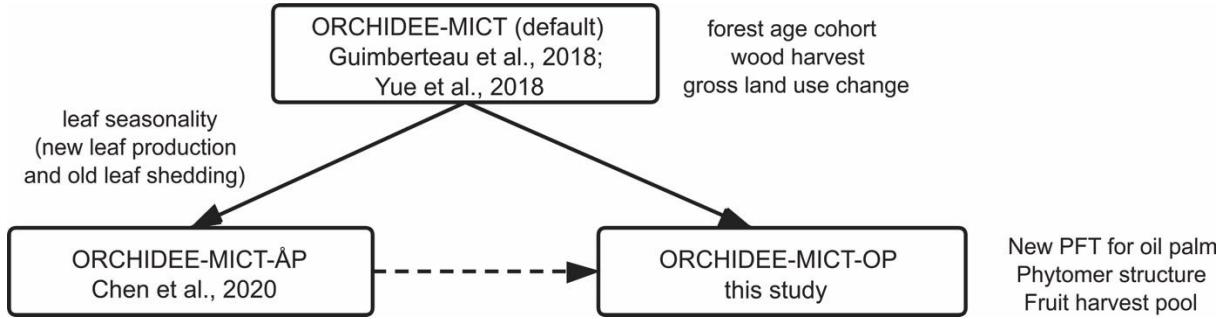
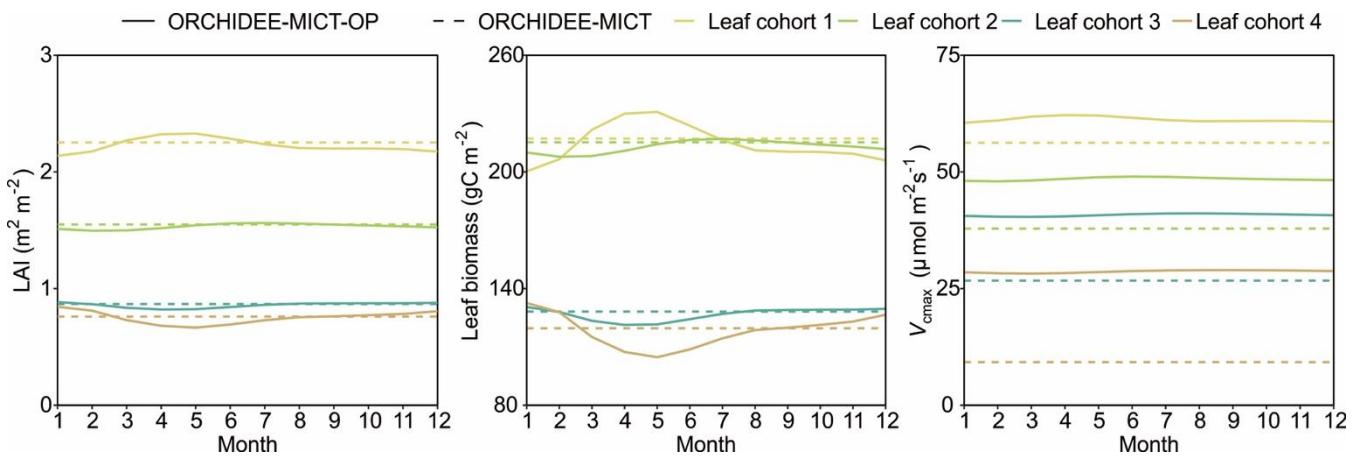

Supplement of

Oil palm modelling in the global land surface model ORCHIDEE-MICT


Yidi Xu et al.

Correspondence to: Le Yu (leyu@tsinghua.edu.cn) and Wei Li (wli2019@tsinghua.edu.cn)


The copyright of individual parts of the supplement might differ from the article licence.

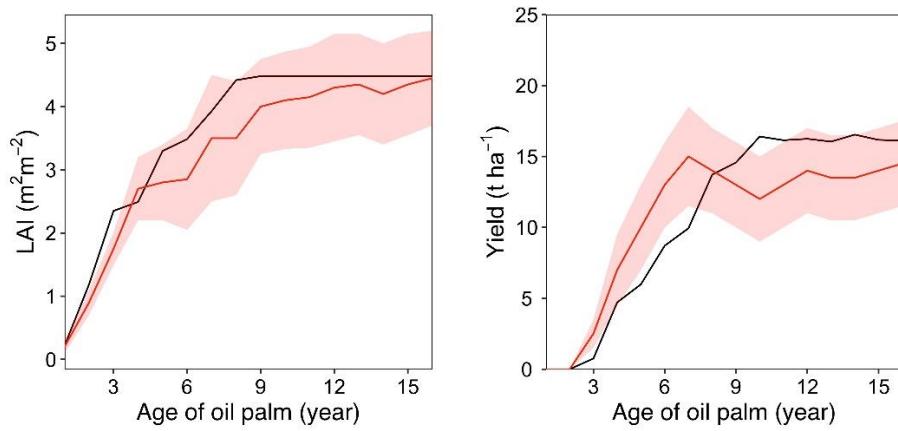

Figure S1. Representativeness of the collected observation sites in terms of mean annual temperature (MAT), mean annual precipitation (MAP) and clay fraction (CF) over the global oil palm plantation area. The lines show the range of the MAT, MAP and CF from the observation sites, while the bars show the frequency distribution of the three variables derived from the global oil palm plantation map (dataset from Cheng et al., 2018).

Figure S2. Different versions and developments of ORCHIDEE-MICT related to ORCHIDEE-MICT-OP.

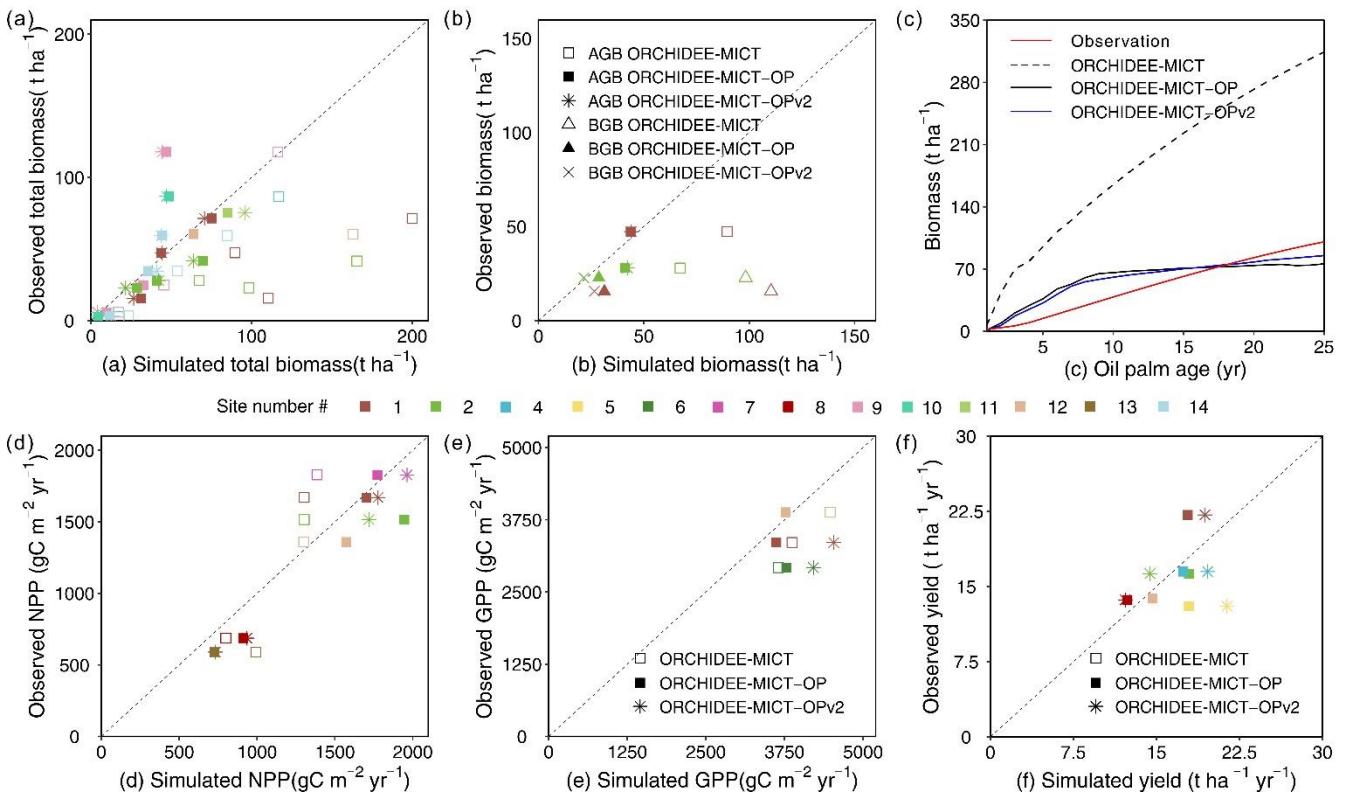


Figure S3 Comparison of the mean seasonality of simulated LAI, leaf biomass and $V_{c,max}$ across all sites between ORCHIDEE-MICT-OP and the default ORCHIDEE-MICT version. Leaf cohorts 1-4 indicate the youngest leaf cohort to the oldest. The new leaf phenology scheme in ORCHIDEE-MICT-LC (Chen et al., 2019) was implemented in ORCHIDEE-MICT-OP.

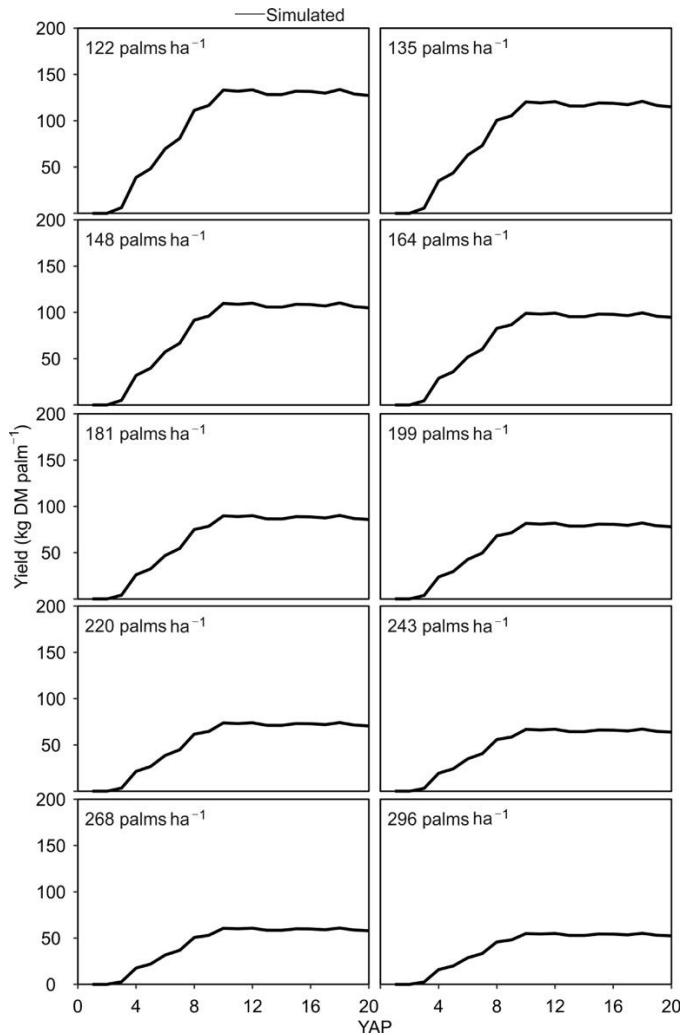
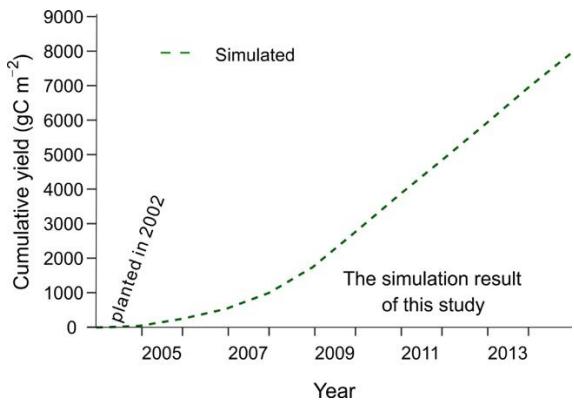
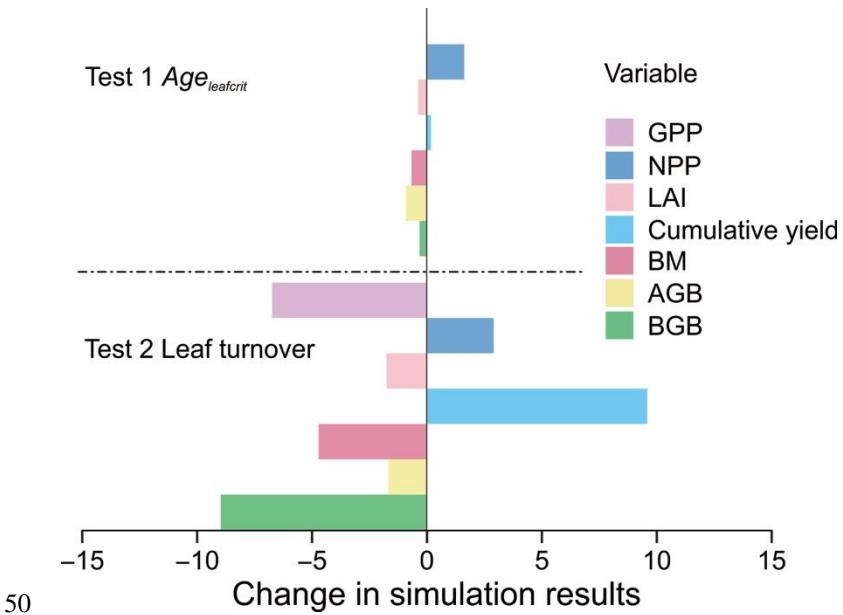
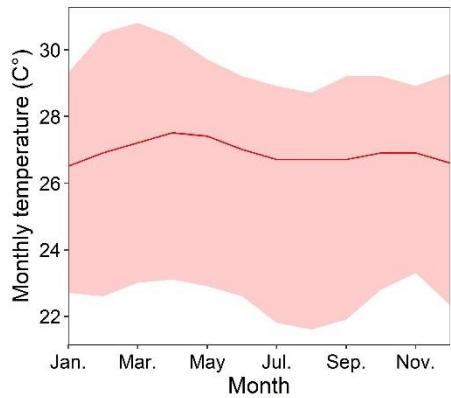


Figure S4. Comparison of model simulated (a) LAI and (b) yield dynamics with field measurements in Site 12 used for calibration


20 (ORCHIDEE-MICT-OPv2). The red ranges refer to the given results for different oil palm planting densities varying from 120-200 palm ha^{-1} .


Figure S5. Comparison of simulated (a) NPP, (b) GPP, (c) fruit yield, (d) total biomass, (e) above ground biomass (AGB) and below ground biomass (BGB), temporal dynamics of estimated biomass for oil palm at (f) Site 3. “ORCHIDEE-MICT-OP” refers to the simulation results by the ORCHIDEE-MICT-OP using the newly oil palm PFT and the calibration scheme using all the 14 sites. “ORCHIDEE-MICT-OPv2” refers to the simulation results using independent calibration and independent validation sites. “ORCHIDEE-MICT” refers to the simulation results by the default ORCHIDEE-MICT version using TBE tree PFT. The dashed line indicates the 1:1 ratio line. The overall pattern of the simulation results was similar in the two calibration schemes and both showed great improvement compared with the default PFT2 (ORCHIDEE-MICT) version. The simulated total biomass, AGB and BGB were all similar in the two calibration schemes. Simulated NPP by the independent validation scheme is closer to observation while GPP and yields are more or less biased compared with the original scheme.


Figure S6 Temporal dynamics of simulated yields from the Merlimau estate, Melaka (2.25°N, 102.45°E) using ORCHIDEE-MICT-OP. The figure is the simulated results in the same site of Figure 11 in Teh and Cheah, 2018 with the same style and scales to visually compare the simulated results with the observations. In the previous study, the oil palm plantations were planted at following density of 120, 135, 148, 164, 181, 199, 220, 243, 268 and 296 palms ha⁻¹ and the yields were given at the corresponding planting densities (Teh and Cheah, 2018). YAP is year after planting.

45 **Figure S7** Simulated cumulative yields (2005-2014) from site PTPN-VI in Jambi, Sumatra ($1^{\circ}41.6' \text{ S}$, $103^{\circ}23.5' \text{ E}$) using ORCHIDEE-MICT-OP. The figure is the simulated results in the same site of Figure 6 in Fan et al., 2015 with the same figure style and scales.

50 **Figure S8. Changes in the simulated variables using different settings for longevity and shedding. 1) using the leaf longevity (620 days) shorter than phytomer longevity (640 days) and 2) turn off the extra old leaf turnover at the time of oldest phytomer pruning.** In the first test, the decreased leaf longevity accelerates leaf shedding and causes a compensatory increase in leaf allocation. NPP and cumulative yields also increased because of the increase of new leaf proportion with higher photosynthesis capacity. In the 55 second test, the results showed a decrease in the simulated GPP and biomass pool but an increase in NPP and cumulative yields.

Figure S9 Seasonal temperature variations over the global oil palm plantation area during the past 30 years (1986-2015). The red solid red line and the shade indicate the median and range of seasonal temperature variations derived from the global oil palm plantation map (dataset from Cheng et al., 2018). The temperature was based on the climate data from the CRUNCEP gridded dataset (Viovy, 2011) and averaged by month.

Table S1 site level data information.

Site #	Site Name	Reference	Country	Type	Variable	Age	Measurement	soil
1	Harapan region	(Fan et al., 2015; Kotowska et al., 2015; Mejide et al., 2017)	Indonesia	smallholders, 0.25 ha	Yield,NPP AGB,BGB, Biomass NPP component	~13	field measurement and allometric equation	loam Acrisols
					WUE			
2	Bukit region	Duabelas (Fan et al., 2015; Kotowska et al., 2015)	Indonesia	smallholders, 0.25 ha	Yield,NPP AGB,BGB, Biomass NPP component	~10	field measurement and allometric equation	clay Acrisols
3	Genting plantation	(Tan et al., 2014)	Malaysia	industrial plantation,2815 ha	Yield, Biomass Biomass component	0-25	field measurement and allometric equation statistical harvest data empirical equation	/
4	SMART, Kandista Estate	(Legros et al., 2009)	Indonesia	Research Institute, 30 ha	Yield	13	field measurement	sandy loam
5	Batu Mulia Estate	(Legros et al., 2009)	Indonesia	Research Institute, 9 ha	Yield	13	field measurement	silty loam
6	close to Kluang station	(Tan et al., 2011)	Malaysia	industrial plantation	GPP, LAI	matu re	field measurement	/
7	Marihat Research Station	(Lamade and Bouillet, 2005)	Indonesia	Research station	NPP	8	field measurement	/
8	SOCFINDO industrial plantation	(Lamade et al., 1996)	Benin	industrial plantation	Yield, NPP	20	field measurement	ferralsitic soil
9	PTPN XIV-Persero	(Sunnyathy et al., 2015)	Indonesia	industrial plantation,23625 ha	AGB	1-3 4-10 11-20	field measurement	/
10	SSSB	(Morel et al., 2011)	Malaysia	industrial plantation	AGB	3 4-19	field measurement and allometric equation	/
11	close to Pasoh Forest Reserve	(Adachi et al., 2011)	Malaysia	/	Biomass	27.5	field measurement and allometric equation	sandy loam
12	Teluk Intant Research station	(Henson and Dolmat, 2003)	Malaysia	Research Institute, 21.45 ha	Yield, NPP, GPP Biomass GPP/NPP component Biomass component	0-16	field measurement	deep soil peat
13	ESPEK estate	(Henson and Harun, 2005)	Malaysia	industrial plantation	NPP	4	field measurement, eddy tower	sandy clay loam
14	Sebungan and Sabaju Oil Palm Estate	(Lewis et al., 2020)	Malaysia	industrial plantation, 10200 ha	AGB	3-12	field measurement	clay, deep peat

Table S2 Summary of adjusted parameters for the new oil palm PFT in this model. Values of the default TBE tree PFT are also shown for comparison.

Symbol	Parameter	Description	Unit	PFT2, tropical		Reference	
				PFT14, oil palm			
				broad-leaved	evergreen		
Photosynthesis parameter							
<i>sla</i> *	SLA	specific leaf area	m^2g^{-1}	0.0153	CFT 1: 0.012	Varies from 0.008-0.016 in different studies	
	SLA_MAX/SLA_MIN		$^{\circ}\text{C}$		CFT 2: 0.011	(Kotowska et al., 2015;Legros et al., 2009;Van Kraalingen et al., 1989)	
					CFT 3: 0.010		
					CFT 4: 0.009		
					CFT 5: 0.008		
					CFT 6: 0.008		
$V_{c,max25}$ *	VCMAX25	Maximum rate of Rubisco activity-limited carboxylation at 25 °C	$\text{mol/}\text{m}^2\text{s}^{-1}$	45	CFT 1: 35	Varies from 42-100.47 in different studies	
					CFT 2: 40	(Fan et al., 2015;Meijide et al., 2017;Teh Boon Sung and See Siang, 2018)	
					CFT 3: 45		
					CFT 4: 60		
					CFT 5: 75		
					CFT 6: 70		
LAI_{max} *	LAI_MAX	maximum leaf area index	/	7	CFT 1: 1.5	Increased with age	
					CFT 2: 2.5	(Corley et al., 1971;Corley and Lee, 1992;Kallarackal, 1996;Kotowska et al., 2015;Legros et al., 2009;Noor et al., 2002;Noor and Harun, 2004;Tan et al., 2014;Wahid et al., 2004)	
					CFT 3: 3.5		
					CFT 4: 4.5		
					CFT 5: 5.5		
					CFT 6: 5.0		

Respiration parameter						
f_{GR}	FRAC_GROWTHRES	Fraction of GPP which is lost as growth respiration	/	0.35	CFT 1: 0.5 CFT 2: 0.425 CFT 3: 0.4 CFT 4: 0.375 CFT 5: 0.35 CFT 6: 0.3	calibration using the ratio between growth respiration/maintainance respiration from previous studies. AR consists of 60-75% GPP (Breure, 1988; Henson and Dolmat, 2003; Henson and Harun, 2005)
S_1	MAINT_RESP_SLOPE_C	constant define the slope of maintenance respiration coefficient	/	0.12	CFT 1: 0.04 CFT 2: 0.05 CFT 3: 0.06 CFT 4: 0.07 CFT 5: 0.08 CFT 6: 0.09	
Carbon allocation parameter						
$\theta *$	DEMI_ALLOC	constant parameter for the function of partitioning allocation between aboveground sapwood as well as reproductive organ and belowground sapwood biomass	/	5	CFT 1: 0.2 CFT 2: 0.2 CFT 3: 0.5 CFT 4: 1.0 CFT 5: 2.0 CFT 6: 2.0	calibration
$f_{sab+rep,mir}$	ALLOC_MIN/ALLOC_MAX	minimum/maximum value of allocation coefficient between aboveground sapwood as well as reproductive organ and belowground sapwood biomass	/	0.2/0.8	CFT 1: 0.2/0.3 CFT 2: 0.65/0.85	calibration
$f_{sab+rep,ma}$	*				CFT 3: 0.7/0.9 CFT 4: 0.75/0.94	

					CFT 5: 0.8/0.99
					CFT 6: 0.750.95
R_1^*	RS_COEFF	empirical coefficient for the root allocation	/	/	0.95 calibration
$L_1/L_2/$ L_3^*	LSR_COEFF	empirical coefficient for the function of leaf allocation	/	/	0.45 calibration
					100
					6
$f_{leaf,max}$	MAX_LTOLSR	maximum leaf allocation fraction	/	0.5	0.35 (Fan et al., 2015;Kotowska et al., 2015)
$f_{leaf,min}$	MIN_LTOLSR	minimum leaf allocation fraction	/	0.2	0.25 (Fan et al., 2015;Kotowska et al., 2015)
$f_{root,max}$	MAX_RTOLSR	maximum root allocation fraction	/	/	0.35 (Kotowska et al., 2015)
$f_{root,min}$	MIN_RTOLSR	minimum root allocation fraction	/	/	0.25 (Fan et al., 2015;Kotowska et al., 2015)
$f_{br+fr,min}$	PHYALLOC_MIN	prescribed minimum and maximum value of aboveground sapwood and reproductive organ allocation fraction to branch and fruit	/	/	0.001 this paper
$f_{br+fr,max}$	PHYALLOC_MAX				1
$P_1/P_2/$ P_3^*	PHY_COEFF	empirical coefficient for the phytomer allocation	/	/	0.265 calibration
					2
					0.8
$f_{fr,min}/*$	FTOPHY_MIN/	minimum/maximum fresh fruit bunch allocation fraction in	/	/	CFT 1: 0.2/0.7 calibration
$f_{fr,max}^*$	FTOPHY_MAX	phytomers			CFT 2: 0.3/0.8
					CFT 3: 0.4/0.82
					CFT 4: 0.5/0.84
					CFT 5: 0.6/0.9
					CFT 6: 0.7/0.82

F_1^*	FFB_COEFF	empirical coefficient for the fresh fruit bunch allocation	/	/	0.02	calibration
$fflagday$	LAGDAY	The lag day of fruit initiation after phytomer development	day	/	16	calibration
Other parameter						
$Age_{phycrit}$	PHYTOMERAGECRI	critical phytomer age, the same as critical leaf age (leaf longevity)	day	730	640	Ranges from 600-700 (Corley and Tinker, 2015;Fan et al., 2015;Van Kraalingen et al., 1989)
$Age_{ffbcrit}$	FFBHARVESTAGECR	critical fruit harvest age	day	/	600	(Fan et al., 2015)
τ	RESIDENCE_TIME	residence time of trees	year	30	1000	
LO_1^*	LOSS_COEFF	empirical coefficient for the leaf loss with the pruning of phytomer	/	/	2	this paper
ρ	PIPE_DENSITY	wood density	m^{-2}	2.00E-05	1.30E-05	(Ibrahim et al., 2010;Sunaryathy et al., 2015)
$nphs$	NPHS	Maximum number of phytomer	/		40	(Combres et al., 2013;Corley and Tinker, 2015)

5 References

Adachi, M., Ito, A., Ishida, A., Kadir, W. R., Ladpala, P., and Yamagata, Y.: Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements, *Biogeosciences*, 8, 2635-2647, 10.5194/bg-8-2635-2011, 2011.

Breure, C. J.: The Effect of Palm Age and Planting Density on the Partitioning of Assimilates in Oil Palm (*Elaeis guineensis*), *Exp. Agric.*, 24, 53-66, 10.1017/S0014479700015696, 1988.

Chen, X., Maignan, F., Viovy, N., Bastos, A., Goll, D., Wu, J., Liu, L., Yue, C., Peng, S., Yuan, W., da Conceição, A. C., O'Sullivan, M., and Ciais, P.: Novel Representation of Leaf Phenology Improves Simulation of Amazonian Evergreen Forest Photosynthesis in a Land Surface Model, *Journal of Advances in Modeling Earth Systems*, 12, e2018MS001565, 10.1029/2018ms001565, 2020.

Cheng, Y., Yu, L., Xu, Y., Liu, X., Lu, H., Cracknell, A. P., Kanniah, K., and Gong, P.: Towards global oil palm plantation mapping using remote-sensing data, *Int. J. Remote Sens.*, 39, 5891-5906, 2018.

Combres, J.-C., Pallas, B., Rouan, L., Mialet-Serra, I., Caliman, J.-P., Braconnier, S., Soulié, J.-C., and Dingkuhn, M.: Simulation of inflorescence dynamics in oil palm and estimation of environment-sensitive phenological phases: a model based analysis, *Funct. Plant Biol.*, 40, 263-279, 2013.

Corley, R., Hardon, J., and Tan, G.: Analysis of growth of the oil palm (*Elaeis guineensis* Jacq.) I. Estimation of growth parameters and application in breeding, *Euphytica*, 20, 307-315, 1971.

Corley, R., and Lee, C.: The physiological basis for genetic improvement of oil palm in Malaysia, *Euphytica*, 60, 179-184, 1992.

Corley, R. H. V., and Tinker, P. B.: The oil palm, 5th ed., John Wiley & Sons, 2015.

Fan, Y., Rouspard, O., Bernoux, M., Le Maire, G., Panferov, O., Kotowska, M. M., and Knohl, A.: A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield, *Geosci. Model Dev.*, 8, 3785-3800, 10.5194/gmd-8-3785-2015, 2015.

Henson, I. E., and Dolmat, M. T.: Physiological analysis of an oil palm density trial on a peat soil, *Journal of Oil Palm Research*, 15, 2003.

Henson, I. E., and Harun, M. H.: The influence of climatic conditions on gas and energy exchanges above a young oil palm stand in north Kedah, Malaysia, *Journal of oil palm Research*, 17, 73, 2005.

Ibrahim, M. H., Jaafar, H. Z. E., Harun, M. H., and Yusop, M. R.: Changes in growth and photosynthetic patterns of oil palm (*Elaeis guineensis* Jacq.) seedlings exposed to short-term CO₂ enrichment in a closed top chamber, *Acta Physiol. Plant.*, 32, 305-313, 10.1007/s11738-009-0408-y, 2010.

Kallarackal, J.: Water relations and photosynthesis of the oil palm in Peninsular India, *KFRI Research Report*, 1996.

Kotowska, M. M., Leuschner, C., Triadiati, T., Meriem, S., and Hertel, D.: Quantifying above-and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia), *Global change biology*, 21, 3620-3634, 2015.

Lamade, E., Djegui, N., and Leterme, P.: Estimation of carbon allocation to the roots from soil respiration measurements of oil palm, *Plant Soil*, 181, 329-339, 10.1007/BF00012067, 1996.

Lamade, E., and Bouillet, J.-P.: Carbon storage and global change: the role of oil palm, 2005.

Legros, S., Mialet-Serra, I., Caliman, J.-P., Siregar, F. A., Clément-Vidal, A., and Dingkuhn, M.: Phenology and growth adjustments of oil palm (*Elaeis guineensis*) to photoperiod and climate variability, *Annals of botany*, 104, 1171-1182, <https://doi.org/10.1093/aob/mcp214>, 2009.

45 Lewis, K., Rumpang, E., Kho, L. K., McCalmont, J., Teh, Y. A., Gallego-Sala, A., and Hill, T. C.: An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods, *Scientific Reports*, 10, 2230, 10.1038/s41598-020-58982-9, 2020.

Meijide, A., Röll, A., Fan, Y., Herbst, M., Niu, F., Tiedemann, F., June, T., Rauf, A., Hölscher, D., and Knohl, A.: Controls of water and energy fluxes in oil palm plantations: Environmental variables and oil palm age, *Agric. For. Meteorol.*, 239, 50 71-85, <https://doi.org/10.1016/j.agrformet.2017.02.034>, 2017.

Morel, A. C., Saatchi, S. S., Malhi, Y., Berry, N. J., Banin, L., Burslem, D., Nilus, R., and Ong, R. C.: Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data, *For. Ecol. Manag.*, 262, 1786-1798, <https://doi.org/10.1016/j.foreco.2011.07.008>, 2011.

Noor, M., Harun, M. H., Mustakin, S., Badrishah, A., and Ahmad, M.: Indirect methods for measuring oil palm leaf area index (LAI), *MPOB Information Series*, 4, 2002.

Noor, M. R. M., and Harun, M. H.: The role of leaf area index (LAI) in oil palm, *Oil Palm Bulletin*, 11-16, 2004.

Sunaryathy, P. I., Suhasman, S., Kanniah, K. D., and Tan, K. P.: Estimating Aboveground Biomass of Oil Palm Trees by Using the Destructive Method, *World Journal of Agricultural Research*, 3, 17-19, 2015.

Tan, K. P., Kanniah, K. D., Busu, I. B., and Cracknell, A. P.: Evaluation of MODIS Gross Primary Productivity of tropical oil palm in southern Peninsular Malaysia, 2011 *IEEE International Geoscience and Remote Sensing Symposium*, 2011, 60 756-759,

Tan, K. P., Kanniah, K. D., and Cracknell, A. P.: On the upstream inputs into the MODIS primary productivity products using biometric data from oil palm plantations, *Int. J. Remote Sens.*, 35, 2215-2246, 10.1080/01431161.2014.889865, 2014.

Teh C.B.S., Cheah S.S.: Modelling crop growth and yield in palm oil cultivation Christopher Teh Boon Sung, Universiti Putra Malaysia, Malaysia; and Cheah See Siang, Sime Darby Research Sdn. Bhd., Malaysia, in: Achieving sustainable cultivation of oil palm Volume 1, Burleigh Dodds Science Publishing, 199-244, 65 2018.

Van Kraalingen, D. W. G., Breure, C. J., and Spitters, C. J. T.: Simulation of oil palm growth and yield, *Agric. For. Meteorol.*, 46, 227-244, [https://doi.org/10.1016/0168-1923\(89\)90066-X](https://doi.org/10.1016/0168-1923(89)90066-X), 1989.

70 Viovy, N.: CRUNCEP dataset, [online] Available from: ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.htm, 2011.

Wahid, M. B., Abdullah, S., and Henson, I.: Oil palm—achievements and potential, 4th international crop science congress, 2004,