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Abstract. The newest iteration of the Canadian Earth Sys-
tem Model (CanESM5.0.3) has an effective climate sensitiv-
ity (EffCS) of 5.65 K, which is a 54 % increase relative to
the model’s previous version (CanESM2 – 3.67 K), and the
highest sensitivity of all current models participating in the
sixth phase of the coupled model inter-comparison project
(CMIP6). Here, we explore the underlying causes behind
CanESM5’s increased EffCS via comparison of forcing and
feedbacks between CanESM2 and CanESM5. We find only
modest differences in radiative forcing as a response to CO2
between model versions. We find small increases in the sur-
face albedo and longwave cloud feedback, as well as a sub-
stantial increase in the SW cloud feedback in CanESM5.
Through the use of cloud area fraction output and cloud ra-
diative kernels, we find that more positive low and non-low
shortwave cloud feedbacks – particularly with regards to low
clouds across the equatorial Pacific, as well as subtropical
and extratropical free troposphere cloud optical depth – are
the dominant contributors to CanESM5’s increased climate
sensitivity. Additional simulations with prescribed sea sur-
face temperatures reveal that the spatial pattern of surface
temperature change exerts controls on the magnitude and
spatial distribution of low-cloud fraction response but does
not fully explain the increased EffCS in CanESM5. The re-
sults from CanESM5 are consistent with increased EffCS in
several other CMIP6 models, which has been primarily at-
tributed to changes in shortwave cloud feedbacks.

1 Introduction

Equilibrium climate sensitivity (ECS), defined as the global
annual mean surface warming the Earth would exhibit as a
response to a doubling of CO2, is a frequently cited emer-
gent property from simplified climate models (Charney et al.,
1979), as well as modern Earth system models (ESMs) (An-
drews et al., 2012; Vial et al., 2013). The first estimates
of ECS from Earth system models ranged from 1.5–4.5 K
(Charney et al., 1979). In the latest phase of the Coupled
Model Inter-comparison Project (CMIP6), the range of ECS
from participating models has widened (1.8–5.5 K), with the
mean shifting towards higher values than the previous phase
of CMIP (3.2 to 3.7 K from CMIP5 to CMIP6) (Flynn and
Mauritsen, 2020; Zelinka et al., 2020). Inter-model spread
of ECS is primarily attributed to radiative feedbacks on the
climate system, specifically with regards to cloud feedbacks,
which are the primary source of spread across models (Cald-
well et al., 2016; Vial et al., 2013; Dufresne and Bony, 2008).

Understanding cloud feedback uncertainty and its influ-
ence on the ECS of ESMs has been an imperative of re-
searchers in recent decades – particularly with regards to
properties such as cloud optical depth, which determine the
amount of reflected shortwave (SW) radiation and thus help
cool the planet (Vial et al., 2013; Tan et al., 2016; Zelinka
et al., 2020; Bjordal et al., 2020). SW cloud feedbacks can
be separated based on latitude; middle-latitude SW cloud
feedbacks are mostly negative from the optical thickening
of clouds due to phase transition towards liquid in ice- and
mixed-phase clouds (Goosse et al., 2018; Senior and Ingram,
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1989). At high latitudes, sea ice loss exposes the ocean sur-
face and increases surface turbulent fluxes and therefore hu-
midity, which increases low-level cloudiness (Goosse et al.,
2018). At low latitudes, the SW cloud feedback is robustly
positive in both ESMs and large eddy simulations (LESs),
owing to a reduction in the fraction and thickness of marine
shallow cumulus and stratocumulus clouds near the plane-
tary boundary layer (PBL) (Bretherton and Blossey, 2014;
Bretherton et al., 2013; Ceppi et al., 2017). The physical
mechanisms behind SW low-cloud feedbacks are tied to mul-
tiple thermodynamic, radiative, and dynamical processes,
termed cloud controlling factors (CCFs) (Klein et al., 2017).
Specifically, mechanisms favouring an increase in low-cloud
fraction in baseline climatology regimes include stronger
PBL temperature inversions (Wood and Bretherton, 2006;
Klein and Hartmann, 1993; Bretherton et al., 2013), colder
sea surface temperatures (SSTs) (Bretherton and Blossey,
2014), less subsidence (Blossey et al., 2013), and increased
free troposphere humidity (Van der Dussen et al., 2015).

While the sensitivity of marine low-cloud cover (LCC) to
specific factors varies significantly from model to model, dif-
fering sensitivities to SSTs have been identified as a explana-
tory factor for spread across ESMs (Qu et al., 2014). This link
suggests the spatial pattern of surface warming has impor-
tant implications for low-cloud responses (Rose et al., 2014;
Zhou et al., 2015) and therefore the SW cloud feedback and
climate sensitivity (Andrews and Webb, 2018).

Here, we investigate the causes of increased climate sen-
sitivity in the newest version of the Canadian Earth System
Model, which is the highest of all models currently partic-
ipating in CMIP6 (Flynn and Mauritsen, 2020). We exam-
ine the particularly high ECS of the Canadian Earth Sys-
tem Model 5 (CanESM5) in relation to the previous model
version that was contributed to CMIP5 (CanESM2). With a
particular focus on decomposed cloud feedbacks, we quan-
tify the differences in both forcing and feedback between
CanESM2 and CanESM5 in order to establish a physical link
for the shift in ECS. Lastly, we examine the spatial pattern of
warming in CanESM5 and its influence of both global mean
and local cloud feedbacks as a potential explanatory variable
for CanESM5’s high ECS.

2 Methods

2.1 Models

We compare two versions of CanESM in this study.
CanESM2, the second-generation Earth system model from
the Canadian Centre for Climate Modelling and Analysis
(CCCma), consists of their fourth-generation atmosphere
model (CanAM4), land surface model (CLASS), terrestrial
carbon model (CTEM), CSM ocean model from the National
Centre for Atmosphere Research (NCAR), and ocean carbon
model (CMOC) (von Salzen et al., 2013; Arora et al., 2009;

Zahariev et al., 2008; Arora et al., 2011; Gent et al., 1998).
CanESM5 (Swart et al., 2019b) is the newest generation of
the Canadian Earth System Model and uses an updated ver-
sion of CLASS (version 2.7 to 3.6.2) (Verseghy, 2000); Can-
NEMO, which is based on NEMO3.4.1 (Madec, 2012), for
the ocean model; and the Louvain-la-Neuve sea ice model
(LIM2) (Fichefet and Maqueda, 1997; Bouillon et al., 2009).

The fifth-generation atmospheric model (CanAM5) has
the same horizontal resolution as CanAM4 while increasing
the vertical layers from 35 to 49, with majority of the addi-
tional layers added to the upper troposphere and lower strato-
sphere. While there are a number of improvements to radia-
tive transfer, aerosol, and surface parameterization, changes
to cloud parameterizations are discussed briefly given their
direct potential connection to cloud feedbacks. Ice cloud pa-
rameterizations in CanAM5 largely remain the same as in
CanAM4 (von Salzen et al., 2013), with the exception of
adjustments to uncertain parameters. For liquid clouds, the
primary change is autoconversion of cloud liquid to rain in
CanAM5, which now uses the parameterization of Wood
(2005) instead of the parameterization of Khairoutdinov and
Kogan (2000) that was used in CanAM4. The change in au-
toconversion parameterization includes the second indirect
aerosol effect – a process not considered in CanAM4 (von
Salzen et al., 2013).

2.2 Forcing-feedback analysis

We consider energy balance at Earth’s top of atmosphere
(TOA) using the following equation:

N = F − λ1Ts, (1)

where N is net radiation imbalance (in W m−2), F is the
effective radiative forcing (ERF) due to that of an external
agent (e.g. CO2, in W m−2), 1Ts is the global annual mean
surface temperature response (in kelvin), and λ is the net cli-
mate feedback parameter (in W m−2 K−1). Equation (1) as-
sumes a linear relationship between radiation imbalance and
surface temperature response (i.e. a constant λ). Under this
assumption, an Earth system model with a stronger (more
negative) λ term will re-establish energy balance faster (and
with a weaker surface temperature response) than a weak
λ term. We calculate the net feedback parameter using pre-
industrial control and abrupt 4×CO2 experiments for each
version of CanESM. For CanESM2, we use 150 years of pre-
industrial control and abrupt 4×CO2 coupled model output
submitted to the Earth System Grid Federation under run 1,
initialization 1, and physics 1 (r1i1p1) (Taylor et al., 2012).
For CanESM5, we use the same experiments submitted for
the core CMIP6 experiment deck (Eyring et al., 2016).

The surface temperature response after the system has
reached equilibrium (N = 0 W m−2) is defined as the effec-
tive climate sensitivity, which is typically measured under a
2×CO2 ERF (EffCS=−F/λ). We use the term “effective”
above, as opposed to “equilibrium” climate sensitivity, given
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the linear assumptions in Eq. (1), where equilibrium climate
sensitivity is representative of warming once the system as
reached true equilibrium and does not require any form of
statistical extrapolation (Knutti et al., 2017). The extent that
the linear approximation accurately represents both forcing
and feedback varies from model to model, where some mod-
els exhibit a more linear response to CO2 than others (An-
drews et al., 2012). A time-varying net feedback parame-
ter has been at least partially attributable to differences in
model timescale and magnitude of “rapid adjustments” in the
climate system, where quick tropospheric climate response
to CO2 modifies TOA energy balance (Smith et al., 2018;
Forster et al., 2013; Sherwood et al., 2015).

We consider the influence of rapid adjustments by diag-
nosing the ERF using two distinct methods. First, we use
an ordinary least-squares linear regression between TOA
radiation imbalance (N ) and surface temperature response
(1Ts) in abrupt 4×CO2 experiments, where the extrapo-
lated y intercept of the regression line equals 2× the ERF
(ERFg, Gregory et al., 2004). Second, we use 30-year fixed
sea surface temperature experiments (piClim-control and
piClim-4×CO2) submitted to the Radiative Forcing Model
Inter-comparison Project (RFMIP) (Pincus et al., 2016). The
ERF is calculated by differencing net TOA radiation in 30-
year annual mean fixed sea surface temperature experiments
(ERFh), where one experiment uses pre-industrial control
CO2 and the other uses abrupt 4×CO2 (Hansen et al., 2005;
Pincus et al., 2016). Under the ERFh definition, both tropo-
spheric and stratospheric rapid adjustments from clouds, air
temperature, water vapour, and surface albedo are included
along with CO2.

Using the Gregory regression method, we obtain the net
feedback parameter as the slope of the regression line. Fur-
thermore, we quantify the EffCS for an abrupt 2×CO2 forc-
ing as the extrapolated x intercept of the regression line di-
vided by 2. We consider the net feedback parameter as the
linear sum of individual radiative feedbacks within the cli-
mate system:

λ= λp+ λlr+ λwv+ λa+ λc+Re, (2)

where the net feedback parameter is made up of contributions
from Planck (λp), lapse rate (λlr), water vapour (λwv), surface
albedo (λa), and cloud (λc) feedbacks. A residual term is also
included (Re) in order to account for non-linearities. We use
a combination of the radiative kernel and Gregory regression
methods to diagnose individual radiative feedbacks (Block
and Mauritsen, 2013; Soden and Held, 2006). Specifically,
we use six sets of radiative kernels to calculate TOA fluxes
for temperature, water vapour, and surface albedo responses
(Soden et al., 2008; Block and Mauritsen, 2013; Shell et al.,
2008; Pendergrass et al., 2018; Huang et al., 2017; Smith,
2018). Following this, each flux is linearly regressed against
global annual mean surface temperature response for 150
years, where the slope of the regression line is considered
the feedback value (in W m−2 K−1). We use the clear-sky

linearity test to validate the accuracy of each radiative ker-
nel (Shell et al., 2008), where the sum of all clear-sky feed-
backs is compared against the net clear-sky climate feed-
back parameter as estimated using the Gregory regression
technique with clear-sky TOA flux. Three radiative kernels
passed the clear-sky linearity test (relative errors of less than
10 %) (Fig. A1), which are used to calculate an ensemble
kernel mean for all feedbacks. The three sets of kernels that
passed the clear-sky linearity test are derived from the Geo-
physical Fluid Dynamics Laboratory (GFDL) ESM (Soden
et al., 2008), the Hadley Centre Global Environment Model
(HadGEM2) (Smith, 2018), and a combination of the ERA-
interim reanalysis data set and the Rapid Radiative Transfer
Model (RRTM) (Huang et al., 2017).

2.3 Cloud feedbacks

Cloud feedbacks cannot be calculated via the standard ra-
diative kernel method due to non-linearities associated with
cloud vertical overlap (Soden et al., 2008). We estimate cloud
feedbacks using two methods – the adjusted cloud radiative
effect (CRE) and cloud radiative kernel method. The CRE
response is defined as the difference between clear-sky and
total radiative fluxes. We adjust the CRE for the effects of
environmental masking from other feedbacks using clear-sky
radiative kernels (Soden et al., 2004). The CRE “adjustment”
using clear-sky radiative kernels takes into account differ-
ences in temperature and water vapour between a clear and
cloudy atmosphere to isolate the radiative perturbation from
clouds. We also account for the masking effect of CO2 forc-
ing by using a globally uniform proportionality constant of
1.16 between clear-sky and total CO2 forcing (Soden et al.,
2008; Chung and Soden, 2015). After adjusting the CRE, the
cloud flux response is regressed similarly to noncloud feed-
backs, where the slope of the regression line equals the cloud
feedback. This method is performed twice to yield a value
for both the shortwave (SW) and longwave (LW) cloud feed-
backs.

We use cloud radiative kernels and cloud area fraction
output from the International Satellite Cloud Climatology
Project (ISCCP), produced from the CFMIP Observation
Simulator Package (COSP) (Bodas-Salcedo et al., 2011) in
CanESM2 and CanESM5, to diagnose cloud feedbacks for
different cloud top pressures and optical depths (Zelinka
et al., 2012a). Specifically, we calculate a cloud area frac-
tion response, relative to a pre-industrial control climatol-
ogy, for every year, grid point, optical depth, and cloud top
pressure bin in the abrupt 4×CO2 simulation. Following
this, cloud radiative kernels are applied to the cloud area
fraction response to derive TOA flux perturbations. Simi-
lar to noncloud feedbacks, each point is then linearly re-
gressed against global annual mean surface temperature re-
sponse over 150 years, where the slope of the regression line
is equal to the feedback value.
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In this study, we consider low clouds as having their tops
at ≥ 680 hPa and non-low clouds as having their tops at
≤ 680 hPa. A key limitation of COSP output is the poten-
tial obscuring of low clouds via a shift in the distribution of
high-cloud fraction (Zelinka et al., 2018). We account for the
obscuring of low clouds via normalizing low-cloud fraction
using upper-level clear-sky fraction as in Scott et al. (2020).
Using this method, non-obscured low-cloud responses are
weighted by the area fraction not covered by high clouds.

To further separate cloud feedbacks into contributions
from cloud altitude, optical depth, and amount components,
we utilize the refined decomposition technique as in Zelinka
et al. (2016). Using this method, cloud kernels are decom-
posed into individual components for cloud amount, op-
tical depth, altitude, and residuals, while cloud area frac-
tion anomalies are resolved into contributions from altitude
and optical depth shifts and total amount separately. For a
full mathematical breakdown of this decomposition, see Ap-
pendix B in Zelinka et al. (2013) and the Supplement of
Zelinka et al. (2016).

For CanESM2, only 40 years of cloud area fraction data
(years 1–20 and 120–140) were available in the abrupt
4×CO2 simulation. To test the impact of sample size on
our results, we subsample the output from the CanESM5
abrupt 4×CO2 simulation for the same time periods as those
available from CanESM2 (years 1–20 and 120–140) and
find highly similar results to those obtained from the full
150 years (Fig. A2). Furthermore, we find very similar results
for LW and SW cloud feedback components from CanESM2
and CanESM5 computed using the radiative kernel method
and the adjusted-CRE method (Fig. A3). This provides con-
fidence that both methods are accurately capturing the pattern
and magnitude of cloud feedbacks in these models.

3 Results

3.1 Effective climate sensitivity and radiative forcing

We begin by quantifying net feedback, forcing, and Ef-
fCS for CanESM2 and CanESM5 (Fig. 1a). Relative to
CanESM2, CanESM5 has a weaker net feedback parame-
ter (−0.64 W m−2 K−1) and higher EffCS (5.65 K), mean-
ing that EffCS has increased by 54 % between CanESM ver-
sions 2 and 5. For comparison, we also show the model
range of EffCS for both CMIP5 and 6 using horizontal lines
below the x axis in Fig. 1a, illustrating the high EffCS in
CanESM5 relative to all other CMIP6 models (Flynn and
Mauritsen, 2020). Both versions of CanESM exhibit a strong
linear relationship between surface temperature and net TOA
flux (correlation coefficients are 0.92 and 0.95 for CanESM2
and CanESM5, respectively). For some ESMs, the influence
of a time-varying climate feedback parameter, which could
be roughly separated into a “fast response” period in the
first few decades and a weaker (less negative) feedback over

the latter century, had a significant influence on model’s Ef-
fCS values calculated via the Gregory technique (Andrews
et al., 2015). Here, the strong linearity for both versions of
CanESM suggests any lack of robustness in the Gregory
technique is not a primary cause of the EffCS increase in
CanESM5.

We now turn to the different components of the forcing-
feedback framework to elucidate any changes in either forc-
ing, or feedback, and their influence on EffCS. We compare
the ERF for CanESM2 and CanESM5 via two methods. The
ERFg is determined by the y intercept of the Gregory re-
gression plots (filled in circles on the y axis in Fig. 1a).
The ERFg is 7.21 and 7.54 W m−2 for CanESM2 and 5, re-
spectively. For comparison, we also show the ERFh as es-
timated using fixed-SST simulations submitted to RFMIP
(open squares). Both methods produce very similar estimates
of ERF – within ±5 % – which strongly suggests that the
change in EffCS between CanESM2 and 5 is not explained
by a change in radiative forcing. We next decompose the net
feedback parameter for both models to elucidate the any po-
tential differences in the strength of radiative feedbacks.

3.2 Radiative feedbacks

Planck, lapse rate, water vapour, surface albedo, and cloud
TOA feedbacks are shown in Fig. 1b. Planck and lapse
rate plus water vapour feedbacks are roughly equal be-
tween CanESM2 and CanESM5. The surface albedo feed-
back is more positive in CanESM5, showing an increase of
0.05 W m−2 K−1 over CanESM2, which is primarily due sea
ice loss over the Arctic (Swart et al., 2019b), as well as a
consistently more positive snow albedo feedback over polar
land surfaces (not shown).

Lastly, cloud feedbacks increase in CanESM5 – primarily
in the SW; the result is a more positive net cloud feedback
(+0.34 W m−2 K−1 relative to CanESM2). The net feedback
(sum of all individual feedbacks) is also shown in Fig. 1b to
demonstrate the strong agreement the sum of kernel derived
net feedback parameter (filled circles) and the net feedback
parameter obtained from the Gregory regression technique
(filled triangles). Strong agreement between both methods
indicate that kernel ensemble mean is accurately capturing
the extent of net TOA flux perturbation as outputted directly
from the models.

We find our results are in line with the literature for as-
sessing causes behind similar increases in EffCS observed by
many modelling centres participating in CMIP5 and CMIP6
(Flynn and Mauritsen, 2020; Zelinka et al., 2020; Gettel-
man et al., 2019; Andrews et al., 2019; Golaz et al., 2019).
The LW cloud feedback is positive for both versions of
CanESM – increasing by 0.06 W m−2 K−1 from CanESM2
to 5 (Fig. 1b). CanESM2 exhibits a negative SW cloud feed-
back (−0.21 W m−2 K−1), while in CanESM5 the SW cloud
feedback has become weakly positive (0.06 W m−2 K−1), in-
dicating an absolute difference of 0.27 W m−2 K−1 (Fig. 1b).
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Figure 1. (a) Net top-of-atmosphere (TOA) radiation plotted against global annual mean surface air temperature change in abrupt 4×CO2
simulations for CanESM2 (blue) and CanESM5 (red). Standard 150-year Gregory regressions using net top-of-atmosphere radiative flux
(adjusted by a pre-industrial 150-year annual mean control climate) are conducted, where the x axis intercept of the regression line divided
by two is defined as the EffCS, and the y axis intercept is defined as the ERF. For comparison, the ERF, as calculated using fixed SST
AMIP-style runs, is shown for both versions of CanESM via the open squares along the y axis. Bars below the x axis denote the model
range for EffCS for both CMIP5 and CMIP6 (Flynn and Mauritsen, 2020). (b) Global annual mean top of atmosphere radiative feedbacks
calculated using radiative kernels (in W m−2 K−1). From left to right, feedbacks are listed as “Planck+2” (a value of 2 was added for display
purposes to better illustrate differences in the other feedbacks), lapse rate plus water vapour, surface albedo, cloud, and net feedback. For
comparison, we also show the net climate feedback value obtained using the standard Gregory regression approach (filled triangles), as well
as the CMIP6 model range (Zelinka et al., 2020).

We quantify each individual feedback and forcing change
(in terms of EffCS increase) in Table 1. While the SW cloud
feedback exhibits the largest difference between CanESM2
and CanESM5, both the surface albedo feedback and the
LW cloud feedback offer non-negligible contributions to
CanESM5’s high EffCS. The SW cloud feedback is the cause
of at least half of the EffCS increase from CanESM2 to
CanESM5 (1.08 K), followed by the LW cloud and surface
albedo feedbacks, respectively. Notably, there is a 3 % error
between the kernel-ensemble-derived and model EffCS val-
ues (Fig. A1). As a result, we do not consider the small con-
tributions from the Planck and lapse rate plus water vapour
changes as they are close to these error bounds (Table 1).
Furthermore, despite the strong linear relationship between
net TOA radiation and global annual mean surface temper-
ature response for both versions of CanESM (Fig. 1a), the
regression-derived ERF model difference is of opposite sign
to the ERF difference calculated from fixed-SST experiments
(Fig. 1a).

Given the importance of the cloud feedback in explaining
the change in EffCS from CanESM2 to 5, we devote the rest
of this article to investigating the causes of this change by
further decomposing both the SW and LW cloud feedbacks
into their altitude, optical depth, and amount components.
Although the change in net LW cloud feedback is small, we

will demonstrate in the following section that this is due to
compensating differences in individual components.

3.2.1 Decomposition

The SW cloud feedback arises due to changes in cloud
amount and/or optical properties. Cloud optical thickness is
dependent on water path and cloud droplet size distribution
(Slingo, 1989). The phase composition of clouds (liquid, ice,
or mixed) is linked strongly to their optical thickness due to
liquid droplets and ice crystals having different characteristic
size distributions, where clouds composed of predominantly
smaller liquid droplets tend to be more reflective (Pruppacher
and Klett, 1980). As a result, regions where cloud compo-
sition consists entirely of liquid droplets (or where clouds
are mixed phase) tend to exhibit higher albedo. In terms of
feedbacks, cloud phase and amount changes have been iden-
tified as an explanatory factor to EffCS spread in ESMs (Tan
et al., 2016; Zelinka et al., 2016). Thus, we now decompose
the cloud feedbacks using cloud radiative kernels and ISCCP
simulator output for each version of CanESM following the
methods described in Zelinka et al. (2012a, b) to investigate
individual cloud feedback processes. We apply the decompo-
sition separately to low and non-low clouds.

In Fig. 2, we decompose LW and SW cloud feedbacks into
contributions from changes in cloud optical depth, cloud al-
titude, and cloud amount. The LW total cloud feedback is
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Table 1. Contributions of each component in the forcing-feedback framework to CanESM5’s increased EffCS (in kelvin). Individual contri-
butions from feedbacks were calculated by substituting feedback values from CanESM5 into CanESM2 and recalculating EffCS and then
taking the difference between CanESM5’s EffCS and the recalculated EffCS. Relative contributions (given in parentheses) are defined as the
percentage of each value of the difference between CanESM5 and CanESM2s EffCS (1.98 K). This process was repeated for all individual
feedbacks and the ERF.

ERF Planck LR+WV Surface albedo LW cloud SW cloud

−0.08 (−4.59 %) 0.04 (1.96 %) 0.08 (3.85 %) 0.34 (17.30 %) 0.39 (19.8 %) 1.08 (54.38 %)

dominated by contributions from non-low clouds (Fig. 2a),
with small negative contributions from low clouds (Fig. 2b).
Changes in cloud optical depth or amount have little radiative
influence for low clouds given low cloud top temperatures are
close to that of the surface, resulting in similar outgoing long-
wave radiation (i.e. little greenhouse effect). Furthermore,
particularly in CanESM2, the strong non-low LW feedback is
largely offset by a negative SW feedback of comparable mag-
nitude. For CanESM2, contributions to the LW feedback are
comparable for optical depth and amount feedbacks – with
the largest contribution coming from altitude. The altitude
feedback arises from cloud-temperature-dependent emission
properties, and therefore operates predominantly in the long-
wave for non-low clouds. Tropical free troposphere clouds
rise and maintain cooler cloud top temperatures relative to
the surface, thereby becoming more efficient at trapping out-
going longwave radiation (Zelinka and Hartmann, 2010; Get-
telman and Sherwood, 2016). For CanESM5, the net non-
low LW feedback is approximately equal to CanESM2, al-
beit with a different decomposition makeup. Specifically,
CanESM5 has a more positive LW altitude and optical depth
feedback. However, these increases are offset by a weaker
cloud amount feedback. For low clouds, the LW feedbacks
are all small in magnitude. The residuals (yellow) are simi-
larly small in both models (Fig. 2), indicating that non-linear
processes are less important for understanding the changes
between models.

In the SW, both models exhibit strong negative feedbacks
for non-low clouds and strong positive feedbacks for low
clouds (Fig. 2). The negative non-low-cloud shortwave feed-
back is driven by an increase in cloud amount and opti-
cal depth with warming. This result is consistent with both
modelling and theoretical understanding of non-low-cloud
responses to warming. Specifically, an increasing number
of liquid droplets relative to ice crystals gives rise to more
mixed phase clouds, as well as increases the proportion of
liquid to ice in existing mixed phase clouds, resulting in
an higher optical depth (Senior and Ingram, 1989), and a
positive relationship between mid latitude cloud liquid wa-
ter content and the slope of the moist adiabat as the tropo-
sphere warms (i.e. a function of temperature) (Betts, 1987).
For low clouds, the SW is dominated by a strong positive
amount feedback (decrease in cloudiness), with a small neg-
ative contribution from optical depth feedback (increase in

cloud optical depth) (Fig. 2b). For CanESM5, SW feed-
backs differ from CanESM2 considerably for both non-low
and low clouds. For non-low clouds, CanESM5’s optical
depth feedback is weaker (less negative) than CanESM2
(+0.06 W m−2 K−1) (Fig. 2a). While the SW non-low-cloud
amount feedback is also weaker in CanESM5, the difference
is offset in the LW. For low clouds, the SW amount feedback
exhibits the largest difference between the two model ver-
sions (+0.14 W m−2 K−1). The change in SW cloud feed-
back strength and sign between CanESM2 and CanESM5
is related to multiple feedback mechanisms operating at dif-
ferent cloud heights. The largest contributor is the SW low-
cloud amount feedback, which is more positive in CanESM5.
Changes in optical depth feedbacks are mainly important for
non-low clouds, and are less negative in CanESM5.

The large difference in SW low-cloud feedback strength
between CanESM2 and CanESM5 raises the possibility that
a portion of what the COSP interprets as a low-cloud re-
sponse is actually the result of changes in the spatial distribu-
tion of non-low-cloud fraction under climate change; a phe-
nomenon known as “obscuration” (Zelinka et al., 2018). Sep-
arating for obscuration does not also separate out the amount
and optical depth feedbacks. Therefore, we consider the SW
unobscured low-cloud feedback as a combination of changes
in proportional cloud amount and optical depth. The black
bars in Fig. 2b indicate that both CanESM2 and CanESM5
have a non-negligible obscuration term. However, given that
the extent of obscuration is similar between both versions of
CanESM (see hatched bars in Fig. 2b), it does not appear
to be a major contributor to increased feedback strength in
CanESM5 relative to CanESM2.

3.2.2 Spatial distribution

Low-cloud amount feedbacks are considered a robust posi-
tive feedback mechanism diagnosed from both observational
and modelling studies, albeit with substantial inter-model
spread in terms of strength (Eitzen et al., 2011; Clement
et al., 2009; Zelinka et al., 2016). The low-cloud amount
feedback is closely tied to the distribution of marine strati-
form cloud regimes persisting in the subtropics and tropics
over eastern boundary current ocean regions (Klein et al.,
2017). The non-low-cloud optical depth feedback has been
shown to have a rich and sometimes offsetting spatial struc-
ture, owing to mostly negative feedback at mid-latitudes and
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Figure 2. Global annual mean decomposed cloud feedbacks for CanESM2 and CanESM5. Feedbacks are partitioned into both LW and SW
contributions from cloud amount (blue), cloud altitude (red), optical depth (green), and residual (orange) terms for non-low (a) and low
clouds (b). Low-cloud feedbacks are also separated into non-obscured and obscuration terms using black bars in panel (b). For contributions
smaller than 0.01 W m−2 K−1, text values were omitted for the sake of clarity.

high latitudes and a rich zonal structure at low latitudes
(Zelinka et al., 2012b, 2016). As such, we now examine the
spatial distribution of both the SW low-cloud amount and
non-low-cloud optical depth feedbacks (Fig. 3).

Figure 3 shows annual mean SW non-low-cloud optical
depth and low-cloud amount feedbacks for CanESM2 and
CanESM5. The SW non-low-cloud optical depth feedback
is negative in CanESM2 and 5 (Fig. 3a and c), with min-
ima over the western tropical Pacific Ocean. For the SW
low-cloud amount feedback, both models are strongest over
subtropical and tropical eastern ocean basins and across the
equatorial Pacific (Fig. 3b and d). Notably, these regions have
persistent low stratiform cloud regimes that are closely tied
to the strong temperature inversions that cap the PBL (Klein
and Hartmann, 1993).

For CanESM5, increases in SW non-low-cloud optical
depth feedback are exhibited throughout the subtropical Pa-
cific and tropical eastern Pacific Ocean (Fig. 3e). While there
is strong positive (negative) feedback over the eastern Indian
(western Pacific) Ocean, it is offset by a similar strength and
opposing sign in the LW (not shown), and thus it does not ex-
ert a major influence on the global mean net cloud feedback
(LW+SW). For SW low-cloud amount feedback, CanESM5
exhibits an increase over CanESM2 in every region of persis-
tent low-cloud-cover regimes, as well as across the eastern
equatorial Pacific and the western Pacific Ocean basin off
the Brazilian coast, relating to the simulation of substantially
reduced LCC under a warming climate (Fig. 3f).

Multiple lines of evidence from modelling studies have
linked the sensitivity of LCC over the oceans to local changes
in SST (Zhou et al., 2017; Andrews and Webb, 2018). Fur-
thermore, the evolving spatial pattern of surface warming
from interannual to centennial timescales is associated with
differences between interannual and long-term cloud feed-
back strength (Zhou et al., 2015). The underlying physical
mechanisms linking local sea surface warming to reduced
LCC are (1) increased surface latent heat flux drying and
deepening the boundary layer via increased buoyancy-driven
turbulence and resultant downward mixing from free tropo-
sphere air (Qu et al., 2015; Rieck et al., 2012) and (2) in-
creased surface specific humidity promoting further mois-
ture contrast between the boundary layer and the free tro-
posphere such that when air is mixed downward it is rela-
tively drier (Van der Dussen et al., 2015; Qu et al., 2015).
We use a proxy term, SST#, as a measure of distribution of
surface warming in the tropics (Fig. 4) (Fueglistaler, 2019).
Specifically, SST# is calculated as the difference between the
warmest 30 % of tropical SSTs (i.e. the Indo-Pacific) and the
tropical average, and therefore this term provides quantita-
tive information about zonal asymmetries in the tropical SST
pattern and how they evolve over time.

The pre-industrial control tropical SST pattern for
CanESM2 is shown in Fig. 4a and exhibits a familiar zon-
ally asymmetric pattern, with the warmest SSTs in the Indo-
Pacific and cooler waters in the eastern Pacific and south-
eastern regions of each ocean basin. Relative to CanESM2,
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Figure 3. Annual mean SW non-low-cloud optical depth (a, c, e) and SW low-cloud amount (b, d, f) feedbacks for CanESM2 (a, b) and
CanESM5 (c, d). Panels (e) and (f) show the difference between CanESM5 and CanESM2 for each respective feedback. Values in square
brackets next to each subplot title denote the global mean value for each respective map. Note the difference in colour bar scales for the top
panel and the bottom and middle panels.

CanESM5’s control SSTs are substantially cooler – by up
to 3 K – over the eastern tropical Pacific (Fig. 4b). Colder
SSTs are also prevalent in the northern Pacific, off of the
western Australian coast, and in the northern tropical At-
lantic Ocean (Fig. 4b). There is little difference between the
SSTs in the Indo-Pacific, which has important implications
for SST#. Figure 4c shows a time series of SST# for abrupt
4×CO2 experiments. Given that SST# represents the differ-
ence between the warmest waters in tropics relative to the
average, a higher value indicates greater asymmetry between
warmer and cooler regions of tropical SST. The relatively

cold waters in CanESM5’s control climatology results in a
larger SST# term, which is also illustrated at the beginning
of the abrupt 4×CO2 time series (Fig. 4c). The difference
between the models decreases as the climate warms in re-
sponse to CO2. The higher SST# term at the beginning of
the simulation in CanESM5 suggests a stronger SW CRE
in the pre-industrial control (Fueglistaler, 2019). The strong
positive SW cloud feedback in CanESM5, particularly from
low clouds, warms the eastern Pacific (and other cooler ar-
eas) at a faster rate than CanESM2 (Fig. 3f), which gradu-
ally decreases the difference in SST# over the course of the
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Figure 4. (a) Pre-industrial control mean (150 years) tropical SSTs
for CanESM2. (b) Pre-industrial control mean (150 years) tropical
SSTs for CanESM5, expressed as a difference relative to CanESM2.
(c) Annual mean time series of SST# for both CanESM2 and
CanESM5 for abrupt 4×CO2 experiments.

abrupt 4×CO2 simulation (Fig. 4c). While the distribution
of surface warming in the tropics is known to be important
for low clouds (Andrews and Webb, 2018), we also briefly
analyze another important controlling factor: estimated in-
version strength (EIS) (Fig. 5).

Figure 5 shows EIS for both the control climatology and
response abrupt 4×CO2 simulations and is calculated using
air temperatures at the surface and 700 hPa as in Wood and
Bretherton (2006). Regions with a strong positive EIS are in-
dicative of a boundary layer that is decoupled from the free
troposphere, with strong subsidence and cooler SSTs and
therefore more low-cloud fraction. Conversely, a strong neg-
ative EIS is indicative of a weak inversion and a surface that
is coupled tightly to the free troposphere (i.e. unstable ver-
tical temperature profile) and is therefore inefficient at trap-
ping moisture within the boundary layer. In the CanESM2
control period, EIS is strongly positive across all eastern
ocean basins and the eastern equatorial Pacific (Fig. 5a). In
CanESM5, control EIS mirrors the corresponding SST pat-
tern (Figs. 5b, 4b). In the response period, EIS increases
throughout most of the tropics for both models (Fig. 5c and
d). CanESM5 exhibits a stronger increase in EIS through-
out most of the tropics relative to CanESM2. Given that

EIS and low-cloud fraction are strongly positively correlated
(Wood and Bretherton, 2006), a stronger response (as seen
in CanESM5) would promote more cloud fraction if it were
the only cloud controlling factor. However, we find no clear
relationship between regions of more positive SW low-cloud
feedback and increased inversion strength response (Fig. 5d).
Inferring causal changes in cloud feedbacks between models
from EIS alone is difficult given its correlation with SSTs
(Scott et al., 2020) (see Figs. 4b and 5b). We now turn to-
wards prescribed SST experiments from CFMIP6 to further
investigate the role of SST warming distribution as a cloud
controlling factor.

3.3 Prescribed SST experiments

To investigate the spatial pattern of surface warming and its
influence on SW cloud feedbacks, we present results from
an additional experiment from the CFMIP Tier 2 experiment
deck – AMIP-piForcing (Webb et al., 2017). The AMIP-
piForcing experiment forces the atmosphere model with the
reconstructed historical SSTs and sea ice boundary condi-
tions from 1870 to 2014 (Hurrell et al., 2008). An important
distinction from the base AMIP experiment is the anthro-
pogenic and natural atmospheric forcings are held fixed to
their pre-industrial control levels in AMIP-piForcing, which
allows for a more direct comparison to abrupt 4×CO2 ex-
periments, as it removes the influence of non-SST medi-
ated cloud responses. Thus, using AMIP-piForcing, we can
isolate the contribution to changes in cloud feedbacks that
arises due to changes in the atmosphere model (CanAM4
to CanAM5) independent of the change to the ocean model
(NCAR CSM to CanNEMO). We show global mean low-
cloud feedbacks and SST# time series for both the AMIP-
piForcing and abrupt 4×CO2 CanESM5 experiments in
Fig. 6.

For low clouds, the SW feedback is stronger
(+0.21 W m−2 K−1) in the abrupt 4×CO2 experiment
than AMIP-piForcing – largely due to the cloud amount
feedback, but there is also a smaller contribution from the
optical depth feedback (Fig. 6a). This result is consistent
with theoretical understanding relating warmer local SSTs
to reduced boundary layer marine cloud cover as outlined
in the previous section, which is further emphasized by the
geographic distribution of warming in the AMIP-piForcing
experiment (Fig. 6b). In AMIP-piForcing, the eastern Pacific
warms only by a small amount relative to the abrupt 4×CO2
experiment (Fig. A4), which is exemplified by the SST# time
series. Furthermore, the SST# trend is opposite in AMIP-
piForcing, illustrating the warming in the Indo-Pacific warm
pool over the historical record (Fig. A4), which is not present
in coupled model abrupt 4×CO2 experiments (Andrews
et al., 2018).

We summarize feedback results from all experiments con-
sidered in this study in Table 2. The Planck response is nearly
identical for all three experiments. The combined lapse rate
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Figure 5. (a) Annual mean control climatology (150-year mean) tropical EIS for CanESM2. (b) Annual mean control climatology (150-year
mean) tropical EIS for CanESM5, expressed as a difference relative to CanESM2. (c) Tropical EIS response (mean for years 130–150) for
CanESM2. (d) Tropical EIS response (mean for years 130–150) for CanESM5, expressed as a difference relative to CanESM2’s response.
For EIS responses, each grid box value is normalized by the global mean surface temperature response (also mean for years 130–150 relative
to the control period). Hatching represents areas where the SW low-cloud feedback is more positive in CanESM5.

Figure 6. (a) Global annual mean decomposed cloud feedbacks for CanESM5’s AMIP-piForcing and abrupt 4×CO2 experiments. Feedbacks
are partitioned into both LW and SW contributions from cloud amount (blue), cloud altitude (red), optical depth (green), and residual
(orange) terms. Feedbacks are also separated into non-obscured and obscuration terms, shown black bars. For contributions smaller than
0.01 W m−2 K−1, text values were omitted for the sake of clarity. (b) Annual mean time series of SST# for both CanESM5 experiments.

and water vapour feedback is similar in abrupt 4×CO2 ex-
periments for both models, but it is noticeably more negative
in the AMIP-piForcing experiment. The combined result is
a product of the more negative lapse rate feedback, which
arises due to the relatively stronger warming in the Indo-

Pacific warm pool (Andrews et al., 2018) from the recon-
structed SST data set used as forcing (Hurrell et al., 2008).
Surface temperatures in the deeply convective warm pool in-
crease Earth’s emission temperature via enhanced latent heat
release, which stabilizes the vertical temperature profile and
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Table 2. Summary of radiative feedbacks, calculated using a combined radiative kernel and regression method (adjusted-CRE method in
the case of the cloud feedbacks listed here) for both model version’s abrupt 4×CO2 experiments, as well as CanESM5’s AMIP-piForcing
experiment. All feedbacks are in units of W m−2 K−1. Feedbacks from the AMIP-piForcing run were calculated using the 1980–2010 period
as a baseline.

Model Planck LR+WV Surface albedo LW cloud SW cloud Net

CanESM2 (4×CO2) −3.29 1.26 0.44 0.73 −0.21 −1.03
CanESM5 (4×CO2) −3.30 1.29 0.49 0.79 0.06 −0.66
CanESM5 (piForcing) −3.31 0.96 0.45 0.76 −0.21 −1.35

warms the upper troposphere. Outgoing longwave radiation
increases and produces a strong radiative cooling effect. The
surface albedo feedback is stronger in the CanESM5 for cou-
pled model experiments, but it is reduced in AMIP-piForcing
relative to CanESM5’s abrupt 4×CO2 experiment, which is
likely a result of the constrained sea ice boundary conditions
present. The longwave cloud feedback is similar across all
three experiments and models, and the SW cloud feedback
has strongly increased in CanESM5 for coupled experiments
but is reduced to a similar magnitude to CanESM2 abrupt
4×CO2 in the AMIP-piForcing experiment. The net feed-
back result for the AMIP-piForcing experiment is strongly
negative in CanESM5 relative to abrupt 4×CO2, which is
due to the combined effect of reduced surface albedo, SW
cloud, and lapse rate feedbacks.

4 Discussion and conclusions

In this study, we have analyzed both forcing and feed-
back in idealized experiments with instantaneous quadru-
pling of atmospheric CO2 (abrupt 4×CO2) using two ver-
sions of CanESM to elucidate the underlying cause behind
CanESM5’s increased EffCS (5.65 K). Using radiative ker-
nels and output from RFMIP, we find only modest differ-
ences in both forcing and non-cloud feedbacks, with a small
contribution from a slight increase in the surface albedo feed-
back. The largest difference in feedback strength between
CanESM2 to CanESM5 is from the cloud feedback, par-
ticularly in the SW. Further breakdown of the cloud feed-
back into its individual components (optical depth, altitude,
and amount) at distinct cloud top heights (< 680 hPa for
non-low and ≥ 680 hPa for low) revealed that the SW low-
cloud amount and non-low-cloud optical depth feedbacks
are the dominant contributor to CanESM5’s increased EffCS
(+0.14 and 0.06 W m−2 K−1, respectively) in abrupt 4×CO2
simulations. Analysis of the spatial pattern for each feed-
back showed the largest model differences in SW low-cloud
amount feedback over subtropical eastern ocean basins and
across the equatorial Pacific Ocean and in SW non-low-cloud
optical depth feedback over the subtropical and extratropical
Pacific Ocean.

We analyzed the spatial pattern of surface warming and its
influence on the SW low-cloud feedback using the CFMIP

tier 2 AMIP-piForcing experiment in CanESM5, which ex-
hibited significantly reduced SW cloud feedback due to the
lack of local warming in regions with persistent low-cloud
cover – in agreement with studies linking warmer (colder)
SSTs to decreased (increased) LCC (Qu et al., 2014; Brether-
ton and Blossey, 2014; Brient and Schneider, 2016). We
found a similar strength in LW cloud feedback from both
the abrupt 4×CO2 and AMIP-piForcing experiments and a
reduced lapse rate feedback in the AMIP-piForcing exper-
iment due to the relatively strong surface warming in the
Indo-Pacific warm pool. While lacking an analogous AMIP-
piForcing experiment for CanESM2, the results presented
here agree with similar experiments conducted using other
ESMs (i.e. more negative lapse rate and SW cloud feed-
back) that have been studied with respect to pattern effects
of warming (Andrews et al., 2018). Furthermore, the SW
cloud feedback strength in the CanESM2 abrupt 4×CO2 ex-
periment is equal to that of the CanESM5 AMIP-piForcing
experiment despite a different pattern effect of warming
(Figs. 4a and 6b). The AMIP-piForcing results presented
here confirm the well-documented relationship between lo-
cal SSTs as a controlling factor for low clouds. This result
suggests that both the pattern of warming itself and the sen-
sitivity of low-cloud fraction to this pattern play a key role
in CanESM5’s higher EffCS. Disentangling the role of the
ocean model replacement (The National Centre for Atmo-
spheric Research CSM ocean model for CanESM2 (Gent
et al., 1998) to CanNEMO for CanESM5 (Swart et al.,
2019b)) and the developmental changes to cloud micro-
physics in CanAM5 (e.g. the new autoconversion scheme and
aerosol indirect effect) is a subject for future work.

Our results add further evidence the recent trend of several
ESMs participating in CMIP6 exhibiting higher EffCS than
their CMIP5 counterpart – predominantly due to changes in
SW cloud feedback strength and/or aerosol–cloud interac-
tions (Gettelman et al., 2019; Andrews et al., 2019; Bodas-
Salcedo et al., 2019). However, it is worth noting that sev-
eral modelling centres report increased EffCS sourced from
distinct developments in newer versions of their respective
model (e.g. addition of a mixed-phase cloud scheme and im-
proved aerosol–cloud interactions), as well as the higher hor-
izontal ocean model resolution and its influence on SSTs in
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cold upwelling regions, in HadGEM3 (Bodas-Salcedo et al.,
2019; Mulcahy et al., 2018; Andrews et al., 2019).

Finally, we emphasize that the results presented in this
study do not seek to comment on the plausibility of climate
sensitivity from either version of CanESM. Recently, there
has been an expansion of work relating constraints on cli-
mate sensitivity through the use of the satellite and paleo-
climate observational records (Sherwood et al., 2020). Fur-
thermore, there are limitations when interpreting the validity
of climate sensitivity results (as calculated here) due to un-
certainties associated with statistical methods (e.g. assuming
a time-invariant climate sensitivity parameter via the regres-
sion approach) (Gregory et al., 2004). However, we reiterate
the scope of this study: establishing a causal link for the in-
creased climate sensitivity from CanESM2 to CanESM5 un-
der long-term, idealized climate change.
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Appendix A

Figure A1. Clear-sky linearity test for six sets of radiative kernels considered in this study (CAM3, CAM5, ECHAM6, HadGEM2, and ERA
kernels) tested using each version of CanESM. The y axis error is defined as the absolute difference between the Gregory-regression-derived
net clear-sky climate feedback parameter and radiative-kernel-derived net clear-sky climate feedback parameter.

Figure A2. Cloud longwave and shortwave flux plotted against global annual mean surface temperature change in abrupt 4×CO2 simulations
for CanESM2 (blue) and CanESM5 (red), calculated using the cloud radiative kernel method. Standard 150-year Gregory regressions are
conducted, where the slope of the regression line equals the cloud feedback (in W m−2 K−1). Panels (a) and (b) show regressions using all
available years of data for each model version, whereas panels (c) and (d) show subsampled data for CanESM5 (years 1–20 and 120–140).
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Figure A3. Comparison of annual mean net cloud feedbacks for CanESM2 (a, c) and CanESM5 (b, d), calculated using the adjusted-CRE
method and the cloud kernel method. Global mean values are shown in square brackets next to each subplot title. CanESM2 Pearson’s
r = 0.72 (p < 0.01), and CanESM5 Pearson’s r = 0.86 (p < 0.01).

Figure A4. Tropical SST response for the (a) CanESM2 abrupt 4×CO2 simulation, (b) CanESM5 abrupt 4×CO2 simulation, and
(c) CanESM5 AMIP-piForcing simulation. Responses are defined as the difference between 20-year means taken from the beginning and
end of each simulation. All grid box values are divided by the global mean response for each respective simulation, which is shown in square
brackets in each subplot title.
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