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Abstract. Attribution in its general definition aims to quan-
tify drivers of change in a system. According to IPCC Work-
ing Group II (WGII) a change in a natural, human or man-
aged system is attributed to climate change by quantifying
the difference between the observed state of the system and
a counterfactual baseline that characterizes the system’s be-
havior in the absence of climate change, where “climate
change refers to any long-term trend in climate, irrespec-
tive of its cause” (IPCC, 2014). Impact attribution following
this definition remains a challenge because the counterfac-
tual baseline, which characterizes the system behavior in the
hypothetical absence of climate change, cannot be observed.
Process-based and empirical impact models can fill this gap
as they allow us to simulate the counterfactual climate im-
pact baseline. In those simulations, the models are forced by
observed direct (human) drivers such as land use changes,
changes in water or agricultural management but a counter-
factual climate without long-term changes. We here present
ATTRICI (ATTRIbuting Climate Impacts), an approach to
construct the required counterfactual stationary climate data
from observational (factual) climate data. Our method identi-
fies the long-term shifts in the considered daily climate vari-
ables that are correlated to global mean temperature change
assuming a smooth annual cycle of the associated scaling co-
efficients for each day of the year. The produced counter-
factual climate datasets are used as forcing data within the
impact attribution setup of the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP3a). Our method preserves
the internal variability of the observed data in the sense that
factual and counterfactual data for a given day have the same
rank in their respective statistical distributions. The associ-
ated impact model simulations allow for quantifying the con-
tribution of climate change to observed long-term changes
in impact indicators and for quantifying the contribution of

the observed trend in climate to the magnitude of individ-
ual impact events. Attribution of climate impacts to anthro-
pogenic forcing would need an additional step separating an-
thropogenic climate forcing from other sources of climate
trends, which is not covered by our method.

1 Introduction

Global mean temperature (GMT) has recently surpassed 1 ◦C
warming above pre-industrial levels (IPCC, 2018). The im-
pact of the realized change in climate has also started to be-
come detectable in natural, human or managed systems such
as freshwater resources, terrestrial water systems, coastal
systems, oceans, food production systems, the economy,
human health, security and livelihoods (IPCC, 2014). The
causal chain from climate change to climate impacts is of-
ten complex and intertwined with additional drivers, such as
changes in management that alter climate-induced changes
in crop yields (Butler et al., 2018; Iizumi et al., 2018; Zhu
et al., 2019) and land use changes adding to climate-driven
changes in biodiversity (Hof et al., 2018).

Attribution in its most general definition aims to quantify
the drivers of change in a system. The systems and drivers
considered in attribution studies vary between disciplines. In
climate science, the “classical” attribution framework refers
to the attribution of changes in the climate system to anthro-
pogenic forcing (Hegerl et al., 2010; WGI contribution to
IPCC, 2013) (“climate attribution”; see first arrow in Fig. 1).
It addresses the following question: what is the contribution
of anthropogenic emissions of greenhouse gases and aerosols
or land use changes to observed changes in climatic vari-
ables, most prominently temperature and precipitation? As
the response of the climate system to these forcings is often
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Figure 1. Differences between drivers and affected systems in attri-
bution research. Climate attribution (first arrow) is a focus of IPCC
WGI (IPCC, 2013), and (climate) impact attribution is a focus of
IPCC WGII (IPCC, 2014, chap. 18). The methodology and data
presented here facilitate the use of (process-based) impact models
to attribute observed changes in human, managed and natural sys-
tems to climate change (second arrow). The additional step of attri-
bution to anthropogenic climate forcing (first and second arrow) is
not addressed here.

veiled by the chaotic nature of the climate system, climate at-
tribution usually builds on probabilistic approaches compar-
ing an entire ensemble of climate model simulations includ-
ing anthropogenic forcings against a counterfactual ensemble
excluding these forcings as, e.g., generated within DAMIP
(Gillett et al., 2016) to separate forced changes from inter-
nal variability. Climate attribution can refer to observed long-
term trends (WGI contribution to IPCC, 2013, chap. 10) or
individual events (Trenberth et al., 2015; NAS, 2016; Stott
et al., 2016). Given the probabilistic setting, results are of-
ten formulated as statements such as “anthropogenic climate
forcing has increased the probability of occurrence of the ob-
served trend or the intensity or duration of a specific extreme
event”. In a non-probabilistic framework the intensity of an
observed event can be attributed to the observed realization
of climate change by comparing the event magnitude in the
observed time series to the magnitude of the same event in a
detrended version of the observed time series (quantification
of the “contribution of the observed trend to event magni-
tude”, Diffenbaugh et al., 2017). This type of attribution to
climate change does not address the reasons of the observed
climate trend.

In addition to climate attribution, research on impact attri-
bution addresses the following question: to what degree are
observed changes in natural, human and managed systems
induced by observed changes in climate (Fig. 1, second ar-
row)? In the Working Group II (WGII) contribution to the
IPCC AR5, an entire chapter was dedicated to the topic in-
cluding the following definition: an impact of climate change
is “detected” if the observed state of the system differs from
a counterfactual baseline that characterizes the system’s be-
havior in the absence of changes in climate (IPCC, 2014,
chap. 18.2.1), and “attribution” is the quantification of the
contribution of climate change to the observed change in the
natural, human or managed system. In both cases “climate

change refers to any long-term trend in climate, irrespective
of its cause” (IPCC, 2014, chap. 18.2.1).

While in principle changes in natural, human and man-
aged systems could also be attributed to anthropogenic cli-
mate forcing (“impact attribution to anthropogenic climate
forcing”, first and second arrow in Fig. 1, Pall et al., 2011;
Schaller et al., 2016; Mitchell et al., 2016), we focus on “im-
pact attribution to climate change” as described in the WGII
definition and introduce a climate dataset that can be used
as input to climate impact models to characterize the sys-
tem’s behavior in the absence of climate change (second ar-
row in Fig. 1). The dataset is derived from the observed re-
alization of climate, excluding the analysis how climate vari-
ability could produce alternative realizations of factual or
counterfactual climate. The attribution approach is thus de-
terministic and not probabilistic, focusing on the separation
of climate change from direct human influences as potential
drivers of changes in the impacted systems. Concerning the
internal variability within impacted systems, impact models
to date largely do not resolve such variability and model a de-
terministic response to external drivers. Our approach would
however allow for probabilistic attribution to climate change
once impact models resolve internal variability.

The method proposed here is designed to generate a sta-
tionary climate without long-term changes. The statistical
model used to produce this counterfactual climate removes
the long-term change correlated with (but not necessarily
caused by) large-scale climate change, represented by GMT
change instead of a simple temporal trend (see Methods).
The method preserves the internal variability of the observed
time series by additively (e.g., for temperature) or multiplica-
tively (e.g., for precipitation) removing a long-term trend,
such that a particularly warm or dry day compared to the
long-term trend remains a particularly warm or dry day in the
counterfactual climate. In this regard, the approach is similar
to the subtraction of a climate trend done by Diffenbaugh
and Burke (2019) to attribute historical changes in economic
growth or to attribute changes in land area burned by wild-
fires (Abatzoglou and Williams, 2016). However, while both
studies subtract the anthropogenic warming derived from cli-
mate model simulations, we subtract the realized long-term
trend of the data irrespective of its cause (see WGII defini-
tion).

The stationary climate dataset can then be used as input
to climate impact models for impact attribution to climate
change, as illustrated in Fig. 2. In a first step the climate im-
pact model forced by observed climate and socio-economic
drivers has to demonstrate being able to reproduce the ob-
served changes in natural, human and managed systems as
measured by an impact indicator (comparison of black and
blue solid lines in Fig. 2). The attribution of the observed
changes in natural, human and managed systems is built on
a high explanatory power of the factual simulations. Then, in
a second step, that factual simulation can be compared to a
counterfactual simulation, forced by counterfactual climate
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Figure 2. Attribution of impact event magnitude and trends in im-
pact indicators to trend in climate. First, in an evaluation step it
has to be demonstrated that historical impact observations (black
line) can be explained by the process understanding as represented
in the applied impact model and available knowledge about his-
torical climate and socio-economic forcings. To this end, the fac-
tual simulations forced by historical climate and socio-economic
forcings (solid blue line) are compared to the impact observations
(solid black line). Secondly, in the attribution step the impact model
is driven by counterfactual climate while all other drivers are kept
equal to the factual simulation (counterfactual simulation; solid or-
ange line). A comparison between factual and counterfactual simu-
lations allows for the attribution of long-term changes (e.g., trends)
in the impact indicator to trends in climate (contribution to trend,
CT). In addition, the contribution of climate change to the magni-
tude of individual events (impact event attribution) can be deter-
mined as the difference between the simulated factual event magni-
tude and the counterfactual impact event magnitude (CE).

but otherwise the same input as in the factual simulation.
Such a comparison allows for a quantification of the con-
tribution of climate change to both the observed trend in the
impact indicator (CT in Fig. 2) and the observed magnitude
of an individual impact event (CE in Fig. 2). This assumes
that the climate impact model calibrated to perform well in
the factual simulation performs robustly also with counter-
factual climate input data.

Process-based impact models such as those taking part in
the ISIMIP project (http://www.isimip.org, last access: 4 Au-
gust 2021) are ideal tools to address impact attribution as
they generally describe the response of natural, human or
managed systems not only to climate but also direct (human)
drivers. For example, crop models can simulate the response
of crop yields to changes in land use, irrigation patterns, fer-
tilizer input and crop varieties (Lobell et al., 2011; Challi-
nor et al., 2014; Minoli et al., 2019). Similarly, hydrologi-
cal models can be used to simulate how dam construction
and water withdrawal affect river discharge (Veldkamp et al.,
2017, 2018). In addition, those models allow for a process-
based representation of the extent of, e.g., river floods and
droughts that can be combined with maps of asset distribu-
tion and empirical damage functions to estimate the direct
economic damages induced by weather extremes. The im-

pact attribution framework could then be used to approxi-
mate the contribution of climate change to observed trends
in reported damages. Using process-based climate impact
models, this contribution can be explicitly separated from
changes in damages driven by changes in exposure or vul-
nerability. In this regard it goes beyond available approaches
of damage attribution that simply estimate the contribution
of anthropogenic climate forcing to observed damages by
multiplying the fraction of attributable risk associated with
weather extremes by the observed damage (Frame et al.,
2020). In the same way, it could improve the attribution of
health impacts (Mitchell et al., 2016).

In this paper we introduce a detrending method tai-
lored to support impact attribution and illustrate its ap-
plication to one of the observational climate datasets pro-
vided within ISIMIP3a (https://protocol.isimip.org/protocol/
ISIMIP3a, last access: 4 August 2021; see Sect. 2 below).
The quality of the associated impact attribution studies will
critically depend on the quality of that observational dataset.
Deficits in the observational data may lead to artifacts in the
derived historical trends. For the dataset used here, we iden-
tify some of those artifacts. Since it is expected that other ar-
tifacts will be found for other observational datasets, impact
attribution studies should ideally be based on a range of dif-
ferent observational datasets to facilitate a quantification of
the contribution of observational climate data uncertainty to
the uncertainty of the attribution results. This is also planned
within ISIMIP3a. For the dataset considered here and poten-
tial additional ones we propose a collection of control plots
that should be used to scan the observational climate data
for artifacts in preparation of each individual impact attribu-
tion study. While we provide the control plots for a set of
large-scale world regions and all climate variables covered
by our observational climate dataset, they should be adjusted
to the regions and variables of interest in an impact attribu-
tion study as part of the analysis of the factual impact simu-
lation (Fig. 2). Low-quality factual climate forcing data are
expected to result in a low-quality reproduction of observed
variations in the impact indicators of interest. If that is the
case, the simulation setup outlined here does not allow for
an attribution of the observed changes in impacts to climate
change.

2 Data

For ISIMIP3a, we construct counterfactual climate data for
the global observational dataset GSWP3-W5E5. This dataset
has daily temporal and 0.5◦ spatial resolution and consists of
two parts: W5E5 v2.0 for the period 1979–2019 and GSWP3
v1.09 homogenized with W5E5 for the period 1901–1978.
In the following, we describe these two parts as well as why
and how they were combined for ISIMIP3a.

The GSWP3 v1.09 dataset is from the third phase of
the Global Soil Wetness Project (GSWP3), an ongoing land
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model intercomparison project, which shares its experiment
protocol with “land-hist” of the Land Surface, Snow and Soil
moisture Model Intercomparison Project (LS3MIP; van den
Hurk et al., 2016) and covers the years 1901–2014 (Kim,
2017). It is a dynamically downscaled and bias-adjusted ver-
sion of the 20th Century Reanalysis (20CR; Compo et al.,
2011) and has been used as a meteorological forcing dataset
in several climate impact assessments such as those carried
out in ISIMIP2a (e.g., Müller Schmied et al., 2016; Chang et
al., 2017; Schewe et al., 2019; Padrón et al., 2020) as well as
in broader modeling studies (e.g., Krinner et al., 2018; Tang-
damrongsub et al., 2018; Tokuda et al., 2019). GSWP3 is
also provided for the impact model evaluation task within
ISIMIP3a.

20CR assimilates subdaily surface pressure and sea-level
pressure observations and uses monthly sea-surface tem-
perature (SST) and sea-ice distributions from the Hadley
Centre Sea Ice and Sea Surface Temperature dataset
(HadISST; Rayner et al., 2003) as lower boundary con-
ditions. To produce GSWP3, the first of the 56 mem-
bers of the 20CR ensemble was dynamically downscaled
to T238 (about 0.5◦) spatial resolution using the incre-
mental correction of a single member (ICS) method of
Yoshimura and Kanamitsu (2013) and the Scripps Institu-
tion of Oceanography (SIO)/Experimental Climate Predic-
tion Center (ECPC) Global Spectral Model (GSM) with
spectral nudging (Yoshimura and Kanamitsu, 2008) and ver-
tically weighted damping coefficients (Hong and Chang,
2012). The ICS method additively adjusts the prognostic
fields of a single ensemble member such that at the monthly
timescale each adjusted field is identical to the correspond-
ing ensemble mean field while all higher-frequency parts of
the fields are retained. Hence, the adjusted fields represent
the 20CR best estimates at the monthly timescale while they
do not suffer from the increase in synoptic variability over
time found in the 20CR ensemble mean (Compo et al., 2011)
that is due to a decrease in the ensemble spread over time,
which in turn reflects the increase in available observational
constraints (Yoshimura and Kanamitsu, 2013).

The downscaled 3-hourly data were then bilinearly inter-
polated from T238 to a regular 0.5◦ latitude–longitude grid.
In addition, selected variables (precipitation, surface down-
welling shortwave and longwave radiation, near-surface
wind speed, near-surface air temperature, surface air pres-
sure, and near-surface specific humidity) were bias-adjusted
with different methods and observational reference datasets.
Precipitation was bias-adjusted at the monthly timescale us-
ing an undercatch-corrected version of the Global Precipita-
tion Climatology Centre (GPCC) Full Data Monthly Product
Version 7 (Schneider et al., 2014). The bias adjustment was
done by rescaling all monthly mean values to the GPCC esti-
mates. Radiation was bias-adjusted at the daily timescale us-
ing Surface Radiation Budget (SRB; Stackhouse et al., 2011)
primary-algorithm estimates of daily mean values from SRB
release 3.1 for longwave radiation and SRB release 3.0 for

shortwave radiation. Since those estimates are only avail-
able for 1983–2007, bias-adjusted daily values were com-
puted as the sum of a rescaled monthly mean value and a
rescaled daily anomaly from the monthly mean, with the
rescaling done such that, for the 1983–2007 time period, both
the monthly mean climatology and the anomaly standard-
deviation climatology matched the respective SRB estimates.
Wind speed was bias-adjusted at the monthly timescale over
land using mean monthly climatologies from the Climatic
Research Unit (CRU) CL2.0 dataset (New et al., 2002). The
bias adjustment was done by monthly rescaling such that
the 1961–1990 mean monthly climatology matched that of
CRU CL2.0. Temperature, pressure and humidity were bias-
adjusted at the 3-hourly timescale using the WATCH forcing
data methodology (Weedon et al., 2014) and monthly mean
temperatures plus monthly mean diurnal temperature ranges
from the CRU TS3.23 dataset (Harris et al., 2014), which
covers the full 1901–2014 time period.

As a consequence of its derivation, the quality of the
GSWP3 data varies over time. It varies in line with vari-
ations in the availability of the pressure, SST and sea-ice
observations used to produce 20CR (Compo et al., 2011;
Rayner et al., 2003) as well as with variations in the avail-
ability of the precipitation and temperature observations used
to bias-adjust GSWP3 (Schneider et al., 2014; Weedon et
al., 2014). Examples of temporal inhomogeneities in GSWP3
that are relevant for this study include artificial drying trends
over northwest China and the Tibetan Plateau over the first
half of the 20th century (Fig. 10) that are inherited from
GPCC (Chen and Frauenfeld, 2014) and spurious trends in
shortwave radiation and wind speed over Alaska, Northern
Canada and Greenland over the first half of the 20th century
(Figs. 9 and S12 in the Supplement), which are related to ar-
tificial extratropical cyclone trends in 20CR over that time
period (Wang et al., 2013). Generally, the quality of 20CR,
and hence GSWP3, becomes relatively stable around mid-
century over the Northern Hemisphere, earlier over Europe
and later over the Southern Hemisphere, in line with varia-
tions in the availability of pressure observations for data as-
similation in the reanalysis (Compo et al., 2011).

The W5E5 v2.0 dataset (Lange et al., 2021) was com-
piled to support the bias adjustment of climate input data car-
ried out within ISIMIP3b and covers the years 1979–2019. It
combines the WFDE5 v2.0 dataset (WATCH Forcing Data
methodology applied to ERA5 reanalysis data; Cucchi et al.,
2020) over land with data from the latest version of the Eu-
ropean Reanalysis (ERA5; Hersbach et al., 2020) over the
ocean. WFDE5 is a meteorological forcing dataset based on
ERA5. For the variables included, it is a spatially aggregated
(to 0.5◦) and bias-adjusted version of ERA5. Compared to
20CR used for GSWP3, many more observations were used
for data assimilation in ERA5, including precipitation ob-
servations (Hersbach et al., 2020). That is why we consider
ERA5 to better represent reality than 20CR for 1979 on-
wards. Similarly, WFDE5 is considered to better represent
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reality than GSWP3, in particular with respect to day-to-day
variability for variables that were bias-adjusted using only
monthly mean values in both datasets, such as temperature
and precipitation.

Since W5E5 is considered the more realistic dataset but
only covers 1979–2019, it was extended backward in time
to generate GSWP3-W5E5 for ISIMIP3a. In this extended
dataset, GSWP3 data for 1901–1978 were homogenized with
W5E5 data using the ISIMIP2BASD v2.5 quantile mapping
method (Lange, 2019, 2021). The resulting GSWP3-W5E5
data are identical to the original W5E5 data from 1979 on-
wards but different from the original GSWP3 data before
1979. The goal of the homogenization was to smooth the
transition from one dataset to the other in 1978/1979. To that
end, for every climate variable and grid cell individually, the
original GSWP3 time series for 1901–2004 were quantile-
mapped to time series which have the same trends but whose
distributions match those of the corresponding W5E5 data
over the 1979–2004 reference period. The resulting, homog-
enized GSWP3 data for 1901–1978 were then used to ex-
tend W5E5 backward in time. The preservation of trends im-
plies that differences between trends in GSWP3 and W5E5
data were not homogenized. Consequently, some inhomo-
geneities at the 1978/1979 transition remain. This problem
particularly affects surface downwelling shortwave radiation
over northern Europe and the Mediterranean Basin (Fig. 8)
as discussed further in the results section.

3 Methodology

Assuming that “climate change refers to any long-term trend
in climate, irrespective of its cause” (IPCC, 2014, chap. 18),
we here present a method to generate time series of station-
ary climate data from observational daily data by removing
the long-term trend while preserving the internal day-to-day
variability. In the following, we first describe the general
characteristics of our approach followed by a more detailed
formal description of the method. Then we introduce the set
of global and regional evaluation plots we recommend to re-
gionally adjust and consider within each attribution study us-
ing the counterfactual data generated here or when applying
the detrending approach to other observational climate data.

3.1 Detrending method

A very basic detrending approach would fit a linear temporal
trend for all data of each day of the year assuming normally
distributed residuals and remove the estimated trends from
the data for each day of the year separately. In this approach
the trend estimates would not only vary according to system-
atic variations in trends from one day of the year to the other
but also randomly fluctuate from one day of the year to the
next one in terms of the uncertainties associated with the in-
dividual estimates.

Figure 3. Time series of GMT change since 1901 derived from
GSWP3-W5E5 near-surface air temperature data. Shown are an-
nual mean GMT change (gray) and GMT change smoothed by SSA
with a smoothing window of 10 years (pink). The smoothed GMT
change is used as the predictor of regional climate change in our
detrending model (denoted by T in the text).

We go beyond this very basic approach by (i) using global
mean temperature change instead of time as a potentially
powerful predictor of regional changes in climate, (ii) al-
lowing for non-normal distributions of the unexplained ran-
dom year-to-year fluctuations of data per day of the year, and
(iii) ensuring a smooth variation of estimated model parame-
ters from one day of the year to the other.

The use of GMT change, T , as the predictor of regional
climate change is motivated by the classical pattern scaling
approach (Santer et al., 1990; Mitchell, 2003), with newer
approaches including additional predictors such as a distinc-
tion between land and sea to improve accuracy (Herger et
al., 2015). Here, T is GMT change since 1901 smoothed by
singular spectrum analysis (SSA, Ghil et al., 2002) with a
smoothing window of 10 years (Fig. 3). The smoothing of the
predictor is applied because we only want to remove long-
term trends from the regional climate time series. Natural
climate variability on shorter timescales due to phenomena
such as the El Niño–Southern Oscillation is retained.

Using T as the predictor means that we remove long-term
trends in regional climate to the extent that those are cor-
related with GMT change, but irrespective of the cause of
global warming. The success of the detrending is evaluated
by a number of control measures described in Sect. 3.3.

For each day of the year t the detrending is done with
quantile mapping (Wood et al., 2004; Cannon et al., 2015;
Lange, 2019) from the factual distribution A(T , t) to the
counterfactual distribution A(T = 0, t). The dependence of
A on T is modeled via the expected value µ of the distribu-
tion, using a generalized linear model (GLM) or beta regres-
sion (Ferrari and Cribari-Neto, 2004) with a link function g
defined by g (µ(T , t))= c0 (t)+ c1 (t)T . The link function
g is used to account for climate variables that can only be
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positive (in that case, g (x)= ln(x)) or can only take val-
ues between 0 and 1 (in that case, g (x)= ln(x/(1− x))).
In all other cases g (x)= x. See Table 1 for an overview of
which distributions and link functions are used for the dif-
ferent climate variables, and see Sect. 3.2 for further details.
For variables modeled by a Gaussian distribution, the vari-
ance σ 2 of A is assumed to stay constant for each day of
the year; i.e., σ 2 does not vary with T but only depends on
t . For non-Gaussian distributions, the variance is assumed to
change with the expected value. In that case we assume the
shape of the distribution to stay constant for each day of the
year.

We use harmonics for the representation of the annual cy-
cle, i.e., the dependence of the coefficients c0 (t) and c1 (t)

on the day of the year t . Specifically, we use

g (µ(T , t))= a0 (T )+
∑n

k=1
ak (T )cos(kωt)

+ bk (T )sin(kωt) (1)

to model the dependence of µ on T and t . Here, ω = 2π
365.25

and n= 4 Fourier modes are used to model the annual cy-
cle. The GMT-change dependence of the Fourier coefficients
ak,bk is modeled linearly,

ak (T )= a
(slope)
k T + a

(intercept)
k ;k = 0,1, . . .,n, (2)

and similarly for b1,b2, . . .,bn.
The distribution parameters that only depend on t are mod-

eled using

ln(ν (t))= a(constant)
0 +

∑n

k=1
a
(constant)
k cos(kωt)

+ b
(constant)
k sin(kωt) , (3)

where ω and n have the same values as in Eq. (1), and ν
represents σ for the Gaussian distribution, k for the gamma
distribution, α for the Weibull distribution and φ for the beta
distribution (see Table 1 and Sect. 3.2).

By limiting the number of Fourier modes to four we re-
duce the number of coefficients to be estimated and ensure a
smooth variation of the long-term trend in µ over the course
of the year but still capture seasonal to sub-seasonal patterns
such as monsoon season onsets. Setting n= 4 in Eq. (1) leads
to a total of 18 slope and intercept parameters to describe the
expected value µ in terms of T and t . Setting n= 4 in Eq. (3)
means that nine parameters are used to describe the depen-
dence of σ , k, α and φ on t .

We use a Bayesian approach to estimate all of these param-
eters. This requires the specification of prior distributions of
the model parameters. Similar to regularization techniques in
frequentist approaches, the prior allows us to focus the model
fitting on plausible parameter values. This is particularly im-
portant for numeric stability when the logit and logarithm
link functions are applied. We use a zero-centered Gaussian
prior for all parameters and all climate variables because we
normalize the data before parameter estimation. We use a

standard deviation of 1.0 for a(intercept)
0 ; a standard devia-

tion of 1/(2k− 1) for a(intercept)
k , k = 1, . . .,4; and a standard

deviation of 0.1 for a(slope)
k , k = 0, . . .,4. Our choice of pri-

ors for a(intercept)
k is based on the assumption that the first

mode with a period of 1 year explains the largest part of
the annual cycle and higher-order modes have decreasing in-
fluence. However this is only a prior assumption; i.e., if the
data show different patterns, they can still be captured by our
model. For a(constant)

k we use the same priors as for a(intercept)
k .

We use the same priors for the parameters bk . We technically
implemented the model fitting by use of the pymc3 python
package (Salvatier et al., 2016). Before the regression, all
time series are normalized to simplify the Bayesian model
parameter estimation. To restore the original units, the nor-
malization is reversed after detrending.

The overall intention of our approach is to find appropri-
ate parameter values such that A(T , t) captures long-term
trends in the variables that can be removed by setting T to
zero. This is important because the counterfactual distribu-
tions are then defined by A(T = 0, t). As an example, the
factual µ(T , t) and the counterfactual µ(T = 0, t) as well as
the associated daily values of one particular tas time series
are shown in Fig. 4. The difference between the expected
values of distribution A(T , ·) (black line) and A(T = 0, ·)
(orange line) is due to a vertical shift that is composed of a
linear increase with T captured by a0 and a change in the am-
plitude and phase of the annual cycle captured by the Fourier
coefficients ak and bk , k > 0. The counterfactual daily data
are generated by quantile mapping; i.e., an observed value
x that corresponds to a certain quantile of the factual distri-
bution A(T , t) is mapped to the counterfactual value x′ that
corresponds to the same quantile of the counterfactual distri-
bution A(T = 0, t). We illustrate this for an observed value
x that corresponds to the 95th percentile of the factual dis-
tribution in Fig. 4: we first obtain the cumulative probability
of the factual (i.e., observed) temperature (large black dot
in panel a) from the factual cumulative distribution function
(CDF; black line in panel b). We then obtain the counter-
factual temperature (large orange dot in panel a) from the
counterfactual CDF (orange line in panel b).

3.2 Model choices for each climate variable

3.2.1 Near-surface air temperature, surface air
pressure and surface downwelling longwave
radiation

We use the Gaussian distribution to model these variables as
their values are far from their physical lower bound of zero.
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Table 1. Climate variables covered by ISIMIP3a counterfactual climate datasets. Listed are each variable’s short name and unit as well as
the statistical distribution and link function used for detrending it. Also specified is the dependence of the distribution parameters on GMT
change, T , and day of the year, t , as used in our GLM. The variables tasrange and tasskew are auxiliary variables used to detrend tasmin and
tasmax.

Variable Short name Unit Statistical distribution Link function

Daily mean near-surface
air temperature

tas K Gaussian with mean value
µ(T , t) and standard deviation
σ (t)

g (µ)= µ

Daily near-surface temperature
range

tasrange K Gamma with mean value
µ(T , t) and shape k (t)

g (µ)= ln(µ)

Daily near-surface temperature
skewness

tasskew 1 Gaussian with mean value
µ(T , t) and standard deviation
σ (t)

g (µ)= µ

Precipitation pr kg m−2 s−1 For wet or dry day: Bernoulli
with dry-day probability
p(T , t)

g (p)= ln(p/(1−p))

For intensity of precipitation on
wet days: gamma with mean
value µ(T , t) and shape k (t)

g (µ)= ln(µ)

Surface downwelling shortwave
radiation

rsds W m−2 Gaussian with mean value
µ(T , t) and standard deviation
σ (t)

g (µ)= µ

Surface downwelling longwave
radiation

rlds W m−2 Gaussian with mean value
µ(T , t) and standard deviation
σ (t)

g (µ)= µ

Surface air pressure ps Pa Gaussian with mean value
µ(T , t) and standard deviation
σ (t)

g (µ)= µ

Near-surface wind speed sfcwind m s−1 Weibull with shape α (t) and
scale β (T , t)

g (β)= ln(β)

Near-surface relative humidity hurs % Beta with mean value
µ(T , t) and dispersion φ (t)

g (µ)= ln(µ/(1−µ))

Near-surface specific humidity huss kg kg−1 Derived from hurs, ps and tas

Daily minimum near-surface air
temperature

tasmin K Derived from tas, tasrange and tasskew

Daily maximum near-surface air
temperature

tasmax K Derived from tas, tasrange and tasskew

3.2.2 Daily minimum and maximum near-surface air
temperature

They provide a measure of the diurnal temperature cycle in
the daily resolved dataset. We do not estimate counterfac-
tual time series for tasmin and tasmax directly to avoid large
relative errors in the daily temperature range as pointed out
by Piani et al. (2010). Instead we construct counterfactuals
for the auxiliary variables tasrange = tasmax − tasmin and
tasskew = (tas − tasmin)/tasrange that then determine the
tasmin and tasmax counterfactuals (Piani et al., 2010). We

use the gamma distribution to model tasrange since it has a
lower bound at zero. The expected value is modeled accord-
ing to Eq. (1). The skewness of the diurnal near-surface tem-
perature cycle, tasskew, is modeled by a Gaussian distribu-
tion. While theoretically bounded, tasskew is never close to
its bounds of zero and one. This justifies the Gaussian model
choice.
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Figure 4. Illustration of detrending with quantile mapping sensitive
to the annual cycle. Panel (a) shows the factual (black points) and
counterfactual (orange points) daily mean near-surface air tempera-
ture data for the year 2016 of GSWP3-W5E5 for a single grid cell
in the Mediterranean region at 43.25◦ N, 5.25◦ E. In panel (a), the
black and orange lines show the temporal evolution of the expected
value µ of the factual and the counterfactual distribution. In panel
(b), the black and orange lines show the factual and counterfactual
cumulative distribution function (CDF) for a single day (25 Octo-
ber 2016). The large points on the dashed vertical line in panel (a)
highlight the factual (large black point) and counterfactual (large
orange point) value on 25 October. They correspond to the 95th
percentile in their respective distributions.

3.2.3 Precipitation

We use a mixed Bernoulli–gamma distribution (Gudmunds-
son et al., 2012) for precipitation; i.e., the distribution of wet
versus dry days is described by a Bernoulli distribution with
p describing the probability of dry days, while the intensity
of precipitation on wet days is assumed to follow a gamma
distribution. A day is considered dry if the amount of pre-
cipitation is below 0.1 mm d−1. Wet days are all days where
the threshold is exceeded. We describe the gamma distribu-
tion by its expected value and a shape parameter k. We as-
sume that the expected value, p, of the Bernoulli distribution
and the expected value of the gamma distribution vary with
T and t , while the shape parameter k of the gamma distri-
bution is assumed to only vary with t . If the probability of
dry days, pfactual, of the factual distribution A(T , t) is larger
than the probability of dry days, pcounterfactual, of the coun-
terfactual distribution A(T = 0, t), dry days are turned into
wet days at random with probability pfactual−pcounterfactual
by assigning them a small precipitation amount above the
wet-day threshold. This random conversion of dry days into
wet days may result in physical inconsistencies with other

climate variables. These inconsistencies are small by design
since the new wet days are the least wet of all counterfactual
wet days.

3.2.4 Surface downwelling shortwave radiation

Physically bound to positive numbers, the limit is only
reached in the special case of the polar night. We thus use
a Gaussian distribution to model rsds. If quantile mapping
leads to negative values, we use the original value instead.

3.2.5 Near-surface wind speed

We use a Weibull distribution to model surface wind speed.
The distribution has a shape parameter α and a scale pa-
rameter β, which both need to be positive. The expected
value of the Weibull distribution is given by β0 (1+ 1/α)
with the gamma function 0. We model the scale parameter
β by Eq. (1) using the natural logarithm as the link function.
We handle the shape parameter similar to the standard devia-
tion of the Gaussian distribution, being independent of GMT
change but varying with t .

3.2.6 Near-surface relative humidity

Near-surface relative humidity hurs is positive and less than
or equal to one. We assume hurs to follow a beta distribu-
tion. Its expected value is allowed to vary with T and t .
The associated coefficients are estimated using a beta regres-
sion model (Ferrari and Cribari-Neto, 2004) and Eq. (1) for
the expected value, while the dispersion parameter, φ, is as-
sumed to only vary with t .

3.2.7 Near-surface specific humidity

The counterfactual for huss is derived from counterfactual
tas, ps and hurs using the equations of Buck (1981) as de-
scribed in Weedon et al. (2010).

3.3 Evaluation method

To evaluate the detrending method and the counterfactual
GSWP3-W5E5 data, we use the difference between multi-
year averages of each climate variable over the beginning of
the time period (1901–1930) and multi-year averages over
the end of the time period (1990–2019) as a measure of the
trend. We compare this trend measure between the observed
data and the counterfactual data, for which it should be close
to zero (Figs. 5 and 6). In addition, we propose plotting the
entire time series for regionally averaged annual (or seasonal)
mean values for both the original and the counterfactual cli-
mate data. Here, we do so for annual regional averages over
21 world regions (Giorgi and Francisco, 2000), see left pan-
els of Figs. 7–10 and Supplement figures, but propose ad-
justing the regions and season for each attribution study in-
dividually according to its focus. For our specific observa-
tional dataset we add annual regional averages of the original
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GSWP3 data to check if the homogenization of GSWP3 with
W5E5 has introduced artificial trends in the factual GSWP3-
W5E5 data. To evaluate the performance of the detrending
method for each day of the year we propose to compare the
1990–2019 regional mean climatology of the counterfactual
data to the 1901–1930 regional mean climatology of the fac-
tual data for each region of interest (right panels of Figs. 7–10
and Supplement figures).

4 Results

The counterfactual dataset evaluated in the following is free
to download through the ISIMIP data portal (https://data.
isimip.org/search/climate_scenario/counterclim/, last access:
4 August 2021) along with the underlying original data. Our
method strongly reduces the observed difference between
multi-year averages over the beginning of the century (1901–
1930) and the end of the observational period (1990–2019)
for most locations and variables (Figs. 5 and 6). The remain-
ing differences are largest for precipitation over the Tibet re-
gion and for wind speed over Greenland. In the following we
exemplarily zoom into these regions to resolve the temporal
evolution of the regionally averaged factual and counterfac-
tual data (Figs. 7–10, left panels) and evaluate the detrending
for each day of the year (Figs. 7–10, right panels). We start
with temperature and precipitation in northern Europe where
the detrending works well and then focus on regions where
the factual data show artifacts that may make them inade-
quate for impact attribution within the proposed setup.

4.1 Temperature, northern Europe (NEU)

There is essentially no difference between the GSWP3 data
and the GSWP3-W5E5 data in the period 1979–2014 where
the original GSWP3 and W5E5 data overlap. Our approach
successfully removes the long-term trend from the observed
time series of regionally averaged annual temperature data
(Fig. 7a) and for each day of the year (Fig. 7b). By construc-
tion, the detrending retains the year-to-year variability; i.e.,
hot days stay hot and cold days stay cold. The counterfactual
1990–2019 averages for individual days of the year match
the seasonal evolution of the factual data at the beginning
of the century (1901–1930) as intended. In northern Europe,
temperatures for each day of the year have changed relatively
uniformly throughout the year (Fig. 7b).

4.2 Precipitation, northern Europe (NEU)

The GSWP3 data are offset to slightly higher values of pre-
cipitation compared to the GSWP3-W5E5 data in the period
1979–2014 where the original GSWP3 and W5E5 data over-
lap. The homogenization method of the GSWP3-W5E5 data
transfers this offset to the period 1901–1979, leading to a
more consistent dataset. Our approach successfully removes
the long-term trend from the observed annual regional aver-

age time series (Fig. 7c). There is a seasonality in the long-
term trend with almost no change in April and August in con-
trast to positive trends in the other months (compare thick to
thin black line in Fig. 7d). Our approach successfully cap-
tures this seasonal variation of the trend. The annual cycle of
the counterfactual data in the period 1990–2019 (orange line)
matches the annual cycle of the factual data in the beginning
of the century 1901–1930 (thick black line).

4.3 Shortwave radiation, Mediterranean Basin (MED)

There is a considerable offset between the GSWP3 and
W5E5 data in the overlapping 1979–2014 period (see dif-
ference between dashed and solid black line in Fig. 8). In
addition, the GSWP3 data do not show a trend over the en-
tire time period 1901–2014, whereas there is a positive trend
in the 1979–2019 W5E5 data. The harmonization has shifted
the original GSWP3 data but did not introduce a trend by de-
sign of the quantile mapping method used for it (see Sect. 2).
This results in inhomogeneous decadal trends in the GSWP3-
W5E5 data and a jump at the 1978/1979 transition. This
change in the characteristics of the shortwave radiation in
GSWP3-W5E5 is an artifact introduced by the different char-
acteristics of the GSPW3 and W5E5 data and not related to
GMT change. Thus, in this region the trend in the factual rsds
time series is not reliable enough to derive a meaningful no-
climate-change counterfactual rsds time series. Annual short-
wave radiation over northern Europe is affected in a similar
way (Fig. S21).

4.4 Wind speed, Greenland (GRL)

The factual datasets show spurious trends in wind speed over
Alaska, northern Canada and Greenland over the first half of
the 20th century (regions GRE and ALA, Figs. 9 and S16),
which are related to artificial extratropical cyclone trends
in the 20CR reanalysis over that time period (Wang et al.,
2013). Shortwave radiation in those regions is affected in a
similar way (Figs. S15 and S17). Our detrending method is
unable to distinguish spurious trends from real trends. It finds
a correlation between GMT change and the spurious trends
and produces counterfactual data that have a spurious posi-
tive trend over the second half of the 20th century (Fig. 9a).
Such counterfactual time series are clearly not reliable.

4.5 Precipitation, Tibetan Plateau (TIB)

Over the first half of the 20th century the GSWP3-W5E5 pre-
cipitation data show a strong drying trend over the TIB region
that is assumed to be artificial and inherited from the under-
lying GPCC dataset (Sect. 2). Since the trend is not related
to global warming, it is not well captured by our detrending
model. Consequently, the average counterfactual precipita-
tion at the end of the observational period does not match the
average factual data at the beginning of the period (Figs. 5h
and 10b). The detrending leads to a positive trend over the
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Figure 5. Differences between multi-year averages over the late (1990–2019) and early (1901–1930) time period for the factual (left) and
counterfactual (right) GSWP3-W5E5 dataset. Results are shown for tas, tasmin, tasmax, pr and rsds (from top to bottom). Rectangles show
the 21 world regions from Giorgi and Francisco (2000). Note that the color scale is capped for precipitation; i.e., values below −2 mm d−1

and above 2 mm d−1 are displayed in dark blue and dark red, respectively.

second half of the century, while the factual data do not show
such a trend. Since the observational data for the first half of
the century are considered unreliable, they are also not fit to
derive a meaningful no-climate-change counterfactual.

We present further plots covering all variables and Giorgi
regions in the Supplement. Given potential artifacts in the
factual data, the associated plots have to be analyzed when
planning a regional attribution study.

5 Discussion

The attribution of changes in the climate system to anthro-
pogenic interference with the climate system is a mature re-
search field (IPCC, 2013; Gillett et al., 2016; NAS, 2016;
Stott et al., 2016). Less work has been done on the attri-
bution of changes in natural, human and managed systems
affected by climate change in combination with other time-

evolving drivers. Impact attribution as defined in the intro-
duction aims to quantify the role of climate change versus
the other drivers of change. Impact attribution needs a com-
parison of the observed state of the considered system to
its hypothetical, counterfactual state without climate change.
The reason for the change in climate trends and a separation
of anthropogenically forced changes from climate variability
are not necessarily required. Thus, a simplified methodology
that detrends observational data is sufficient without the need
for probabilistic climate model simulations. The proposed
design of the counterfactual climate forcing data and the as-
sociated impact simulation framework mean a restriction to
“impact attribution to climate change” instead of “impact at-
tribution to anthropogenic climate forcing”. The latter is nec-
essary to, for example, attribute a fraction of an impact to a
greenhouse gas emitter and support climate litigation (Mar-
janac et al., 2017; Burger et al., 2020). Thus the counterfac-
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Figure 6. Same as Fig. 5 but for rlds, ps, sfcwind, hurs and huss. Note that the color scale is capped for wind at −0.5 and 0.5 m s−1 and for
hurs at −12 % and 12 %. Values below and above those bounds are displayed in dark blue and dark red, respectively.

tual climate data generated here are not intended to replace
climate simulations with counterfactual greenhouse gas forc-
ings such as the histNAT CMIP6 experiments’ (Gillett et al.,
2016) large climate model ensembles that are required to at-
tribute changes in climate or impacts to anthropogenic emis-
sions.

Climate impact models can be considered as ideal tools
to address impact attribution as they are usually designed to
represent the response of impact indicators to climate dis-
turbances but also account for direct human interventions
such as agricultural management changes, water abstraction
or flood protection measures. Within the model, individual
drivers can be controlled, and a factual run (observed climate
change + observed direct human interventions, Fig. 2 blue
line) can be compared to a counterfactual run (counterfactual
climate+ observed direct human interventions, Fig. 2 orange
line).

By providing climate forcing data for counterfactual cli-
mate impact runs, we facilitate impact attribution following

the basic IPCC AR5 WGII definition utilizing the strength
of impact models to address the important question of to
what degree climate change is already affecting natural, hu-
man and managed systems. So far the contribution of cli-
mate change to long-term historical changes in human, nat-
ural or managed systems is often addressed by model simu-
lation where direct human interventions are fixed while only
climate is allowed to change according to historical obser-
vations (e.g., Sauer et al., 2021). However, this alternative
definition may also lead to different results and does not al-
low for the attribution of the magnitude of individual impact
events to climate change as described in Fig. 2.

Attribution draws a causal connection and quantifies the
change due to the cause. An important part of the attribution
work is thus to ensure that the cause–effect relationship is
correctly captured in the model. This requires careful analy-
sis and model evaluation to show that the change estimated
by an impact model is a reliable estimate of the real-world
change. Simulated changes need to agree with observed

https://doi.org/10.5194/gmd-14-5269-2021 Geosci. Model Dev., 14, 5269–5284, 2021



5280 M. Mengel et al.: ATTRICI v1.1

Figure 7. Panels (a) and (c) show annual regional mean time series
of factual GSWP3-W5E5 data (solid black line), factual GWSP3
data (dashed black line) and counterfactual GSWP3-W5E5 data (or-
ange line) for near-surface air temperature (a) and precipitation (c)
over northern Europe (NEU). Panels (b) and (d) show multi-year re-
gional mean climatologies for near-surface air temperature (b) and
precipitation (d) of factual and counterfactual GSWP3-W5E5 data
for NEU. To obtain the counterfactual annual cycle (orange line),
our method aims to map the late factual (thin black line) to the early
factual (thick black line) annual cycle.

Figure 8. Same as Fig. 7 but for shortwave radiation over the
Mediterranean Basin (MED).

changes, and it needs to be ruled out whether this agreement
is due to confounding factors that drive observed changes but
are not part of the model simulations. The ISIMIP3a histori-
cal simulations serve to address these points and demonstrate
the explanatory power of impact models as an integral part of
the attribution work.

Our method ultimately builds on the correlation between
a regional climate variable and decadal GMT change to re-
move long-term trends in the regional climate variables with-
out implying causality. It is well possible that changes in
regional climate variables have other reasons than global
warming such as local effects of land use changes and aerosol
emissions as well as regional characteristics of large-scale
decadal climate oscillations. However, our study shows that
GMT change is generally a powerful predictor allowing for
generating stationary counterfactual climate data. Major de-
trending failures seem to be related to artifacts in the fac-

Figure 9. Same as Fig. 7 but for wind speed over Greenland (GRL).

Figure 10. Same as Fig. 7 but for precipitation over the Tibetan
Plateau (TIB).

tual observational climate data that particularly affect the first
half of the century and prevent impact attribution in the pro-
posed framework.

Our detrending approach does not guarantee the mainte-
nance of physical consistency of different climate variables
in the counterfactual datasets in terms of, e.g., energy clo-
sure or water budgets. However, the applied quantile map-
ping preserves ranks, which means that relatively high values
before the mapping are also relatively high after the mapping
and similarly for relatively low values. Statistically speak-
ing, univariate quantile mapping independently applied to all
climate variables preserves the multivariate rank distribution
(the copula) over all variables. In that sense the statistical
dependence between variables is preserved by our detrend-
ing method, and the risk of producing physically inconsis-
tent counterfactual climate data is at least limited. This is
critical for the attribution of the extreme event magnitude
to observed climate trends (see introduction) because several
climate variables can contribute to impact extremes.

Here, we deliberately excluded the question of what drives
climate change, i.e., the attribution of changes in the climate
system to greenhouse gas emissions, as it often implies a fo-
cus on this aspect and less attention is paid to the separa-
tion of climate change from direct human interventions as
drivers of observed changes in natural, human and managed
systems. The restriction of the research question to “impact
attribution to climate change in general” makes the assess-
ments independent of climate simulations and their poten-
tial limitation in reproducing processes relevant for historical
climate change. Instead, the restricted framework is directly
linked to impact model evaluation and the question of how
well we understand the observed changes in human, natu-
ral and managed systems. This question can most directly be
addressed by the factual impact simulations proposed here
rather than with impact simulations based on simulated his-
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torical climate. In addition, as opposed to large ensembles
of climate model simulations, such a dataset is easily inte-
grated into an impact model intercomparison project such as
ISIMIP, which includes models of very different computa-
tional costs. In this way the approach allows for an explo-
ration of structural uncertainty in climate impact attribution,
based on a multi-impact-model ensemble, combined with a
variety of damage functions where appropriate.

With the methods and data presented here, we aim to
advance the field of impact attribution and reveal past and
present societal and environmental sensitivities to climate
change. Getting a better understanding of the drivers of ob-
served changes in natural, human and managed systems will
help us to better estimate future risks related to ongoing
global warming and develop adequate adaptation measures.
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