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Figure S1. Representativeness of the collected observation sites in terms of mean annual temperature (MAT), mean annual
precipitation (MAP) and clay fraction (CF) over the global oil palm plantation area. The lines show the range of the MAT, MAP
and CF from the observation sites, while the bars show the frequency distribution of the three variables derived from the global oil

5 palm plantation map (dataset from Cheng et al., 2018).
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Figure S2. Different versions and developments of ORCHIDEE-MICT related to ORCHIDEE-MICT-OP.
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Figure S3 Comparison of the mean seasonality of simulated LAI, leaf biomass and V¢ max across all sites between ORCHIDEE-MICT-
OP and the default ORCHIDEE-MICT version. Leaf cohorts 1-4 indicate the youngest leaf cohort to the oldest. The new leaf
phenology scheme in ORCHIDEE-MICT-LC (Chen et al., 2019) was implemented in ORCHIDEE-MICT-OP.
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Figure S4. Comparison of model simulated (a) LAl and (b) yield dynamics with field measurements in Site 12 used for calibration

(ORCHIDEE-MICT-OPv2). The red ranges refer to the given results for different oil palm planting densities varying from 120-200
palm ha.
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Figure S5. Comparison of simulated (a) NPP, (b) GPP, (c) fruit yield, (d) total biomass, (¢) above ground biomass (AGB) and below

ground biomass (BGB), temporal dynamics of estimated biomass for oil palm at (f) Site 3. “ORCHIDEE-MICT-OP” refers to the
simulation results by the ORCHIDEE-MICT-OP using the newly oil palm PFT and the calibration scheme using all the 14 sites.

“ORCHIDEE-MICT-OPv2” refers to the simulation results using independent calibration and independent validation sites.
“ORCHIDEE-MICT?” refers to the simulation results by the default ORCHIDEE-MICT version using TBE tree PFT. The dashed
line indicates the 1:1 ratio line. The overall pattern of the simulation results was similar in the two calibration schemes and both

showed great improvement compared with the default PFT2 (ORCHIDEE-MICT) version. The simulated total biomass, AGB and

BGB were all similar in the two calibration schemes. Simulated NPP by the independent validation scheme is closer to observation

while GPP and yields are more or less biased compared with the original scheme.
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Figure S6 Temporal dynamics of simulated yields from the Merlimau estate, Melaka (2.25N, 102.45E) using ORCHIDEE-MICT-
OP. The figure is the simulated results in the same site of Figure 11 in Teh and Cheah, 2018 with the same style and scales to visually
compare the simulated results with the observations. In the previous study, the oil palm plantations were planted at following density
of 120, 135, 148, 164, 181, 199, 220, 243, 268 and 296 palms ha™! and the yields were given at the corresponding planting densities
(Teh and Cheah, 2018). YAP is year after planting.
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Figure S8. Changes in the simulated variables using different settings for longevity and shedding. 1) using the leaf longevity (620
days) shorter than phytomer longevity (640 days) and 2) turn off the extra old leaf turnover at the time of oldest phytomer pruning.
In the first test, the decreased leaf longevity accelerates leaf shedding and causes a compensatory increase in leaf allocation. NPP
and cumulative yields also increased because of the increase of new leaf proportion with higher photosynthesis capacity. In the
55  second test, the results showed a decrease in the simulated GPP and biomass pool but an increase in NPP and cumulative yields.
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Figure S9 Seasonal temperature variations over the global oil palm plantation area during the past 30 years (1986-2015). The red
solid red line and the shade indicate the median and range of seasonal temperature variations derived from the global oil palm
plantation map (dataset from Cheng et al., 2018). The temperature was based on the climate data from the CRUNCEP gridded
dataset (Viovy, 2011) and averaged by month.



Table S1 site level data information.

Site # Site Name Reference Country Type Variable Age Measurement soil
1 Harapan region (Fan et al, Indonesia smallholders, Yield,NPP ~13 field measurement and  loam
2015; AGB,BGB, allometiric equation Acrisols
Kotowska et 0.25 ha )
al, 2015 Biomass
Meijide et al., NPP
2017) component
WUE
2 Bukit Duabelas (Fan et al., Indonesia smallholders, Yield,NPP ~10 field measurement and  clay
region 2015; AGB,BGB, allometiric equation Acrisols
Kotowska et 0.25 ha .
al., 2015) Biomass
NPP
component
3 Genting plantation (Tan et al, Malaysia industrial Yield, 0-25  field measurement and  /
2014) plantation,2815 ha Biomass allometiric  equation
Biomass statistical harvest data
component empirical equation
4 SMART, Kandista (Legros et al., Indonesia Research Institute, 30  Yield 13 field measurement sandy loam
Estate 2009) ha
5 Batu Mulia Estate (Legros et al., Indonesia Research Institute, 9ha  Yield 13 field measurement silty  clay
2009) loam
6 close to Kluang (Tan et al, Malaysia industrial plantation GPP, LAI matu  field measurement /
station 2011) re
7 Marihat Research (Lamade and Indonesia Research station NPP 8 field measurement /
Station Bouillet, 2005)
8 SOCFINDO (Lamade et al.,  Benin industrial plantation Yield, NPP 20 field measurement ferrallitic
industrial plantation ~ 1996) soil
9 PTPN XIV-Persero  (Sunaryathy et  Indonesia industrial AGB 1-3 field measurement /
al., 2015) plantation,23625 ha 4-10
11-
20
10 SSSB (Morel et al., Malaysia industrial plantation AGB 3 field measurement and  /
2011) 4-19  allometiric equation
11 close to Pasoh (Adachi et al., Malaysia / Biomass 275 field measurement and  sandy clay
Forest Reserve 2011) allometiric equation loam
12 Teluk Intant (Henson and Malaysia Research Institute, ~ Yield, NPP, 0-16  field measurement deep  peat
Research station Dolmat, 2003) 21.45 ha GPP Biomass soil
GPP/NPP
component
Biomass
component
13 ESPEK estate (Henson and  Malaysia industrial plantation NPP 4 field measurement,  sandy clay
Harun, 2005) eddy tower loam
14 Sebungan and (Lewis et al., Malaysia industrial  plantation, AGB 3-12  field measurement clay, deap
Sabaju Oil Palm  2020) 10200 ha peat
Estate

10



Table S2 Summary of adjusted parameters for the new oil palm PFT in this model. Values of the default TBE tree PFT are also shown for comparison.

PFT2, tropical PFT14, oil palm
broad-leaved
evergreen
Symbol Parameter Description Unit  Value Value Reference
Photosynthesis parameter
sla* SLA specific leaf area m2g 0.0153 CFT 1:0.012 Varies from 0.008-0.016 in different studies
1,
C
SLA_MAX/SLA_MIN CFT 2:0.011 (Kotowska et al., 2015;Legros et al., 2009;Van
Kraalingen et al., 1989)
CFT 3:0.010
CFT 4:0.009
CFT 5:0.008
CFT 6: 0.008
Vemaxzs® VCMAX25 Maximum rate of Rubisco activity- mol/ 45 CFT 1: 35 Varies from 42-100.47 in different studies
limited carboxylation at 25 °C m2?t
CFT 2: 40 (Fan et al., 2015;Meijide et al., 2017;Teh Boon
Sung and See Siang, 2018)
CFT 3: 45
CFT 4: 60
CFT 5: 75
CFT 6:70
LALho*  LAI_MAX maximum leaf area index / 7 CFT1:15 Increased with age
CFT2:25 (Corley et al, 1971;Corley and Lee,
1992;Kallarackal, 1996;Kotowska et al.,
CFT 3:35
2015;Legros et al., 2009;Noor et al., 2002;Noor
CFT4:45 and Harun, 2004;Tan et al., 2014;Wahid et al.,
CFT5:55 2004)
CFT 6:5.0
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Respiration parameter

for FRAC_GROWTHRES Fraction of GPP which is lost as / 0.35 CFT1:0.5 calibration using the ratio between growth
P growth respiration respiration/maintainance  respiration  from
CFT 2: 0.425
previous studies.
CFT3:0.4
AR consists of 60-75% GPP
CFT 4:0.375
(Breure, 1988;Henson and Dolmat,
CFT5:0.35 2003;Henson and Harun, 2005)
CFT6:0.3
M MAINT_RESP_SLOPE constant define the slope of / 0.12 CFT 1: 0.04
C maintenance respiration coefficient
CFT 2:0.05
CFT 3:0.06
CFT 4:0.07
CFT 5:0.08
CFT 6: 0.09
Carbon allocation parameter
g * DEMI_ALLOC constant parameter for the function / 5 CFT 1:0.2 calibration
of partitioning allocation between
CFT2:0.2
aboveground sapwood as well as
reproductive organ and CFT3:0.5
belowground sapwood biomass CET4:1.0
CFT5:2.0
CFT6:2.0
fsav+repmin ALLOC_MIN/ALLOC ~ minimum/maximum  value of / 0.2/0.8 CFT 1:0.2/0.3 calibration
*/ _MAX allocation  coefficient  between
CFT 2: 0.65/0.85
aboveground sapwood as well as
fsav+repma reproductive organ and CFT3:0.7/0.9
* .
belowground sapwood biomass CET 4: 0.75/0.94
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R*

Li/L;/
L3*

fleaf,max
fleaf,min
froot.max
froot.min
for+frmin

f br+frmax

P/P/
Py

ffr,min/*

ffr,max*

RS_COEFF

LSR_COEFF

MAX_LTOLSR
MIN_LTOLSR
MAX_RTOLSR
MIN_RTOLSR

PHYALLOC_MIN

PHYALLOC_MAX

PHY_COEFF

FTOPHY_MIN/

FTOPHY_MAX

empirical coefficient for the root

allocation

empirical  coefficient for the

function of leaf allocation

maximum leaf allocation fraction
minimum leaf allocation fraction
maximum root allocation fraction
minimum root allocation fraction

prescribed minimum and maximum
value of aboveground sapwood and
reproductive  organ  allocation

fraction to branch and fruit

empirical ~ coefficient for the

phytomer allocation

minimum/maximum  fresh  fruit
bunch allocation fraction in

phytomers

/

/

/

/

/

0.5

0.2

13

CFT 5:0.8/0.99

CFT 6: 0.750.95

0.95 calibration

0.45 calibration

100

6

0.35 (Fan et al., 2015;Kotowska et al., 2015)
0.25 (Fan et al., 2015;Kotowska et al., 2015)
0.35 (Kotowska et al., 2015)

0.25 (Fan et al., 2015;Kotowska et al., 2015)
0.001 this paper

1

0.265 calibration

2

0.8

CFT 1: 0.2/0.7 calibration

CFT 2:0.3/0.8

CFT 3:0.4/0.82

CFT 4: 0.5/0.84

CFT 5:0.6/0.9

CFT 6: 0.7/0.82



Fi* FFB_COEFF empirical coefficient for the fresh / / 0.02 calibration
fruit bunch allocaion
ffolagday LAGDAY The lag day of fruit initiation after  day / 16 calibration
phytomer development
Other parameter
Agepnycrie PHYTOMERAGECRI critical phytomer age, the same as  day 730 640 Ranges from 600-700
T critical leaf age (leaf longevit
ge ( gevity) (Corley and Tinker, 2015;Fan et al., 2015;Van
Kraalingen et al., 1989)
FFBHARVESTAGECR critical fruit harvest age day / 600 (Fan et al., 2015)
Ageffbcrit
T RESIDENCE_TIME residence time of trees year 30 1000
LO,* LOSS_COEFF empirical coefficient for the leaf / / 2 this paper
loss with the pruning of phytomer
p PIPE_DENSITY wood density m2 2.00E-05 1.30E-05 (Ibrahim et al., 2010;Sunaryathy et al., 2015)
nphs NPHS Maximum number of phytomer / 40 (Combres et al., 2013;Corley and Tinker, 2015)
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