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Abstract. A numerical scheme to perform data assimilation
of concentration measurements in Lagrangian models is pre-
sented, along with its first implementation called Ocean Plas-
tic Assimilator, which aims to improve predictions of the
distributions of plastics over the oceans. This scheme uses
an ensemble method over a set of particle dispersion simu-
lations. At each step, concentration observations are assim-
ilated across the ensemble members by switching back and
forth between Eulerian and Lagrangian representations. We
design two experiments to assess the scheme efficacy and ef-
ficiency when assimilating simulated data in a simple double-
gyre model. Analysis convergence is observed with higher
accuracy when lowering observation variance or using a cir-
culation model closer to the real circulation. Results show
that the distribution of the mass of plastics in an area can ef-
fectively be improved with this simple assimilation scheme.
Direct application to a real ocean dispersion model of the
Great Pacific Garbage Patch is presented with simulated ob-
servations, which gives similarly encouraging results. Thus,
this method is considered a suitable candidate for creating a
tool to assimilate plastic concentration observations in real-
world applications to estimate and forecast plastic distribu-
tions in the oceans. Finally, several improvements that could
further enhance the method efficiency are identified.

1 Introduction

Plastic pollution reveals itself to be an urgent matter if hu-
mans are to preserve their oceans. Previous publications such
as Lebreton et al. (2018) reviewed how plastics are rapidly
accumulating in the oceans and concentrating in oceanic

gyres. As public and private ventures set out cleanup goals,
accurate and regular forecasts of the state of plastics in the
oceans are becoming necessary.

A modeling framework is currently undergoing develop-
ment at The Ocean Cleanup towards this goal, as the com-
pany set itself out to clean 90 % of the oceans’ floating
macroplastics by 2040. It is used to assess and improve our
ability to perform the largest cleanup in history.

This framework, the results of which are presented in Le-
breton et al. (2018), is built upon the Pol3DD Lagrangian
dispersion model and presented in Lebreton et al. (2012). In
this model, virtual particles representing plastics are gener-
ated and let drift over time using current data extracted from
the oceanic circulation modeling system HYCOM (HYbrid
Coordinate Ocean Model; see Bleck, 2002). Results from this
model are compared with two other plastic forecast models
in van Sebille et al. (2015).

While the Lebreton et al. (2012) modeling framework has
already produced valuable results, it is not able to assimilate
observations and update forecasts accordingly yet. However,
as the company prepares to release a number of systems to
clean the ocean, it will soon have numerous sources of data-
collecting devices measuring the concentration of plastics in
the oceans. Therefore, we believe it is timely to develop a
method to assimilate incoming real-time observations.

Methods to assimilate plastic concentration observations
over a Lagrangian dispersion model are in the early develop-
ment stage (Lermusiaux et al., 2019). However, earlier stud-
ies dealing with data assimilation applied to the atmospheric
dispersion of particles around polluting facilities, such as
Zheng et al. (2007), have been published.
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This paper introduces Ocean Plastic Assimilator v0.2, a
numerical scheme developed to assimilate plastic concentra-
tion data into 2D Lagrangian dispersion models. Section 2
formulates the method, and Sect. 3 then describes its initial
implementation and application. For this proof-of-concept
paper, we use a dispersion simulation generated with the
OpenDrift framework in a controlled environment based on a
double-gyre analytical flow field. The assimilation results are
presented in Sect. 4. Real-world application perspectives and
future developments that could further improve the method
are discussed in Sect. 5. Finally, in Sect. 6, we present a di-
rect application of the method to a dispersion model of the
actual Great Pacific Garbage Patch, with simulated observa-
tions sampled from another simulation.

2 Method

This section formulates our methodology to perform data as-
similation of plastic concentration (or density) observations
in any 2D Lagrangian dispersion model using an ensemble
Kalman filter (EnKF). It includes the two representations of
data (Eulerian and Lagrangian) being used for this process,
the transformation between Eulerian and Lagrangian space,
the ensemble assimilation method itself, and model ensemble
initialization.

2.1 Representations of data

The distribution of the mass of plastics in a Lagrangian dis-
persion model is represented by weighted particles drifting
according to a flow field in a 2D domain. Each virtual par-
ticle represents a drifting concentration of plastics. In turn,
virtual concentration measurements are collected at fixed lo-
cations (grid points) within the studied 2D domain, i.e., an
Eulerian representation of the plastic mass distribution.

Our method aims to assimilate concentration observations
collected in the Eulerian representation and update the La-
grangian representation accordingly. One cycle of this pro-
cess consists of projecting particle weights on the concentra-
tion grid, assimilating observation data into the concentration
grid, projecting grid cell concentration updates on particle
weights, and finally letting particles drift until the next as-
similation time step. This procedure is summarized in Fig. 1.

The complete workflow requires the following:

– an assimilation method,

– a dispersion model along with the flow field used,

– projection methods to go back and forth between Eule-
rian and Lagrangian representations, and

– prior estimates for model parameters and uncertainties.

Figure 1. Schematic depiction of the four steps of our method.

2.2 Procedure

This section presents our procedure for a set of Np particles
drifting in a gridded domain, with a grid size (m,n) and in-
dices i and j to designate a grid cell. An ensemble Kalman
filter works by running different simulations, or ensemble
members, simultaneously with variations in model parame-
ters (e.g., initial conditions). We use Ne members in the fol-
lowing.

2.2.1 Projecting weights on densities

At each step t , we define the following:

– wf
t the forecast weights vector of size Np (kg);

– xf
t the forecast density vector computed after projecting

wf
t on the density grid (kgm−2);

– yt the density observation vector (kgm−2), with its er-
ror covariance matrix R;

– xa
t the analyzed density vector computed by assimilat-

ing observations yt in xf
t via the ensemble Kalman filter

(kgm−2);

– wa
t the analysis weight vector computed by projecting

on wf
t the corrections computed on xa

t (in kg); and

– 1i,j,t the set of particles present at step t in grid cell
i,j .

To start, for grid cell i,j with area Ai,j , xf
t is computed with

the formula

(xf
t )i,j =

∑
p∈1i,j,t

(wf
t )p

Ai,j
. (1)
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In the following, we omit sub-index t when all the operations
are performed at the same time step t .

2.2.2 Assimilating with the ensemble Kalman filter
(EnKF)

Our assimilation step relies on the use of ensemble Kalman
filtering, as described in Evensen (2003). This method is de-
rived from Kalman filtering and is notably suitable for situ-
ations in which the model is not an easily invertible matrix
(used in standard Kalman filtering) and one cannot efficiently
compute an adjoint (used in extended Kalman filtering).

Standard Kalman filtering allows computing the analysis
state using a single equation. In standard Kalman filtering,
the forecast state vector xf (in this case, the densities) and
the analysis vector xa are linked with

xa
= xf
+K(y−Hxf). (2)

H is the observation matrix that maps the state xf to the ob-
servation space of y.

The Kalman gain matrix K is defined by the following
equation.

K= PfHT (HPfHT
+R)−1 (3)

R is the observation error covariance matrix. Pf is the fore-
cast error covariance matrix. When using a Kalman filter, Pf

is in principle meant to be computed from the previous state
by application of the forward integration matrix operator, but
this is generally too computationally expensive and imprac-
tical. Here, we use ensemble Kalman filtering, whereby the
Pf matrix computation is approximated by relying on an en-
semble of simulations.

Ensemble members are different instances of our simu-
lation with different initializations. For ensemble member
k ∈ [|1,Ne|], we write xf

k the forecast state vector and xf the
ensemble average:

xf
=

1
Ne

Ne∑
k=1

xf
k. (4)

Accordingly, the computation of Pf can be accomplished us-
ing the formula

Pf
=

1
Ne− 1

Ne∑
k=1
(xf
k − xf)(xf

k − xf)T . (5)

Each ensemble member k is then updated using Eq. (2) with
xk instead of x.

2.2.3 Projecting the density updates on particles

Several ways of projecting the density updates (step 3 in
Fig. 1) can be thought of. In the Ocean Plastic Assimila-
tor v0.2, we simply choose to update the weights by uni-
formly distributing the density correction ratio of a grid cell

i,j among the particles in the same box using this formula:

∀p ∈1i,j , (w
a)p =

(xa)i,j

(xf)i,j
(wf)p. (6)

In this equation, (xf)i,j cannot be null when a grid cell i,j
contains particles (see Eq. 1) unless all particles have null
weights. While extremely unlikely (we did not encounter this
phenomenon during our numerous tests), particles with ex-
actly null weights have to be taken out of the simulation.

This heuristic was chosen primarily for its simplicity and
its computational efficiency. The multiplicative approach
also tends to prevent computing negative weights if the den-
sity analysis is lower than the density forecast.

Finally, for step 4 in Fig. 1, since the dispersion model
changes particles’ positions but not their weights when inte-
grating, the forecast weights at time t + 1 are

wf
t+1 = wa

t . (7)

2.2.4 Initialization

As stated by Evensen (2003) the ensemble Kalman filter re-
quires the initial ensemble to sample the uncertainty in vari-
ables that we want to update with data assimilation. In this ar-
ticle, we focus on our method’s ability to compute the correct
total mass of particles drifting. For this reason, we normally
distribute the members’ initial total masses with a mean µe
and standard deviation σe. If we write Mk the initial total
mass for ensemble member k, we thus have

Mk ∼N(µe,σe). (8)

Finally, we attribute an initial weight of Mk/Np to each par-
ticle.

3 Implementation and test-case setup

This section presents the Python implementation of the afore-
mentioned method, called Ocean Plastic Assimilator (v0.2).
We then describe the Lagrangian dispersion model (Ocean-
Drift) used to generate double-gyre dispersion simulations
and the experiments created with it to observe how our
method performs in a controlled environment.

3.1 Python implementation of the Ocean Plastic
Assimilator

This first implementation is coded in Python (see Peytavin,
2021a, for the repository). It is meant as a stand-alone pro-
gram using dispersal model output data as input, formatted
as a NetCDF4 dataset containing particle coordinates in a
given space and time domain, along with their weights. It
is assumed that the advection in the dispersion model does
not depend on particle masses. In the more general case, one
would have to run the model again after each assimilation
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time step, as a change of a particle mass could change its
future trajectory.

Once loaded, the input weights are duplicated inNe arrays,
and the program runs the assimilation scheme presented in
the previous section in a time loop, taking observations from
an input data frame at each time step. The assimilator can
also take one additional dispersion simulation output from
which it samples observations to assimilate at each time step.
This is the approach used in the following test case.

This implementation leverages the use of arrays and the
fact that we only use one simulation for all ensemble mem-
bers to perform vectorized computations for the computation
of Pf in Eqs. (1) and (6). It also allows computing1i,j,t only
once for all ensemble members. Some parts of the algorithm
are also executed with the just-in-time compiler Numba (see
Lam et al., 2015) in order to run faster.

This implementation allows our algorithm to perform each
following test case with repeated assimilation of two obser-
vation points during 2000 time steps in a (60,40) gridded
domain in less than 30 min on a modern laptop using about
3 GB of storage and 2 GB of RAM.

Running the assimilator on a dispersion output and not in-
side a dispersion model allows it to work on outputs from
different models, as long as the data are appropriately for-
matted. Future implementations could also offer the option
of running online (i.e., embedded inside a dispersion model),
which could allow more flexibility and possibilities, as dis-
cussed in Sect. 6.2.3.

3.2 Double-gyre plastic dispersion using the
OceanDrift model

In order to create our test cases, we first need a dispersion
model and a flow field. We chose the OceanDrift model from
the Norwegian Lagrangian trajectory modeling framework
OpenDrift (see Dagestad et al., 2018). It was chosen mainly
for its simplicity and the fact that OpenDrift embeds a mod-
ule to generate a dispersion based on a 2D double-gyre flow
field.

This field consists of two gyres periodically moving closer
then farther away in an enclosed area. It is a simple field but
complex enough to stir and disseminate particles and is regu-
larly used as a standard case to study time-varying flows, for
example in Guo et al. (2018). The evolving currents are gen-
erated using an analytical field1. The equations generating
this 2D, time-varying, deterministic field are as follows.

1https://shaddenlab.berkeley.edu/uploads/LCS-tutorial/
examples.html#Sec7.1 (last access: 26 July 2021).

u=−
dφ
dy
=−πAsin(πf (x, t))cos(πy)

v =
dφ
dx
= πAcos(πf (x, t))sin(πy)

df
dx

(9) f (x, t)= a(t)x2
+ b(t)x

a(t)= ε sin(ωt)
b(t)= 1− 2ε sin(ωt)

(10)

The dimensionless domain size for these equations is [0,2]×
[0,1].

Parameter A is the circulation amplitude, ω is the fre-
quency of oscillation of the gyres, and ε is the amplitude of
the gyre oscillation relative to the steady state.

Particles are then generated and advected using the Ocean-
Drift Lagrangian model from the Norwegian trajectory mod-
eling framework OpenDrift (Dagestad et al., 2018). Figure 2
shows such a dispersion and the associated concentration
field.

Thus, we can generate different dispersion simulations by
changing the initial particle position seed, which changes the
distribution of particle trajectories and the initial masses of
the particles. We can also change the flow field parameters
A, ω, and ε.

In the following section, we modify the flow field parame-
ters and the particle position seeds to create assimilation test
cases that use two simulations: a reference and a forecast. We
then sample observations from the reference simulation and
assimilate them inside the forecast simulation. By doing so,
we mimic assimilating real concentration data into an uncer-
tain flow field in the presence of model error.

3.3 Assimilation experiment setup

In order to assess and quantify the efficacy of the assimilator
in different cases, we designed two experiments.

The first one aims to verify that, when the forecast flow
field reproduces the reference flow field accurately, our im-
plemented scheme can correct an incorrect total mass guess.
It also intends to check that the estimate gets better when the
observation error gets lower, as one would generally expect.

The second experiment aims to assess the assimilator’s be-
havior and efficacy when the forecast flow field is slightly
different from the reference by changing the double-gyre pa-
rameters A and ε.

In both experiments, we run several test cases to assim-
ilate observations taken from a reference simulation into a
forecast simulation using the assimilator. Then, we compute
the total plastic mass estimation error and the concentration
field root mean square error (RMSE) to assess how close the
assimilated forecast gets to the reference situation. This pro-
cedure is depicted in Fig. 3.

In each test case, the Ocean Plastic Assimilator is executed
over the course of 2000 time steps. The double-gyre size,
which is [0,2]× [0,1], is dimensionless; this means that the
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Figure 2. Generated particles (a) in a double-gyre flow field with OpenDrift and the corresponding plastic concentration field in particles per
grid area (b). The domain grid size is 60× 40.

Figure 3. Schematic depiction of a test case using a reference and a forecast simulation.

time step is dimensionless too. However, if the flow field was
the size of the Great Pacific Garbage Patch, then with A=
0.1 the time step would be of the order of a day.

Over the double gyre, we define a gridded domain of size
(60,40) and select two fixed observation points to run each
assimilation test case. This sampling pattern can be thought
of as representing a set of moorings that one may deploy in
the real ocean. H is defined as a matrix that subsets (x)i,j to
two points of observations.

For the ith point, the measurement is simulated by adding
a random error to xi such as

yi =max(xi +N(0,σrelxi),0). (11)

To compute matrix R, we choose to model the observation
error as a sum of an additive error σ0 and a multiplicative
relative error σrel. As such, with yi the value measured at the
ith observation point is

R= diag(σ 2
0 + (σrely1)

2,σ 2
0 + (σrely2)

2). (12)

https://doi.org/10.5194/gmd-14-4769-2021 Geosci. Model Dev., 14, 4769–4780, 2021



4774 A. Peytavin et al.: Ocean Plastic Assimilator v0.2

Table 1. Final total mass (FTM) relative to Mref and the concen-
tration field RMSE for five different forecast simulations with five
different initial total masses µe. RMSEf and RMSE∅ are the con-
centration field RMSE at the end of simulations with and without
assimilation of observations.

µe FTM/Mref RMSEf RMSE∅

0.25 0.833 4.626 8.661
0.5 0.818 4.660 6.467
1 0.820 4.656 4.675
2 0.822 4.652 12.944
5 0.836 4.619 45.714

In the following, unless specified otherwise, we useNe = 10,
σe = 0.05, Np = 25 000, σ0 = 0.1, and σrel = 1%. The coor-
dinates of the two observation points are the following pairs:
(12,4), (55,27).

4 Results

4.1 Estimating the total plastic mass in the forecast

In this first experiment, we want to assess the ability of our
newly implemented scheme to estimate the total mass of
plastics in the reference simulation correctly.

First, we generate a reference situation using ε = 0.25,
A= 0.1, and ω = 2π/10. We input the same parameters to
integrate the particle trajectories in the forecast simulation.
By doing so, we are in a position where we understand
the flow of the reference situation correctly, but we do not
know the total mass of plastics drifting. In the following,
Mref = 25000 is the constant total mass of the reference sit-
uation.

We initiate five different forecasts with µe = 0.25Mref,
0.5Mref, Mref, 2Mref, and 5Mref. Observations are collected
(and later assimilated) at each time step on two observation
points that could, for example, represent a pair of moored
instruments.

Figure 4 shows the evolution of the forecast total mass for
each simulation. Forecasts starting with an initial total mass
lower than approximately 0.82Mref have their total mass rise,
while those starting with higher total mass have their total
mass fall. Final total plastic masses in the forecast after 1900
steps of assimilation for each simulation are presented in Ta-
ble 1. Overall, the forecast total masses seem to converge to-
wards a similar value of approximately 0.82Mref, from which
we can conclude that in this situation the method makes an
18 % error.

Another indicator of the correctness of a simulation can be
computed from the concentration field at each step. For one
of the forecasts (with µe = 2), we analyze the distribution
of concentration errors over the gridded domain and through
time (Fig. 5). We observe a decrease in the mean absolute

Table 2. Parameters and metrics for assimilation simulations with
different values of σrel, with µe = 2. FTM is the final total mass,
and RMSEf and RMSE∅ are the concentration field RMSE at the
end of simulations with and without assimilating.

σrel FTM/Mref RMSEf RMSE∅

0.5 % 0.895 4.546 12.944
1.0% 0.822 4.652 12.944
2.5 % 0.728 4.981 12.944
10 % 0.611 5.640 12.944

percentage error and a decrease in the absolute percentage
error standard deviation. We also observe that this distribu-
tion does not contain overly large values.

We also compute the concentration field root mean square
error (RMSEf) at the end of the simulation after assimilating
and RMSE∅ at the end of a simulation with no assimilation.
Values in Table 1 indicate a clear improvement of the RMSE
when the initial total mass was erroneous and a stable one
compared to no assimilation when the initial total mass was
correct.

Overall, this points to an improvement in the forecast con-
centration field over time, thanks to data assimilation.

Finally, in order to assess the method accuracy depending
on observation errors, we setµe = 2 and run simulations with
different values of σrel. FTM and RMSE are then computed
and presented in Table 2.

We find that decreasing σrel increases the final total mass
of the forecast, getting it closer to 1, while the RMSE de-
creases. This demonstrates that the forecast bias can be re-
duced by decreasing the observation error, as one would usu-
ally expect of a data assimilation method.

4.2 Impact of physical model errors

In this second experiment, we change the parameters used
to generate the currents of the reference simulation double
gyre. For example, the impact of a modification of ε on the
generated flow field is illustrated in Fig. 6. By assimilating
observations from reference situations with different double-
gyre parameters, we can observe the effects of having an er-
roneous physical dispersion model when assimilating data.

We initiate the forecast with an erroneous initial total mass
of 2Mref and expect that the best total mass predictions will
arise from assimilation simulations with the closest flow
field.

The forecast simulation is generated using εref = 0.25,
Aref = 0.1, and ωref = 2π/10.

We then generate different reference simulations with dif-
ferent values ofA and ε, and we try assimilating observations
sampled from each of them into the forecast.

We find that data assimilation remains effective and that
simulations run with values of ε and A closer to εref and Aref

Geosci. Model Dev., 14, 4769–4780, 2021 https://doi.org/10.5194/gmd-14-4769-2021
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Figure 4. Evolution of total mass over time for five different forecast simulations with five different initial total masses (Table 1) over 100
assimilation iterations (a) and 2000 iterations (b). The total mass evolution of the reference simulation is indicated by a solid line.

Figure 5. Evolution of the error field between the reference concentration field and the forecast concentration field, in percent, for µe = 2. At
each time step, the error field is computed and the distribution of the absolute errors in each cell, in percent of the cell reference concentration,
is depicted in the box plots. Dots outside whiskers represent outliers, and the triangle is the mean.

lead to better estimations of the total mass and concentration
field after some time as one might expect (Fig. 7 and Table 3).

This result illustrates that the assimilation method can be
robust to unknown model errors.

5 Application to the Great Pacific Garbage Patch

In this section, we present an application to real-world global
dispersion models. As before, we sample observations from
one simulation and assimilate them into another in order to
mimic the assimilation of observations that could be col-
lected daily by a pair of moorings deployed in the real ocean.

https://doi.org/10.5194/gmd-14-4769-2021 Geosci. Model Dev., 14, 4769–4780, 2021
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Figure 6. Flow fields at t = 2.5 s for two double-gyre simulations with (a) ε = 0.1 and (b) ε = 0.5.

Figure 7. Evolution of the total plastic mass in the forecast simulation for five different runs with varying values of double-gyre parameters
A and ε, along with the total plastic mass in the reference simulation.

We just use an estimate of real ocean currents in place of the
simplified double gyre defined in Eq. (9).

We generate two global dispersion simulations with the
Lagrangian dispersion model presented by Lebreton et al.
(2012). In both cases, the circulation model uses output from
the HYbrid Coordinate Ocean Model (see Bleck, 2002),
available every 6 h at 0.08◦. This estimate includes Ekman
transport and convergence, as well as mesoscale eddies. The
first simulation has particles seeded along the coasts of 192
countries depending on reported garbage input estimates.
The second simulation has particles seeded at river mouths

only based on estimates of their outflow of plastics. Both
generation models are described in the Supplement of Le-
breton et al. (2018). A model spin-up was done from 1993 to
the end of 2011.

We initialize plastic particle masses generated in the
coastal-seeded model depending on their release year. If x
is the time spent (in fraction of years) since the beginning
of the simulation, then wp = 1+x+ 1

2π sin(π(2x+1)) is the
mass of particles, in tonnes, seeded at time x. This formula
increments particle masses by 1 t each new release year, with
some periodic variability. The particle masses in the river-

Geosci. Model Dev., 14, 4769–4780, 2021 https://doi.org/10.5194/gmd-14-4769-2021
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Table 3. Parameters and metrics for simulations with different val-
ues of A and ε for the reference simulation. FTM is the final total
mass, and RMSEf and RMSE∅ are the concentration field RMSE
at the end of simulations with and without assimilating.

A ε FTM/Mref RMSEf RMSE∅

0.1 0.25 0.822 4.652 12.944
0.105 0.25 0.810 4.871 13.037
0.11 0.25 0.752 5.249 13.204
0.125 0.25 0.744 5.658 13.455
0.1175 0.25 0.733 5.718 13.444

0.1 0.25 0.822 4.652 12.944
0.1 0.3 0.781 5.507 13.293
0.1 0.5 0.770 5.170 13.402
0.1 1.0 0.738 5.897 13.789
0.1 0.0 0.276 29.241 30.856

seeded simulation are initialized to 1 t regardless of their re-
lease date. By doing so, we mimic a situation in which we
underestimate the yearly increase in plastic mass input to the
ocean.

The gridded domain has a resolution of 0.5◦, with 80
by 44 points, going from 165 to 125◦W and from 23 to
45◦ N. Throughout 2012, we sample two observations per
day at positions 152.5◦W, 29◦ N and 140◦W, 35◦ N from the
coastal-seeded dispersion simulation and assimilate them in
the river-seeded dispersion model. We useNe = 10, σe = 50,
Np = 25000, σ0 = 0.1, and σrel = 1 %.

Our method is able to predict the total mass of floating
plastics with a 17 % error and to divide the concentration
field RMSE by 4 (Fig. 8). The computations take about an
hour to run on a standard laptop.

The updates to the concentration field are presented in
Fig. 9, which shows that, as expected, the assimilated fore-
cast has increased concentrations.

Further experimentation will be required to assess the ben-
efits of using this method in real-world use cases with real
data. However, these results confirm the potential skill of our
method, even in the presence of sizable model error.

6 Discussion and perspectives

6.1 Towards an application to real-world data

In this proof-of-concept paper, we placed ourselves in a con-
trolled environment to assess the efficacy of the method. In
the future, our goal will be to eventually apply the method to
real data by replacing the simulated reference situation obser-
vations with real-world observations, and the previous results
can help in understanding what might happen in assimilating
real-world data. The fact that replacing the analytic circula-
tion field by a real-world one (in Sect. 5) did not prevent the

method from improving the forecast is viewed as an encour-
aging first step in that direction.

In Fig. 7a and b we observed that the more accurate the
underlying dispersion model is, the more accurate the assim-
ilation result is. For our method to be applied successfully
to a real global plastic assessment model, its dispersion pre-
diction would have to be accurate enough. Ongoing work,
which is focused on identifying model error sources and re-
fining statistical priors, should benefit the planned applica-
tion to real data (e.g., Maximenko et al., 2012; van Sebille
et al., 2020; Meijer et al., 2021).

Conveniently, we observed that the forecast total mass gets
higher when the dispersion model is more accurate, thus act-
ing, in a way, like a score. As a result, we might discriminate
between dispersion models based on this method’s output by
selecting the ones that output the highest total mass.

6.2 Future developments

Amongst the potential applications of the presented method,
one might highlight the evaluation and design of real obser-
vational strategies. Here we considered one hypothetical, al-
beit plausible, scenario which might represent the deploy-
ment of a few relatively accurate moorings. In future stud-
ies it would be interesting to investigate how data coverage
in space and time may affect forecast skill in more detail,
for example, or use this data assimilation system as a bench-
mark for proposed field campaigns. Several directions to fur-
ther develop the method and make it more accurate also seem
worth considering, as outlined below.

6.2.1 Improving the filter

Throughout the last 2 decades, the ensemble Kalman filter
has been extensively developed and improved, with numer-
ous variants published in the scientific literature. Using dif-
ferent ensemble sampling strategies or a square root algo-
rithm was described as a way to improve accuracy in Evensen
(2004). Other solutions include inflating the ensemble be-
fore assimilating (see Anderson, 2007), resampling the en-
semble, or using a method to assimilate observations lo-
cally by adding a Schur product with a so-called correla-
tion matrix in the computation of the Kalman gain in Eq. (3)
(see Houtekamer and Mitchell, 2002). Assimilating locally
around observation locations could also have the advan-
tage of further improving the geography of the concentration
field, which would translate in reduced values of RMSEf.

6.2.2 Decoupling the positions of the particles for all
ensemble members

The method presented here uses the same dispersion simu-
lation as a base for the trajectories of the particles for all
ensemble members. In all members, the particle positions
through time are the same; the only variables that differ are
the particle masses. In particular, the particle trajectories are
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Figure 8. (a) Evolution of total plastic mass in the domain through 2012 for the reference simulation and the forecast simulation. (b) Evolution
of the concentration field RMSE in the assimilation domain through the year 2012.

Figure 9. Concentration field updates at the end of the assimilation cycle, with the two observation locations in blue. This field is the
difference between the forecast concentration field at the end of the year 2012 with assimilation and the same without assimilation.

the same in each member. This approach greatly reduces the
storage cost and increases computation speed.

However, it significantly lowers the diversity of the en-
semble, so in future work one might want to decouple the
ensemble member trajectories, i.e., have a unique set of tra-
jectories for each member. We anticipate that extending the
method to use an ensemble with diverse particle simulations
should help the forecast converge towards a concentration
field closer to the reference one. We regard this possibility as
a leading candidate to make the method even more accurate.

6.2.3 Studying other projection operators

In Sect. 2.2.3, we presented a simple way to update parti-
cle weights after assimilating density observations through
Eq. (6). Different possibilities for performing this step have
been thought of, some of which we think may be worth inves-
tigating further. Another simple approach would be to apply
an additive correction instead of the multiplicative correction
used in Eq. (6):

∀p ∈1i,j , (w
a)p = (w

f)p +
(xa)i,j − (x

f)i,j

card(1i,j )
. (13)
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This approach was not favored in this first study, as it
seemed more likely to generate negative weights more often.

Another alternative would be to generate new particles
so that their weights sum up to the updated density, possi-
bly fewer or more particles. This could be more technically
challenging to implement and requires implementing the as-
similation scheme directly inside the dispersion model loop.
However, it could also have the advantage of conveniently
increasing resolution where there are high concentrations of
plastics.

7 Conclusions

This paper presents a simple yet readily effective method
to assimilate observations of plastic concentration data into
a Lagrangian dispersion model and its first implementation
called the Ocean Plastic Assimilator (v0.2). We apply it in
a controlled environment to assess its efficacy. We study the
impact of observation errors on the prediction accuracy and
changed some of the dispersion parameters (A and ε) to
evaluate the impacts of model errors. Finally, we apply the
method to a more realistic case with a real-world circula-
tion field and find that the method still performs well. The
encouraging results indicate that it is an excellent candidate
to perform data assimilation with real-world data over ocean
gyres.

Thus, the Ocean Plastic Assimilator will be further devel-
oped at The Ocean Cleanup to assimilate plastic concentra-
tion data from the oceans and improve our cleanup opera-
tions in oceanic gyres. This method will undergo more re-
search to develop its features and assess its efficacy when us-
ing real-world observations. We expect it to be used to assess
the cleanup operations of The Ocean Cleanup in real time.

The simplicity of the developed data assimilation method
means that it should be easy to generalize to various other
popular open-source Lagrangian frameworks such as Ocean-
Parcels (Delandmeter and van Sebille, 2019) or MITgcm
(Campin et al., 2020). Porting the data assimilation proce-
dure to the Julia language is also being envisioned whereby
one could leverage the newly developed IndividualDisplace-
ments.jl package to carry out Lagrangian simulations of plas-
tic concentrations (Forget, 2021).

Code and data availability. The current version of Ocean Plas-
tic Assimilator is available from the github repository: https:
//github.com/TheOceanCleanup/OceanPlasticAssimilator (last ac-
cess: 28 July 2021) under the GNU General Public Licence
v3.0. The version of the model used to produce the results pre-
sented in this paper is archived on Zenodo (Peytavin, 2021a,
https://doi.org/10.5281/zenodo.4740408), as are the input data to
run the model and the raw data presented in this paper (Peytavin,
2021b, https://doi.org/10.5281/zenodo.4740138). The code reposi-
tory contains a Python notebook that allows for the download of
necessary data to reproduce the presented experiments.
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