improving the above-mentioned skill (McNally,
2015; Bormann et al., 2019). This makes the observation op-
erator of utmost importance for these soundings.

For radiance assimilation, the observation operator in the
IFS contains a radiative transfer component that integrates
the radiative transfer equation from the output of the fore-
cast model along the viewing path. This requires model pro-
files of pressure, temperature, specific humidity, cloud prop-
erties, and atmospheric composition; moreover, for the sur-
face, surface emissivity, skin temperature, surface pressure,
2 m temperature, 2 m humidity, and 10 m wind are required.
The sensitivity to the various layers of the atmosphere and
to the surface in the radiative transfer equation depends on
the frequency of the measurement. Therefore, observing ra-
diances at various frequencies provides indirect information
on the atmospheric variables on diverse atmospheric layers
and on the surface variables (English, 1999).

In the IFS, this information on model atmospheric vari-
ables and model surface variables can not be used together
because the atmospheric analysis and the surface analysis
are only coupled during the first-guess forecast step, not dur-
ing the analysis update itself (weak coupling, de Rosnay
et al., 2014; Browne et al., 2019). This is problematic be-
cause an inaccurate surface emissivity or skin temperature
in the observation operator could lead to an inaccurate anal-
ysis of the temperature profile or could mislead the cloud
detection scheme, for example (English, 2008). To bypass
this issue, the spectral channels currently entering the atmo-
spheric analysis are carefully selected to avoid those which
are very sensitive to the surface and, at the same time, to keep
those which have a significant positive forecast impact in the
ECMWF system (Bormann et al., 2017).

To still be able to assimilate the remaining radiances with
frequencies sensitive to the surface, the observation opera-
tor should use a surface emissivity and skin temperature that
are as accurate as possible. To get the best possible surface
emissivity for each surface type, instrument geometry, and
observation wavelength, different methods are used depend-
ing on the surface type. Over the ocean, the emissivity can
be accurately computed for calm waters (English and Hewi-
son, 1998). In the IFS, we use a fast parameterised model
that accounts for surface wind and produces an ocean sur-
face emissivity with a good accuracy (Kazumori and English,
2015). Land emissivity varies very little, temporally or spa-
tially, for the infrared observations. An emissivity database
is then used for those observations, instead of directly us-
ing emissivity models that are less accurate and may present
large uncertainties and biases. For the microwave observa-
tions, surface emissivity is retrieved from window channels
using the model emissivity and skin temperature as back-
ground values (Karbou et al., 2006). This combined approach
is a compromise between an accurate surface emissivity and
a limited computational cost. Still, some biases remain, es-
pecially over the land and sea ice.

To get the best possible skin temperature, the atmospheric
analysis control vector was augmented with the skin temper-
ature in the IFS in the early 1990s, as in other NWP centres
systems. This inclusion allows one to adjust the skin temper-
ature during the atmospheric analysis and circumvents de-
coupling between the atmospheric and surface analyses. In
the IFS, it was developed when the radiances from the TOVS
– TIROS-N (Television Infra-Red Observation Satellite) Op-
erational Vertical Sounder – were first directly assimilated
(Eyre et al., 1992). Since then, this technique has been re-
ferred to as TOVS Control Variable (TOVSCV; ECMWF,
2019), and it is used in the assimilation of clear-sky radi-
ances. All of the radiances associated with a particular field
of view of a given instrument share the same skin tempera-
ture value in the radiative transfer code used in the IFS. This
gives a value of skin temperature per field of view per instru-
ment. The TOVSCV approach consists of adding all of these
separate skin temperature values to the control vector. The
individual skin temperatures are then optimised in the four-
dimensional variational (4D-Var) minimisation together with
the other model physical variables. In this framework, each
satellite sounding produces individual estimates of skin tem-
perature, independent of its spatial scale and spectral charac-
teristic. This approach differs from that of some other NWP
centres where the skin temperature is a gridded field opti-
mised together with the atmospheric fields.

When assimilating a group of radiances within the same
field of view, the model state along the viewing path is con-
strained by these radiance observations as well as by all of
the other measurements available within a volume centred
around the field of view and with a size proportional to the
background error local de-correlation lengths. By contrast,
in the TOVSCV approach, the skin temperature is only con-
strained by the radiances within the same field of view and
is, therefore, free to be adjusted within the constraint of its
background error and within the constraint of the sensitivity
of each radiance frequency to the skin temperature. Because
of this lack of constraint by other surrounding measurements,
the skin temperature adjustment likely compensates for other
errors in the background state (e.g. possible inaccuracy in the
surface emissivity or in the cloud screening), thereby reduc-
ing the accuracy of the atmospheric analysis.

An enhanced approach to TOVSCV is presented here
which follows the implementation of a gridded skin tempera-
ture field of some other NWP centres. The general idea is that
the skin temperature value provided to the radiance observa-
tion operator is derived from a two-dimensional skin tem-
perature field interpolated at the observation time and loca-
tion. This two-dimensional field is then introduced in the IFS
control vector instead of independent skin temperature val-
ues, following the extended control variable developments
reported in Massart (2018). As a result, the skin temperature
of each field of view depends on the analysis of the two-
dimensional field which is consistent with all of the radi-
ances and other observations, and it is consistent in space.
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This adds a constraint on the skin temperature used in the
observation operator, and we want to assess here how this
impacts the use of satellite radiance data in the IFS analysis.

The remainder of this paper is structured as follows. In
Sect. 2, we present the radiance assimilation and the two ap-
proaches for the analysis of the skin temperature used in the
radiance observation operator in more detail. In particular,
we explain why a single two-dimensional skin temperature
field is not sufficient in the SKTECV (SKin Temperature in
the Extended Control Vector) approach and how we intro-
duce additional fields. These fields allow for the represen-
tation of the time variation of the skin temperature and the
different spectral channels of the instruments. In Sect. 3, we
then detail the chosen configuration of the background errors
of the skin temperature fields added to the control vector in
the new approach. Finally, in Sect. 4, we present the results
from two experiments, one for each approach, and discuss
the differences.

2 Skin temperature in the assimilation of radiance

The skin temperature is introduced in the observation oper-
ator used in the IFS in order to assimilate radiances for the
atmospheric analysis. Here, we present how the skin tem-
perature is also included in the state vector and analysed in
observation space. We then present the enhanced approach
that adds several skin temperature fields in model space to
the control vector. Hereafter, we only focus on the assimi-
lation of the radiance measurements sensitive to the surface.
To simplify the mathematical formalism, we only retain these
radiance measurements in the next section, and we ignore all
of the other types of measurements.

2.1 Radiance assimilation

Let us introduce yo
i , an observed set of radiances at various

frequencies but all belonging to the same field of view and
measured by the same instrument, and for which i is the in-
dex of the observation in the observation vector yo. To assim-
ilate these observed radiances, one has to first compare them
to equivalent radiances derived from the model variables (or
simulated radiances). These model-equivalent radiances are
obtained with the observation operator Hi applied to the at-
mospheric model state vector xatm

i and to the surface state
vector xsfc

i , both at the time of the observation,

yi =Hi

(
xatm
i ,xsfc

i

)
. (1)

The atmospheric model state vector contains the three-
dimensional distribution of the atmospheric model variables,
and the surface state vector contains the two-dimensional
distribution of the surface model variable at the observation
time. In practice, the part of the observation operator that in-
tegrates the radiative transfer equation requires only the pro-
file of the atmospheric model variable along the viewing path

and the surface variables at the observation location. The ob-
servation operator Hi is then decomposed into the combina-
tion of two operators: (i) HI,i that performs the interpolation
of the state vectors to produce profiles of the model variables
along the viewing path and values of the model surface vari-
ables at the observation location, and (ii) HR,i that performs
the radiative transfer computation to convert the interpolated
model state into radiance at the required frequencies. In the
IFS, this operation is performed by the Radiative Transfer
for TOVS (RTTOV; Matricardi et al., 2004; Saunders et al.,
2018) code. Using this decomposition of the observation op-
erator, the model equivalent to a radiance is expressed as

yi =HR,i

(
HI,i

(
xatm
i

)
, HI,i

(
xsfc
i

))
. (2)

For the atmospheric analysis, the surface variables are not
updated, except for the skin temperature in the TOVSCV ap-
proach. Thus, from all of the surface variables xsfc

i , we keep
only the skin temperature at the observation location τi from
HI,i

(
xsfc
i

)
. The observation operator equation becomes

yi =HR,i
(
HI,i

(
xatm
i

)
, τi
)
. (3)

In the IFS, the skin temperature τi used in the observa-
tion operator is the skin temperature from the first guess ex-
tracted at the observation time and interpolated in space us-
ing HI,i . The model state at the observation time xatm

i comes
from the model state at the initial time xatm

0 and integrated by
the model Mi,0 between the initial time and the time of the
observation yo

i :

xatm
i =Mi,0

(
xatm

0
)
. (4)

Unless specified otherwise, the term skin temperature
hereafter refers to the skin temperature used in the radiances
observation operator and not the model skin temperature.

2.2 Current formulation

The idea behind the TOVSCV approach is to adjust τi to-
gether with the atmospheric variables. With this aim, each τi
is renamed xp,i in order to be consistent with the notation of
the state vector. All of the scalar values xp,i are concatenated
into the vector xp, which is then added to the atmospheric
state vector and leads to the augmented state vector

x =

(
x0
xp

)
. (5)

Note that the superscript “atm” has been removed from the
atmospheric state vector x0 for simplification. With these no-
tations, the observation operator of Eq. (3) becomes

yi =HR,i
(
HI,i (xi) , xp,i

)
, (6)

with xi still computed from Eq. (4) and with

xp,i =HI,i
(
xp
)
. (7)
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There are fundamental differences between the two com-
ponents of the augmented state vector of Eq. (5). First, x0 is
a vector containing the atmospheric model variables defined
on the model grid and at the initial time. On the other hand,
xp is a vector containing a surface variable at the observation
locations and at the observation times. For these reasons, we
identify xp as defined in observation space, whereas x0 is de-
fined in model space and at initial time. Both components are
optimised simultaneously during the minimisation of the 4D-
Var cost function. In the current formulation, the background
errors between the model state vector x0 and the interpolated
skin temperatures in observation space xp are assumed to
be uncorrelated. The background error covariance matrix is
block diagonal and can be split in two: B associated with the
background state xb

0 and Bp associated with the background
state xb

p of xp for which each of component i is derived from
the background values of the skin temperature,

xb
p,i = τi . (8)

Because the skin temperature values are independent, the ma-
trix Bp is diagonal. The diagonal terms bi have different val-
ues for different surface types, i.e. land, ocean, and sea ice.

To illustrate the effect of the analysis, let us introduce the
non-linear 3D-Var cost function where all of the observations
are radiances and where each yo

i contains a set of radiances
at various frequencies but all belonging to the same field of
view and measured by the same instrument:

J
(
x0,xp

)
=

1
2

[
x0− x

b
0

]T
B−1

[
x0− x

b
0

]
+

1
2

[
xp − x

b
p

]T
B−1
p

[
xp − x

b
p

]
+

1
2

∑
i

[
yo
i −HR,i

(
HI,i (xi) , xp,i

)]T
· R−1

i

[
yo
i −HR,i

(
HI,i (xi) , xp,i

)]
, (9)

where Ri is the observation error covariance matrix for the
observation yo

i . The non-linear function is then linearised
around the increment δx = x0− x

b
0 for the atmospheric part

and the increment δxp = xp − xb
p for the skin temperature,

resulting in the following expression:

J
(
δx,δxp

)
=

1
2
δxT B−1 δx+

1
2
δxT

p B−1
p δxp

+
1
2

∑
i

[
HR,iHI,iδx+Hp

R,iδxp,i − d i

]T

· R−1
i

[
HR,iHI,iδx+Hp

R,iδxp,i − d i

]
, (10)

where d i is the innovation vector,

d i = y
o
i −HR,i

(
HI,i (xi) , xp,i

)
; (11)

HR,i and Hp
R,i are the linear versions of HR,i with respect

to δx and δxp respectively; and HI,i is the linear version of
HI,i .

From Eq. (10), we can compute the gradient of the cost
function with respect to each component δxp,i of the vector
δxp:

∂J
(
δx,δxp

)
∂δxp,i

= biδxp,i

+Hp,T
R,i R−1

i

[
HR,iHI,iδx+Hp

R,iδxp,i − d i

]
, (12)

where Hp,T
R,i is the adjoint of Hp

R,i with respect to xp,i . It is
clear from this expression that the only observations that will
directly contribute to the update of xp,i are yo

i (through d i),
i.e. all of the radiances within the same field of view of the
same instrument. Because of the lack of cross-covariances in
Bp, there is no spatial consistency among the analysed values
of the skin temperatures xp,i in observation space, and each
value xp,i is analysed independently of one another.

The minimisation of the 4D-Var cost function in the IFS
follows the incremental approach proposed by Courtier et al.
(1994). This is an iterative process in which the 4D-Var cost
function is successively linearised around a first guess. The
first guess is chosen as the analysis from the previous it-
eration or the background state for the first iteration. The
TOVSCV implementation follows the incremental approach,
and a new first guess of xg

p is computed at every outer loop
iteration. The iterative process also provides a new first guess
of the skin temperature from the surface analysis, but this is
currently not used for the radiance assimilation.

To summarise the TOVSCV approach, the assimilation of
a set of radiance observations from the same field of view
yo
i will adjust the three-dimensional atmospheric variables

within the domain defined by the local background error cor-
relation length scale. All of the other observations within
this domain also constrain the atmospheric variables. On the
other hand, the assimilation will adjust the skin temperature
xp,i local to the field of view only and will have no constraint
from the surrounding observations.

Currently, in the IFS, the radiance observations are thinned
to a resolution of around 125 km and concatenated into
30 min time slots. Over land, the skin temperature can be
spatially very heterogeneous and can change quickly in time.
Under these conditions, and if the characteristic length scale
of the spatial heterogeneity is lower than 125 km and the
characteristic timescale is under 30 min, the TOVSCV ap-
proach could be sufficient. For other situations that may oc-
cur over the ocean where the skin temperature is more ho-
mogeneous and varies slowly in time, we believe that the
TOVSCV approach could be improved by constraining xp,i
with surrounding radiance observations in space and time.
We expect that these additional constraints could be benefi-
cial for the assimilation of the radiance observations.

2.3 New formulation

It would be possible to constrain neighbouring values of xp
in the current TOVSCV formulation by adding correlations
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in the associated background errors. However, this would re-
quire the construction of a correlation model in space and in
time on the unstructured grid formed by the current set of ob-
servation locations and times, and a grid that would change at
each assimilation cycle. Even if this was feasible, we would
instead prefer a new formulation for TOVSCV that analyses
the skin temperature used in the radiative transfer equation
directly in model space, where the background error correla-
tions are easier to compute.

2.3.1 Skin temperature analysis in model space

The new formulation, first documented in Massart et al.
(2020), is also based on Eq. (3), but the skin temperature
value τi is replaced by an interpolated value from a two-
dimensional field xα . We choose this field to have the same
horizontal dimension as x0, and we use the same spatial
interpolation operator HI,i ; thus, τi becomes HI,i (xα) and
Eq. (3) becomes

yi =HR,i
(
HI,i (xi)HI,i (xα)

)
,

=HR,i ◦HI,i (xi , xα) . (13)

As in the previous method, the vector xα is added to the
state vector x to form the augmented state vector

x =

(
x0
xα

)
. (14)

The initial results obtained with the introduction of xα
were encouraging, but we encountered some degradations
detailed in Massart et al. (2020). We associated these degra-
dations with two plausible causes: first, the skin temperature
may not have the same meaning for different instruments, as
the depth of the surface layer that contributes to the observed
radiation depends on the spectral band used; secondly, we
did not account for the time evolution of the skin tempera-
ture within the assimilation window. Therefore, we extended
xα to address these two issues.

2.3.2 Spectral band dependency

The ground depth down to which a radiance observation is
sensitive to depends on the frequency of its measurement
(Prigent et al., 1999). This depth defines the skin tempera-
ture for this particular radiance observation, which makes the
skin temperature dependent on the spectral band of the obser-
vation. For this reason, we decided to have a different skin
temperature field for the two separate spectral bands used in
RTTOV: microwave (mw) and infrared (ir). Thus, we intro-
duced two separate two-dimensional fields in xα instead of
one:

xα =

(
xmw
α

xir
α

)
, (15)

where xmw
α and xir

α are the skin temperature field associated
with the microwave and infrared instruments respectively.

For simplicity, we will hereafter refer to these two fields as
microwave and infrared skin temperature.

2.3.3 Time dependency

Over land, the amplitude of the skin temperature diurnal cy-
cle can be considerable, and the difference between the min-
imum and maximum skin temperature during the day can
reach 30 K over the desert areas (Pinker et al., 2007). Over
ocean, the amplitude of the surface temperature diurnal cy-
cle is usually small and less than 1 K. Nevertheless, the am-
plitude can be larger during particular events. For example,
daily increases between 5 and 7 K were observed by inde-
pendent satellite measurements of ocean surface temperature
(Gentemann et al., 2008). For these reasons, the fields in xα
should also evolve in time within the 12 h assimilation win-
dow.

We chose to expand the state vector xα to one skin tem-
perature field per hour and per instrument type. For our 12 h
assimilation window, we then have 13 fields per instrument
type,

xmw
α =

 xmw
α (t0)
...

xmw
α (t12)

 , xir
α =

 xir
α (t0)
...

xir
α (t12)

 . (16)

This means that xα now contains 2× 13= 26 two-
dimensional fields. Thus, we introduced a spectral band and
time selection operator HS,i in the radiance observation op-
erator. The spectral band selector picks the microwave or in-
frared field depending on the instrument spectral band. The
time selection operator then picks the two closest fields in
time from the observation time from xmw

α or xir
α and performs

a linear interpolation in time between these two fields. With
this selector operator, the model equivalent to radiance ob-
servations is

yi =HR,i ◦HI,i
(
xi , HS,i (xα)

)
. (17)

2.3.4 The cost function and its gradient

As a first step, we chose to use the same background for both
xmv
α and xir

α , and we chose the model hourly skin tempera-
ture fields from the short-range forecast that we concatenated
into xb

α . Therefore, we ignore the spectral dependence of the
skin temperature in our background constraint at this stage.
With Bα , the background error covariances associated with
xb
α , and omitting the observations that are not radiances, the

linear cost function of the proposed method is

J (δx,δxα)=
1
2
δxT B−1 δx+

1
2
δxT

α B−1
α δx

+
1
2

∑
i

[
HR,iHI,i δxi +Hp

R,iHI,iHS,i δxα − d i

]T

· R−1
i

[
HR,iHI,i δxi +Hp

R,iHI,iHS,i δxα − d i

]
, (18)
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and its gradient with respect to xα is

∂J (δx0,δxα)

∂δxα
= B−1

α δxα +
∑
i

HT
S,i HT

I,i Hp,T
R,i R−1

i

·

[
HR,iHI,i δxi +Hp

R,iHI,iHS,i δxα − d
o
i

]
, (19)

where HT
S,i and HT

I,i are the adjoint of HS,i and HI,i with re-
spect to xα respectively. From these expressions, it is clear
that each radiance observation inside the assimilation win-
dow will contribute to update the vector xα .

For each radiance observation, the information from the
observation space toward the model space is propagated
through HT

I,i and then HT
S,i . If, for example, HI,i is a bilinear

interpolation, HT
I,i will propagate back the information in the

four surrounding model grid cells of the observation location
to either the microwave or infrared field. All other radiance
observations for which the field of view is within these grid
cells will also provide information on the skin temperature
of these grid cells and not only on the grid cell where they
are observed, as for the TOVSCV approach. The information
is then further spread in space through the background error
covariances B−1

α .
To improve the condition number of the cost function and

to accelerate the convergence, the state vector of Eq. (14) is
transformed into the control vector χ , such that(
x0

xα

)
=

(
xb

0
xb
α

)
+

(
B1/2 0

0 B1/2
α

)
χ . (20)

2.3.5 Background errors

Here, we assume that there is no cross-correlation in the
background errors of the skin temperature fields between
the two fields xmw

α and xir
α . This may appear to be a strong

assumption, especially because they share the same back-
ground, but it reflects that we have little knowledge of these
cross-correlations at this stage. The background error covari-
ance matrix is then a block-diagonal matrix, with each block
representing a spectral band,

Bα =
(

Bmw
α 0
0 Bir

α

)
. (21)

Both Bmw
α and Bir

α contain spatial and temporal covariances
between the skin temperature fields.

2.3.6 Other considerations

In the absence of a model to propagate the fields in xα in
time, our strategy is effectively a hybrid between a 4D-Var
for most variables and, for the skin temperature fields, a
hybrid 4D-Var where the background error is derived from
an ensemble for the skin temperature fields (Lorenc, 2003;
Buehner, 2005).

There is no technical difference between the skin tempera-
ture fields xα and any other field of the control vector. There-
fore, no specific developments were needed for the incremen-
tal formulation of the IFS 4D-Var.

The forecast model integrates the 4D-Var analysis state in
time to produce the background for the next cycle. Here, we
do not propagate the analysis of xα in time. Instead, we use
the new background skin temperature from the model as the
background xb

α for the next assimilation cycle.
To summarise, we have introduced a new variable xα in

the 4D-Var state vector that combines two-dimensional fields
in the model space representing the skin temperature for
a specific spectral band and time. These fields are used in
the observation operator for the clear-sky radiance assimila-
tion instead of the discrete values of the current TOVSCV
approach. In this SKTECV approach, the transformation
of model variables into radiance observation equivalents is
based on the same skin temperature field for all observations
in the same spectral band; as a consequence, all radiance ob-
servations are used to optimise this field.

3 Background errors for the SKTECV formulation

As new components of the state vector, the new fields asso-
ciated with the skin temperature require the specification of
their background error covariance matrix. Similarly to other
variables of the state vector, we decompose the background
error covariances of the new fields into the background error
standard deviations and the background error correlations.
To model the correlations, we used the wavelet formulation
(Fisher and Andersson, 2001; Massart et al., 2020).

Differently to the other variables of the state vector, we
have one field per hour (for each spectral band). This means
that on top of the spatial correlations of the background er-
rors, we also have temporal correlations that we should ac-
count for.

3.1 Standard deviation

We saw from Eq. (10) that the TOVSCV formulation re-
quires values for the standard deviation of the skin tem-
perature background errors at the observation locations. For
this approach, the background error standard deviation is
constant over the ocean and sea ice, with respective values
of 1 and 7.5 K. These values have been largely empirically
derived based on analysis performance. Over land, the er-
rors can be very heterogeneous and can change rapidly dur-
ing the day, synoptically and seasonally. To have situation-
dependent background error standard deviations there, we
make use of hourly estimates of the model skin temperature
background error standard deviation which are part of the
50-member Ensemble of Data Assimilations (EDA; Bonavita
et al., 2012). The TOVSCV approach uses these EDA-based
estimates interpolated to the observation location and time.
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These values were found to be not large enough, and an addi-
tional 1.5 K is added over land. This value was derived based
on trial and error (Cristina Lupu, ECMWF, personal commu-
nication, 2019).

For the new SKTECV formulation, we follow the imple-
mentation of the other variables of the state vector. For each
of the additional two-dimensional fields, we need a stan-
dard deviation map defined on a horizontal reduced Gaussian
grid corresponding to a T159 triangular spectral truncation
in spectral space. We chose to have the same standard devia-
tions for the two spectral bands, and we computed the asso-
ciated maps with the hourly background error standard devi-
ation of the model skin temperature based on the same EDA
as used for the TOVSCV approach (Massart et al., 2020).
In contrast to the TOVSCV approach, we used these flow-
dependent background error standard deviations for the skin
temperature not only over land but also over the ocean and
sea ice.

In Massart et al. (2020), we demonstrated that the intro-
duction of background error correlation in the SKTECV ap-
proach results in an effective background error standard de-
viation larger than the specified standard deviation. For that
reason, the values of the standard deviation are not inflated
over land as in the TOVSCV approach.

Over sea ice, the value of standard deviation derived from
the EDA is of the order of 0.5 K. In the meantime, the
TOVSCV approach has a fixed value of 7.5 K which accounts
not only for random errors but also for the large systematic
errors in the skin temperature present in polar regions. Pre-
liminary results showed that the consequence of this large
difference in standard deviation was much larger skin tem-
perature increments in the TOVSCV experiment than in the
SKTECV experiment.

Insufficient variance in the EDA for skin temperature over
sea ice is likely related to unaccounted sources of uncertainty
in the sea-ice model. Specific perturbations over sea ice in
the EDA are available in the IFS but are not activated in
the operational EDA. Recent EDA experiments with these
perturbations activated were carried out in a configuration
similar to the one in this paper (Philip Browne, ECMWF,
personal communication, 2020). Preliminary results showed
that there is an approximate factor of 3 increase in the skin
temperature background error standard deviation with such
perturbations. Therefore, we decided to artificially scale the
skin temperature background error over sea ice by applying a
factor 3 to the standard deviation derived from the EDA. The
final value of around 1.5 K is still significantly lower than
for the TOVSCV experiment, even if we consider the effec-
tive standard deviation from taking the spatial correlations
into account. We attribute the difference to the consideration
of systematic errors in the TOVSCV experiment. Here, we
chose not to account for these errors by inflating the stan-
dard deviation further but to instead work in parallel on the
reduction of the systematic errors in polar regions (not part
of this study). This means that we may expect some differ-

ences between the two experiments in polar regions due to
the difference in the value of the background error standard
deviation on top of the change of approach.

3.2 Spatial and temporal correlations

The implementation of the spatial and temporal correlations
follows the wavelet formulation described in Fisher and An-
dersson (2001). We adapted the formulation such that, for a
given wavelet index, we specifically added, for the skin tem-
perature, a time covariance matrix at every point on a hori-
zontal grid associated with this wavelet. The spatial covari-
ance is generated by making the temporal covariance matrix
dependent on the wavelet index.

We did not directly use the members of the EDA to build
the wavelet covariance model for the skin temperature, as is
the case for all of the other variables of the control vector.
Instead, to allow more flexibility, we developed the facility
to build the wavelet covariance model from the estimation
of the local spatial correlation length scale and the estima-
tion of the temporal correlation. Both of the above-mentioned
parameters are computed for every assimilation cycle with
the hourly fields of the model skin temperature short-range
forecast from the 50 member EDA, which makes them flow
dependent. For each time and each grid point, we compute
the local timescale of a Gaussian function that best fits the
time correlation computed at this time with all of the fields
at different times. The local spatial correlation length scale
is computed for each time using the HybridDiag software
(Ménétrier and Auligné, 2015).

The diagnosed horizontal correlation length scale was
found to be of the order of 100 km over land and sea ice and
of the order of 300 km over the ocean. As the data-thinning
resolution was around 125 km, we should expect the biggest
impact of the introduction of horizontal correlation in the
SKTECV approach over the oceans.

The diagnosed correlation timescale was found to gener-
ally be of the order of over 24 h over the ocean and between 2
and 12 h over land and sea ice. We can then expect to resolve
the diurnal cycle over land and to have a smooth field in time
over the ocean.

The local correlation timescale and spatial correlation
length scale are diagnosed from the ensemble of the model
skin temperature short-range forecast. We use them for both
the microwave and infrared skin temperature fields, as we do
not have yet separate short-range forecast of these fields in
the EDA.
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Table 1. The list of instruments used in clear-sky radiance as-
similation is as follows: Advanced Microwave Sounding Unit-A
(AMSU-A), Advanced Technology Microwave Sounder (ATMS),
MicroWave Humidity Sounder (MWHS), Advanced Baseline Im-
ager (ABI), Advanced Himawari Imager (AHI), Spinning Enhanced
Visible and InfraRed Imager (SEVIRI), Infrared Atmospheric
Sounding Interferometer (IASI), Atmospheric Infrared Sounder
(AIRS), and Cross-track Infrared Sounder (CRIS).

Category Instrument Payload

Microwave AMSU-A Aqua
MetOp-A
MetOp-B
NOAA-15
NOAA-18
NOAA-19

ATMS NOAA-20
NPP

MWHS FY-3B

Geostationary IMAGER GOES-15
ABI GOES-16
AHI Himawari-8
SEVIRI Meteosat-8
SEVIRI Meteosat-11

Hyper-spectral IASI MetOp-A
MetOp-B

AIRS Aqua
CRIS NOAA-20

4 Results

4.1 Experiments

To assess the differences between the current approach for
the skin temperature analysis in the clear-sky radiance ob-
servation operator (TOVSCV) and the proposed approach
(SKTECV), we ran two parallel experiments, one for each
approach. For both experiments, we have a Northern Hemi-
sphere summer period – July to September 2019, referred to
as “JAS 2019” – and a Northern Hemisphere winter period
– January to March 2020, referred to as “JFM 2020”. Each
period is preceded by a spin-up of a few weeks. These ex-
periments are based on the IFS cycle CY47R1 and RTTOV
version 12.2 (Saunders et al., 2018).

4.1.1 Clear-sky radiance observations

The instruments providing clear-sky radiance observations
and assimilated in the IFS cycle CY47R1 are presented in Ta-
ble 1. In Sect. 1, we discussed that we carefully selected the
channels in order to avoid those that are very sensitive to the
surface. For the geostationary instruments, we only used the
water vapour channels, which are rather weakly sensitive to
the surface. The data over a grid cell where the model orog-
raphy is higher than 1.5 km are also rejected. For the other

infrared instruments, a situation-dependent screening is ap-
plied to identify channels strongly sensitive to the surface
emission over land, and these channels are blacklisted. We
do use near-window channels sensitive to the surface over the
ocean but not over sea ice. Nonetheless, these are only used
when the relevant channels are cloud-free, which excludes a
large number of them.

A detailed usage of surface-sensitive microwave chan-
nels is presented in Table 1 of Bormann et al. (2017). For
this study, we focus on the Advanced Microwave Sounding
Unit-A (AMSU-A) instruments, which have channels near
the 50 GHz oxygen absorption line, and on the MicroWave
Humidity Sounder (MWHS) instruments, which have chan-
nels near the 183 GHz water vapour absorption line. The
Advanced Technology Microwave Sounder (ATMS) instru-
ments have channels for both frequencies.

The sensitivity to the surface and the type of information
available from the assimilated microwave and infrared chan-
nels differs considerably, including the number of surface-
sensitive channels assimilated. For the infrared sounders,
many channels with relatively strong surface sensitivity are
assimilated over the ocean from the hyper-spectral sensors,
but many observations are screened out due to cloud contam-
ination. The use of surface-sensitive channels is also more
cautious over land. On the other hand, there is a wider range
of microwave sounders available, with different overpass
times, and these are less affected by cloud contamination.
These characteristics will affect the response of the skin tem-
perature estimation.

4.1.2 Resolution

The incremental formulation of the IFS 4D-Var means that
each inner loop has a different resolution. Here, the outer
loop has a TCo 399 horizontal grid (or spatial resolution of
about 25 km; Malardel et al., 2016) and a vertical grid with
137 vertical levels. The inner loop horizontal grids are TL 95,
TL 159, and TL 255 successively (or a spatial resolution of
about 200, 125, and 80 km respectively), with the same ver-
tical grid as the outer loop.

4.2 Skin temperature analysis

The key difference between the two approaches is the skin
temperature analysis. Thus, we start by inspecting the skin
temperature analysis in both experiments. First, we focus on
the two-dimensional fields provided by the SKTECV experi-
ment. Then, we compare the skin temperature analyses from
the two experiments in the observation space, which is the
space where the TOVSCV experiment provides its skin tem-
perature analysis.
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Figure 1. Time average of the skin temperature increment (in K) from the SKTECV experiment for (a, b) JAS 2019 and (c, d) JFM 2020 for
(a, c) the infrared field and (b, d) the microwave field.

Figure 2. Standard deviation of the skin temperature increment (in K) from the SKTECV experiment for (a, b) JAS 2019 and (c, d) JFM 2020
for (a, c) the infrared field and (b, d) the microwave field.

4.2.1 Model space

The SKTECV approach starts from the model skin tempera-
ture as a background. The 4D-Var produces the analysis in-
crement which is the optimal adjustment to the background
and the new batch of observations. The temporal mean of
the analysis increment is a proxy of the background bias. We
computed the temporal mean of the analysis increment for

the two periods and the two skin temperature fields for the
SKTECV experiment (Fig. 1).

For the infrared field, the mean value is mainly under 0.3 K
in absolute value. The difference between the two seasons
is minimal. It appears that the model skin temperature pro-
vides a relatively unbiased background for the infrared skin
temperature field. As discussed in Sect. 4.1.1, most of the
actively assimilated infrared radiances have relatively weak
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surface sensitivity over land and sea ice. This limits the in-
crements in these regions.

For the microwave field, there is a contrast between the
ocean on one hand and the land and sea ice on the other hand.
Over the ocean, the absolute value of the mean is mostly un-
der 0.3 K. Elsewhere, where the SKTECV approach makes
use of surface-sensitive microwave channels, the mean can
reach absolute values of more than 3 K. Moreover, there
are large differences between the two seasons. For exam-
ple, there is a change of sign in the mean over sea ice in
Antarctica or over Canada. The larger differences over land
likely reflect that microwave frequencies can be sensitive to
deeper subsurface layers, and this is not captured by using the
model skin temperature as a background field. In addition,
the specular assumption currently used in the radiative trans-
fer calculations for microwave frequencies has been found
to be suboptimal over snow and sea-ice areas, whereas dif-
fuse, Lambertian reflection may be more appropriate (Kar-
bou et al., 2006; Bormann et al., 2017). The specular assump-
tion leads to viewing-angle-dependent biases, and these are
partly compensated for by increments in the skin tempera-
ture. This likely contributes to the larger mean increments
over Canada and northern Asia in winter.

From the time series of the analysis increment, we also
computed the temporal standard deviation for the two peri-
ods and the two skin temperature fields (Fig. 2). This quan-
tity is a proxy of the analysis activity: the larger the standard
deviation, the larger the activity. The pattern of the standard
deviation is similar for the two fields: the lowest values are
found over the ocean (mostly under 0.3 K), and the largest
values are found over sea ice (up to 2 K). This is expected, as
the standard deviation of the background errors is lower over
the ocean and the uncertainty is large over sea ice.

Over the ocean, the analysis is slightly more active for
the infrared field than for the microwave field. For both, the
activity is larger inside the subtropical gyres limited by the
ocean currents, and the activity is larger in the region of the
Gulf Stream current along the eastern American coast.

Over land and sea ice, the analysis is less active for the in-
frared field than for the microwave field, as expected from the
blacklisting of the surface-sensitive channels of the infrared
radiances. However, the standard deviation is higher than
over the ocean which means that there is still some surface
sensitivity in the remaining infrared radiances. The higher
values over land for the microwave field can be explained by
both the higher surface sensitivity and by the larger number
of available instruments (providing more of the diurnal sam-
pling). The activity is even larger over desert regions, where
the diurnal cycle of the skin temperature can be strong, and
around regions with high orography. Yet, the activity is the
largest over sea ice.

4.2.2 Observation space

For each field of view of the radiance observations, the back-
ground and analysis values of the skin temperature are stored
in the Observational DataBase (ODB; Fouilloux, 2009). For
both experiments, we can extract the matching skin temper-
ature analysis/background and compute the analysis incre-
ment for each experiment and the analysis difference (SK-
TECV minus TOVSCV) in observation space (time and lo-
cation of each field of view). Figure 3 presents the mean and
standard deviation of the analysis difference for each instru-
ment, and for the two seasons. We also computed the mean of
the analysis increment standard deviation by instrument type
for each of the two experiments. All of the statistics are com-
puted over three surface properties (land, ocean, and sea ice),
as we previously saw that there are large differences between
them.

Note that, due to instrument problems, the three lowest-
peaking channels (5–7) of Aqua AMSU-A were not used
over sea ice. This reduces the constraint of this instrument
on its skin temperature analysis in the TOVSCV approach
and reduces the constraint over sea ice to zero.

In the TOVSCV experiment, the geostationary infrared in-
struments have little sensibility to the surface; therefore, the
analysis increment is close to zero on average and has lit-
tle variability. Meanwhile, by construction, the average and
variability in the SKTECV experiment are similar for all in-
frared instruments, and their values are constrained mainly
by the hyper-spectral instruments.

We found a reduction in the analysis increment variabil-
ity in the SKTECV experiment compared with the TOVSCV
experiment except for the microwave instruments over the
ocean. The reduction is a combined effect of the addition
of spatial and temporal correlations and of using one field
per instrument type in the SKTECV experiment. The in-
crease over the ocean in the microwave instruments can be
attributed to an increase in the temporal variability in the SK-
TECV experiment.

Over the ocean, the mean difference is close to zero for all
instruments. The standard deviation is around 0.25 K, which
is of the same order as the mean background error stan-
dard deviation. For the microwave instruments, this value
is mostly driven by the SKTECV experiment for which the
standard deviation values are around 250 % higher. Over
land, the mean difference is also close to zero except for
the microwave instruments during the JFM 2020 season, and
the standard deviation is between 0.5 and 1 K, which is once
again of the same order as the mean background error stan-
dard deviation.

This means that both approaches are similar in terms of
skin temperature analysis over land and the ocean, except
for microwave instruments during the JFM 2020 season over
land. This difference largely originates from areas with large
analysis increments over the Northern Hemisphere, as dis-
cussed earlier, for which local values can reach up to 3 K.
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Figure 3. Mean (a) and standard deviation (b) of the skin temperature analysis difference between the SKTECV and the TOVSCV experi-
ments for each instrument and for the two seasons: JAS 2019 (colour) and JFM 2020 (hatched colour). The difference is computed over the
ocean, sea ice, and land (see legend). The left part of the plot shows the microwave instruments, the middle part of the plot shows the infrared
instruments (geostationary), and the right part of the plot shows the infrared instruments (polar orbiting).

As the usage of the surface-sensitive channels for the in-
frared instruments is limited over sea ice, there is not much
difference between the two approaches. The standard devia-
tion of the difference is about 1 K, which is lower than the
background error standard deviation. However, the standard
deviation of the SKTECV experiment is about 50 % lower.

There is a bigger difference between the two approaches
for the microwave instruments over sea ice. First, the mean
difference is between 0.5 and 1 K. This difference comes
from the SKTECV experiment for which the mean increment
is positive, whereas the mean increment has values close to
0 K for the TOVSCV experiment (not shown).

Due to the difference in the background error standard de-
viation between the two experiments, the SKTECV exper-
iment has a less active skin temperature analysis by about
7 % (JAS 2019) and 20 % (JFM 2020). The largest standard
deviation values of the skin temperature analysis difference
over sea ice compared with the other surface types are, thus,
partially due to larger variability in the increments in the
TOVSCV experiment and also to larger variability over this
surface type.

4.2.3 Outliers

With the exception of sea ice, we can conclude that the two
approaches are similar on average. We believe that the SK-
TECV approach could be beneficial for particular situations,
as the skin temperature is better constrained through several
instruments at the same time as well as via the spatial and
temporal correlations of the background error. The TOVSCV
experiment, in contrast, allows, for example, for possible in-

accuracy in the surface emissivity or in the cloud screen-
ing, or viewing-angle-dependent biases from the specular as-
sumption (when relevant) to be aliased into skin temperature
increments. Thus, we investigated the cases for which the
skin temperature analysis is significantly different between
the SKTECV and TOVSCV experiments, as this could point
to situations where the skin temperature in TOVSCV com-
pensates for other large errors. We searched for the outliers
defined as scenes where the skin temperature analysis differ-
ence is larger than a threshold t and simultaneously the skin
temperature background difference is larger than t/2.

We chose the threshold to be equal to 3 times the local
value of the skin temperature background error standard de-
viation from the TOVSCV experiment. The threshold is then
situation dependent over land but constant over the ocean and
sea ice with respective values of 3 and 22.5 K.

For the infrared instruments, we did not find any outliers
with this criteria. For the microwave instruments, all of the
outliers were found in the Northern Hemisphere, and most
of them were located over the ocean or near the coastline
(Fig. 4). This is linked to the usage of the background er-
ror standard deviation from the EDA over the ocean in the
SKTECV experiment which allows the skin temperature in-
crements to be larger. For instance, for the outliers located
on the East Coast of the USA, the sea surface uncertainty is
higher than 1 K and is associated with the Gulf Stream. The
uncertainty is also large in the Arctic region. Looking at these
outliers in more detail, the larger increment in the SKTECV
experiment allows for the analysis to better fit channel 6 of
ATMS (not shown). Nevertheless, because it concerns only
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Figure 4. Difference in the skin temperature analysis in observa-
tion space (in K) between the experiment and the control when the
difference exceeds 3 background error standard deviations and for
NOAA-20-ATMS. Bluish colours denote SKTECV values lower
than TOVSCV values, and reddish colours denote SKTECV val-
ues greater than TOVSCV values. The time periods shown are (a)
JAS 2019 and (b) JFM 2020.

few points, this does not have an overall significant impact
on the analysis.

If we change the threshold to a lower value, we start to
have outliers over sea ice. For this surface type, the skin tem-
perature increment is always larger in the TOVSCV exper-
iment, as expected from the difference in the value of the
background error standard deviation. We also start to have
outliers over land in the regions where the skin temperature
is very sensitive to the meteorological conditions. Small dif-
ferences in the weather parameters between the two experi-
ments can cause differences in model skin temperature close
to or larger than the threshold in these regions. The assimila-
tion processes of both experiments were then usually not able
to change the skin temperature enough to bring their analyses
close to each other.

Figure 5. First-guess (grey shading) and analysis (coloured lines)
departures (in K) for ATMS (a, b) and IASI (c, d) for four particular
scenes; see the plot titles for the location (latitude, longitude) of
the scenes. Blue denotes departures from the TOVSCV experiment,
and red denotes departures from the SKTECV experiment. In the
legend, δTs is the value of the skin temperature increment.

In conclusion, we did not find any scenes for which the
TOVSCV experiment seems to excessively boost the skin
temperature increment to compensate for other errors.

4.2.4 Cases study

To illustrate the difference in behaviour between the two ap-
proaches, we detail four particular scenes in the following:
two for the ATMS instrument (microwave) and two for the
Infrared Atmospheric Sounding Interferometer (IASI) instru-
ment (infrared). For each scene, we present the first-guess
and analysis departures in radiance space (Fig. 5).

The scenes are from the very first assimilation cycle of the
summer period. The background values for the atmospheric
variables and for the skin temperature are the same for the
two approaches. This facilitates the interpretation of the dif-
ferences between them. Nonetheless, one has to be careful
not to attribute the observed differences in the analysis de-
partures only to the skin temperature analysis at the location
of the scene. For a given scene, a difference in the skin tem-
perature analysis in the surrounding model grid cells creates
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a difference in the atmospheric variables in those grid cells
and, subsequently, in the grid cell of the scene due to the
spatial covariances of the atmospheric variables background
error.

For the first ATMS scene, which is over land, the TOVSCV
experiment produces a large skin temperature increment
(−7.24 K), larger than the one from the SKTECV experi-
ment (−3 K). This allows the TOVSCV analysis to better
fit the measurements for surface-sensitive channel 6 than the
first guess and than the SKTECV analysis, but results in a
worse fit for channels 18 to 20, compared with the SKTECV
analysis. For the second scene, which is over sea ice, none
of the lower-tropospheric temperature-sounding channels are
assimilated. The TOVSCV experiment then produces a large
skin temperature increment (5.5 K) that allows its analysis to
better fit the measurements for channels 20 to 22 compared
with the SKTECV analysis, for which the skin temperature
increment is smaller (2.2 K).

For the TOVSCV experiment, the skin temperature for
each field of view is only constrained by its background in
opposition to the atmospheric variables that are also con-
strained by surrounding observations due to the spatial corre-
lation in the background error. Therefore, the skin tempera-
ture can be purposely adjusted to improve the fit to the chan-
nels that are sensitive to the surface. This is illustrated in the
two ATMS cases where the analysis can lead to large skin
temperature increments. If present, the lower-tropospheric
temperature-sounding channels will be the more impacted
as, for example, the prescribed observation error is more than
5 times lower for channel 6 than for channels 18 to 22.

In contrast, in the SKTECV experiment, the skin tempera-
ture is also constrained by adjacent observations via the skin
temperature background errors, reducing the strong response
to one particular observation.

The first IASI scene is over Antarctica, while the sec-
ond scene is over land. For both scenes, the skin tempera-
ture increments from the SKTECV analysis are small (−0.4
and−0.6 K respectively). The increments from the TOVSCV
analysis are larger (2.6 and 3 K respectively), which im-
proves the analysis fit to observation for the wave numbers
between about 710 and 750 cm−1, corresponding to lower-
tropospheric sensitive channels. For the first scene, despite
the large skin temperature increment, the analysis fit is only
marginally improved, which may suggest that the skin tem-
perature adjustment compensates for other errors.

4.3 Meteorological analysis

On average, the skin temperature analysis is similar for the
two approaches. We now assess how the two analyses com-
pare for other variables.

Figure 6. Normalised analysis fit to observations (in %) for vari-
ous observation types (see panel headings) for JAS 2019 (red) and
JFM 2020 (blue). The shaded area represents the variability (1 stan-
dard deviation).

4.3.1 Analysis fit to observations

We define the analysis fit to observations as the standard
deviation of the SKTECV analysis departure (analysis mi-
nus observation) normalised by the standard deviation of the
TOVSCV analysis departure. If the analysis fit to observa-
tions is lower than 100 %, the SKTECV analysis is labelled
as closer to the observations. Otherwise, the TOVSCV anal-
ysis is labelled as closer to the observations.

We first present the analysis fit to the radiance obser-
vations. By design, the skin temperature analysis impacts
the radiance observation operator. This impact is detectable
in the analysis projected in the radiance observation space
through the observation operator. We present only the results
for ATMS and IASI because these two examples are repre-
sentative of the other microwave and infrared instruments.

For ATMS, the analysis fit is 10 % larger for channel 6
and up to 6 % larger for channels 18 to 22 (depending on
the season) in the SKTECV experiment compared with the
TOVSCV experiment. This is likely linked to the mechanism
described in the case study. The TOVSCV experiment uses
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Figure 7. Time average difference between the SKTECV and the TOVSCV analyses at 850 hPa for (a, b) JAS 2019 and (c, d) JFM 2020 for
(a, c) the temperature (in K) and (b, d) the specific humidity (in µgg−1). Note that when the 850 hPa level is below the surface, the lowermost
model level is used.

the skin temperature to better fit the measurements for chan-
nel 6 when assimilated and for channels 18 to 22 otherwise.

For IASI, the difference between the two experiments is
larger than for ATMS for the channels sensitive to the sur-
face. For the window channels around 810 cm−1, the anal-
ysis fit of the SKTECV experiment is about 30 % larger
(Fig. 6b). The fit is also larger, although by less than 5 %,
for the lower-tropospheric sensitive channels (around 700–
800 cm−1). This is in accordance with the previously studied
case: the TOVSCV experiment uses the skin temperature to
better fit the measurements for these channels. For the geo-
stationary infrared instruments, the analysis fit to observa-
tions is also slightly larger for the SKTECV experiment, by
around 0.25 % for JAS 2019 and around 0.5 % for JFM 2020
(not shown).

From these results alone, it is not possible to say which
of the two systems performs better. On the one hand, the
findings may indicate that the TOVSCV experiment uses the
skin temperature to over fit the radiance observations, either
due to overly large assumed background errors or possibly by
aliasing scene-dependent errors with suitable spectral signa-
tures into skin temperature increments (e.g. cloud-screening
errors or emissivity/specularity errors). On the other hand,
the results may indicate that the skin temperature is too
strongly constrained in the SKTECV experiment which pre-
vents the analysis from fitting the radiance observations more
closely. Either way, the temperature and humidity analyses
are expected to be different from the surface, up to the mid-

dle troposphere. This can be assessed with the analysis fit to
other observations.

We found that the SKTECV temperature analysis is gener-
ally slightly closer (by less than 0.5 %) to global positioning
system radio occultation (GPS-RO), sondes, and aircraft data
for JAS 2019. For JFM 2020, the results are more mixed. The
largest difference was detected for the fit to the GPS-RO data
in the lower troposphere and over the tropics, where there is
a contrasting behaviour between the two seasons. The SK-
TECV temperature analysis has a closer fit, by about 5 %,
in JAS 2019 and a looser fit, by about 5 %, in JFM 2020
(Fig. 6c). It is not clear where this difference comes from,
as no such differences were found in the analysis fit to other
observations in the tropics.

The difference in the humidity analysis fit is mostly
not statistically significant when compared with the son-
des and aircraft data. The humidity analysis fit values are
within ±0.5 %. The exception is for the analysis fit to son-
des data in the upper troposphere (around 250 hPa) for
JFM 2020: the SKTECV humidity analysis is significantly
closer to the observation by 2 % (Fig. 6d). This is the region
where ATMS channels 18 to 22 are sensitive to humidity and
where the TOVSCV analysis is closer to the ATMS obser-
vations. This suggests that the TOVSCV approach may use
the skin temperature to compensate for inaccuracy in the sur-
face emissivity in the Northern Hemisphere for JFM 2020,
allowing the analysis to be closer to ATMS channels 18 to 22
but also putting the humidity analysis further away from the
radiosondes data.
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Figure 8. Normalised first-guess fit to observation in (%) for vari-
ous observation types (see panel headings) for JAS 2019 (red) and
JFM 2020 (blue). The shaded area represents the variability (1 stan-
dard deviation).

4.3.2 Mean analysis difference

We saw that the analyses from the two approaches differ
when compared with observations. Here, we directly com-
pare the two analyses in physical space. We found that the
mean atmospheric states are very similar in the two analyses,
and the few differences appear in the lower atmosphere only.
In this region, the mean temperature analyses mainly differ
by less than 0.05 K, and the mean humidity analyses differ
by less than 50 µgg−1.

The largest differences for temperature are found in the
polar regions. For example, at 850 hPa, when compared
with the TOVSCV experiment, the SKTECV experiment is
warmer in the Arctic region and cooler in the Antarctic re-
gion in JAS 2019, whereas the opposite is found in JFM 2020
(Fig. 7a, c).

We previously found that the mean increment for the mi-
crowave instruments is positive and large in the winter sea-
son (JAS 2019) over the Antarctic region, especially in the
Weddell Sea. In this area, the analysis tends to warm the at-
mosphere at 850 hPa. By increasing the skin temperature for

the microwave instruments, the SKTECV analysis reduces
the warming of the atmosphere compared with the TOVSCV
analysis. This is a very limited area, and it is difficult to as-
sess which analysis is better.

Still over the Antarctic region but for the summer season
(JFM 2020), the mean increment for the microwave instru-
ments is close to zero, and the skin temperature analysis is
not very active compared with that from the TOVSCV ex-
periment. Both analyses tends to warm the atmosphere in the
above-mentioned region. As it has a more active skin temper-
ature analysis, the TOVSCV experiment reduces the warm-
ing of the atmosphere compared with the SKTECV analy-
sis. This difference makes the SKTECV temperature analy-
sis slightly closer to the radiosonde measurements than the
TOVSCV one (not shown).

There are also some local differences in the mean tem-
perature analysis in the tropical region of Africa. This could
be linked to errors in the emissivity that are propagated to
the skin temperature in the TOVSCV experiment. Moreover,
there is a moistening of the tropics on average in the SK-
TECV experiment compared with the TOVSCV experiment
(Fig. 7b, d). This also makes the SKTECV humidity analy-
sis slightly closer to the radiosonde measurements than the
TOVSCV one (not shown).

The discrepancy in the temporal standard deviation of the
analysis between the two experiments informs us of the ac-
tivity of the analysis. For the temperature, we found that the
difference is negligible, with maximum values of 0.05 K de-
tected in the polar regions. For the humidity, the difference
is also small. The largest difference is found in the tropics,
close to the surface, where the SKTECV experiment has a
lower standard deviation (by a maximum of 20 µgg−1).

To summarise, the two analyses are very similar on aver-
age, with no important difference between the two seasons.
The main differences are located in the polar regions, where
the temperature in the lowest model levels is warmer during
the summer season in the SKTECV analysis. There are also
other differences in the tropics, close to the surface, where
the SKTECV analysis is slightly moister and slightly less ac-
tive.

4.4 Short-range forecast

The atmospheric analysis serves as an initial condition for the
short-range forecast that is used as the first guess for the next
assimilation cycle. This first guess is compared to all avail-
able observations to compute the first-guess departure. The
standard deviation of the first-guess departure gives informa-
tion on the quality of the first guess. Here, we compute the
normalised first-guess fit to observation which is the standard
deviation of the first-guess departure of the SKTECV exper-
iment normalised by standard deviation of the first-guess de-
parture from the TOVSCV experiment. For a value lower or
greater than 100 %, the SKTECV first guess is labelled as
better or worse than the relevant observations respectively.
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Figure 9. Normalised difference in root mean square error (full line, in %) between the SKTECV and the TOVSCV experiments, when com-
pared with the operational analyses, and the associated uncertainty (coloured shading). Red denotes JAS 2019, and blue denotes JFM 2020.
See the panel headings for the parameter and region plotted.

For the ATMS instrument, the SKTECV first guess is
slightly worse (by up to 0.3 %) for the channels that are sen-
sitive to the surface (Fig. 8a). The only exception is for the
Northern Hemisphere in JFM 2020 for which the first guess
is 0.1 % better (not shown). Combined with the finding that
the SKTECV analysis fit to ATMS observations is larger than
the TOVSCV analysis fit, the result suggests that, on average,
the skin temperature may be too strongly constrained in SK-
TECV for the microwave instruments.

For the IASI instrument, there is a dipole in the normalised
first-guess departure (Fig. 8b). The first guess is better by up
to 1 % for the ozone channels and worse by up to 1 % for the
window channels. This phenomenon has already been ob-
served and is under investigation (Cristina Lupu, ECMWF,
personal communication, 2020). Here, we can only conclude
that even if the SKTECV approach largely affects the anal-
ysis fit to hyper-spectral infrared measurements, it is neutral
when it comes to the first-guess fit.

When compared with other instruments, the difference in
the standard deviation of the first-guess fit is mostly not sta-
tistically significant, as illustrated with the GPS-RO data in
Fig. 8c. The only statistically significant difference comes
from the comparison against humidity measurements from
radiosondes at 250 hPa in the Northern Hemisphere, where
the SKTECV experiment is better for JAS 2019 (Fig. 8d).
This is the region where we saw a better fit for the SKTECV

experiment in the analysis fit to humidity, although this was
for JFM 2020.

4.5 Forecast scores

For assessing the forecast quality at up to day 10, we use
the operational analysis as the reference to compute the fore-
cast error. The operational analysis is assumed to be our best
knowledge of the global atmospheric state at a given time.
Because the operational analysis has a TCo 1279 horizontal
grid (spatial resolution of about 9 km), we do not expect it to
favour the TOVSCV experiment, even if it uses the TOVSCV
approach.

The metric that we are using is the normalised difference
in the root mean square error (RMSE) of the forecast error
for forecast lead times between 1 and 10 d (Geer, 2016). If
the normalised difference is negative or positive for a given
lead time, the forecast from the SKTECV experiment is la-
belled as better or worse than the one from the TOVSCV
experiment for this lead time respectively. If the 0% line is
outside the uncertainty range, the result is statistically sig-
nificant; otherwise, it is not. These scores are computed by
region and for each parameter.

Here, we focus on the tropics and the polar regions, be-
low 60◦ S and above 60◦ N, where the largest differences in
the analysis were observed. In the tropics at 850 hPa, the nor-
malised difference in the RMSE is within 0.5 % for humidity,
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and within 1 % for temperature, for all forecast ranges and
without any statically significant signal (Fig. 9a, b).

For the polar regions, we discuss the normalised differ-
ence in the RMSE for the geopotential (Z) at 500 hPa, as
it summarises the quality of the forecast from the surface up
to 500 hPa (Fig. 9c, d). The first statistically significant differ-
ence is in Antarctica, in winter and up to day 3. The forecast
error is up to 6 % larger for the SKTECV experiment. This is
also confirmed by the verification against observations, but
the increase in error is then between 1 % and 2 %. This in-
crease comes primarily from a larger mean error in the SK-
TECV experiment linked with a sightly warmer analysis, as
discussed previously. The second statistically significant dif-
ference is over the Arctic where the SKTECV forecast is 3 %
to 5 % better after day 7. This improvement is confirmed by
the comparison with observations, although without statisti-
cal significance.

5 Conclusions

During the assimilation process, the skin temperature is ad-
justed in the IFS along with all of the atmospheric variables
in order to produce a simulated radiance that best fits the
observed radiance. This is achieved by extending the atmo-
spheric 4D-Var control vector with a set of skin tempera-
ture values defined in observation space for each field of
view. This approach is known as TOVS control variable (or
TOVSCV).

The TOVSCV approach is suboptimal, as without spa-
tial or temporal constraints, each individual skin temperature
value is adjusted independently. In this paper, we proposed
an enhanced approach, referred to as SKTECV, that allows
for the definition of these spatial and temporal correlations in
model space in a similar fashion to all of the other variables
of the analysis state vector. The TOVSCV and SKTECV esti-
mates of skin temperature agree fairly well overall, with dif-
ferences mostly below the errors assigned to the background
skin temperature values. This may suggest that aliasing of
other errors in the skin temperature errors is not a major is-
sue, and the screening applied to the affected radiances per-
forms well in this respect.

By constraining the skin temperature analysis more
strongly, the SKTECV analysis does not fit the radiance ob-
servations as much as the TOVSCV analysis for the channels
sensitive to the surface and to the lower troposphere. Com-
pared with other independent observations, there is no statis-
tically significant difference between the two analyses. Fur-
thermore, the two analyses and forecasts are not significantly
different, on average, outside the polar regions.

The differences in the polar regions come mainly from the
microwave instruments, for which the skin temperature anal-
ysis over sea ice is, on average, 0.5 to 1 K warmer depending
on the season and instrument. Moreover, there is more vari-
ability in the skin temperature analysis in the TOVSCV ex-

periment than in the SKTECV one, which is a consequence
of the large difference in the value of the background error
standard deviation over sea ice between the experiments.

The sensitivity of the microwave instruments to the sur-
face is deeper than the layer represented by the model skin
temperature. Therefore, using the model skin temperature as
a background is not optimal. This is confirmed by the time
average of the analysis increment of the microwave fields
which has values of up to 3 K. We are currently investigat-
ing how to use the microwave skin temperature analysis from
this study to obtain a better background and address the bias
issue.

Changing the background value of skin temperature will
change the first guess in radiance space and may also change
the usage of the microwave observations. For example, our
quality control tends to reject a significant portion of mi-
crowave data over deserts or snow-covered regions because
of overly large biases (Lawrence et al., 2019). If we can im-
prove our skin temperature background field, we may be able
to reduce these biases and increase the number of assimilated
radiances. A better skin temperature background should also
lead to better dynamic emissivity estimates, resulting in fur-
ther improvements.

Here, we considered two separate skin temperature fields.
This can be further refined, as different channels within a cat-
egory can have a different sensitivity to the surface. For in-
stance, low-frequency channels are sensitive to a deeper sur-
face layer than high-frequency channels for the microwave
instruments. For example, we could separate channels 6–9
(50 GHz) from channels 18–22 (183 GHz) for ATMS. More-
over, we may be able to add more channels that are currently
blacklisted because they were found to be problematic due
to their sensitivity to the surface. For instance, for the in-
frared instrument, we could stop removing channels that are
strongly sensitive to the surface over land and start using
near-window channels sensitive to the surface over the sea
ice.

Having the skin temperature as fields on the same grid as
the atmospheric temperature will also allow for the introduc-
tion of a background error correlation between them follow-
ing the approach of Garand (2004). Finally, the availability
of a temporally and spatially consistent analysis of skin tem-
perature can also be seen as an attractive by-product of the
SKTECV method. These skin temperature analysis fields can
drive further improvements in the estimation of physically
connected fields (e.g. sea surface temperature, land surface
temperature, sea-ice temperature).
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