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Abstract. Aggregation of particles occurs in a large variety
of settings and is therefore the focus of many disciplines,
e.g., Earth and environmental sciences, astronomy, meteo-
rology, pharmacy, and the food industry. In particular, in vol-
canology, ash aggregation deeply influences the sedimenta-
tion of volcanic particles in the atmosphere during and af-
ter a volcanic eruption, affecting the accuracy of model pre-
dictions and the evaluation of hazard and risk assessments.
It is thus very important to provide an exhaustive descrip-
tion of the outcome of an aggregation process, starting from
its basic geometrical features such as the position in space
of its components and the overall porosity of the final ob-
ject. Here we present SCARLET-1.0, a MATLAB package
specifically created to provide a 3D virtual reconstruction for
volcanic ash aggregates generated in central collision pro-
cesses. In centrally oriented collisions, aggregates build up
their own structure around the first particle (the core), act-
ing as a seed. This is appropriate for aggregates generated
in turbulent flows in which particles show different degrees
of coupling with respect to the turbulent eddies. SCARLET-
1.0 belongs to the class of sphere-composite algorithms, a
family of algorithms that approximate 3D complex shapes in
terms of a set of sphere-composite nonoverlapping spheres.
The conversion of a 3D surface to its equivalent sphere-
composite structure then allows for an analytical detection
of the intersections between different objects that aggregate
together. Thus, provided a list of colliding sizes and shapes,
SCARLET-1.0 places each element in the vector around the
core, minimizing the distances between their centers of mass.
The user can play with different parameters that control the
minimization process. Among them the most important ones
are the cone of investigation (�), the number of rays per cone
(Nr), and the number of orientations of the object (No). All
the 3D shapes are described using the Standard Triangulation
Language (STL) format, which is the current standard for 3D

printing. This is one of the key features of SCARLET-1.0,
which results in an unlimited range of applications of the
package. The main outcome of the code is the virtual rep-
resentation of the object, its size, porosity, density, and the
associated STL file. In addition, the object can be potentially
3D printed. As an example, SCARLET-1.0 has been applied
here to the investigation of ellipsoid–ellipsoid collisions and
to a more specific analysis of volcanic ash aggregation. In
the first application we show that the final porosity of two
colliding ellipsoids is less than 20 % if flatness and elonga-
tion are greater than or equal to 0.5. Higher values of porosi-
ties (up to 40 %–50 %) can instead be found for ellipsoids
with needle-like or extremely flat shapes. In the second ap-
plication, we reconstruct the evolution in time of the porosity
of two different aggregates characterized by different inner
structures. We find that aggregates whose population of par-
ticles is characterized by a narrow distribution of sizes tend
to rapidly reach a plateau in the porosity. In addition, to re-
produce the observed densities, almost no compaction is nec-
essary in SCARLET-1.0, which is a result that suggests how
ash aggregates are not well described in terms of the maxi-
mum packing condition.

1 Introduction

The formation of aggregates from an initial set of individ-
ual monomers is a common topic in science, such as plane-
tary formation, granulation processes, the food industry, me-
teorology, pollution, and Earth sciences (Brauer et al., 2001;
Dominik et al., 2006; Poon et al., 2008; Brown et al., 2012;
Cuq et al., 2013; Shi et al., 2015; Dacanal et al., 2016; Pumir
and Wilkinson, 2016; Imaeda and Ebisuzaki, 2017; Ohno et
al., 2020). In volcanology, aggregation plays a key role in af-
fecting the sedimentation processes of ash in the atmosphere
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during and after a volcanic eruption, with deep consequences
for the accuracy of the dispersal forecasting and hazard as-
sessment (Durant, 2015).

The study of aggregation with experimental setups or di-
rect observations in natural environments is often a challeng-
ing – if not impossible – task (Karrer et al., 2020). For this
reason, the use of virtual reality has been considered a valu-
able alternative to direct investigation (Lumme and Rahola,
1994; Filippov et al., 2000; Min et al., 2007).

Several algorithms have been dedicated to the numerical
solution of theoretical problems concerning aggregation phe-
nomena, such as the study of the maximum packing of geo-
metrical shapes within fixed boundary conditions (Conway
and Sloane, 1998; Weaire and Aste, 2000; Williams and Jia,
2003; Donev et al., 2004; Hales, 2005; Man et al., 2005);
other codes have been specifically written for the investiga-
tion of aggregation in natural contexts. Among them, we only
mention algorithms aimed at studying aggregates in proto-
planetary disks (Ormel et al., 2007; Yurkin and Hoekstra,
2011), ice formation and snowflake aggregation (Kessler et
al., 1984; Westbrook et al., 2004; Maruyama and Fujiyoshi,
2005; Reiter, 2005; Ning and Reiter, 2007; Tyynela and von
Lerber, 2019; Ori et al., 2014; Karrer et al., 2020), and in
other environmental applications, such as water treatment
(Chopard et al., 2006). Several codes treat aggregation as
a fractal process such as in diffusion-limited aggregation
(DLA), in which the characteristic length of the aggregate,
R, can be related to the number of monomers involved, Np,
and the fractal dimension, Df, by means of the power law
Np ∝ R

Df (Nguyen et al., 2003, 2004; Jacobson, 2005).
Another important aspect concerning aggregation algo-

rithms is the capability to accurately describe the shapes of
the particles involved. In some circumstances the morphol-
ogy of the colliding objects is sufficiently well described in
terms of equivalent spheres. In other cases, a more accurate
description is needed, for example in the study of particle
packing (Man et al., 2005) or in all cases in which particle
interlocking plays a key role, such as in snowflake formation.

In volcanology, despite the importance attributed to ash
aggregation, no specific code has been designed so far for
the study of particle packing geometries or, in general, the
dependency of aggregate densities with respect to their struc-
tural configuration. Several types of different aggregate ge-
ometries have been described in literature, from particle clus-
ters (PCs) to accretionary pellets (APs) (see Brown et al.,
2012, for a complete review). In particular, recent field obser-
vations have revealed how PC3 objects have a key role in ash
sedimentation (Bagheri et al., 2016; Gabellini et al., 2020).
PC3 types are roughly spherically symmetrical in shape and
are composed of big particles of about 200–1000 µm (the
core) at the center of the structure, with many smaller par-
ticles (typically < 100 µm) around it (the coating).

The physical explanation for the formation of PC-type ag-
gregates involves the theoretical description of a polydisperse
particle population within a highly turbulent flow, as is the

case for a volcanic plume or cloud (Kieffer and Sturtevant,
1984). In the presence of a cascade of turbulent eddies and
grains of different sizes, particles will show different degrees
of coupling with the turbulent flow (Volk et al., 1980). This
will produce a wide spectrum of relative velocities (Ormel
and Cuzzi, 2007). In the limiting case of particles with a
negligible velocity correlation with respect to the others (i.e.,
the kinetic theory limit), the object will aggregate following
an inertial aggregation mechanism (Textor and Ernst, 2004).
This is typical of large particles that will cross from one eddy
to another with a poor correlation with the dynamics of the
eddies. In their path across the turbulent flow these objects
will encounter smaller particles that, in contrast, do show a
high correlation with the eddies. This process can be mod-
eled as a central collisional process in which the big particle
is the target of random collisions coming from random direc-
tions.

All these aspects motivated us to create SCARLET-1.0
(SpheriCal Approximation for viRtuaL aggrEgaTes), a MAT-
LAB package designed for the study of volcanic ash aggre-
gation generated by central collisional processes of particles
with arbitrary 3D shapes. SCARLET-1.0 simulates the binary
and sequential collision between the core and a vector of Np
particles. The algorithm follows a Monte Carlo approach to
investigate the final positions of the ith particle and the al-
ready placed aggregate, minimizing the distance between the
center of mass of the two bodies. Once the ith particle has
been placed, it is considered fixed within the aggregate.

One of the main problems related to the aggregation of ob-
jects with complex surfaces is the detection of the intersec-
tions between them. SCARLET-1.0 belongs to the so-called
sphere-composite algorithms (Evans and Ferrar, 1989; Nolan
and Kavanagh, 1995), in which each single shape is seen as
the superposition of Nsp nonoverlapping spheres. Describing
a given shape in terms of a set of spheres leads to a pure
analytical solution when searching for intersections between
multiple shapes. On the other hand, a large number of spheres
is required for collisions for which a high degree of accuracy
is needed (Jia and Williams, 2001).

The most innovative aspect of SCARLET-1.0 is the use of
the Standard Triangulation Language (STL) to describe the
3D shapes involved in the collisions. STL is currently one of
the most common formats for 3D printing, 3D scanning, and
design (Szilvasi-Nagy and Matyasi, 2003). This guarantees
great flexibility to create virtual aggregates with SCARLET-
1.0 starting from a set of completely arbitrary shapes. As a
demonstration of this, in the main body of the paper and in
the Appendix we show virtual aggregates made of a great
variety of shapes: from scientific ones, such as volcanic par-
ticles, snowflakes, cones, ellipsoids, and spheres, to the most
creative ones. It is important to demonstrate that SCARLET-
1.0 also produces as output the STL file of the final aggre-
gate: this means that the virtual aggregate can be potentially
3D printed. This makes an innovative link between simula-
tions in the virtual reality and experiences in the real world,
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such as laboratory investigations of the drag force exerted on
complex aggregates (McCorquodale and Westbrook, 2021).

The paper is structured as follows: in Sect. 2 we described
the model, with a focus on the functions fromStlToSpheres
and mainSCARLET. In Sect. 3.1 the algorithm is tested for
aspects concerning the calculation of porosity problems. In
Sect. 3.2 we present an application of SCARLET-1.0 to the
study of both generic ellipsoids and the evolution in time of
volcanic ash aggregates. In Sect. 4 a short discussion of the
pros and cons of the package is presented.

2 Model description

2.1 Physical description of the aggregation process and
model design

SCARLET-1.0 is written in MATLAB (tested for MATLAB
R2015b), and it has been motivated by the need for a bet-
ter understanding of the geometrical packing of volcanic ash
aggregates observed during volcanic eruptions (Taddeucci et
al., 2011; Brown et al., 2012; Bagheri et al., 2016; Gabellini
et al., 2020). It simulates the random collisions encountered
by the core in its path across an environment where Np par-
ticles of arbitrary sizes and shapes are present. This happens
in nature when particles with different dynamical properties
are released in a turbulent flow. In this case the complex in-
teraction of a cascade of turbulent eddies and the presence
of particles with different sizes and masses produce a wide
spectrum of particle Stokes numbers and thus a complete set
of different degrees of coupling with the flow (Ormel and
Cuzzi, 2007). The limiting cases for the situation under anal-
ysis are described in the literature as the Saffman–Turner
limit (Saffman and Turner, 1956) for particles fully coupled
with the fluid and with a size smaller than the Kolmogorov
scale as well as the kinetic theory limit (Abrahamson, 1975;
Textor and Ernst, 2004), in which large particles are poorly
coupled with smaller eddies. The final result of the process
is a population of large particles with uncorrelated relative
velocities that are higher as the decoupling with the flow is
more pronounced (Volk et al., 1980). This is, for example,
what happens in the case of coarse ash within a turbulent
volcanic plume or cloud (Textor and Ernst, 2004) and also
for dust grains in protoplanetary disks (Ormel et al., 2007;
Okuzumi et al., 2009). The presence of a relative velocity
between the core (or the aggregate) and the colliding parti-
cle creates a relative kinetic energy that must be dissipated in
order to have a successful sticking. In SCARLET-1.0 we do
not focus on the dissipation mechanisms, which require a full
understanding and constraint on nontrivial quantities such as
the presence of viscoelastic forces, water layers, electrostatic
charges, and plastic deformations. Since we are mostly in-
terested in the final geometrical packing, we simply assume
that after the collision the ith particle will dissipate the rela-
tive kinetic energy available and stick to the central structure.

In summary, within the limit of the kinetic theory limit the
large core shows a negligible correlation with the velocity of
the surrounding particles, and it acts as a central pole of ac-
cretion for the colliding particles in its path across the turbu-
lent eddies if a Lagrangian perspective is assumed. Moreover,
considering that the core can indeed rotate and that the tur-
bulence is usually assumed to be isotropic in the theoretical
descriptions (Volk et al., 1980), the angles of collisions with
respect to the central body are assumed to occur at random
orientations.

In SCARLET-1.0 we fix the system of reference (SOR) at
the center of mass (CM) of the core in a purely Lagrangian
description of the motion. The core, which is of arbitrary
shape, is the target for the collisions and the population of
particles encountered as the aggregation process evolves is
defined as a vector of particles with different sizes and arbi-
trary shapes. According to the physical process that we want
to describe, collisions happen at random angles around the
central structure and the collision cone is centered in the CM
of the core. This is the main mode of operation of the code
and the motivation that led us to create it according to what
has been recently observed in volcanic eruptions (Bagheri et.,
2016; Gabellini et al., 2020). However, it is worth anticipat-
ing here that SCARLET-1.0 allows relaxing some of these
constraints if needed by the user. For example, collisions can
occur following a fixed direction of collision, and the colli-
sion cone can be centered in alternative locations with respect
to the CM of the core.

The main steps with which the aggregation process is
modeled in SCARLET-1.0 are summarized here.

1. Definition of the shapes involved in the aggregation pro-
cess. Every different shape used in the simulation must
be already present in the folder as an STL file. STL files
can be generated by means of specific CAD software;
they can be downloaded from the internet or simply ob-
tained by 3D scanners. The use of binary STL files is
preferred with respect to the ASCII format.

2. The sphere-composite representation of each STL file.
SCARLET-1.0 uses a dedicated script named fromStl-
ToSpheres to construct the sphere-composite represen-
tation of the original shape (see Sect. 2.1). STL files
are defined by a set of points and facets. The script
takes advantage of the MATLAB function inpolyhedron
(Sven, 2021) to generate random points within the sur-
face. Once the point is created within the STL shape
and outside an already existing sphere, it generates a
new sphere (see Sect. 2.2). Each single shape that the
user wants to involve in the simulation must be pre-
processed by fromStlToSpheres.

3. Generation of the monomer’s distribution. The grain
size distribution of the coating is defined a priori by the
user, who defines a vector of particle sizes with a length
equal to the number of particles involved (Np). Each el-
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ement of the vector indicates the maximum length d imax
of the ith particle (in arbitrary units). The shape at-
tributed to the ith particle is randomly selected within
those available for the coating (see Sect. 2.1). The core
size dcore

max is defined by the user and corresponds to its
maximum length (in arbitrary units a.u.). The shape at-
tributed to the core is by definition the first element of
the structure generated by the pre-processing function
fromStlToSpheres.

4. Selection of the particles that will collide. Particles are
selected sequentially from the previously defined vec-
tor of sizes. Therefore, the contemporary deposition of
two particles is forbidden (i.e., only binary collisions are
treated).

5. Collision trajectory. In order to place the ith particle, a
cone is generated with its center in the CM of the core
(or, alternatively, in one of the spheres that form the
sphere-composite representation of the aggregate). Nr
random rays are uniformly generated within the cone,
and the shape associated with the ith particle – scaled
to its actual size – is randomly rotated No times along
each ray, following the Z–X–Z convention on the Eu-
ler’s angles. Each rotated object is by default placed
outside the aggregate. Then a coarse inward movement
along the ray is performed until the overlapping of the
sphere-composite representations of the aggregate and
the ith particle happens. At this stage a finer outward
movement along the ray is done until there is overlap
between the spheres. The two-step process guarantees
faster movements when the objects are far away and a
fine tuning when they overlap.

6. Contact dynamics. The contact dynamic assumes an
instantaneous sticking when the intersection of the
spheres is no longer present (see step 5). This means
assuming that the relative kinetic energy is completely
dissipated at the moment of impact, with no rearrange-
ment of the already existing structure. For each ith par-
ticle a total of Nr×No configurations are tested but we
only take the one that minimizes the distances between
the CM of the aggregate and the particle. This is equiv-
alent to assume that among the Nr×No configurations
the inward force and the torque oriented the particle in
such a way to minimize this distance.

2.2 General overview of the code

In the following we present a general description of the
two main functions fromStlToSpheres and mainSCARLET,
which are respectively responsible for creating the sphere-
composite representation of the single shapes and build-
ing the virtual aggregate (Fig. 1). For further details on
how to use the code we wish to direct the interested
reader to the dedicated user guide at the GitHub link: https:

//github.com/EduardoRossiScience/SCARLET (last access:
14 July 2021) (and also at the Zenodo repository:
https://doi.org/10.5281/zenodo.4675770, Rossi, 2021). In
Table 3 we summarize the main parameters used in the code.

2.2.1 The pre-processing code fromStlToSpheres

The pre-processing code fromStlToSpheres translates a given
3D STL volume into a random set of nonoverlapping spheres.
The STL standard describes any closed surface with a trian-
gulation of vertices and faces. Vertices are expressed as a
matrix with three columns and a number of rows equal to the
number of verticesNv. TheNv vertices are points distributed
along the surface of the STL shape (Fig. 3a, d). Faces are in-
stead described by a matrix of three columns and Nv

3 rows;
each row contains three integers reporting the corresponding
vertices involved in the creation of the face.

The fromStlToSpheres function generates a random point
Pr inside the 3D surface using the function inpolyhedron.
This operation is repeated until Pr is generated outside an
existing sphere. Then we find the closest point Pn among all
the vertices of the triangles (see Fig. 3a, d) and the centers
of already placed spheres. If Pn ∈Nv, the radius of the new
sphere is PrPn; in contrast, if Pn is one of the already placed
spheres, the radius is PrPn minus the radius of the sphere
whose center is Pn. In conclusion, the newly placed sphere
will be tangent to the STL surface or to another sphere.

In Fig. 3 fromStlToSpheres is applied to two different vol-
canic particles: Fig. 3a and d illustrate the vertices of the
triangles of the STL volume. In Fig. 3b and e, both vol-
canic particles have been filled with Nsph = 300 spheres. In
Fig. 3c and f the reduction of the spheres is obtained by set-
ting Oext = 1, a Boolean variable that allows eliminating the
internal spheres.

Figure 4 shows some applications of the pre-processing
routine to different shapes, each of them characterized by a
different degree of complexity, such as convexity of the shape
and volume. The scaling of the object produced by fromStl-
ToSpheres is the same as the one contained in the original
STL file (expressed in a.u.). No modification is done at this
stage. The function mainSCARLET will rescale the core and
the coating according to vector defined by the user (i.e., dcore

max
and d imax).

As an example, let us assume that we want to create a
virtual aggregate made of three different shapes: a T-Rex
shape for the core and a cone and an ellipse for the coating
(see Fig. 2). The pre-processing code must be executed three
times, one for each STL file. In the MATLAB command
window we type the following.

[core_spheres, core_fv] = fromStlToSpheres
(volcanic_particle.stl, 300, 3, 0, 1);
[coating1_spheres, coating1_fv] = fromStlToSpheres
(ellipse.stl, 300, 3, 0, 1);
[coating2_spheres, coating2_fv] = fromStlToSpheres
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Figure 1. General scheme of SCARLET-1.0: (a) the pre-processing code fromStlToSpheres and (b, c) the main function mainSCARLET. The
pre-processing code is needed to convert each 3D shape into a set of nonoverlapping spheres. The function fromStlToSpheres produces two
output structures for each STL file, out_st and fv, which must be assembled into a new structure, input_st, as shown here; input_st represents
the unique external input for mainSCARLET. A set of internal inputs control the details of each simulation, such as the number of coating
particles involved, their sizes, and the degree of packing.

Figure 2. Example showing how SCARLET-1.0 creates a loosely packed aggregate made of 20 ellipsoids and cones of different sizes around
a central object (a T-rex).

(cone.stl, 300, 3, 0,1);

Each time that fromStlToSpheres is executed two dis-
tinct structures are produced as output in the workspace. In
core_spheres, coating1_spheres, and coating2_spheres, the
information relative to the spheres is stored. In core_fv, coat-
ing1_fv, and coating2_fv, the information is relative to the
triangulation of the STL surface (i.e., faces and the vertices).

This operation needs to be done only once for each shape: all
the structures can be saved for further simulations.

The input structure for mainSCARLET (input_ struct in
the example) must be assembled at this stage by simply
typing the following in the command window.

input_struct (1).fv = core_fv;
input_struct (1).sphere_struct = core_spheres;
input_struct (2).fv = coating1_fv;
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Figure 3. Application of the pre-processing routine fromStlToSpheres to two different volcanic particles. Blue points in (a) and (d) represent
the vertices of the triangles used to define the 3D surfaces, as present in the original STL files. Panels (b) and (e) illustrate the final process
of filling the volumes with 300 spheres placed randomly inside the objects. Panels (c) and (f) show the most external spheres obtained using
the built-in MATLAB function boundary.

Figure 4. Application of the pre-processing routine fromStlToSpheres to objects characterized by different surfaces (i.e., convex hulls or not)
that will be used in this paper: (a) a toy character, (b) a T-rex, (c) an ellipsoid, (d) a snowflake, and (e, f) two different volcanic particles.
No scale has been reported for this image since it is not important for the pre-processing. In fact, all the objects will be rescaled by the main
SCARLET function.

input_struct (2).sphere_struct = coating1_spheres;
input_struct (3).fv = coating2_fv;
input_struct (3).sphere_struct = coating2_spheres;

The first element of input_struct will be assigned to the
central core. The other shapes will be assigned randomly to
the coating particles. The structure input_struct is the unique
external input required by mainSCARLET that is now ready
to be used.

2.2.2 mainSCARLET

The mainSCARLET function creates virtual aggregates from
the available set of shapes contained in the input structure de-
scribed in Sect. 2.2.1. It is composed of two distinct blocks
(Fig. 5): the first one assigns a 3D shape to the ith object of
the vector of Np coating particles; then it scales the shape
and the inner spheres in order to make the maximum size
of the STL of the ith object equivalent to d imax. The second
block places the ith object around the inner core, whose cen-
ter of mass (CM) is coincident with the origin of the axes.
The first shape of the input structure is assigned by default to
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Figure 5. Scheme followed by SCARLET-1.0 for particle placing. (a) The first part of the algorithm whereby shapes are randomly assigned
to each coating particle and scaled to the actual particle size is shown. (b) The series of five nested loops that control the particle placing is
presented.

the core, and it is scaled to have the maximum length of the
STL equivalent to dcore

max .
The algorithm for particle placing is based on five main

loops.

– Loop 1 (for i = 1 to Np). For each coating particle the
code generates a cone of aperture � with respect to the
unit vector v̂, which is randomly and uniformly oriented
on the surface of a unitary sphere. The center of the cone
can be placed at the CM of the core or at the center of
one of the spheres of the sphere-composite representa-
tion of the aggregate, according to the user specifica-
tions. In the case of a central core whose CM is outside
the STL file, the second option is activated by default.
The angle � is measured in degrees with respect to the
central axis of the cone (i.e., �= 0◦ coincides with v̂).
Large values produce a wider exploration of the surface
of the aggregate before placing the coating particle; in
contrast, small values of � generally produce loose ag-
gregates. The user can also fix a preferred direction for
the cone for all cases in which collisions occur along
a preferential direction. We will not make this assump-
tion in the rest of the paper, assuming that the collisions
described come from a fully isotropic turbulence with
random angles of collisions.

– Loop 2 (for j = 1 to Nr). Nr rays are generated within
the ith cone. The code computes the most external in-
tersection point Pe of each ray with the spheres already
placed in the aggregate.

– Loop 3 (parallelized, for k = 1 to No). The shape is ran-
domly rotated No times in the space along three angles
[ϕθψ], according to the Euler rotation matrix (Z–X–Z
convention). This loop is parallelized using parfor.

– Loop 4. This loop moves the ith particle inwards start-
ing from the position Pe+ 1.1 ·Di along the direction

of the j th ray. It stops when at least one intersection
is counted between the spheres of the coating particle
and the aggregate. The inward motion is a coarse and
fast displacement of the particle. The step-size of this
movement is defined as a fraction fc1 of the particle size
(suggested values fc1 = [0.01− 0.001]).

– Loop 5. This loop moves the particle outwards from the
last location reached in loop 4. It stops when the inter-
section of the spheres belonging to the aggregate and
the coating particle is empty. The step size fc2 of the
outward movement is finer than fc1 (suggested values
fc2 = [0.01− 0.0005]).

For a given ray within the cone, SCARLET-1.0 determines
the rotated particle that has the minimum distance between
the CM of the coating particle and the aggregate (Fig. 8). Fi-
nally, it selects the coating particle that among all the rays has
the minimum distance with respect to the CM of the aggre-
gate. Therefore, the ith coating particle will be placed after
two minimization processes: the first one over all the rota-
tions per ray and the second one over all the rays.

The mainSCARLET function produces two types of out-
puts: (i) three figures respectively showing the 3D image of
the final aggregate, the external volume Vext used for the cal-
culation of the porosity, and the points used to determine the
external volume itself; and (ii) output structures that contain
the mass, density, porosity, size, external volume, and sum
of the inner volumes of its components V iint. Finally, main-
SCARLET generates in the root folder the STL file of the
aggregate structure.

The calculation of the aggregate porosity requires some
additional clarification here because it can vary according to
the definition of Vext. In SCARLET-1.0 the determination of
the aggregate porosity is done under the assumption that the
Vext is the convex hull formed by the outermost points of
its sphere-composite representation. This choice is a com-

https://doi.org/10.5194/gmd-14-4379-2021 Geosci. Model Dev., 14, 4379–4400, 2021



4386 E. Rossi and C. Bonadonna: SCARLET-1.0

Figure 6. (a) Definition of the cone of exploration. The � angle (degrees) is zero along the central axis of the cone. (b) Cone, rays, and
rotations associated with the placing of one single coating particle. In the figure, the cone is coincident with the center of mass of the core.
However, the user can modify the Boolean variable closet.origin_in_the_CM in order to make the center of the cone coincident with one of
the spheres of the sphere-composite representation of the STL file.

Figure 7. Coarse inward movement and fine outward tuning associated with loop 4 and loop 5, respectively.

promise between what has been observed in nature for PC3
aggregates (Bagheri et al., 2016; Gabellini et al., 2020) and
the aim of reduced complexity in the algorithm. All the V iint
values are directly calculated from the surface of the scaled
STL shape using the divergence theorem (Suresh, 2021). A
unique density ρp is assigned to the monomers. The particle
packing τ is evaluated according to Eq. (1).

τ =

∑Np+1
i=1 V iint
Vext

(1)

The aggregate porosity φagg and density ρagg can then be
easily quantified as

φagg = 1− τ, (2)
ρagg = ρp · (1−φagg). (3)

Finally, the characteristic size Dagg assigned to the aggre-
gate is the sphere-equivalent diameter calculated as the di-

ameter of a sphere with the same external volume of the ag-
gregate (Eq. 4).

Dagg =

(
6
π
·Vext

)1/3

(4)

The algorithm takes advantage of the MATLAB built-in
function convexHull, which is applied to the set of most ex-
ternal points among those describing the sphere-composition
representation of the aggregate. Using points that belong to
the sphere-composite representation instead of the STL file is
a consequence of the need to increase the number of points
generally used to define the external surface of objects in-
volved in the aggregate. For a single STL characterized by
a large number of facets and points, the use of a sphere-
composite representation can lead to larger approximations
in the determination of the porosity (or density). However,
the code has not been designed for single particles, and the
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Figure 8. Example of the minimization process over two rotated particles. The selected particle is the one with minimum distance with
respect to the center of mass of the core.

error gets relatively less important for aggregates. In fact, in
these cases, what matters is how well the convex surface as-
sumption describes the actual overall bulk volume of the ob-
ject, more than the error in the single component. In any case,
proper use of fromStlToSpheres is always preferred to obtain
the desired sphere-composite representation of the irregular
shape.

3 Results

3.1 Testing the model

3.1.1 Porosity evaluation using the convex-hull
approximation: a comparison with analytical
results

As outlined in Sect. 2, the porosity of an aggregate is always
dependent on the surface that is used to define the exter-
nal volume of the object. In SCARLET-1.0 the use of the
convex-hull approximation is suitable for central collisional
processes that result in roughly spherical aggregates, such as
the PC1 and PC3 recently observed in the field (Bagheri et
al., 2016; Gabellini et al., 2020). However, it can lead to an
overestimation of the porosity for structures that are poorly
approximated by a convex geometry, such as fractal-like ag-
gregates. In all these cases the porosity should be considered
as an upper-bound limit.

In order to investigate the accuracy, we compared the
porosity computed by the algorithm with those belonging
to particular aggregate configurations or single objects for
which analytical results are given in the literature. In Fig. 9a
and b the comparison is made with respect to a classical con-
figuration of sphere packing (e.g., the cannonball problem;
Lucas, 1883). For these convex shapes the porosity difference
is about 7 %–12 %, with a dependency on the number of in-
ner spheres used to describe the shapes. In general, the higher

the number of spheres, the higher the evaluated porosity. This
is a consequence of a more accurate representation of the
original structure. However, for a fixed number of spheres,
the approximation is also dependent on how many points de-
fine the STL triangulation and from Niter (i.e., how large the
spheres are). In Fig.9c and d we calculate the porosity of the
fractal shape known as “Menger’s sponge”, respectively ob-
tained with n= 2 and n= 3 recursive iterations with Open-
SCAD (Hellweg et al., 2013), for which the porosity can be
calculated as a function of the recursive step n (Sergeyev,
2009): φn = 1− ( 20

27 )
n. For n= 2 and n= 3 the theoretical

values are φ2 = 45.1 % and φ3 = 59.4 %. In our test we over-
estimated φ2 and φ3 by about 14 % and 4 %, respectively.

Lastly, Fig. 9e shows a non-convex L-shaped aggregate
made of eight spheres. If the user-defined external volume
is the one related to the void filling the space between two
close spheres, this is equal to Fig. 9a (i.e., 48 %). In this case
SCARLET-1.0 considers the convex surface that contains the
spheres, which is close to the one defined by the triangular
surface as the base and one sphere diameter as the height.

3.1.2 Porosity for aggregates made of spheres and
ellipsoids and comparison with the maximum
packing

Research on maximum packing has always shown an inter-
est in mathematics and other practical applications (Hales,
2005; Man et al., 2005; Farr and Groot, 2009). As is evident
from Eq. (1), porosity and packing are oppositely related: a
larger packing will reduce the porosity of the aggregate and
vice versa. Even if SCARLET-1.0 had not been specifically
designed for research on maximum packing, it is somehow
interesting to test the algorithm with respect to this branch
of investigation, for which analytical limits are provided ac-
cording to the shape of the single components under analysis.
In this paragraph we will evaluate the packing τ of spheres
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Figure 9. Evaluation of the accuracy in the determination of the porosity using the convex-hull surface of the most external points of the
sphere-composite representation of structures for which the porosity is given. (a) Spheres packed with a theoretical 48 % porosity. (b) Spheres
packed with a 26 % theoretical porosity. (c)–(d) Examples of Menger’s sponge respectively obtained with two and three recursive processes.
(e) L-shaped deposition of spheres for which the porosity is the same as in (a). The maximum theoretical porosity is evaluated considering
the solid whose base is the L-shaped rectangular triangle and the height one sphere diameter.

and ellipsoids with principal axis ratios of a1 = 1.25, a2 = 1,
and a3 = 0.8, for which the theoretical values of the maxi-
mum packing τ are available in the literature (see Fig. 2 of
Man et al., 2005). This particular choice of the principal axes
constrains the value of flatness f = a3

a2
= 0.8 and elongation

e = a2
a1
= 0.8. In our simulations we fix a1 = 10 a.u. (arbi-

trary units), and we derive a2 and a3 from f and e (e.g.,
a2 = 8 a.u. and a3 = 6.4 a.u.). The average radius of the el-
lipsoid is defined as a = (a1 · a2 · a3)

1/3, and with R we in-
dicate the radius of a sphere with the same external volume
of the overall aggregate. The goal of the test is to relate the
computed values of τ to the initial setup adopted in each sim-
ulation for solid angles, the number of rays, and the number
of rotations, i.e., �, Nr, and No, respectively,. Virtual aggre-
gates created in this test are made of identical particles with
the same size. Packing is displayed in Fig. 10 as a function
of the dimensionless parameter γ = a

R
. A variable number

of particles between a minimum of 10 and a maximum of
1000 has been used in all the simulations in order to achieve
different values of γ .The results presented in Fig. 10 show
that the condition of maximum packing for ellipsoids can
be easily reached only for values of γ > 0.3. For values of
γ < 0.3 a larger number of rays must be adopted to reach the
same degree of packing. For spheres and for the conditions
analyzed in this example, the maximum packing is reached
for γ > 0.1. As expected and clearly shown for spheres, the

increase in the number of rays is not linearly related to the
decrease in γ or to the increase in τ . In the search for the
maximum packing, it seems that a large number of rays can
have larger benefits with respect to the increase in the number
of rotations, at least for the shape analyzed in this example.
In addition, we notice that for spheres the minimum value
for packing τ is about 20 %, a value that corresponds to a
maximum porosity of 80 % (see Eq. 1). This threshold can
be considered a good estimation of the maximum value for
porosity reachable by means of the SCARLET-1.0 algorithm.

3.2 Application of SCARLET-1.0 to packing problems

In this section two examples of possible applications of
SCARLET-1.0 to different scientific problems are discussed.
In the first example the attention is focused on the study of bi-
nary collisions of generic ellipsoids, i.e., aggregates made of
just two particles. In particular, the goal here is to determine
how the porosity of the final product depends on the flatness
and elongation of the ellipsoids and their relative sizes. El-
lipsoids are often used to approximate complex shapes; this
application is thus of general interest for different scientific
topics, such as particle sedimentation and particulate trans-
port. In the second example, SCARLET-1.0 is instead ap-
plied to the investigation of how the porosity evolves in time
for volcanic ash aggregates. In this application, parameters
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Figure 10. Packing τ of spheres and ellipsoids for different values of solid angles, numbers of rays, and numbers of rotations, i.e.,Nr,�, and
No, respectively. The red line indicates the maximum packing for ellipsoids with axes with a ratio of (1.25 : 1 : 0.8). The black line indicates
the maximum theoretical packing for spheres. The number of monomers used in the test varied from 10 to 1000. Red dots are simulations
made for ellipsoids, and black dots are for spheres. The red brackets show the values of Nr,�, and No used for a single simulation; the black
brackets show the values of Nr and �, since no rotation of the shape is investigated for spheres. All the values are expressed as a function of
a/R, where a is the average radius of the ellipsoid or sphere, and R is the radius of the sphere with same external volume of the aggregate.

of real volcanic aggregates are used to constrain the free pa-
rameters of the algorithm (�, Nr, No) and to draw important
conclusions on the evolution of these objects.

3.2.1 Porosity for particle–particle collision of two
generic ellipsoids

A collision of two distinct bodies is always the initial seed
for binary aggregation processes (Jacobson, 2005). The ag-
gregate will then evolve in time, building up its own struc-
ture collision after collision and particle by particle. It is
thus worth understanding the details of this initial stage, es-
pecially concerning how the 3D space is respectively filled
by matter and voids. SCARLET-1.0 can be easily adapted
to this problem, and an arbitrary number of colliding shapes
can be investigated in theory. However, in this section we
limit our attention to particle–particle collisions of ellipsoids
due to their vast application in science as an approximation
of much more irregular shapes (Bagheri et al., 2015). In this
application we are interested in studying how the porosity
φagg changes as a function of particle size ratios and their
orientation in space. Here, as in the rest of the paper, the ex-
ternal volume for the calculation of φagg is defined by the
convex-hull surface that bounds the two ellipsoids involved
in the collision (Fig. 11b, c). This is equivalent to studying
the maximum porosity that can exist between two single and
non-vesiculated ellipsoids.

An ellipsoid is fully characterized by the knowledge of its
three principal axes L, I , and S (where L≥ I ≥ S). Here we

Figure 11. (a) The flatness elongation plane (FE plane) and the as-
sociated shape of the investigated ellipsoid. The red labels in the
figure are introduced to characterize each particle–particle collision
univocally. Panels (b) and (c) show some examples of how the ex-
ternal volume is defined in this application (i.e., the convex-hull vol-
ume that contains the two objects).

describe the intermediate and smallest axes, I and S, respec-
tively, in terms of flatness f and elongation e (I = L · e and
S = L · e · f ). This formalism allows describing the shape of
any given ellipsoid as a single point in the flatness elonga-
tion plane (FE plane), as shown in Fig. 11, where 16 dif-
ferent ellipsoids have been created with OpenSCAD (https:
//www.openscad.org/, last access: 14 July 2021) to map the
FE plane. When two ellipsoids collide, the resulting poros-
ity φagg is also affected by the relative dimensions of the
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Figure 12. Porosity of two colliding ellipsoids of the same shape as a function of the size ratio rL. The setup used in SCARLET-1.0 for these
simulations is �= 1◦, Nr = 1, and No = 1. The pairs of numbers in the brackets refer to the shapes labeled in Fig. 10 The shaded area is the
outcome of five simulations.

two objects, i.e., the size ratio rL, described here in terms
of the ratio between the major principal axes

(
rL =

Lc
Lp

)
,

where the subscripts “c” and “p” indicate the central object
and the colliding particle, respectively. It is worth noting that
in general rL is related to the ratio of the equivalent diame-

ters deq = (LIS)
1/3 as follows: rd =

dc,eq
dp,eq
= rL ·

(
e2

c fc
e2

pfp

)1/3

,

which simplifies to rd = rL in the case of particles with the
same flatness and elongation.

In this section we limit our attention to collisions of ellip-
soids with the same shape but different size ratios rL. Two
different packings have been investigated five times: a loose
packing (setup 1), for which �= 1◦, Nr = 1, and No = 1
(Fig. 12); and a much denser packing (setup 2), for which
�= 90◦, Nr = 30, and No = 10 (Fig. 13). In Figs. 12 and 13
the pairs of numbers in brackets refer to the red labels in
Fig. 11, which are used to identify the shapes involved in the
collisions.

A few comments can be made on the results reported in
Figs. 12 and 13. Firstly, the loose packing generally shows
significantly more variability than the dense one (shaded ar-
eas in the figures), as is expected given that setup 1 com-
pletely depends on the initial random orientations of the bod-
ies and the initial direction of collisions. Increasing the size
ratios of the two objects or reaching the limiting case of a
sphere (f → 1, e→ 1), the variability goes to zero. Sec-
ondly, we notice that for collisions of particles of the same
size ratio, where f ≥ 0.5 and e ≥ 0.5, the final porosity of
the aggregate approaches φagg ≈ 20 %, which corresponds to

the analytical solution of two contacting spheres of the same
size (as also confirmed by the simulations (16;16)).

Interestingly, if the shape of the objects is not character-
ized by extremely low values of elongation or flatness (e.g.,
less than 0.5), the threshold of 20 % represents a maximum
value for porosities regardless of the size ratios involved in
the collision, as clearly shown in Figs. 12 and 13. Scenarios
become more complicated if flatness or elongation (or both)
is less than 0.5 (i.e., needle-like or extremely flat objects): in
all these cases we notice a dependence from the initial setups
used in SCARLET-1.0 and, in general, higher values of the
porosities with respect to the previous cases. As an example,
for shapes labeled as (1;1) and rL = 1, setup 1 gives a poros-
ity of φagg = 0.52± 0.13 compared to φagg = 0.42± 0.09 of
setup 2. This last value is consistent with φagg = 0.44± 0.08
obtained by averaging 30 runs with the setup �= 90◦, Nr =

60, and No = 30.

3.2.2 Porosity of volcanic ash aggregates as a function
of the aggregation stage

The term volcanic ash aggregation refers to the formation in
the atmosphere or within a volcanic plume or cloud of ag-
glomerates from tens of micrometers to a few millimeters
in size due to the collision of smaller particles with a di-
ameter generally less than 100 µm (Brown et al., 2012). As
recently observed during the 2010 Eyjafjallajökull eruption
(Iceland), volcanic ash aggregation plays a major role in ash
sedimentation, as it affects the particle residence time in the
atmosphere and potentially leads to an overestimation of ash
concentrations in the atmosphere if it is underestimated in
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Figure 13. Porosity of two colliding ellipsoids of the same shape as a function of the size ratio rL. The setup used in SCARLET-1.0 for these
simulations is �= 90◦, Nr = 30, and No = 10. The pairs of numbers in the brackets refer to the shapes labeled in Fig. 10. The shaded area
is the outcome of five simulations.

forecast models (e.g., Bonadonna et al., 2011; Durant, 2015).
Unfortunately, despite its importance, many questions still
remain open due to the complexity of the processes involved
(Durant, 2015). A key factor is, for example, the porosity
of volcanic ash aggregates, which strongly affects the sedi-
mentation process and the residence time in the atmosphere.
This parameter can be derived from field observations of the
terminal velocity of the object before impact on the ground.
However, field observations are difficult to obtain, and, in any
case, they can only provide the porosity of the final structure
of the aggregate, with no information about its evolution in
time. In this section we apply SCARLET-1.0 to study the
porosity evolution of volcanic ash aggregates, expressed as
a function of the time, shapes, and grain size distributions
involved in the process.

Here we apply our algorithm to the reconstruction of two
specific aggregates associated with two different eruptions:
the sample labeled as 27Sk21 belongs to the eruption that
occurred on 3 August 2013 at Sakurajima volcano (Japan)
(Bagheri et al., 2016); the sample EJ15 belongs to the erup-
tion that occurred on 5 May 2010 at Eyjafjallajökull volcano
(Iceland) (Bonadonna et al., 2011). Sample 27Sk21 was ob-
served with a high-speed camera and was collected on an
adhesive tape later analyzed with a scanning electron mi-
croscope (SEM); as a result, size and density could be de-
rived before the impact on the adhesive tape from high-speed
videos, while the grain size distribution could be derived
from image analysis of the material collected on the adhe-
sive tape (Bagheri et al., 2016). On the other hand, no high-
speed video is available for aggregate EJ15; as a result, only

the grain size distribution and a rough estimation of its size
(about 200 µm) could be derived from the material left on the
adhesive tape (Bonadonna et al., 2011).

The aggregates 27Sk21 and EJ15 were characterized as a
cored cluster (i.e., Particle Cluster 3 – PC3) and ash clus-
ter (i.e., Particle Cluster 1 – PC1), respectively (Bagheri et
al., 2016; Bonadonna et al., 2011). PC1 represents clusters
of ash particles with roughly all the same sizes of about 20–
50 µm (Brown et al., 2012), whereas PC3 types are charac-
terized by the presence of an inner single object larger than
200 µm that has been coated by hundreds of smaller ash par-
ticles (Bagheri et al., 2016).

SCARLET-1.0 requires a vector of sizes as an input to lo-
cate the coating particles around the core, i.e., the detailed
grain size distribution forming the aggregate to be recon-
structed. However, large uncertainties are expected to affect
the measured grain size distribution due to (i) the mass lost
in the air after the impact of the aggregate with the adhesive
tape, (ii) the mass lost during the transport of the samples
from the field location to the laboratory, and (iii) the over-
lapping of particles in the SEM images of the coating, which
lead to a loss of information derived from the 2D representa-
tion of a 3D structure.

For aggregate 27Sk21, for which a constraint on size and
density is available from the high-speed video, we make the
assumption that all the losses in material only affect the to-
tal mass contained in the original coating population, but not
the relative proportion of particles in each size bin. This is
equivalent to considering the measured grain size distribution
as fully equivalent to the original one, normalized for an un-
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Table 1. Observed features for aggregates 27Sk21 (Sakurajima, Japan) and EJ15 (Eyjafjallajökull, Iceland). For the 27Sk21 sample, aggregate
and core size are observed from high-speed video; the aggregate density is derived based on settling velocity and size from high-speed video.
Aggregate porosity is estimated based on measured particle density and derived aggregate density; core density is measured with a water
pycnometer, and grain size distribution is derived from analysis of SEM images (Bagheri et al., 2016). For sample EJ15, the aggregate
size, core size, and grain size distributions are derived from analysis of SEM images (Bonadonna et al., 2011), while the aggregate density
and porosity are assumed based on the literature (Brown et al., 2012; Gabellini et al., 2020), and the core density is estimated based on
a combination of a helium pycnometer and a theoretical relation with size (the reported value is the average for sizes less than 40 µm;
Bonadonna et al., 2011).

Seed size Aggregate
Aggregate Aggregate Aggregate (i.e., the core) density Core density Aggregate Grain size
name type size (µm) (µm) (kg m−3) (kg m−3) porosity distribution

27Sk21 PC3 635± 50 270 310± 50 2500 0.86± 0.04 Yes
EJ15 PC1 ≈ 200 ≈ 40 60–500 2528 0.80–0.97 Yes

(from the literature)

Figure 14. Ellipsoids used to characterize coarse (a) and fine (b)
ash in the virtual reconstructions.

known constant. The normalization constant is then derived
by matching the size and density of the virtual aggregate to
those derived from field observations.

Volcanic ash particles are characterized by a variety of ir-
regular shapes for which the STL representation of the sur-
faces is usually not available (an example of an aggregate
made of real 3D scanned volcanic particles is presented in
Fig. A1 of the Appendix). Here, in the absence of the ac-
tual shape of the single particles in the coating, we decided
to approximate particles as ellipsoids. This choice is related
to the observation that the drag of irregular particles can be
sufficiently well described in terms of equivalent ellipsoids
(Bagheri and Bonadonna, 2016). Moreover, we follow the
simplified approach of classifying the coating population as
two distinct classes, i.e., coarse (between 63 and 2000 µm)
and fine (≤ 63 µm) ash, each of them characterized by a sin-
gle specific ellipsoid as displayed in Fig. 14.

The two ellipsoids for coarse and fine ash are defined in
terms of the three principal axes, derived by averaging the
L, I , and S values of particles with sizes ≤ 63 µm and be-
tween 63 and 2000 µm from ash samples from the 2010 Ey-
jafjallajökull volcano (Iceland) (Table 2). These ellipsoids
are used here to represent coarse and fine ash for both sam-
ples EJ15 and 27sk21. The actual size of the ith particle,
d ieq = (LiIiSi)

1/3, is used to scale the STL shape and to cal-

culate the maximum length of the ith ellipsoid L= αβd ieq
(where α = L/I and β = L/S) as required by SCARLET-
1.0 (see Sect. 2.3).

In this virtual reconstruction we aim to reproduce the ob-
served diameter of the aggregate (675 µm) and its final den-
sity (310 kg m−3) (Table 1) under the assumption that the
measured grain size in Fig. 15b can be replicatedNA times in
order to compensate for the expected mass loss. Single parti-
cles are assumed to have a density of 2500 kg m−3 (Bagheri
et al., 2016). In our reconstruction particles below 32 µm in
size are not taken into account in order to optimize the com-
putational efficiency without affecting the final result. As a
matter of fact, given that the volume scales as the third power
of diameter, smaller particles add second-order contributions
to the final packing. Several combinations of the solid angle
�, number of raysNr, and number of Euler rotationsNo have
been tested. However, only a loose packing (e.g., �= 1◦,
Nr = 1, No ≤ 5) and NA = 6 can approximately reproduce
the observed features, which are characterized by a porosity
larger than 80 % and an aggregate-to-core ratio of ≈ 3 (see
Table 1). In Fig. 16 the variation of aggregate porosity is dis-
played as a function of collisions for four different scenarios:
ellipsoids whose sizes are randomly picked from the grain
size distribution (i.e., random displacement; blue line), ellip-
soids sequentially located from the largest size to the smallest
one (i.e., sequential displacement; red line), spheres whose
sizes are randomly picked from the grain size distribution
(black line), and spheres sequentially located from the largest
size to the smallest one (i.e., sequential displacement; green
line). Each line is the average of five repetitions, and the final
size of the virtual aggregate is ≈ 600 µm.

The second object to be reconstructed is the PC1 aggre-
gate EJ15, which was collected on an adhesive tape during
the 2010 Eyjafjallajökull eruption (Iceland) (Bonadonna et
al., 2011). The reconstruction is strongly affected by the lack
of high-speed video, which does not allow us to characterize
the aggregate size and density before impact with the adhe-
sive paper. Therefore, in this application we simply focus on
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Table 2. Geometrical features of the ellipsoids used to simulate fine and coarse ash. L, I , and S are the average of 2010 Eyjafjallajökull
(Iceland) samples for particles with sizes ≤ 63 µm (fine ash) and between 63 and 2000 µm (coarse ash).

L axis (µm) I axis (µm) S axis (µm) αL
I

β = L
S

Coarse ash ellipsoid 158.0 138.7 116.4 1.1 1.4
Fine ash ellipsoid 28.9 24.0 11.1 1.2 2.6

Figure 15. (a) SEM image of the coating particles relative to the aggregate 27sk21 (the big core escaped from the tape). (b) Grain size
distribution derived from the SEM image (Bagheri et al., 2016). In the present work we did not use particles below 32 µm in size; this allows
optimizing the computational efficiency without affecting the final result (since the volume scales as the third power of diameter, smaller
particles add second-order contributions to the final volume).

the time evolution of the porosity for different configurations
of �, Nr, and No, keeping the grain size distribution equiva-
lent to the one observed by Bonadonna et al. (2011) (i.e., no
assumption has been made on the mass loss). In addition, the
same ellipsoids reported in Table 2 have also been used for
this application. The results of different simulations are re-
ported in Fig. 17, together with the 3D visualization provided
by SCARLET-1.0. In the following we refer to the setup with
�= 50◦,Nr = 30, andNo = 10 as “tight packing” and to the
setup with �= 1◦, Nr = 1, and No = 1 as “loose packing”.

The range of final porosities spans from a maximum value
of about 73 %–76 % for the loosest packing down to 30 %
for the tight packing with �= 50◦, Nr = 30, and No = 10.
If we compare the curves in Fig. 17 with values of porosities
reported in the literature for PC1 aggregates of≈ 80 %–97 %
(Brown et al., 2012; Gabellini et al., 2020; Table 1), we can
deduce that only the loose packing can realistically reproduce
the observed features; such is the case for the PC3 aggregate.

Finally, it is important to notice how the plateau in porosity
for EJ15 is reached roughly after the same number of colli-
sions (≈ 50–70 collisions) for both the tight and loose pack-
ing.

Figure 16. Evolution in time of the porosity for the aggregate
27Sk21, classified as PC3 from field observations and high-speed
videos (Bagheri et al., 2016). The final reconstruction of the ag-
gregate is reported in red within the frame of the figure for both a
sequential and a random displacement of the coating particles. The
core size – not visible in the figure – is 270 µm wide. The final size
of the object matches the observed one (≈ 670 µm). The shaded area
represents 68 % confidence around the mean over five repetitions.
The angle � is expressed in degrees.
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Figure 17. Time evolution of the porosity for aggregate EJ15 (PC1), collected during the 2010 Eyjafjallajökull eruption (Iceland) (Bonadonna
et al., 2011). The virtual reconstructions are based on the same ellipsoids in Fig. 13. The shaded areas represent 68 % confidence around the
mean over five repetitions. The angle � is expressed in degrees.

4 Discussion

4.1 SCARLET-1.0: general comments on the
operational use

SCARLET-1.0 has been specifically designed for the sim-
ulation of aggregation of complex shapes. In order to treat
the intersection problem between colliding objects, the al-
gorithm takes advantage of the sphere-composite representa-
tion of a body. This means that if a given shape is described
in terms of Nsp spheres and if Np particles collide, the final
aggregate will be described as Nsp×Np spheres. Given that
the intersection is evaluated for each step in the inward and
outward movement before placing each single particle (see
Fig. 5), the use of a large number of spheres combined with a
large number of particles can significantly increase the com-
putational time of the package. As general advice, we recom-
mend appropriate use of the pre-processing code fromStlTo-
Spheres and the Boolean variableOext to find a good balance
between an accurate description of the shape and a reduced
number of spheres, i.e., faster computational times.

An important point that the user should always consider
is how the parallelization of the algorithm works. The par-
allelization of the code is based on the execution of simul-
taneous for-loop iterations on the different available threads
using parfor. However, MATLAB does not allow for nested
parallel loops, which results in a parallelization that can only
be performed at one level. As shown in Fig. 5, in the present
release of SCARLET-1.0 this occurs inside the loop dedi-
cated to describing particle rotations along a single ray. This
means that if few rotations are set in the simulation the par-
allelization will not substantially speed up the code.

As outlined in the Introduction, SCARLET-1.0 has been
created to simulate central collisional processes, in which
particles collide from random directions and find their final
location after spanning a given solid angle �. This occurs in
different natural phenomena than the ones discussed in the
previous examples and in the Introduction. According to the
setup imposed by the external user, the package can simu-
late various degrees of packing by simply changing the solid
angle of investigation (�), the number of rays (Nr), and the
number of rotations (No). Concerning the maximum pack-
ing, Fig. 10 shows that objects characterized by a particle-to-
aggregate size smaller than 0.17–0.25 require more computa-
tional efforts to match the maximum packing condition than
aggregates with smaller sizes or larger components (at least
for the shapes investigated). In these cases, the use of mul-
tiple processors allows having a large number of rotations
tested, which can finally result in a better packing of the ob-
ject in a lower computational time. However, in several ap-
plications of interest, such as the one reported in Sect. 3.2.2,
the maximum packing is not the final aim of the virtual re-
construction and a much less dense packing is required to
correctly mimic the phenomenon under analysis.

4.2 SCARLET-1.0 applied to the study of porosity for
volcanic ash aggregates

In Sect. 3.2.2 we presented SCARLET-1.0 applied to the
study of porosity in volcanic ash aggregates. This is an in-
teresting example of how the algorithm can provide answers
not only about the packing of shapes but also on its evolution
in time, which is information that is usually missing in field
or lab observations. The study has been focused on the virtual
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reconstruction of two specific aggregate structures: PC3 type
(aggregate 27sk21), made of a central object 5 to 10 times
larger than the particle sizes present in the coating; and PC1
type (aggregate EJ15), made of particles with roughly the
same size.

The reconstruction of the PC3 aggregate (Fig. 16) has
shown that the modeled aggregate porosity (≈ 73 %) is al-
most 10 % smaller than the observed one for the same size of
the aggregate. This discrepancy can be due to the approxima-
tions made in the description of particle shapes. An alterna-
tive explanation can suggest the presence of liquid bridges in
the original structure that alter the contact condition between
particles and finally creates a looser packing of the coat-
ing (Gilbert and Lane, 1994). The setup used in the simula-
tion that corresponds to loose packing (e.g., �= 1◦, Nr = 1,
No ≤ 5) describes a particle coming from a random direc-
tion that is randomly oriented and is going to be located on
the surface of the core immediately after the first contact. In
this configuration no minimization is done on the packing
of the aggregate and it should thus reproduce a condition of
maximum porosity for the object. However, the fact that the
observed porosity is even larger than the simulated one could
be interpreted as a violation of the contact condition among
particles as assumed by SCARLET-1.0. This violation is the-
oretically possible if liquid bonds act as a sticking medium
between particles.

The importance of loose packing for the typologies un-
der analysis is also confirmed by the PC1 sample (EJ15), for
which the computed porosity of 73 %–76 % for the loosest
configuration matches the lower bound of porosity reported
in the literature (e.g., 80 %). This work thus suggests that the
condition of maximum packing should not be seen as the nat-
ural tendency in the context of volcanic ash aggregation, at
least for PC1 and PC3 types.

A second important observation concerning the virtual re-
construction of sample 27sk21 is the use of NA = 6 to repro-
duce the observed features of the aggregate. This practically
means that the number of particles analyzed with the SEM
is underestimated by about 1/6 with respect to the original
coating. This implies that the realistic quantification of the
number of particles stuck over the surface of the PC3 ag-
gregate under analysis was probably of the order of a few
thousand.

Concerning the differences between random or sequential
displacement of particles, we notice from Figs. 16 and 17
that random displacement initially produces lower porosities
with respect to a sequential displacement of particles from
large to small sizes. This can be explained by thinking of the
large number of voids that is created when particles of sim-
ilar sizes are packed together. In contrast, smaller particles
can easily fill the voids, resulting in lower porosities. How-
ever, a nontrivial observation from Figs. 16 and 17 is that
the final value of the aggregate porosity weakly depends on
the “history” of the packing as long as the number of coat-
ing particles is wide enough. In addition, Fig. 16 suggests

Figure 18. Evolution of the porosity for aggregates EJ15 (PC1) and
27sk21 (PC3) for the same configuration of SCARLET-1.0 (�=
1, Nr = 1, No = 1). The shaded area represents 68 % confidence
around the mean over five repetitions.

that the use of ellipsoids does not produce remarkable dif-
ferences in the packing with respect to spheres (about ≈ 5 %
in the porosity). As expected, in the case of a loose packing
(i.e., �= 1◦, Nr = 1, No ≤ 5) the use of ellipsoids produces
slightly higher porosities with respect to spheres.

An interesting result emerges when both PC1 and PC3 ag-
gregates are compared on the same plot for the same config-
uration of �, Nr, and No (Fig. 18). It is evident how the PC1
aggregate reaches the plateau in porosity much faster than
the PC3 one. This can be explained by noticing that the pres-
ence of a large core inside the PC3 somehow slows down the
increase in porosity of the object, which takes more time and
more collisions to reach comparable levels of densities. The
consequence of this observation is not only that PC1 objects
can reach low densities faster than PC3 aggregates, but also
that if there is enough time and if there are enough collisions
to let a PC3 aggregate grow, its final density can be as low as
a PC1. In other words, the contribution to the density of an
inner large particle (the core) at its center is diluted in time by
the increasing coating, which finally drops the overall density
down to much lower values than that of the core.

A final aspect that is worth discussing is that in the case
of a sequential deposition of the coating, after reaching the
plateau, the porosity of the aggregate starts decreasing. This
can be explained by the fact that adding fine ash after coarse
ash will not significantly alter the total volume of the ag-
gregate, but this process increases the mass of the aggregate
and reduces the voids. This leads to the observed decrease in
porosity.

4.3 Caveats

4.3.1 Porosity calculation

The determination of the aggregate porosity is based on the
assumption that the external surface that circumscribes the
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Table 3. Main parameters used in the paper and their counterparts in the code.

Variable Name of the input Function wherein
name variable in SCARLET-1.0 it is used Description

dimax closet.vector_coat_sizes_mu mainSCARLET Maximum length of the ith particle

dcore
max closet.core_size_mu mainSCARLET Maximum length of the core

Np closet.N_particles mainSCARLET Number of particles in the coating

Nr closet.N_raysXSA mainSCARLET Number of rays within the cone

� closet.cone_aperture_degree mainSCARLET Angle of aperture of the cone with respect to the central axis (in
degrees)

No closet.N_Euler_triplets mainSCARLET Number of rotations investigated for each ray

Nv – fromStlToSpheres Number of vertices in the triangulation

Nsp N_spheres fromStlToSpheres Number of spheres used in the sphere-composite representation
of the STL

Pn – fromStlToSpheres Closest point to the random generated one in the STL among
the centers of the existing spheres and the vertices of the STL

Pr – fromStlToSpheres Random generated point in the STL

Pe – fromStlToSpheres Starting point for the inward movement

Vext – mainSCARLET Volume of the external envelope used to calculate the aggregate
porosity

V iint – mainSCARLET Volume of the ith particle

τ – mainSCARLET Particle packing

Dagg – mainSCARLET Diameter of a sphere with volume Vext

ρp closet.core_density mainSCARLET Density of the monomers (a.u.)

ρagg – mainSCARLET Density of the aggregate (a.u.)

φagg – mainSCARLET Aggregate porosity

inner components is convex. This choice is motivated by the
aggregate morphology associated with PC-type aggregates in
volcanology. This can also be the case in other applications,
but the user must be aware of this a priori. In fact, this ap-
proach may lead to an overestimation of the porosity in the
case, for example, of fractal-like aggregates for which the
overall fractal dimension is less than 3. In those cases, the
convex-hull approximation can be seen as an upper limit for
the maximum porosity, which converges to the actual poros-
ity for aggregates that are well described by a convex geom-
etry.

4.3.2 Computational efficiency

The computational efficiency of the package in the release
v1 is mostly dependent on four main factors: (i) the step
size used to detect the single collision, (ii) the number of
particles in the coating, (iii) the number of spheres used in
the sphere-composite representation, and (iv) the number of

cores available for the parallelization of the rotations. The
tests performed using a laptop with a processor i7-4600U
CPU (2.10 GHz ×4, two threads in MATLAB parfor) re-
vealed that among all the abovementioned factors the most
critical parameter is fc2, which controls the outward move-
ment of the ith particle. It shows a nonlinear increase in the
computation time in reducing the iteration step. On the other
hand, the computational time increases linearly with respect
to the number of spheres used in the sphere-composite repre-
sentation of the STL, the number of rays in the investigation
cone, and the number of rotations.

4.3.3 Warnings related use of STL files

1. When the center of mass of the core is placed outside the
STL file, SCARLET-1.0 automatically places the cen-
ter of the investigation cone at the center of one of the
spheres that form its sphere-composite representation.
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2. The pre-processing function fromStlToSpheres gener-
ates spheres inside the STL starting from the vertexes
of the triangulation. Some geometrical shapes just need
a reduced number of vertexes to be fully described such
as cubes, cylinders, and tetrahedrons. In these cases, the
user must increase the numbers of points on the sur-
face of the object before running fromStlToSpheres. This
is not always easy and requires some skill in program-
ming.

3. SCARLET-1.0 generates the STL file of the virtual ag-
gregate. This format can potentially be used for 3D
printing. Here we say “potentially” because the success
of the procedure depends on many conditions: the shape
of the aggregate, the degree of overlap of its compo-
nents, the stability of the structure, and the character-
istics of the 3D printer. In some cases, the user should
decrease the tolerances used in the calculation of the in-
tersection between spheres in order to have a more solid
structure suitable for 3D printing. Further tests will be
conducted on this, and on the GitHub page for the soft-
ware new releases and notes will be posted on this in the
future.

5 Conclusions

In this work we presented SCARLET-1.0, a MATLAB pack-
age aimed at simulating volcanic ash aggregates that derive
from central collision processes, starting from an arbitrary
population of sizes and shapes. 3D bodies are approximated
by a set of nonoverlapping spheres, resulting in an analyti-
cal description of their intersections. The code has been de-
signed to investigate the geometric packing of ash aggregates
produced in volcanic plumes or clouds. However, it can rea-
sonably be applied in all applications for which the collision
dynamic is the same as in a volcanic plume (i.e., polydisperse
population in isotropic turbulent flow). The main output of
the code is the final porosity of the aggregate, calculated as
the ratio of the inner voids to the external volume of the ag-
glomerate and the STL file of the structure.

In terms of novelty of the code we can conclude the fol-
lowing.

1. One of the most appealing features of the code is the use
of the STL format to import 3D shapes. The STL stan-
dard is currently one of the most widespread formats in
the community due to its strong connection to the world
of 3D printing. This results in a large availability of soft-
ware to design arbitrary shapes and in the possibility to
import 3D scanned surfaces from real samples.

2. An interesting aspect of the package is the production of
the modeled virtual aggregate as an output of the STL
file. This practically means that the final object can be
3D printed and used in real contexts, such as laboratory
investigations.

3. The external user can easily control the basic aspects of
the algorithm by simply playing with a few parameters,
such as �, Nr, and No, for the minimization process or
Boolean quantities for the computation of porosity in
time.

4. The algorithm can be easily modified for the study of
different problems, such as aggregate–aggregate colli-
sion.

The examples analyzed in the paper show the versatility
of the code and its potential. In terms of the two specific ap-
plications of the code to aggregation processes, we can con-
clude the following.

1. The resulting porosity of an ellipsoid–ellipsoid collision
has a maximum of 20 % for objects of the same size and
with flatness and elongation larger than or equal to 0.5.
Needle-like or flat bodies characterized by flatness and
elongation less than 0.5 can result in higher porosities.

2. The virtual reconstruction of volcanic ash aggregates
shows how PC1 and PC3 types are better represented
in terms of a loose packing in which particles stop their
relative motion after touching. This can be explained by
a very efficient binding mechanism or reduced impact
velocities of the colliding objects.

3. PC1 aggregates can reach high porosities faster than
PC3, i.e., after a lower number of collisions. However,
if a large number of particles can stick on the central
object to form a thick coating, the final porosity of the
PC3 type tends to be similar to the PC1 sample.

4. Random and sequential packing produces differences of
about 10 % in the porosity of the analyzed samples.
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Appendix A

Here we provide examples of virtual aggregates created with
SCARLET-1.0 with different shapes. The goal is to show the
potential use of the algorithm for a large variety of cases.

Figure A1. Virtual aggregates made of different initial STL files: (a) aggregate made from an STL file of a T-rex, (b) aggregate made from
an STL file of snowflakes, (c) aggregate made of real volcanic particles scanned with a 3D laser scanning machine (loose packing), (d) the
same shapes and objects in (c) but with tighter packing, (e) aggregate made using as an STL file the asteroid Castalia, and (f) aggregate made
of toy characters.
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Code availability. The code has been developed for scientific pur-
poses, and it can be freely used if the user has a MATLAB license.
The code is made available at the following Zenodo link for the
revision process of GMD: https://doi.org/10.5281/zenodo.4675770
(Rossi, 2021).

In the future, new updates of the code will be released at the
GitHub page https://github.com/EduardoRossiScience/SCARLET
(last access: 14 July 2021).
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