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Abstract. Near-term climate predictions such as multi-year
to decadal forecasts are increasingly being used to guide
adaptation measures and building of resilience. To ensure
the utility of multi-member probabilistic predictions, inher-
ent systematic errors of the prediction system must be cor-
rected or at least reduced. In this context, decadal climate
predictions have further characteristic features, such as the
long-term horizon, the lead-time-dependent systematic er-
rors (drift) and the errors in the representation of long-term
changes and variability. These features are compounded by
small ensemble sizes to describe forecast uncertainty and a
relatively short period for which typical pairs of hindcasts
and observations are available to estimate calibration param-
eters. With DeFoReSt (Decadal Climate Forecast Recalibra-
tion Strategy), Pasternack et al. (2018) proposed a parametric
post-processing approach to tackle these problems. The orig-
inal approach of DeFoReSt assumes third-order polynomials
in lead time to capture conditional and unconditional biases,
second order for dispersion and first order for start time de-
pendency. In this study, we propose not to restrict orders a
priori but use a systematic model selection strategy to ob-
tain model orders from the data based on non-homogeneous
boosting. The introduced boosted recalibration estimates the
coefficients of the statistical model, while the most relevant
predictors are selected automatically by keeping the coeffi-
cients of the less important predictors to zero. Through toy
model simulations with differently constructed systematic er-
rors, we show the advantages of boosted recalibration over
DeFoReSt. Finally, we apply boosted recalibration and De-
FoReSt to decadal surface temperature forecasts from the
German initiative Mittelfristige Klimaprognosen (MiKlip)
prototype system. We show that boosted recalibration per-
forms equally as well as DeFoReSt and yet offers a greater
flexibility.

1 Introduction

Decadal climate predictions of initialized forecasts focus
on describing the climate variability for the coming years.
Significant advances have been made by recent progress in
model development, data assimilation for initialization and
climate observation. A need for up-to-date and reliable near-
term climate information and services for adaptation and
planning accompanies this progress (e.g., Meredith et al.,
2018). In this context, international (e.g., DCPP, Decadal
Climate Prediction Project WCRP: World Climate Research
Programme, and WCRP Grand Challenge on Near-Term Cli-
mate Prediction) and national projects like the German ini-
tiative Mittelfristige Klimaprognosen (MiKlip) have devel-
oped model systems to produce skillful decadal ensemble
climate prediction (Pohlmann et al., 2013; Marotzke et al.,
2016). Typically, ensemble climate predictions are framed
probabilistically to address the inherent uncertainties caused
by imperfectly known initial conditions and model errors
(Palmer et al., 2006).

Despite the progress being made in decadal climate fore-
casting, such forecasts still suffer from considerable system-
atic errors like unconditional and conditional biases and en-
semble over- or underdispersion. Those errors generally de-
pend on forecast lead time since models tend to drift from the
initial state towards its own climatology (Fučkar et al., 2014;
Maraun, 2016). Furthermore, there can be a dependency on
initialization time when long-term trends of the forecast sys-
tem and observations differ (Kharin et al., 2012). In this re-
gard, Pasternack et al. (2018) proposed a Decadal Forecast
Recalibration Strategy (DeFoReSt) which accounts for the
three above-mentioned systematic errors. While DCPP rec-
ommends to calculate and adjust model bias for each lead
time separately to take the drift into account, Pasternack et al.
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(2018) uses a parametric approach to describe systematic er-
rors as a function of lead time.

DeFoReSt uses third-order polynomials in lead time to
capture conditional and unconditional biases, second-order
polynomials for dispersion and a first-order polynomial to
model initialization time dependency. Third-order polynomi-
als for the drift have been suggested by Gangstø et al. (2013)
and have later been used by Kruschke et al. (2015). Hence,
DeFoReSt is an extension of the drift correction approach
proposed by Kruschke et al. (2015), accounting also for con-
ditional bias and adjusting the ensemble spread. The associ-
ated DeFoReSt parameters are estimated by minimization of
the CRPS, analogous to the nonhomogeneous Gaussian re-
gression approach by Gneiting et al. (2005).

Although DeFoReSt with third- and/or second-order poly-
nomials turned out in past applications to be beneficial
for both full-field initialized decadal predictions (Pasternack
et al., 2018) and anomaly initialized counterparts (Paxian
et al., 2018), as well as decadal regional predictions (Feld-
mann et al., 2019), it is worth challenging the a priori as-
sumption by using a systematic model selection strategy.
In this context, full-field initializations show larger drifts in
comparison to anomaly initializations even though drift of
the latter is not negligible, particularly when taking initializa-
tion time dependency into account (Kruschke et al., 2015).

For post-processing of probabilistic forecasts with non-
homogeneous Gaussian regression, Messner et al. (2017)
proposed the non-homogeneous boosting to automatically
select the most relevant predictors. Originally, boosting has
been developed for automatic statistical classification (Fre-
und and Schapire, 1997) but has been used as well for statis-
tical regression (e.g., Friedman et al., 2000; Bühlmann and
Yu, 2003; Bühlmann and Hothorn, 2007).

Unlike other parameter estimation strategies based on iter-
ative minimization of a cost function by simultaneously up-
dating the full set of parameters, boosting only updates one
parameter at a time: the one that leads to the largest decrease
in the cost function. As all parameters are initialized to zero,
those parameters corresponding to terms which do not lead
to a considerable decrease in the cost function – hence are
not relevant – will not be updated and thus will not differ
from zero; the associated term has thus no influence on the
predictor. Here, we extend the underlying non-homogeneous
regression model of DeFoReSt to higher-order polynomi-
als and use boosting for parameter estimation. Additionally,
cross-validation identifies the optimal number of boosting
iteration and serves thus for model selection. The result-
ing boosted non-homogeneous regression model is hereafter
named boosted recalibration.

A toy model producing synthetic decadal forecast–
observation pairs is used to study the effect of using higher-
order polynomials and boosting on recalibration. Moreover,
we compare boosted recalibration and DeFoReSt to recali-
brate forecasts from the MiKlip decadal prediction system.

The paper is organized as follows: Sect. 2 introduces the
MiKlip decadal climate prediction system and the corre-
sponding reference data used, Sect. 3 describes the decadal
forecast recalibration strategy DeFoReSt and introduces
boosted recalibration, an extension to higher-order polyno-
mials, parameter estimation with non-homogeneous boosting
and cross-validation for model selection. A toy model devel-
oped in Sect. 4 is the basis for assessing recalibration with
boosted recalibration and DeFoReSt. The subsequent sec-
tion (Sect. 5) uses both approaches to recalibrate decadal sur-
face temperature predictions from the MiKlip system. Analo-
gously to Pasternack et al. (2018), we assess the forecast skill
of global mean surface temperature and temperature over the
North Atlantic subpolar gyre region (50–65◦ N, 60–10◦W).
The latter has been identified as a key region for decadal
climate predictions (e.g., Pohlmann et al., 2009; van Olden-
borgh et al., 2010; Matei et al., 2012; Mueller et al., 2012).
Section 6 closes with a discussion.

2 Data and methods

2.1 Decadal climate forecasts

The basis for this study is retrospective forecast (hereafter
called hindcast) of surface temperature from the Max Planck
Institute Earth System Model in a low-resolution configu-
ration (MPI-ESM-LR). The atmospheric component of the
coupled model is ECHAM6 at a horizontal resolution of
T63 with 47 vertical levels up to 0.01 hPa (Stevens et al.,
2013). The ocean component is the Max Planck Institute
ocean model (MPIOM) with a nominal resolution of 1.5◦

and 40 vertical levels (Jungclaus et al., 2013). This setup to-
gether with a full-field initialization of the atmosphere with
ERA40 (Uppala et al., 2005) and ERA-Interim (Dee et al.,
2011), as well as a full-field initialization of the ocean with
the GECCO2 reanalysis (Köhl, 2015), is called the MiKlip
prototype system. The full-field initialization nudges the full
atmospheric or oceanic fields from the corresponding reanal-
ysis to the MPI-ESM, not just the anomalies. A detailed de-
scription of the prototype system is given in Kröger et al.
(2018). In the following, we use a hindcast set from the MiK-
lip prototype system with 50 hindcasts, each with 10 ensem-
ble members integrated for 10 years starting every year in the
period 1961 to 2010.

2.2 Reference data

The Met Office Hadley Centre and the Climatic Research
Unit at the University of East Anglia produced HadCRUT4
(Morice et al., 2012), an observational product used here as
a reference to verify the decadal hindcasts. The historical
surface temperature anomalies with respect to the reference
period 1961–1990 are available on a global 5◦× 5◦ grid on
a monthly basis since January 1850. HadCRUT4 is a com-
posite of the CRUTEM4 (Jones et al., 2012) land-surface air
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temperature dataset and the HadSST3 (Brohan et al., 2006)
sea-surface temperature (SST) dataset.

2.3 Assessing reliability and sharpness

To assess the performance of boosted recalibration with re-
spect to DeFoReSt, we use the same metrics as in Pasternack
et al. (2018).

Calibration or reliability refers to the statistical consis-
tency between the forecast probability distributions and the
verifying observations (Jolliffe and Stephenson, 2012). A
forecast is reliable if forecast probabilities correspond to
observed frequencies on average. Alternatively, a necessary
condition for forecasts to be reliable is given if the time
mean intra-ensemble variance equals the mean squared er-
ror (MSE) between ensemble mean and observation (Palmer
et al., 2006).

A common tool to evaluate the reliability and therefore the
effect of a recalibration is the rank histogram or Talagrand di-
agram which was separately proposed by Anderson (1996);
Talagrand et al. (1997); Hamill and Colucci (1997). For a
detailed understanding, the rank histogram has to be evalu-
ated by visual inspection. Analog to Pasternack et al. (2018),
we use the ensemble spread score (ESS) as a summarizing
measure. The ESS is the ratio between the time mean intra-
ensemble variance σ 2 and the mean squared error between
ensemble mean and observation, MSE(µ,y) (Palmer et al.,
2006; Keller and Hense, 2011):

ESS=
σ 2

MSE(µ,y)
, (1)

with

σ 2 =
1
k

k∑
j=1

σ 2
j , (2)

and

MSE(µ,y)=
1
k

k∑
j=1
(yj −µj )

2. (3)

Here, σ 2
j ,µj and yj are the ensemble variance, the ensemble

mean and the corresponding observation at time step j , with
j = 1, . . .,k, where k is the number of time steps.

Following Palmer et al. (2006), ESS= 1 indicates perfect
reliability. The forecast is overconfident when ESS< 1; i.e.,
the ensemble spread underestimates forecast error. If the en-
semble spread is greater than the model error (ESS> 1), the
forecast is overdispersive and the forecast spread overesti-
mates forecast error. To better understand the components of
the ESS, we also analyze the MSE of the forecast separately.

Sharpness, on the other hand, refers to the concentration
or spread of a probabilistic forecast and is a property of the
forecast only. A forecast is sharp when it is taking a risk,

i.e., when it is frequently different from the climatology. The
smaller the forecast spread, the sharper the forecast. Sharp-
ness is indicative of forecast performance for calibrated and
thus reliable forecasts, as forecast uncertainty reduces with
increasing sharpness (subject to calibration). To assess sharp-
ness, we use properties of the width of prediction intervals as
in Gneiting and Raftery (2007). Analogously to Pasternack
et al. (2018), we use the time mean intra-ensemble variance
σ 2 to assess the prediction width.

Scoring rules, like the continuous ranked probability score
(CRPS), assign numerical scores to probabilistic forecasts
and form attractive summary measures of predictive perfor-
mance, since they address reliability and sharpness simulta-
neously (Gneiting et al., 2005; Gneiting and Raftery, 2007;
Gneiting and Katzfusss, 2014).

Given that F is the predictive probability distribution func-
tion and Fo denotes the Heaviside function for the verifying
observations o with Fo(y)= 1 for y > o and Fo(y)= 0 oth-
erwise, the CRPS is defined as

CRPS(F,o)=

∞∫
−∞

(F (y)−Fo(y))
2dy. (4)

Under the assumption that the predictive distribution F is a
normal distribution with mean µ and variance σ 2, Gneiting
et al. (2005) showed that Eq. (4) can be written as

CRPS(F,o)=

σ

{
o−µ

σ
[2NSC

(
o−µ

σ

)
− 1] + 2NSP

(
o−µ

σ

)
−

1
√
π

}
,

(5)

where NSC(·) and NSP(·) denote the probability distribution
function (CDF) and the probability density function (PDF),
respectively, of the standard normal distribution. The CRPS
is negatively oriented. A lower CRPS indicates more accurate
forecasts; a CRPS of zero denotes a perfect (deterministic)
forecast.

Its skill score (CRPSS) relates the accuracy of the predic-
tion system to the accuracy of a reference prediction (e.g.,
climatology). Thus, with hindcast scores CRPSF and refer-
ence scores CRPSR, the CRPSS can be defined as

CRPSS= 1−
CRPSF

CRPSR
. (6)

Positive values of the CRPSS imply that the prediction sys-
tem outperforms the reference prediction. Furthermore, this
skill score is unbounded for negative values (because hind-
casts can be arbitrarily bad) but bounded by 1 for a perfect
forecast.

3 Model selection for DeFoReSt

We first review the decadal climate forecast recalibration
strategy (DeFoReSt) proposed by Pasternack et al. (2018)
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and illustrate subsequently how a modeling strategy based on
boosting and cross-validation leads to an optimal selection of
polynomial orders in the non-homogeneous regression model
used for recalibration.

3.1 Review of DeFoReSt

DeFoReSt assumes normality for the PDF f Cal(X; t, τ )

for a predicted variable X for each initialization
time t ∈ {1961,1962,1963, . . .,2010} and lead time
τ ∈ {1,2,3, . . .,10}. f Cal(X; t, τ ) thus describes the recali-
brated forecast PDF of a given variable X or – expressed in
terms of the ensemble – the distribution of the recalibrated
ensemble members around the recalibrated ensemble mean
as a function of initialization time t and forecast lead year τ .
Mean µCal(t,τ ) and variance σ 2

Cal(t,τ ) of the recalibrated
PDF f Cal(X; t, τ ) are now modeled as linear functions of
the ensemble mean µ̂(t,τ ) and ensemble variance σ̂ 2(t,τ )

as

µCal(t,τ )= α(t,τ )+β(t,τ ) µ̂(t,τ ) (7)

ln(σ 2
Cal(t,τ ))= γ (t,τ ) σ̂

2(t,τ ). (8)

Note that, different from Pasternack et al. (2018), the log-
arithm in Eq. (8) ensures positive recalibrated variance
σ 2
Cal(t,τ ) irrespectively of the value of γ . Hence, the recali-

brated XCal is now conceived as a random variable:

XCal(t,τ )

∼N (α(t,τ )+β(t,τ ) µ̂(t,τ ),
exp(γ (t,τ )σ̂ 2(t,τ ))). (9)

α(t,τ ) accounts for the (unconditional) bias depending on
lead year (i.e., the drift). Similarly, β(t,τ ) accounts for
the conditional bias. Thus, the expectation of the recali-
brated variable E(XCal(t,τ ))= α(t,τ )+β(t,τ ) µ̂(t,τ ) can
be conceived as a conditional and unconditional bias and
drift-adjusted ensemble mean forecast. Moreover, DeFoReSt
assumes that the ensemble spread σ(t,τ ) is sufficiently well
related to the forecast uncertainty such that adequate adjust-
ment can be realized by multiplying γ (t,τ ). Figure 1 shows a
schematic which shows the mechanisms of DeFoReSt for an
exemplary decadal forecast which exhibits a lead- and start-
time-dependent unconditional bias, conditional bias and dis-
persion.

The functional forms of α(t,τ ), β(t,τ ) and γ (t,τ ) are
motivated by Gangstø et al. (2013), Kharin et al. (2012), Kr-
uschke et al. (2015) and Sansom et al. (2016). Gangstø et al.
(2013) suggested a third-order polynomial in τ as a good
compromise between flexibility and parameter uncertainty;
the linear dependency on t was used in various previous stud-
ies (Kharin et al., 2012; Kruschke et al., 2015; Sansom et al.,
2016). A combination of both led to DeFoReSt as described
in Pasternack et al. (2018):

Figure 1. Schematic overview of the effect of DeFoReSt for an ex-
emplary decadal toy model with ensemble mean (colored lines), en-
semble minimum/maximum (colored dotted lines) and associated
pseudo-observations (black line). Note that different colors indicate
different initialization times. Before recalibration (a), the ensem-
ble mean shows a lead-time-dependent mean or unconditional bias
(drift) which is tackled by α(t,τ ). Moreover, the ensemble mean µ̂
exhibits a conditional bias, i.e., that the variances of µ̂ and obser-
vations disagree. This is tackled with β(t,τ ). Decadal predictions
can also be over- or underdispersive, i.e., that the ensemble spread
over- or underestimates the error between observations and ensem-
ble mean. This example shows an overdispersive forecast. Within
DeFoReSt, the coefficient γ (t,τ ) accounts for the dispersiveness
of the forecast ensemble. Panel (b) shows the exemplary decadal
toy model after applying DeFoReSt with the inherent corrections of
lead- and start-time-dependent unconditional bias, conditional bias
and dispersion.

α(t,τ )=

3∑
l=0
(a2l + a(2l+1) t) τ

l, (10)

β(t,τ )=

3∑
m=0

(b2m+ b(2m+1) t) τ
m, (11)

γ (t,τ )=

2∑
n=0
(c2n+ c(2n+1) t) τ

n. (12)

The ensemble inflation γ (t,τ ) is, however, assumed to be
quadratic at most. Pasternack et al. (2018) assumed that a
higher flexibility may not be necessary.
α(t,τ ),β(t,τ ) and γ (t,τ ) are functions of t and τ , linear

in the parameters al , bm and cn. The parameters are estimated
by minimizing the average CRPS over the training period
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following Gneiting et al. (2005) using the associated scoring
function

0(N (α(t,τ )+β(t,τ ) µ̂(t,τ ), exp(γ (t,τ ) σ̂ 2(t,τ )),o) :=

CRPS=

1
k

k∑
j=1

√
exp(γ (t,τ )σ 2

j )
{
Zj [2NSC(Zj )− 1]

+2NSP(Zj )−
1
√
π

}
,

(13)

where

Zj =
Oj − (α(t,τ )+β(t,τ ) µ̂j (t,τ ))√

exp(γ (t,τ ) σ̂ 2
j (t,τ ))

(14)

is the standardized forecast error for the j th forecast in the
training dataset. Optimization is carried out using the algo-
rithm of Nelder and Mead (1965) as implemented in R (R
Core Team, 2018).

Initial guesses for parameters need to be carefully chosen
to avoid convergence into local minima of the cost function.
Here, we obtain initial guesses for al and bm from a standard
linear model using the ensemble mean µ̂(t,τ ) and polynomi-
als of t and τ as terms in the predictor according to Eqs. (7),
(10) and (11).

Initial guesses for c0,c1 and c2 are all zero, which yields
unit inflation as ln(σ 2

cal(t,τ ))= 0 and leads to σ 2
cal(t,τ )=

1. Convergence to the global minimum is facilitated; how-
ever, it cannot be guaranteed.

An alternative to minimization of the CRPS is maximiza-
tion of the likelihood. Here, CRPS grows linearly in the
prediction error, in contrast to the likelihood which grows
quadratically (Gneiting et al., 2005). Thus, a maximization
of the likelihood is more sensitive to outliers and extreme
events (Weigend and Shi, 2000; Gneiting and Raftery, 2007).
This implies a prediction recalibrated using likelihood max-
imization is more likely to be underconfident than a predic-
tion recalibrated using CRPS minimization (Gneiting et al.,
2005).

We use cross-validation with a 10-year moving valida-
tion period as proposed by Pasternack et al. (2018) to en-
sure fair conditions for assessing the benefit of DeFoReSt.
This means that the parameters al,bm and cn needed for re-
calibrating one hindcast experiment with 10 lead years (e.g.,
initialization in 1963, forecasting years 1964 to 1973) are es-
timated via those hindcasts which are initialized outside that
period (e.g., here hindcasts initialized in 1962, 1974, 1975,
. . . ). This procedure is repeated for every initialization year
z ∈ {1960,1961,1962, . . .,2010}. Figure 2 shows an illustra-
tion of this setting.

Figure 2. Schematic overview of the cross-validation setting for a
decadal climate prediction, initialized in 1964 (dotted red line). All
hindcasts which are initialized outside the prediction period are used
as training data (dotted black lines). A hindcast which is initialized
inside the prediction period is not used for training (dotted gray
lines).

3.2 Boosted recalibration and cross-validation

In Eq. (8), we followed Pasternack et al. (2018) with a mul-
tiplicative term γ (t,τ ) to adjust the spread. From now on,
we follow the suggestion and notation from Messner et al.
(2017) and include an additive term (γ (t,τ )) and multiplica-
tive term (δ(t,τ )). The model for the calibrated ensemble
variance (Eq. 8) changes to

ln(σ 2
Cal,boost(t,τ ))= γ (t,τ )+ δ(t,τ ) σ̂

2(t,τ ) . (15)

Note the change in definition for γ (t,τ )!
α(t,τ ), β(t,τ ), γ (t,τ ) and δ(t,τ ) are modeled using a

similar approach as in Eqs. (10)–(12) where we now use or-
thogonalized polynomials to address for the lead time de-
pendency of these corrections terms. In light of a model se-
lection, this has the advantage that the individual predictors
are uncorrelated. Moreover, for boosted recalibration, we use
orthogonalized polynomials of sixth order in lead time τ , as-
suming that this is sufficiently large to capture all features of
lead-time-dependent drift (α(t,τ )), conditional bias (β(t,τ ))
and ensemble dispersion (γ (t,τ ) and δ(t,τ )); the depen-
dence on initialization time t is kept linear:

α(t,τ )=

6∑
l=0
(a2l + a(2l+1)t)Pl(τ ), (16)

β(t,τ )=

6∑
m=0

(b2m+ b(2m+1)t)Pm(τ ), (17)

γ (t,τ )=

6∑
n=0
(c2n+ c(2n+1)t)Pn(τ ), (18)

δ(t,τ )=

6∑
p=0

(d2p + d(2p+1)t)Pp(τ ). (19)
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Here, Pl(τ ),Pm(τ ),Pn(τ ) and Pp(τ ) are orthogonalized
polynomials of order l, m, n and p, which are provided by
the R function poly (R Core Team, 2018).

We apply boosting for non-homogeneous regression prob-
lems as proposed by Messner et al. (2017) for estimating al ,
bm, cn and dp. The algorithm iteratively seeks the minimum
of a loss function (negative log likelihood or CRPS) by iden-
tifying and updating only the most relevant terms in the pre-
dictor.

This is realized with the R package crch for non-
homogeneous boosting (Messner et al., 2016, 2017) which
uses a minimization of the negative log likelihood by default
instead of minimizing the CRPS. Judging from our experi-
ence, for the problem at hand, the difference in using one or
the other loss function appears to be small.

The above-mentioned effect of outliers and extremes on
dispersivity described by Gneiting et al. (2005) should be
rather small here, since annual aggregated values are recal-
ibrated. Thus, we use the negative log likelihood as a cost
function in the following.

In each iteration, the negative partial derivatives,

r =−
∂l(µ,σ )

∂µ
; s =−

∂l(µ,σ )

∂σ
, (20)

of the negative log-likelihood for a single observation y,

l(α+βµ,γ + δσ ;y)=

− log
(

1
γ + δσ

NSP

(
y−α−βµ

γ + δσ

))
, (21)

are obtained, where NSP(·) is the PDF of the normal distri-
bution, µ the ensemble mean and σ the ensemble standard
deviation corresponding to the initialization time t and lead
time τ of the observation y. Pearson’s correlation coefficient
between each predictor term (e.g., t or t τ 2) and the partial
derivatives r and s (Eq. 20) estimated over every available
t ∈ {1961,1962,1963, . . .,2010} and τ ∈ {1,2,3, . . .,10} is
used to identify and update the most influential term in the
predictor. The parameter associated with the term with the
highest correlation is updated by its correlation coefficient
multiplied by a predefined step size ν. Schmid and Hothorn
(2008) showed that the choice of ν is only of minor impor-
tance and suggested a value of 0.1. A smaller value for ν
leads to an increase in precision in the updated coefficients
at the expense of computing time. This allows a more de-
tailed analysis of the relative importance of predictor vari-
ables. ν = 0.05 turns out to be a reasonable compromise be-
tween precision and computing time in this setting. A dis-
tinct feature of boosting for non-homogeneous regression is
that both mean and standard deviation of a forecast distribu-
tion are taken into account, but for each iteration step only
one parameter (either associated with the mean µCal,boost
or variance σCal,boost) is updated: the one leading to the
largest improvement of the cost function. Only those parame-
ters associated with the most relevant predictor terms are up-
dated; parameters of less relevant terms remain at zero. The

Figure 3. Schematic flow chart for boosting algorithm proposed
by Messner et al. (2016). For the ensemble mean and the ensem-
ble variance, we use the expressions µCal,boost(t,τ )=XT 3
and ln(σ 2

Cal,boost)(t,τ )= Z
T 4, where X = (1,X1,X2, . . .)

T

and Z = (1,Z1,Z2, . . .)
T are vectors of predictor terms and 3=

(a0,b0,a1,b1, . . .) and 4= (c0,d0,c1,d1, . . .) are vectors of the
corresponding coefficients. Here, 0 is a vector of zeros, mstop is
the predefined maximum number of boosting iteration steps I and
ρ(Xj , r) as well as ρ(Zk, s) are the correlation coefficients calcu-
lated by Xj × r and Zk × s over the respective training data.

algorithm is originally described in Messner et al. (2017); for
reasons of convenience, we show in Fig. 3 a schematic flow
chart of the boosting algorithm adopted to means of boosted
recalibration.

If the chosen iteration steps is small enough, a certain
number of less relevant predictor terms have coefficients
equal to zero, which prevents the model from overfitting.
A cross-validation (CV) approach is used to identify the it-
eration with the set of parameter estimates with maximum
predictive performance. Currently, CV is carried out after
each boosting iteration. The data are split into five parts, and
each part consists of approximately 10 years in order to re-
flect conditions of decadal prediction. For each part, a re-
calibrated prediction is computed, with the model trained on
the remaining four parts. Afterwards, these five recalibrated
parts are used to calculate the full negative log likelihood.
Here, the full negative log likelihood results from summing
Eq. (21) for all available t and τ and the associated observa-
tions y. The iteration step with minimum negative log like-
lihood is considered best. We allow a maximum number of
500 iterations.

Analog to the standard DeFoReSt, the previously de-
scribed modeling procedure (boosting and CV for iter-
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Table 1. Overview of the different toy model setups and the corresponding polynomial lead time dependencies.

Setup α(t,τ )= β(t,τ )= γ (t,τ )= δ(t,τ )=

(a0+ a1t)P0(τ )+ . . . (b0+ b1t)P0(τ )+ . . . (c0+ c1t)P0(τ )+ . . . (d0+ d1t)P0(τ )+ . . .

1 (a2+ a3t)P1(τ ) (b2+ b3t)P1(τ ) (c2+ c3t)P1(τ ) (d2+ d3t)P1(τ )
2 (a4+ a5t)P2(τ ) (b4+ b5t)P2(τ ) (c4+ c5t)P2(τ ) (d4+ d5t)P2(τ )
3 (a6+ a7t)P3(τ ) (b6+ b7t)P3(τ ) (c6+ c7t)P3(τ ) (d6+ d7t)P3(τ )

DeFoReSt
3∑
l=1
(a2l + a(2l+1)t)Pl(τ )

3∑
m=1

(b2m+ b(2m+1)t)Pm(τ ) γ (t,τ )= 0
2∑

p=1
(d2p + d(2p+1)t)Pp(τ )

4 (a8+ a9t)P4(τ ) (b8+ b9t)P4(τ ) (c8+ c9t)P4(τ ) (d8+ d9t)P4(τ )
5 (a10+ a11t)P5(τ ) (b10+ b11t)P5(τ ) (c10+ c11t)P5(τ ) (d10+ d11t)P5(τ )
6 (a12+ a13t)P6(τ ) (b12+ b13t)P6(τ ) (c12+ c13t)P6(τ ) (d12+ d13t)P6(τ )

unconditional conditional unconditional conditional
bias bias dispersion dispersion

ation selection) is carried out in a cross-validation set-
ting (second level of CV) for model validation. A 10-year
moving validation period (see Sect. 3.1) leads to cross-
validation. For example, to recalibrate the hindcast initial-
ized in 1963 including lead years 1964 to 1973, all hind-
casts which are not initialized within that period (e.g., t ∈
{1960,1974,1975,1976, . . .,2010}) are used for boosting
DeFoReSt.

4 Calibrating toy model experiments

To assess the model selection approach for DeFoReSt, we
consider two toy model experiments with different potential
predictabilities to generate pseudo-forecasts, as introduced
by Pasternack et al. (2018). They are designed as follows:

1. the predictable signal is stronger than the unpredictable
noise, and

2. the predictable signal is weaker than the unpredictable
noise.

These experiments are controlled by five further parameters:

η determines the ratio between the variance of the pre-
dictable signal and the variance of the unpredictable
noise, it controls potential predictability; see Pasternack
et al. (2018). We investigate two cases: η = 0.2 (low po-
tential predictability) and η = 0.8 (high potential pre-
dictability).

χ(t,τ ) specifies the unconditional bias added to the pre-
dictable signal.

ψ(t,τ ) analogously specifies the conditional bias.

ω(t,τ ) specifies the conditional dispersion of the forecast
ensemble.

ζ (t,τ ) analogously controls the unconditional dispersion
and has not been used in Pasternack et al. (2018).

The coefficients for bias (drift), conditional bias and ef-
fects in the ensemble dispersion are chosen such that they
are close to those obtained from calibrating prototype surface
temperature with HadCRUT4 observations. Thus, χ(t,τ ),
ψ(t,τ ), ω(t,τ ) and ζ(t,τ ) are based on the same polyno-
mial structure as used for the calibration parameters α(t,τ ),
β(t,τ ), γ (t,τ ) and δ(t,τ ) (see Eqs. 16–19) (a detailed de-
scription of the toy model design is given in Appendix A). In
the following, when we discuss the polynomial lead time de-
pendency of the toy model’s systematic errors, we refer to the
polynomial order of α(t,τ ), β(t,τ ), γ (t,τ ) and δ(t,τ ). Note
that the corresponding polynomials are also orthogonalized
as in Eqs. (16)–(19).

For an assessment of the model selection approach, we use
seven different toy model setups per value of η. Each setup
uses different orders of polynomial lead time dependency
for imposing the above-mentioned systematic deviations on
the predictable signal. One toy model setup is designed such
that the corresponding systematic deviations could be per-
fectly addressed by DeFoReSt. Additionally, there are other
setups with systematic deviations based on a lower/higher
polynomial order than what is used for DeFoReSt. Thus, we
compare pseudo-forecasts from setups which require model
structures for recalibration given in Table 1.

As mentioned before, the functions χ(t,τ ), ψ(t,τ ),
ζ(t,τ ) and ω(t,τ ) in the toy model experiments are based
on the parameters estimated for calibrating the MiKlip pro-
totype ensemble global mean surface temperature against
HadCRUT4 observations. Here, χ(t,τ ), ψ(t,τ ), ζ(t,τ ) and
ω(t,τ ) are based on ratios of polynomials up to third or-
der with respect to lead time. Based on our experience, we
assume that systematic errors with higher-than-third-order
polynomials could not be detected sufficiently well within
the MiKlip prototype experiments. Therefore, the coeffi-
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Figure 4. χ(t,τ ) (a) and ψ(t,τ ) (b) which are related to the unconditional and conditional bias, as well as ζ(t,τ ) (c) and ω(t,τ ) (d) which
are related to the unconditional and conditional dispersion of the ensemble spread for the different toy model setups (colored lines) as a
function of lead year τ with respect to start year t = 1.

cients for the fourth- to sixth-order polynomials are deduced
from the coefficient magnitude of the first- to third-order
polynomial. Here, it turns out that those coefficients associ-
ated with terms describing the lead time dependence exhibit
roughly the same order of magnitude (see Fig. A1). Thus,
we assume the coefficients associated with fourth- to sixth-
order polynomials to be of the same order of magnitude. An
overview of the applied coefficient values is given in Ap-
pendix A.

Analogously to the MiKlip experiment, the toy model uses
50 start years, each with 10 lead years, and 15 ensemble
members. The corresponding pseudo-observations run over
a period of 59 years in order to cover lead year 10 of start
year 50. The corresponding imposed systematic errors for
the unconditional and conditional bias (related to χ(t,τ ) and
ψ(t,τ )), unconditional and conditional dispersion (related to
ζ(t,τ ) and ω(t,τ )) are shown exemplarily for start year 1
and start year 50 in Figs. 4 and 5. Here, the effect of an in-
creasing polynomial dependency in the lead time in setups 1

to 6 can be seen in the form of an increased variability. For
the DeFoReSt setup, the systematic error manifests itself as
a superposition of setups 1 to 3 for χ(t,τ ) and ψ(t,τ ) and
of setups 1 to 2 for ω(t,τ ) (ζ(t,τ ) is equal to zero for the
DeFoReSt setup). Regarding the influence of the start year,
this effect amplifies for χ(t,τ ) and ζ(t,τ ) with increasing
start time and diminishes for χ(t,τ ) and ω(t,τ ) due to their
inverse definition (see Eqs. A10 and A12).

For each toy model setup, we calculated the ESS, the
MSE, time mean intra-ensemble variance and the CRPSS of
pseudo-forecasts recalibrated with boosting. References for
the skill score are forecasts recalibrated with DeFoReSt. All
scores have been calculated using cross-validation with an
annually moving calibration window with a width of 10 years
(see Pasternack et al., 2018).

To ensure a certain consistency, 1000 pseudo-forecasts are
generated from the toy model and evaluated as described
above. The scores presented are all mean values over these
1000 experiments. In particular, to assess a significant im-
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Figure 5. χ(t,τ ) (a) and ψ(t,τ ) (b) which are related to the unconditional and conditional bias, as well as ζ(t,τ ) (c) and ω(t,τ ) (d) which
are related to the unconditional and conditional dispersion of the ensemble spread for the different toy model setups (colored lines) as a
function of lead year τ with respect to start year t = 50.

provement of boosted recalibration over DeFoReSt with re-
spect to CRPSS, the 2.5 % and 97.5 % percentiles are also
estimated from these 1000 experiments.

4.1 Toy model setup with high potential predictability
(η = 0.8)

Figure 6a–c show the MSE for seven different setups (see
Sect. 4). Panel (a) shows the result without any post-
processing (raw pseudo-forecasts), panel (b) with DeFoReSt
and panel (c) with boosted recalibration. Here, the perfor-
mance of both post-processing methods is strongly superior
to the raw pseudo-forecast output. As DeFoReSt uses third-
order polynomials in lead time to capture conditional and un-
conditional biases, it performs equally as well as the boosted
calibration for the first four setups; for setups using higher-
order polynomials, boosted calibration is superior.

Regarding the ESS, Fig. 6d–f show that the raw pseudo-
forecasts are widely fluctuating between under- and overdis-
persiveness (ESS values from 0.1 to 1.7), depending on

the associated complexity of the imposed systematic errors
(different setups). Corresponding to this, the post-processed
pseudo-forecasts are more reliable with ESS values close to
1. The boosted recalibration approach is superior to the re-
calibration with DeFoReSt for every lead year. The improve-
ment is largest for setups 4–6, because DeFoReSt is lim-
ited to third-order polynomials and cannot account for higher
polynomial orders of these setups.

The post-processing methods are further compared by cal-
culating the time mean intra-ensemble variance (see Fig. 6g–
i). For every setup, the intra-ensemble variance of the raw
pseudo-forecasts is higher than the intra-ensemble variance
of corresponding post-processed forecasts. Comparing De-
FoReSt with the boosted recalibration reveals that the sharp-
ness of the first approach is larger for setups 1 to 3 and the
“DeFoReSt setup”, leading particularly for the first three se-
tups to an overconfidence (see Fig. 6e). However, for setups
4 to 6, DeFoReSt exhibits a smaller sharpness, which still re-
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Figure 6. Mean squared error (MSE) of different toy model setups with high potential predictability (η = 0.8, colored lines). (a) Raw pseudo-
forecast, (b) post-processing with DeFoReSt and (c) post-processing with boosted recalibration. Panels (d) to (f) show the ESS and (g) to (i)
the intra-ensemble variance (temporal average), respectively.

sults in combination with the increased MSE (see Fig. 6b) to
underdispersiveness.

A joint measure for sharpness and reliability is the CRPS
and its skill score, the CRPSS. Figure 7 shows the CRPSS
of the different pseudo-forecasts with boosted recalibration,
where pseudo-forecasts recalibrated with DeFoReSt are used

as reference; i.e., positive values imply that boosted recali-
bration is superior to DeFoReSt. Colored dots in Fig. 7 de-
note significance in the sense that the 0.025 and 0.975 quan-
tiles from the 1000 experiments do not include 0. Regarding
setups 1 to 3 and the “DeFoReSt setup”, the CRPSS is nei-
ther significantly positive nor negative for all lead years. On
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Figure 7. CRPSS of different toy model setups with high potential
predictability (η = 0.8, colored lines) post-processed with boosted
recalibration. The associated toy model setups post-processed with
DeFoReSt are used as reference for the skill score. CRPSS larger
zero implies boosted recalibration performing better than DeFoR-
eSt. Colored dots in Fig. 7 denote significance in the sense that
the 0.025 and 0.975 quantiles from the 100 experiments do not in-
clude 0.

the other hand, for setups 4 to 6 the boosted recalibration
outperforms the recalibration with DeFoReSt with values of
the CRPSS between 0.1 and 0.4. Again, this is likely due to
DeFoReSt assuming third-order polynomials in lead time to
capture conditional and unconditional biases and second or-
der for dispersion, and therefore it does not account for sys-
tematic errors based on higher orders. However, Fig. 7 sug-
gests that boosted recalibration can account for systematic
errors with various levels of complexity.

4.2 Toy model setup with low potential predictability
(η = 0.2)

Figure 8a–c show the MSE of the different pseudo-forecasts
for a toy model setup with a low potential predictability. One
can see that both post-processing approaches lead to a strong
improvement compared to the raw pseudo-forecasts; both ap-
proaches work roughly equally well for all setups. Compared
to the previous section (η = 0.8), the MSE of the pseudo-
forecasts has increased due to a smaller signal-to-noise ratio.

The ESS (see Fig. 8d–f) reveals that compared to the
pseudo-forecasts with high predictability, the raw simula-
tions from different toy models are underdispersive for al-
most all lead years (ESS values smaller than 1). The pseudo-
forecasts show again an increased reliability after recalibra-
tion, with ESS values close to 1. For every lead year, boosted
recalibration is superior to DeFoReSt; the latter leads to
slightly overconfident recalibrated forecasts.

Figure 8g–i show the time mean intra-ensemble variance
of the raw and recalibrated pseudo-forecasts. For every setup,
the intra-ensemble variance of the different pseudo-forecasts

has decreased due to recalibration (with and without boost-
ing). Comparing DeFoReSt with boosted recalibration re-
veals a smaller intra-ensemble variance for every setup, lead-
ing to an overconfidence for every lead year as observed in
Fig. 8e.

In the low potential predictability setting (η = 0.2), the
ensemble variance is larger as the total variance in the toy
model is constrained to one. Thus, reducing η leads to an
increase in ensemble spread.

Figure 9 shows the CRPSS of the pseudo-forecasts with
boosted recalibration with DeFoReSt as reference. The low
potential predictability leads to a reduced CRPSS compared
to the setting with η = 0.8. The improvement due to boosted
recalibration is also smaller. Only the first lead year of setups
4–6 is significantly different from zero. This suggests that
the improvement due to boosted recalibration decreases with
a decreasing potential predictability of the forecasts.

5 Calibrating decadal climate surface temperature
forecasts

While in Sect. 4 DeFoReSt and boosted recalibration were
compared by the use of different toy model data, in this sec-
tion these two approaches will be applied to surface tem-
perature of MiKlip prototype runs with MPI-ESM-LR. Here,
global mean and spatial mean values over the North Atlantic
subpolar gyre (50–65◦ N, 60–10◦W) region will be analyzed.

We discuss which predictors are identified by boosted re-
calibration as most relevant and we compute the ESS, the
MSE the intra-ensemble variance and the CRPSS with re-
spect to climatology for both recalibration approaches. The
scores have been calculated for a period from 1960 to 2010.
In this section, a 95 % confidence interval was additionally
calculated for these metrics using a bootstrapping approach
with 1000 replicates. For bootstrapping, we randomly draw
a new forecast–observation pair of dummy time series with
replacement from the original validation period and calcu-
late these scores again. This procedure has been repeated
1000 times. Please note that we draw for each model a new
forecast–observation pair of dummy time series to avoid the
metrics of these models being calculated on the basis of the
same sample. Furthermore, all scores have been calculated
using cross-validation with a yearly moving calibration win-
dow with a 10-year validation period (see Sect. 3.1).

5.1 Global mean surface temperature

Figure 10 shows the coefficients estimated by boosted recal-
ibration for global mean surface temperature. The predictors
are standardized; i.e., larger coefficients imply larger rele-
vance of the corresponding predictors for the recalibration.
Model selection is based on negative log-likelihood mini-
mization in a cross-validation setup, as proposed by Paster-
nack et al. (2018). Thus, for every training period, different
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Figure 8. MSE of different toy model setups with high potential predictability (η = 0.2, colored lines). (a) Raw pseudo-forecast, (b) post-
processing with DeFoReSt and (c) post-processing with boosted recalibration. Panels (d) to (f) show the ESS and (g) to (i) the intra-ensemble
variance (temporal average), respectively.

coefficients are obtained. The resulting distributions are rep-
resented in a box-and-whisker plot, which also allows an as-
sessment of the variability in coefficient estimates.

Most relevant are the coefficients a0 and a1, associated
with unconditional bias (a0), and the linear dependence on
the start year (a1). This is followed by b0 in the condi-

tional bias. In general, coefficients associated with first- and
second-order terms in the lead time dependence (a2, a4, b2,
b4) are dominating. Those coefficients describing the interac-
tion between linear start year and first- or second-order lead
year dependency (e.g., a3, b3, c3, b5, c5) have also been iden-
tified by the boosting algorithm as relevant.
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Figure 9. CRPSS of different toy model setups with low potential
predictability (η = 0.2, colored lines) post-processed with boosted
recalibration. The associated toy model setups post-processed with
DeFoReSt are used as reference for the skill score. CRPSS larger
zero implies boosted recalibration performing better than DeFoR-
eSt. Colored dots indicate lead years with either significant positive
or negative values based on a 95 % confidence interval from boot-
strapping (100 repetitions).

The recalibration of ensemble dispersion is mostly influ-
enced by a linear start year dependence in the unconditional
term (c1) and in the conditional term d0. Higher terms are of
minor relevance.

The performance of the ensemble mean of the raw forecast
(black), recalibrated with DeFoReSt (blue) and with boosted
recalibration is measured with the MSE shown in Fig. 11a.
While a strong drift (lead year dependence) influences the
MSE for the raw forecasts, both recalibrated variants exhibit
a smaller and roughly constant MSE across all τ . This de-
crease in MSE is a result of adjusting the unconditional and
conditional bias (α(t,τ ) and β(t,τ )).

Figure 11b evaluates the ensemble spread and shows the
ESS. The raw pseudo-forecast is underdispersive (ESS< 1)
for all lead years and needs recalibration. The recalibrated
forecasts show an adequate ensemble spread in both cases
(ESS close to 1) for all lead years. Boosted recalibra-
tion (red) outperforms DeFoReSt which becomes slightly
under-/overdispersive for the first/last lead years. However,
the differences in ESS between boosted recalibration and De-
FoReSt are not significant.

Figure 11c shows the intra-ensemble variance (temporal
average) across lead years τ . The ensemble variances of the
raw forecast and DeFoReSt are roughly equal, while boosted
recalibration adjusts the ensemble variance.

Compared to raw and DeFoReSt, the intra-ensemble vari-
ance of boosted recalibration is larger for lead year 1 and
smaller for lead years 3 to 10. Boosted recalibration is suf-
ficiently flexible to adjust the ensemble variance to a value

close to the MSE. This consistent behavior is roughly con-
stant over lead years.

Although boosted recalibration shows mostly a smaller
ensemble variance (lead years 3–10) than DeFoReSt, both
recalibration approaches are roughly equal when the per-
formance is assessed with the CRPSS with climatological
reference (Fig. 11d). Thus, the different time mean intra-
ensemble variances resulting from recalibration with and
without boosting have a minor impact on the CRPSS.

Here, the CRPSS of both models is around 0.8 for all lead
years with respect to climatological forecast. In contrast, the
raw forecast is inferior to the climatological forecast for most
lead years, except lead years 3–6, where the raw forecast has
positive skill, which could be attributed to the fact that tem-
perature anomalies are considered. This implies that the ob-
servations and the raw forecast have the same mean value of
0. This mean value seems to be crossed by the raw forecast
mainly between lead years 4 and 5.

5.2 North Atlantic mean surface temperature

Figure 12 shows the coefficients of the corresponding stan-
dardized predictors which were estimated using boosted re-
calibration for North Atlantic surface temperature. Analo-
gously to the global mean surface temperature, model selec-
tion is used within a cross-validation setup and the result-
ing coefficient distributions are shown in a box-and-whisker
plot. Here, the terms for the unconditional (ai) and con-
ditional bias (bj ) for the linear start year dependency (ai t
and bj t) and the first-order-polynomial lead time depen-
dency (aiP1(τ ) and bjP1(τ )) are most relevant. Moreover,
the linear interaction between lead time and initialization
time (a3 t P1(τ )) was identified as a relevant factor for the
unconditional bias. Regarding the coefficients corresponding
to the unconditional (ck) and conditional (dl) ensemble dis-
persion, one can see that the linear start and lead year de-
pendencies (c1 t , c2P1(τ ) and d1 t , d2P1(τ )), as well as the
interaction (d3 t P1(τ )) between these two coefficients have
the most impact.

Figure 13a shows the MSE of the raw forecast (black),
DeFoReSt and boosted recalibration, where both recalibrated
forecasts perform roughly equally well. The raw forecast is
inferior to both post-processed forecasts, mostly due to miss-
ing correction of unconditional and conditional biases. Com-
pared to global mean temperature (Fig. 11a), MSE for the
North Atlantic temperature is generally larger. Thus, poten-
tial predictability for the North Atlantic surface temperature
is smaller than in the global case.

Regarding the reliability, both recalibrated forecasts also
show an ESS close to 1 for all lead years for the North At-
lantic surface temperature (Fig. 13b), which is similar to the
outcome of the global mean temperature (Fig. 11b). Again
boosted recalibration outperforms DeFoReSt, and the latter
becomes slightly underdispersive for later lead years. How-
ever, the differences in ESS for both recalibration approaches
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Figure 10. Coefficient estimates for recalibrating global mean 2 m temperature of the MiKlip prototype system. Colored boxes represent the
interquartile range (IQR) around the median (central, bold and black line) for coefficient estimates from the cross-validation setup; whiskers
denote maximum 1.5 IQR. Coefficients are grouped according to correcting unconditional bias (blue), conditional bias (red), unconditional
dispersion (orange) and conditional dispersion (green). Values refer to coefficients a0,b0,c0,d0, . . .,a6,b6,c6,d6 and not to the product
between these coefficients and the corresponding predictors (e.g., a2P1(τ ) refers to a2). Please note that the value of c0 is around −2.5, but
for a better overview the vertical axis is limited to the values range between −1 and 1. Vertical dashed bars highlight coefficients related to
lead-time-dependent terms.

Figure 11. (a) MSE, (b) reliability, (c) ensemble variance and (d)
CRPSS of global mean surface temperature without any correc-
tion (black line), after recalibration with DeFoReSt (blue line) and
boosted recalibration (red line). The CRPSS for the raw forecasts
(black line) for lead year 1 is smaller than −1 and therefore not
shown. The vertical bars show the 95 % confidence interval due to
1000-wise bootstrapping.

are not significant. The raw forecast’s reliability is obviously
inferior here, as it is significantly underdispersive for lead
years 1 to 3 and overdispersive for lead years 5 to 6.

The mentioned lower potential predictability for the North
Atlantic manifests also in a 10 times larger ensemble vari-
ance; see Fig. 13c. It is noteworthy here that due to the
smaller potential predictability in this region, the ensemble
variance of both recalibrated forecasts is similar across the
lead time and different from the raw forecast. A lower pre-
dictability of the North Atlantic surface temperature yields
also a smaller CRPSS with respect to climatology for both re-
calibrated forecasts (Fig. 13d). Again, both recalibrated fore-
casts perform roughly equally well for all lead years and are
also significantly to the raw forecast.

6 Conclusions

Pasternack et al. (2018) proposed the recalibration strat-
egy for decadal prediction (DeFoReSt) which adjusts non-
homogeneous regression (Gneiting et al., 2005) to problems
of decadal predictions. Characteristic problems here are a
lead time and initialization time dependency of uncondi-
tional, conditional biases and ensemble dispersion. DeFoR-
eSt assumes third-order polynomials in lead time to capture
conditional and unconditional biases, second order for dis-
persion and first order for initialization time dependency. Al-
though Pasternack et al. (2018) show that DeFoReSt leads to
an improvement of ensemble mean and probabilistic decadal
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Figure 12. Identified coefficients for recalibrating the mean 2 m temperature over the North Atlantic of the prototype. Here, the coef-
ficients are grouped by correcting uncond. bias (blue bars), cond. bias (red bars), uncond. dispersion (orange bars) and cond. disper-
sion (green bars). The coefficients are standardized, i.e., with higher values implying a higher relevance. Values refer to coefficients
a0,b0,c0,d0, . . .,a6,b6,c6,d6 and not to the product between these coefficients and the corresponding predictors (e.g., a2P1(τ ) refers
to a2).

Figure 13. (a) MSE, (b) reliability, (c) ensemble variance and
(d) CRPSS of surface temperature over the North Atlantic without
any correction (black line), after recalibration with DeFoReSt (blue
line) and boosted recalibration (red line). The CRPSS for the raw
forecasts (black line) for lead year 1 is smaller than −1 and there-
fore not shown. The vertical bars show the 95 % confidence interval
due to 1000-wise bootstrapping.

predictions, it is not clear whether these polynomials with
predefined orders are optimal. This calls for a model selec-
tion approach to obtain a recalibration model as simple as
possible and as complex as needed. We thus propose here
not to restrict orders a priori to such a low order but use
a systematic model selection strategy to determine optimal
model orders. We use the non-homogeneous boosting strat-
egy proposed by Messner et al. (2017) to identify the most
relevant terms for recalibration. The recalibration approach
with boosting (called boosted recalibration) starts with sixth-
order polynomials in lead time and first order in initialization
time to account for the unconditional and conditional bias, as
well as for ensemble dispersion.

Common parameter estimation and model selection ap-
proaches such as stepwise regression and LASSO are de-
signed for predictions of mean values. Non-homogeneous
boosting jointly adjusts mean and variance and automatically
selects the most relevant input terms for post-processing
ensemble predictions with non-homogeneous (i.e., varying
variance) regression. Boosting iteratively seeks the minimum
of a cost function (here the log likelihood) and updates only
the one coefficient with the largest improvement of the fit;
if the iteration is stopped before a convergence criterion is
fulfilled, the coefficients not considered until then are kept at
zero. Thus, boosting is able to handle statistical models with
a large number of variables.

We investigated boosted recalibration using toy model
simulations with high (η = 0.8) and low potential pre-
dictability (η = 0.2) and errors with different complexi-
ties in terms of polynomial orders in lead time were im-
posed. Boosted recalibration is compared to DeFoReSt. The
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CRPSS, the ESS, the time mean intra-ensemble variance (a
measure for sharpness) and the MSE assess the performance
of the recalibration approaches. Scores are calculated with
10 year block-wise cross-validation (Pasternack et al., 2018)
and with 100 pseudo-forecasts for each toy model simula-
tion.

Irrespective of the complexity of systematic errors and the
potential predictability, both recalibration approaches lead
to an improved reliability with ESS close to 1. Sharpness
and MSE can also be improved with both recalibration ap-
proaches. Given a high potential predictability (η = 0.8),
boosted recalibration – although allowing for much more
complex adjustment terms – performs equal to DeFoReSt if
systematic errors are less complex than a third-order poly-
nomial in lead time, implied by the CRPSS of the pseudo-
forecasts recalibrated with boosted recalibration and DeFoR-
eSt as reference. Moreover, a significant improvement for
almost all lead years can be observed if the complexity of
systematic errors is larger than third-order polynomials in
lead time. The gain with respect to DeFoReSt can hardly
be observed for a low potential predictability (η = 0.2), as
the CRPSS shows only for two lead years a significant im-
provement for the above-mentioned complexities. This is due
to a generally weaker predictable signal and thus a weaker
impact of systematic error terms in the higher order of the
polynomial. The improvement due to boosting increases with
the imposed predictability. However, the presented toy model
experiments suggest the use of boosted recalibration due to
higher flexibility without loss of skill. Analogously to Paster-
nack et al. (2018), we recalibrated mean surface tempera-
ture of the MiKlip prototype decadal climate forecasts, spa-
tially averaged over the North Atlantic subpolar gyre re-
gion and a global mean. Pronounced predictability for these
cases has been identified by previous studies (e.g., Pohlmann
et al., 2009; van Oldenborgh et al., 2010; Matei et al., 2012;
Mueller et al., 2012). Nonetheless, both regions are also af-
fected by a strong model drift (Kröger et al., 2018). For the
global mean surface temperature, we could identify the linear
start year dependency of the unconditional bias as a major
factor. Moreover, it turns out that polynomials of lead year
dependencies with order greater than 2 are of minor rele-
vance.

Regarding the probabilistic forecast skill (CRPSS), De-
FoReSt and boosted recalibration perform roughly equally
well, implying that the polynomial structure of DeFoReSt,
chosen originally from personal experience, turns out to be
quite appropriate. Both recalibration approaches are reliable
and outperforming the climatological forecast with a CRPSS
near 0.8. This in line with the results from the toy model ex-
periments which show that DeFoReSt and boosted recalibra-
tion perform similarly if systematic errors are less complex
than a third-order polynomial in lead time.

For the North Atlantic region, the linear start year and lead
year dependencies of the unconditional and conditional bi-
ases show the largest relevance; also the linear interaction
between lead time and initialization time of the unconditional
bias has a certain impact. The coefficients corresponding to
the unconditional and conditional ensemble dispersion show
a minor relevance compared to the errors related to the en-
semble mean.

Also for the North Atlantic surface temperature, both
post-processing approaches are performing roughly equal;
they are reliable and superior to climatology with respect to
CRPSS. However, the CRPSS for the North Atlantic case is
generally smaller than for the global mean.

This study shows that boosted recalibration, i.e., recalibra-
tion model selection with nonhomogeneous boosting, allows
a parametric decadal recalibration strategy with an increased
flexibility to account for lead-time-dependent systematic er-
rors. However, while we increased the polynomial order to
capture complex lead-time-dependent features, we still as-
sumed a linear dependency in initialization time. As this
model selection approach reduces parameters by eliminating
irrelevant terms, this opens up the possibility to increase flex-
ibility (polynomial orders) also in terms related to the start
year.

Based on simulations from a toy model and the MiKlip
decadal climate forecast system, we could demonstrate the
benefit of model selection with boosting (boosted recalibra-
tion) for recalibrating decadal predictions, as it decreases the
number of parameters to estimate without being inferior to
the state-of-the-art recalibration approach (DeFoReSt).
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Appendix A: Toy model construction

The toy model proposed by Pasternack et al. (2018) consists
of pseudo-observations x(t+τ) and associated ensemble pre-
dictions, hereafter named pseudo-forecasts f (t,τ ).

Both are based on an arbitrary but predictable signal µx .
Although it is almost identical to Pasternack et al. (2018), we
quote the construction of pseudo-observations in the follow-
ing for purposes of overview.

The pseudo-observation x is the sum of this predictable
signal µx and an unpredictable noise term εx ,

x(t + τ)= µx(t + τ)+ εx(t + τ). (A1)

Following Kharin et al. (2012), µx can be interpreted as
the atmospheric response to slowly varying and predictable
boundary conditions, while εx represents the unpredictable
chaotic components of the observed dynamical system. µx
and εx are assumed to be stochastic Gaussian processes:

µx(t + τ)∼N (0,σ 2
µx
) with σ 2

µx
= η2
≤ 1 (A2)

and

εx(t + τ)∼N (0,σ 2
εx
) with σ 2

εx
= 1− η2. (A3)

The variation of µx around a slowly varying climate signal
can be interpreted as the predictable part of decadal variabil-
ity; its amplitude is given by the variance var(µx(t + τ))=
σ 2
µx

. The total variance of the pseudo-observations is thus
Var(x)= σ 2

x = σ
2
µx
+σ 2

εx
. Here, the relation of the latter two

is uniquely controlled by the parameter η ∈ [0,1], which can
be interpreted as potential predictability (η2

= σ 2
µx
/σ 2
x ).

In this toy model setup, the concrete form of this variabil-
ity is not considered and thus taken as random. A potential
climate trend could be superimposed as a time-varying mean
µ(t)= E[x(t)]. As for the recalibration strategy, only a dif-
ference in trends is important; we use µ(t)= 0 and α(t,τ )
addressing this difference in trends of forecast and observa-
tions.

The pseudo-forecast with ensemble members fi(t,τ ) for
observations x(t + τ) is specified as

fi(t,τ )= µens(t,τ )+ εi(t,τ ), (A4)

where µens(t,τ ) is the ensemble mean and

εi(t,τ )∼N (0,σ 2
ens(t,τ )) (A5)

is the deviation of ensemble member i from the ensem-
ble mean; σ 2

ens is the ensemble variance. In general, ensem-
ble mean and ensemble variance both can be dependent on
lead time τ and initialization time t . We relate the ensemble
mean µens(t,τ ) to the predictable signal in the observations
µx(t,τ ) by assuming (a) a systematic deviation characterized
by an unconditional bias χ(t,τ ) (accounting also for a drift

and difference in climate trends), a conditional bias ψ(t,τ )
and (b) a random deviation ε(t,τ ):

µens(t,τ )= χ(t,τ )+ψ(t,τ )(µx(t,τ )+ εF(t,τ )), (A6)

with εF(t,τ )∼N (0,σεF(t,τ )) being a random forecast error
with variance σ 2

εF
(t,τ ) < σ 2

εx
. Although the variance of the

random forecast error can in principle be dependent on lead
time τ and initialization time t , we assume for simplicity a
constant variance σ 2

εF
(t,τ )= σ 2

εF
.

In contrast to the original toy model design, proposed by
Pasternack et al. (2018), we assume an ensemble disper-
sion related to the variability of the unpredictable noise term
εx with an unconditional and a conditional inflation factor
(ζ(t,τ ) and ω(t,τ )):

σ 2
ens(t,τ )= ζ(t,τ )+ω(t,τ ) (σεx − σεF)

2. (A7)

According to Eq. (A6) the forecast ensemble mean µens
is simply a function of the predictable signal µx . In this toy
model formulation, an explicit formulation of µx is not re-
quired; hence, a random signal might be used for simplicity,
and it would be legitimate to assume E[µx] = µ(t + τ)= 0
without restricting generality. Here, we propose a linear trend
in time E[µx] = µ(t + τ)=m0+m1 t to emphasize a typi-
cal problem encountered in decadal climate prediction: dif-
ferent trends in observations and predictions (Kruschke et al.,
2015).

Given this setup, a choice of χ(t,τ )≡ 0, ψ(t,τ )≡ 1,
ζ(t,τ )≡ 0 and ω(t,τ )≡ 1 would yield a perfectly calibrated
ensemble forecast:

f perf(t,τ )∼N (µx(t,τ ),σ 2
εx
(t,τ )). (A8)

The ensemble mean µx(t,τ ) of f perf(t,τ ) is equal to the
predictable signal of the pseudo-observations. The ensemble
variance σ 2

εx
(t,τ ) is equal to the variance of the unpredictable

noise term representing the error between the ensemble mean
of f perf(t,τ ) and the pseudo-observations. Hence, f perf(t,τ )

is perfectly reliable.
As mentioned in Sect. 4, this toy model setup is controlled

on the one hand by η characterizing the potential predictabil-
ity and on the other hand by χ(t,τ ), ψ(t,τ ), ζ(t,τ ) and
ω(t,τ ), which control the unconditional and the conditional
bias and the dispersion of the ensemble spread.

Here, χ(t,τ ), ψ(t,τ ), ζ(t,τ ) and ω(t,τ ) are obtained
from α(t,τ ), β(t,τ ), γ (t,τ ) and δ(t,τ ) as follows:

χ(t,τ )=−
α(t,τ )

β(t,τ )
(A9)

ψ(t,τ )=
1

β(t,τ )
(A10)

ζ(t,τ )=−
γ (t,τ )

δ(t,τ )
(A11)

ω(t,τ )=
1

δ(t,τ )
. (A12)
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The parameters χ(t,τ ),ψ(t,τ ), ζ(t,τ ) and ω(t,τ ) are de-
fined such that a perfectly recalibrated toy model forecast
f Cal would have the following form:

f Cal
i (t,τ )∼N (α(t,τ )+β(t,τ )µens(t,τ ),exp(γ (t,τ )

+ δ(t,τ )σens(t,τ )
2)), (A13)

Applying the definitions of µens (Eq. A6) and σens (Eq. A7)
leads to

f Cal
i (t,τ )∼N

(
α(t,τ )+β(t,τ )(χ(t,τ )

+ψ(t,τ )µx(t,τ )) , (exp(γ (t,τ )

+δ(t,τ )(ζ(t,τ )+ω(t,τ )σεx (t,τ ))
))2)

, (A14)

and applying the definitions of χ(t,τ ), ψ(t,τ ) and ω(t,τ )
(Eqs. A9–A12) to Eq. (A14) would further lead to

f Cal
i (t,τ )∼N (α(t,τ )−β(t,τ )

α(t,τ )

β(t,τ )

+
β(t,τ )

β(t,τ )
µx(t,τ ),

γ (t,τ )

γ (t,τ )
σ 2
εx
(t,τ )), (A15)

This shows that f Cal is equal to the perfect toy model
f Perf(t,τ ) (Eq. A8):

f Cal(t,τ )∼N (µx(t,τ ),σ 2
εx
(t,τ )). (A16)

This setting has the advantage that the perfect estimation of
α(t,τ ), β(t,τ ), γ (t,τ ) and δ(t,τ ) is already known prior to
calibration with minimization of the logarithmic likelihood.

As described in Sect. 3.2, a sixth-order polynomial ap-
proach was chosen for unconditional α(t,τ ), β(t,τ ), γ (t,τ )
and δ(t,τ ), yielding

α(t,τ )=

6∑
l=0
(a2l + a(2l+1)t)Pl(τ ) , (A17)

β(t,τ )=

6∑
l=0
(b2l + b(2l+1)t)Pl(τ ) , (A18)

γ (t,τ )=

6∑
l=0
(c2l + c(2l+1)t)Pl(τ ) , (A19)

δ(t,τ )=

6∑
l=0
(d2l + d(2l+1)t)Pl(τ ). (A20)

For the current toy model experiment, we exemplarily
specify values for ai , bi , ci and di as obtained from calibrat-
ing the MiKlip prototype surface temperature over the North
Atlantic against HadCRUT4 (Tobs):

E[Tobs] ∼N (α(t,τ )+β(t,τ )f Prot(t,τ ),exp(γ (t,τ )

+ δ(t,τ )σfProt(t,τ )
2)), (A21)

where f Prot and σfProt specify the corresponding ensemble
mean and ensemble spread. Here, χ(t,τ ), ψ(t,τ ), ζ(t,τ )
and ω(t,τ ) are based on ratios of polynomials up to third
order with respect to lead time. Since systematic errors with
higher-than-third-order polynomials could not be detected
sufficiently well within the MiKlip prototype experiments,
we deduce the coefficients for the fourth- to sixth-order poly-
nomials from the coefficient magnitude of the first- to third-
order polynomial. Here, Fig. A1 shows the coefficients which
were obtained from calibrating the MiKlip prototype global
mean surface temperature with cross-validation (see Paster-
nack et al., 2018), assuming a third-order polynomial depen-
dency in lead years for α(t,τ ), β(t,τ ), γ (t,τ ) and δ(t,τ ).
Those coefficients associated with terms describing the lead
time dependence exhibit roughly the same order of mag-
nitude. Thus, we assume the coefficients associated with
fourth- to sixth-order polynomials to be of the same order
of magnitude. The values of the coefficients are given in Ta-
ble A1.
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Figure A1. Coefficient estimates for recalibrating global mean 2 m temperature of the MiKlip prototype system with a third-order polyno-
mial lead time dependency for the unconditional and conditional bias and dispersion. Here, non-homogeneous boosting is not applied and
all polynomials are orthogonalized; i.e., P1(τ ),P2(τ ),P3(τ ) refer to the order of the corresponding polynomial. Colored boxes represent the
IQR around the median (central, bold and black line) for coefficient estimates from the cross-validation setup; whiskers denote maximum
1.5 IQR. Coefficients are grouped according to correcting unconditional bias (blue), conditional bias (red), unconditional dispersion (orange)
and conditional dispersion (green). Values refer to coefficients a0,b0,c0,d0, . . .,a6,b6,c6,d6 and not to the product between these coeffi-
cients and the corresponding predictors (e.g., a2P1(τ ) refers to a2). Vertical dashed bars highlight coefficients related to lead-time-dependent
terms.

Table A1. Overview of the values for the coefficients al , bl , cl and dl .

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 l = 12 l = 13

al −0.75 0.03 10.2 0.15 −1.54 −0.13 5.4 −0.08 −5 0.5 −5 0.5 −5 0.5
bl 0.67 −0.0004 0.35 −0.12 0.94 0.008 3.27 −0.028 5 −0.05 5 −0.05 5 −0.05
cl −0.79 0.03 9.62 0.18 −0.93 −0.16 5.74 −0.08 5 0.5 5 0.5 5 0.5
dl 6.4 0.004 −1.88 −1.19 16.8 0.03 35.8 −0.33 5 0.5 5 0.5 5 0.5
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