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Abstract. Automatic lidars and ceilometers (ALCs) provide
valuable information on cloud and aerosols but have not been
systematically used in the evaluation of general circulation
models (GCMs) and numerical weather prediction (NWP)
models. Obstacles associated with the diversity of instru-
ments, a lack of standardisation of data products and open
processing tools mean that the value of large ALC networks
worldwide is not being realised. We discuss a tool, called the
Automatic Lidar and Ceilometer Framework (ALCF), that
overcomes these problems and also includes a ground-based
lidar simulator, which calculates the radiative transfer of
laser radiation and allows one-to-one comparison with mod-
els. Our ground-based lidar simulator is based on the Cloud
Feedback Model Intercomparison Project (CFMIP) Observa-
tion Simulator Package (COSP), which has been extensively
used for spaceborne lidar intercomparisons. The ALCF im-
plements all steps needed to transform and calibrate raw
ALC data and create simulated attenuated volume backscat-
tering coefficient profiles for one-to-one comparison and
complete statistical analysis of clouds. The framework sup-
ports multiple common commercial ALCs (Vaisala CL31,
CL51, Lufft CHM 15k and Droplet Measurement Technolo-
gies MiniMPL), reanalyses (JRA-55, ERA5 and MERRA-2)
and models (the Unified Model and AMPS – the Antarctic
Mesoscale Prediction System). To demonstrate its capabil-
ities, we present case studies evaluating cloud in the sup-
ported reanalyses and models using CL31, CL51, CHM 15k
and MiniMPL observations at three sites in New Zealand. We
show that the reanalyses and models generally underestimate

cloud fraction. If sufficiently high-temporal-resolution model
output is available (better than 6-hourly), a direct comparison
of individual clouds is also possible. We demonstrate that the
ALCF can be used as a generic evaluation tool to examine
cloud occurrence and cloud properties in reanalyses, NWP
models, and GCMs, potentially utilising the large amounts of
ALC data already available. This tool is likely to be partic-
ularly useful for the analysis and improvement of low-level
cloud simulations which are not well monitored from space.
This has previously been identified as a critical deficiency in
contemporary models, limiting the accuracy of weather fore-
casts and future climate projections. While the current focus
of the framework is on clouds, support for aerosol in the lidar
simulator is planned in the future.

1 Introduction

Automatic lidars and ceilometers (ALCs) are active ground-
based instruments which emit laser pulses in the ultravio-
let, visible or infrared (IR) part of the electromagnetic spec-
trum and measure radiation backscattered from atmospheric
constituents such as cloud and fog liquid droplets as well
as ice crystals, haze, aerosol and atmospheric gases (Emeis,
2010). Vertical profiles of attenuated backscattered radiation
can be produced by measuring received power as a function
of time elapsed between emitting the pulse and receiving
the backscattered radiation. Quantities such as cloud-base
height (CBH) and a cloud mask (Pal et al., 1992; Wang and
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Sassen, 2001; Martucci et al., 2010; Costa-Surós et al., 2013;
Van Tricht et al., 2014; Liu et al., 2015a, b; Lewis et al., 2016;
Cromwell and Flynn, 2018; Silber et al., 2018), the parti-
cle volume backscattering coefficient (Marenco et al., 1997;
Welton et al., 2000, 2002; Wiegner and Geiß, 2012; Wieg-
ner et al., 2014; Jin et al., 2015; Dionisi et al., 2018), and
boundary layer height (Eresmaa et al., 2006; Münkel et al.,
2007; Emeis et al., 2009; Tsaknakis et al., 2011; Milroy et al.,
2012; Knepp et al., 2017) can be derived from the attenuated
volume backscattering coefficient profile. Lidars equipped
with polarisation or multiple wavelengths can also provide
the depolarisation ratio or colour ratio, respectively, which
can be used to infer cloud phase or particle types. Doppler
lidars can measure wind speed in the direction of the lidar
orientation. ALCs are commonly deployed at airports, where
they provide CBH, fog and aerosol observations needed for
air traffic control. Large networks of up to hundreds of li-
dars and ceilometers have been deployed worldwide: Cloud-
net (Illingworth et al., 2007), E-PROFILE (Illingworth et al.,
2018), PollyNET (Baars et al., 2016), ICENET (Cazorla
et al., 2017), MPLNET (Welton et al., 2006) and ARM
(Stokes and Schwartz, 1994; Campbell et al., 2002). The
purpose of these networks is to observe cloud, fog, aerosol,
air quality, visibility and volcanic ash, provide input to nu-
merical weather prediction (NWP) model evaluation (Hogan
et al., 2001; Illingworth et al., 2007; Morcrette et al., 2012;
Warren et al., 2018; Lamer et al., 2018; Hansen et al., 2018b)
and assimilation (Illingworth et al., 2015b, 2018), and for cli-
mate studies. These networks are usually composed of multi-
ple types of ALCs, with Vaisala CL31, CL51, Lufft (formerly
Jenoptik) CHM 15k and Droplet Measurement Technologies
(formerly Sigma Space and Hexagon) MiniMPL being the
most common. Complex lidar data processing has been set
up on some of these networks. Notably, at the SIRTA site
in France, a lidar ratio (LR) comparable with a lidar sim-
ulator (Chiriaco et al., 2018) is calculated as part of the
“ReOBS” processing method. Intercomparison and calibra-
tion campaigns such as CeiLinEx2015 (Mattis et al., 2016)
and INTERACT-I(-II) (Rosoldi et al., 2018; Madonna et al.,
2018) have been performed. Lidar data processing involves
a number of tasks such as re-sampling, calibration, noise re-
moval and cloud detection. Some of these are implemented
in the instrument firmware of ALCs. This, however, means
that the lidar attenuated volume backscattering coefficient
and detected cloud and cloud base are not comparable be-
tween different instruments. In most cases the algorithms are
not publicly documented, making it impossible to compare
the data with values from a model or a lidar simulator with-
out a systematic bias.

Atmospheric model evaluation is an ongoing task and a
critical part of the model improvement process (Eyring et al.,
2019; Hourdin et al., 2017; Schmidt et al., 2017). Tradi-
tionally, various types of observational and model datasets
have been utilised – weather and climate station data, upper-
air soundings, ground-based and satellite remote sensing

datasets, and high-resolution model simulations, amongst
others. Clouds are one of the most problematic phenomena
in atmospheric models due to their transient nature, high
spatial and temporal variability, and sensitivity to a com-
plex combination of conditions such as relative humidity,
aerosols (presence of cloud condensation nuclei and ice nu-
clei), and thermodynamic and dynamic conditions. At the
same time, clouds have a very substantial effect on the at-
mospheric shortwave and longwave radiation balance, and
any cloud misrepresentation has a strong effect on other com-
ponents of the model, limiting the ability to accurately rep-
resent past and present climate and predict future climate
(Zadra et al., 2018). An improved understanding of clouds
and cloud feedbacks is one of the focuses of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Eyring
et al., 2016), and comparison of model cloud with observa-
tions is one of the key points of the Cloud Feedback Model
Intercomparison Project (CFMIP) (Webb et al., 2017). Satel-
lite observations make up the majority of the data used to
evaluate model clouds. These include the following: passive
visible and IR low-earth-orbit and geostationary radiome-
ters measuring, among others, features such as cloud cover,
cloud-top height (CTH) and cloud-top temperature; passive
microwave instruments measuring total column water; and
active radars and lidars measuring cloud vertical profiles.
Ground-based remote sensing instruments include radars, li-
dars, ceilometers, radiometers and sky cameras. As pointed
out by Williams and Bodas-Salcedo (2017), using a wide
range of different observational datasets including satellite
and ground-based observations for general circulation model
(GCM) evaluation is important due to the limitations of each
dataset.

Model cloud is commonly represented by the mixing ra-
tio of liquid and ice to the cloud fraction (CF) on every
model grid cell and vertical level. In addition, some mod-
els provide the cloud droplet effective radius used in radia-
tive transfer calculations. Remote sensing observations do
not match the representation of the atmospheric model fields
directly because of their different resolutions, limited field
of view (FOV) and attenuation by atmospheric constituents
before reaching the instrument’s receiver. Instrument simula-
tors bridge this gap by converting the model fields to quanti-
ties which emulate those measured by the instrument, which
can then be compared directly with observations. One such
collection of instrument simulators is the CFMIP Observa-
tion Simulator Package (COSP) (Bodas-Salcedo et al., 2011;
Swales et al., 2018), which has been used for more than
a decade for the evaluation of models using satellite, and
more recently ground-based, observations. The simulators
in COSP include the following: active instruments (space-
borne and ground-based radars) such as the Cloud Profil-
ing Radar (CPR) on CloudSat (Stephens et al., 2002) and
the Ka-band ARM Zenith Radar (KAZR); lidars such as
Cloud–Aerosol Lidar Orthogonal Polarization (CALIOP) on
CALIPSO (Winker et al., 2009), the Cloud–Aerosol Trans-
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port System (CATS) on ISS (McGill et al., 2015) and the At-
mospheric Lidar (ATLID) on EarthCARE (Illingworth et al.,
2015a); and spaceborne passive instruments such as ISCCP
(Rossow and Schiffer, 1991), MODIS (Parkinson, 2003) and
MISR (Diner et al., 1998). The more recent addition of
ground-based radar (Zhang et al., 2018) and lidar (Chiri-
aco et al., 2018; Bastin et al., 2018) opens up new possi-
bilities to use the large amount of remote sensing data ob-
tained from ground-based active remote sensing instruments.
In practice, ground-based observational remote sensing data
are not straightforward to use without a substantial amount of
additional processing. Some previous studies have also com-
pared models and ground-based radar and lidar observations
without the use of an instrument simulator (Bouniol et al.,
2010; Hansen et al., 2018a), though for the reasons identified
above this is not advisable.

In this study we introduce a software package called the
Automatic Lidar and Ceilometer Framework (ALCF) for
evaluating model cloud using ALC observations. It extends
and integrates the COSP lidar simulator (Chiriaco et al.,
2006; Chepfer et al., 2007; Chepfer et al., 2008) with pre-
and post-processing steps and allows the simulator to be run
offline on model output instead of having to be integrated
inside the model. This makes it possible to compare ALC
data at any location without having to run the model with a
specific configuration. Multiple ALCs, reanalyses and model
output formats are supported. The original COSP lidar sim-
ulator was extended with Rayleigh, Mie and ice crystal scat-
tering at multiple lidar wavelengths. Observational ALC data
from a number of common instruments can be processed by
re-sampling to a common resolution, removing noise, detect-
ing cloud and calculating statistics. The same steps can be
performed on the simulated lidar data from the model (the
output of running COSP on the model data), allowing for
one-to-one comparison of model and observations. A par-
ticular focus of our work was on applying the same pro-
cessing steps to the observed and simulated attenuated vol-
ume backscattering coefficient in order to avoid biases. The
ALCF is made available under an open-source licence (MIT)
at https://alcf-lidar.github.io (last access: January 2021) and
as a permanent archive of code and technical documentation
on Zenodo at https://doi.org/10.5281/zenodo.4411633.

A relatively small amount of other open source code is
available for ALC data processing. A lidar simulator has
been developed as part of the Goddard Satellite Data Simu-
lator Unit (G-SDSU) (Matsui, 2019), a package based on the
instrument simulator package SDSU (Masunaga et al., 2010).
The Community Intercomparison Suite (CIS) (Watson-Parris
et al., 2016) allows for subsetting, aggregation, co-location
and plotting of mostly satellite data with a focus on model–
observation intercomparison. The STRAT lidar data process-
ing tools are a collection of tools for conversion of raw ALC
data, visualisation and feature classification (Morille et al.,
2007).

Here, we provide an overview of the ALCF (Sect. 2)
and describe the supported ALCs, reanalyses and models
(Sect. 3), the lidar simulator (Sect. 4), and the observed and
simulated lidar data processing steps (Sect. 5). Later, we
present a set of case studies at three sites in New Zealand
(NZ) (Sect. 6) to demonstrate the value of this new tool.
Lastly, we present the results of the case studies in Sect. 7.

2 Overview of operation of the Automatic Lidar and
Ceilometer Framework (ALCF 1.0)

The ALCF performs the necessary steps to simulate the
ALC attenuated volume backscattering coefficient based on
four-dimensional atmospheric fields from reanalyses, NWP
models and GCMs, as well as to transform the observed
raw ALC attenuated volume backscattering coefficient pro-
files to profiles comparable with the simulated profiles. It
does so by extracting two-dimensional (time × height)
profiles from the model data, performing radiative trans-
fer calculations based on a modified COSP lidar simula-
tor (Sect. 4), absolute calibration and re-sampling of the
observed attenuated volume backscattering coefficient to a
common resolution, and performing comparable cloud de-
tection on the simulated and observed attenuated volume
backscattering coefficient. The framework supports multiple
common ALCs (Sect. 3.1), reanalyses and models (Sect. 3.2).
The schematic in Fig. 1 illustrates this process as well as
the ALCF commands which perform the individual steps.
The following commands are implemented: model, simu-
late, lidar, stats and plot. The commands are normally
executed in a sequence, which is also implemented by a
meta-command auto that is equivalent to executing a se-
quence of commands. The commands are described in de-
tail in the technical documentation available online at https:
//alcf-lidar.github.io (last access: 1 January 2021), on Zenodo
at https://doi.org/10.5281/zenodo.4411633 and in the Sup-
plement. The physical basis is described here.

The model command extracts two-dimensional profiles
of cloud liquid and ice content (and other thermodynamic
fields) from the supported NWP model, GCM and reanalysis
data (model data in Fig. 1) at a geographical point along a
ship track or a flight path. The resulting profiles are recorded
as NetCDF files. Section 3.2 describes the supported reanal-
yses and models. The model data can either be in one of the
supported model output formats, or a new module for read-
ing arbitrary model output can be written provided that the
required atmospheric fields are present in the model output.
The required model fields are per-level specific cloud liquid
water content, specific cloud ice water content, cloud frac-
tion, geopotential height, temperature, surface-level pressure
and orography. No physical calculations are performed by
this command. The atmospheric profiles are extracted by a
nearest-neighbour selection.

https://doi.org/10.5194/gmd-14-43-2021 Geosci. Model Dev., 14, 43–72, 2021

https://alcf-lidar.github.io
https://doi.org/10.5281/zenodo.4411633
https://alcf-lidar.github.io
https://alcf-lidar.github.io
https://doi.org/10.5281/zenodo.4411633


46 P. Kuma et al.: Ground-based lidar processing and simulator framework

Figure 1. (a) Scheme showing the operation of the ALCF and (b) the processing commands.

The simulate command runs the lidar simulator described
in Sect. 4 on the extracted model data (the output of the
model command) and produces simulated attenuated vol-
ume backscattering coefficient profiles. This command runs
the COSP-derived lidar simulator, which performs radiative
transfer calculations of the laser radiation through the atmo-
sphere. The resulting simulated attenuated volume backscat-
tering coefficient profiles are the output of this command.

The lidar command applies various processing algorithms
to either the simulated attenuated volume backscattering co-
efficient (the output of the simulate command) or the ob-
served ALC coefficient (lidar data in Fig. 1) (Sect. 5). The
data are re-sampled to increase the signal-to-noise ratio
(SNR), noise is subtracted, LR is calculated, a cloud mask
is calculated by applying a cloud detection algorithm and
CBH is determined from the cloud mask. Absolute calibra-
tion (Sect. 5.2) can also be applied in this step by multiplying
the observed attenuated volume backscattering coefficient by
a calibration coefficient. This is important in order to obtain
unbiased attenuated volume backscattering coefficient pro-
files comparable with the simulated profiles. Section 3.1 de-
scribes the supported instruments. The lidar data can be in
one of the supported instrument formats. If the native instru-
ment format is not NetCDF, it has to be converted from the
native format with the auxiliary command convert or one
of the conversion programmes: cl2nc (Vaisala CL31, CL51),
mpl2nc or SigmaMPL (Sigma Space MiniMPL).

The stats step calculates summary statistics from the out-
put of the lidar command. These include CF, cloud occur-
rence by height, attenuated volume backscattering coefficient
histograms, and the averages of LR and the backscattering
coefficient.

The plot command plots attenuated volume backscattering
coefficient profiles produced by the lidar command (Figs. 4,
5, 6) and the statistics produced by the stats command: cloud
occurrence (Fig. 3), attenuated volume backscattering coeffi-
cient histograms (Fig. 7) and attenuated volume backscatter-
ing coefficient noise standard deviation histograms (Fig. 9).

3 Supported input data: instruments, reanalyses and
models

3.1 Instruments

The primary focus of the framework is to support common
commercial ALCs. Ceilometers are considered the most ba-
sic type of lidar (Emeis, 2010; Kotthaus et al., 2016) intended
as commercial products designed for unattended operation.
They are used routinely to measure CBH, but most instru-
ments also provide the full vertical profiles of the attenuated
volume backscattering coefficient. Therefore, they are suit-
able for model evaluation by comparing not only CBH, but
also cloud occurrence as a function of height. Their compact
size and low cost make it possible to deploy a large num-
ber of these instruments in different locations or use them in
unusual settings such as mounted on ships (Klekociuk et al.,
2019; Kuma et al., 2020). Common off-the-shelf ceilome-
ters are the Lufft CHM 15k and the Vaisala CL31 and CL51.
Some lidars offer higher power and therefore higher SNR, as
well as capabilities not present in ceilometers such as dual
polarisation, multiple wavelengths, Doppler shift measure-
ment and Raman scattering. Below we describe ALCs sup-
ported by the framework and used in our case studies: Lufft
CHM 15k, Vaisala CL31 and CL51 and Droplet Measure-
ment Technologies MiniMPL. Table 1 lists selected parame-
ters of the supported ALCs.

The Lufft CHM 15k (previously Jenoptik CHM 15k) is a
ceilometer operating at a wavelength of 1064 nm (near IR).
The maximum range of the instrument is 15.4 km, with a ver-
tical sampling resolution of 5 m in the first 150 and 15 m
above as well as sampling rate of 2 s. The total number of
vertical levels is 1024. The wavelength in the near-IR spec-
trum ensures low molecular backscattering. The instrument
produces NetCDF files containing uncalibrated attenuated
volume backscattering coefficient profiles and various de-
rived variables, although the calibration coefficient is rela-
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Table 1. Table of ALCs and their technical parameters. Power is calculated as pulse × pulse repetition frequency (PRF).

Instrument λ (nm) Laser Rate1 Res.2 Depol.3 Pulse4 Range5 PRF Overlap6 Power FOV7

(s) (m) (µJ) (km) (kHz) (m) (mW) (µrad)

CHM 15k 1064 Nd:YAG 2–600 5 no 7–9 15.4 5–7 10008 48 450
CL31 910 InGaAs 2–120 10 no 1.2 7.7 10 708 12 830
CL51 910 InGaAs 6–120 10 no 3 15.4 6.5 2309 20 560
MiniMPL 532 Nd:YAG 1–900 5–75 yes 3–4 30.0 2.5 20009 9 110

1 Sampling rate. 2 Vertical (range) resolution. 3 Depolarisation. 4 Pulse energy. 5 Maximum range. 6 Range of full overlap. 7 Receiver field of view. 8 Hopkin et al.
(2019). 9 Madonna et al. (2018).

tively consistent for different instruments of the model (Hop-
kin et al., 2019, Fig. 13).

The Vaisala CL31 and CL51 are ceilometers operating at a
wavelength of 910 nm (near IR). The maximum range of the
CL31 and CL51 is 7.7 and 15.4 km, and the sampling rate is
2 and 6 s, respectively. The vertical resolution is 10 m. The
total number of vertical levels is 770 and 1540, respectively.
The wavelength is characterised by relatively low molecu-
lar backscattering (but higher than 1064 nm) and is affected
by water vapour absorption (Wiegner and Gasteiger, 2015;
Wiegner et al., 2019), which can cause additional absorption
of about 20 % in the mid-latitudes and 50 % in the tropics
(see also Sect. 5.4). The instruments produce data files con-
taining uncalibrated attenuated volume backscattering coef-
ficients which can be converted to NetCDF (see cl2nc in the
“Code and data availability” section). The firmware config-
uration option “noise_h2 off” results in a backscatter range
correction being selectively applied under a certain critical
range and above this range only if cloud is present (Kot-
thaus et al., 2016, Sect. 3.2). This was the case with our case
study dataset (Sect. 6). We apply a range correction to the un-
corrected range gates during lidar data processing. The criti-
cal range in CL51 is not documented but was determined as
6000 m based on an observed discontinuity.

The Droplet Measurement Technologies Mini Micro Pulse
Lidar (MiniMPL) (previously Sigma Space MiniMPL and
Hexagon MiniMPL) (Spinhirne, 1993; Campbell et al., 2002;
Flynn et al., 2007) is a dual-polarisation micro-pulse lidar
(meaning that it uses a high pulse repetition rate (PRF) and
low pulse power) operating at a wavelength of 532 nm (green
in the visible spectrum). The maximum range of the instru-
ment is 30 km. The vertical resolution is 5–75 m and the
sampling rate is 1 s. The shorter wavelength is affected by
stronger molecular backscattering than 910 and 1064 nm.
The instrument can be housed in an enclosure with a scan-
ning head to provide configurable scanning by elevation an-
gle and azimuth. The instrument produces data files contain-
ing raw attenuated volume backscattering coefficients which
can be converted to NetCDF containing normalised relative
backscatter (NRB) with the vendor-provided tool SigmaMPL
(see also mpl2nc in the “Code and data availability” section).

3.2 Reanalyses and models

Below we briefly describe the reanalyses and models1 used
in the case studies presented here (Sect. 6). We used pub-
licly available output from three reanalyses and one NWP
model. In addition, we performed nudged GCM simulations
with high-temporal-resolution output with the Unified Model
(UM). Table 2 lists some of the main properties of the reanal-
yses and models.

The Antarctic Mesoscale Prediction System (AMPS)
(Powers et al., 2003) is a limited-area NWP model based
on the polar fifth-generation Pennsylvania State University–
National Center for Atmospheric Research Mesoscale Model
(Polar MM5), now known as the Polar Weather Research and
Forecasting (WRF) model (Hines and Bromwich, 2008). The
model serves operational and scientific needs in Antarctica,
but its largest grid also covers the South Island of NZ. AMPS
forecasts are publicly available on the Earth System Grid
(Williams et al., 2009). The forecasts are produced on several
domains. The largest domain D01 used in the presented anal-
ysis covers NZ and has horizontal grid spacing of approx-
imately 21 km over NZ. The model uses 60 vertical levels.
The model output is available in 3-hourly intervals initialised
at 00:00 and 12:00 UTC. The initial and boundary conditions
are based on the Global Forecasting System (GFS) global
NWP model. AMPS assimilates local Antarctic observations
from human-operated stations, automatic weather stations
(AWS), upper-air stations and satellites.

ERA5 (ECMWF, 2019) is a reanalysis produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) currently available for the time period 1979 to
the present, with a plan to extend the time period to 1950.
The reanalysis is based on the global NWP model Integrated
Forecast System (IFS) version CY41R2. It uses a 4D-Var
assimilation of station, satellite, radiosonde, radar, aircraft,
ship-based and buoy data. The model has 137 vertical levels.
Atmospheric fields are interpolated from a horizontal resolu-
tion equivalent to 31 km with 137 model levels on a regular

1We use the term “reanalysis” when referring to ERA5, JRA-
55 and MERRA-2 even though the reanalyses are based on atmo-
spheric models. We use the term “model” when referring to AMPS
and the UM, which are atmospheric models.
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Table 2. Reanalyses and models used in the case studies and some of their main properties. The temporal and horizontal grid resolution and
vertical levels listed indicate the resolution of the model output available. The horizontal grid resolution is determined at 45◦ S. The internal
resolution of the model may be different (see Sect. 3.2 for details). The reanalyses and the UM use regular longitude–latitude grids, while
the AMPS horizontal grid is regular in the South Pole stereographic projection.

Model and grid Type Time Horizontal Vertical
resolution grid resolution levels

AMPS, D01 NWP 3 h 0.27◦× 0.19◦ (21× 21 km) 60
ERA5 Reanalysis 1 h 0.25◦× 0.25◦ (20× 28 km) 37
JRA-55 Reanalysis 6 h 1.25◦× 1.25◦ (98× 139 km) 37
MERRA-2 Reanalysis 3 h 0.625◦× 0.50◦ (49× 56 km) 72
UM (GA7.1), N96 GCM 20 min 1.875◦× 1.25◦ (147× 139 km) 85

longitude–latitude grid of 0.25◦ and 37 pressure levels, all of
which is made available to end users. In this analysis we use
the hourly data on pressure and surface levels.

The Japanese 55-year reanalysis (JRA-55) (Ebita et al.,
2011; Kobayashi et al., 2015; Harada et al., 2016) is a global
reanalysis produced by the Japan Meteorological Agency
(JMA) and the Central Research Institute of Electric Power
Industry (CRIEPI) based on the JMA Global Spectral Model
(GSM). The reanalysis is available from 1958 onward. The
reanalysis is based on the JMA operational assimilation sys-
tem. JRA-55 uses a 4D-Var assimilation of surface, upper-
air, satellite, ship-based and aircraft observations. The model
uses 60 vertical levels and a horizontal grid with a resolution
of approximately 60 km. In this analysis we use the 1.25◦ iso-
baric analysis and forecast fields interpolated to 37 pressure
levels.

The Modern-Era Retrospective analysis for Research and
Applications (MERRA-2) (Gelaro et al., 2017) is a reanal-
ysis produced by the NASA Global Modeling and Assimi-
lation Office (GMAO). The reanalysis is based on the God-
dard Earth Observing System (GEOS) atmospheric model.
The model has approximately 0.5◦× 0.65◦ horizontal reso-
lution and 72 vertical levels. It performs 3D-Var assimilation
of station, upper-air, satellite, ship-based and aircraft data in
6-hourly cycles. In this analysis, we use the MERRA-2 3-
hourly instantaneous model-level assimilated meteorological
fields (M2I3NVASM) version 5.12.4 product.

The The UK Met Office Unified Model (UM) (Walters
et al., 2019) is an atmospheric model for weather forecast-
ing and climate projection developed by the UK Met Of-
fice and the Unified Model Partnership. The UM is the at-
mospheric component, called Global Atmosphere (GA), of
the HadGEM3–GC3.1 GCM and the UKESM1 earth system
model (ESM). In this analysis we performed custom nudged
runs of the UM (Telford et al., 2008) in the GA7.1 configura-
tion with a 20 min time step and output temporal resolution
on a New Zealand eScience Infrastructure (NeSI)–National
Institute of Water & Atmospheric Research (NIWA) super-
computer (Williams et al., 2016). The model was nudged to
the ERA-Interim (Dee et al., 2011) atmospheric fields of hor-
izontal wind speed and potential temperature as well as the

HadISST sea surface temperature (SST) and sea ice dataset
(Rayner et al., 2003). The model uses 85 vertical levels and
a horizontal grid resolution of 1.875◦× 1.25◦.

4 Lidar simulator

The COSP lidar simulator, the Active Remote Sensing Simu-
lator (ACTSIM), was introduced by Chiriaco et al. (2006) for
the purpose of deriving simulated CALIOP measurements
(Chepfer et al., 2007; Chepfer et al., 2008). The simula-
tion is implemented by applying the lidar equation on model
levels. Scattering and absorption by cloud particles and air
molecules are calculated using the Mie and Rayleigh theory,
respectively. Scattering and absorption by aerosols are not
implemented in the presented version, but support is planned
in the future for models which provide the concentration
of aerosols. Therefore, the current focus of the simulator is
solely on cloud evaluation. CALIOP operates at a wavelength
of 532 nm, and calculations in the original COSP simulator
use this wavelength. We implemented a small set of changes
to the lidar simulator to support a number of ALCs with dif-
ferent operating wavelengths and developed a parameterisa-
tion of backscattering from ice crystals based on temperature.

The lidar equation (Emeis, 2010) is based on the radiative
transfer equation (Goody and Yung, 1995; Liou, 2002; Petty,
2006; Zdunkowski et al., 2007), which relates the transmis-
sion of radiation to scattering, emission and absorption in
media such as the atmosphere. The lidar equation assumes
that laser radiation passes through the atmosphere where it is
absorbed and scattered. A fraction of laser radiation is scat-
tered back to the instrument and reaches the receiver. Scatter-
ing and absorption in the atmosphere are determined by their
constituents – gases, liquid droplets, ice crystals and aerosol
particles. The focus of the current version of the simulator
is on clouds. For this purpose, the atmospheric model output
needed is four-dimensional fields of the mass mixing ratios
of liquid and ice as well as CF. The lidar equation can be ap-
plied to these output fields to simulate the backscattered ra-
diation received by the instrument. Table 3 lists the physical
quantities used in the following sections. Here, we a radiative
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Table 3. Table of physical quantities.

Symbol Name Units Expression

� Solid angle sr
z Height relative to the instrument m
kB Boltzmann constant JK−1 kB ≈ 1.38× 10−23 JK−1

p Atmospheric pressure Pa
T Atmospheric temperature K
ρair Air density kgm−3

ρ Liquid (or ice) density kgm−3

q Cloud liquid (or ice) mass mixing ratio 1
N Particle number concentration m−3

αs (αe) Volume scattering (extinction) coefficient m−1

Pπ (θ) Scattering phase function at angle θ 1
∫

4πPπ (θ)d�= 4π
β Volume backscattering coefficient m−1 sr−1 β = αsPπ (π)/(4π)
βmol Volume backscattering coefficient for air molecules
βp Volume backscattering coefficient for cloud particles
η Multiple-scattering coefficient 1
β ′ Attenuated volume backscattering coefficient m−1 sr−1 β ′ = β exp(−2

∫ z
0 ηαedz)

S Lidar ratio (extinction-to-backscatter ratio) sr S = αe/β
S′ Effective (apparent) lidar ratio sr S′ = Sη

k Backscatter-to-extinction ratio sr−1 k = 1/S
n(r) Number distribution of particle size m−4 N =

∫
∞

0 n(r)dr
Qs (Qe) Scattering (extinction) efficiency of spherical particles 1 αs =Qsπr

2N , αe =Qeπr
2N

Qb Backscattering efficiency of spherical particles sr−1 β =Qbπr
2N

reff Effective radius m reff =
∫
∞

0 r3n(r)dr/
∫
∞

0 r2n(r)dr

σeff Effective standard deviation m σeff =
(∫
∞

0 (r − reff)
2r2n(r)dr

)
/
(∫
∞

0 r2n(r)dr
)

transfer notation similar to Petty (2006) and the notation of
the original lidar simulator (Chiriaco et al., 2006).

Below we provide a brief review of LR, Rayleigh and
Mie scattering, calculate LR of cloud droplets at lidar wave-
lengths of the presented instruments, and introduce an empir-
ical parameterisation of LR and the multiple-scattering coef-
ficient of ice crystals based on previous studies.

4.1 Lidar ratio

The lidar ratio S is the extinction-to-backscattering ratio of
atmospheric constituents at the lidar wavelength. It is an
important quantity in lidar observations and the lidar sim-
ulator because it determines the amount of attenuation and
backscattering. LR is not explicitly known from the ob-
served attenuated volume backscattering coefficient. For liq-
uid cloud droplets at near-IR wavelengths it is relatively con-
stant at S ≈ 19 sr (Sect. 4.2), while for ice crystals (Sect. 4.3)
and aerosol it is highly variable. When the lidar signal is fully
attenuated, and under the assumption that cloud LR is con-
stant and scattering from clouds is much stronger than molec-
ular and aerosol scattering, LR can be determined from the
observed attenuated volume backscattering coefficient by in-
tegrating it vertically (O’Connor et al., 2004):

S′ = ηS =
1

2
∫
∞

0 β ′dz
, (1)

where S′ is effective (apparent) LR, a quantity which does
not depend on the multiple-scattering coefficient.

4.2 Rayleigh and Mie scattering

The Rayleigh volume backscattering coefficient βmol
(m−1 sr−1) in ACTSIM is parameterised by the following
equation (Eq. 8 in Chiriaco et al., 2006):

βmol =
p

kBT
(5.45× 10−32)

(
λ

550nm

)−4.09

=
p

kBT
Cmol, (2)

where for lidar wavelength λ= 532 nm, Cmol =

6.2446× 10−32; kB is the Boltzmann constant
kB ≈ 1.38× 10−23 JK−1, p is the atmospheric pressure
and T is the atmospheric temperature. We multiply this
equation by exp(4.09(log(532)− log(λ))) (where the value
of λ is in nanometres) to get molecular backscattering
for wavelengths other than 532 nm, which allows us to
support multiple commercially available instruments. The
strength of molecular backscattering is usually lower than
backscattering from clouds for the relevant wavelengths.

The lidar signal at visible or near-IR wavelengths is scat-
tered by cloud droplets in the Mie scattering regime (Mie,
1908). In the most simple approximation, one can assume
spherical dielectric particles. The scattering from these par-
ticles depends on the relative size of the wavelength and the
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(spherical) particle radius r , expressed by the dimensionless
size parameter x:

x =
2πr
λ
. (3)

While the wavelength is approximately constant during
the operation of the lidar2, the particle size comes from a
distribution of sizes, typically approximated in NWP mod-
els and GCMs by a gamma or log-normal distribution with
a given mean and standard deviation. Some models provide
the mean as effective radius reff. If the effective radius is not
provided by the model, the lidar simulator assumes a value
reff = 10 µm by default, which is approximately consistent
with global studies of the effective radius (Bréon and Colzy,
2000; Bréon and Doutriaux-Boucher, 2005; Hu et al., 2007;
Zhang and Platnick, 2011; Rausch et al., 2017; Fu et al.,
2019). This is different from the default effective radius of
30 µm in the original COSP lidar simulator.

In order to support multiple laser wavelengths, it is nec-
essary to calculate backscattering efficiency due to scatter-
ing by a distribution of particle sizes. We use the computer
code MIEV developed by Warren J. Wiscombe (Wiscombe,
1979, 1980) to calculate backscattering efficiency for a range
of the size parameter x and integrate for a distribution of
particle sizes. The resulting pre-calculated LR (extinction-
to-backscatter ratio) as a function of the effective radius is
included in the lidar simulator for fast lookup during the sim-
ulation.

Cloud droplet size distribution parameters are an impor-
tant assumption in lidar simulation due to the dependence of
Mie scattering on the ratio of the wavelength and particle size
(the size parameter x). NWP models and GCMs traditionally
use the effective radius reff and effective standard deviation
σeff (or an equivalent parameter such as effective variance
νeff) to parameterise this distribution. Knowledge of the real
distribution is likely highly uncertain due to a large variety
of clouds occurring globally and the limited ability to predict
microphysical cloud properties in models. In this section we
introduce theoretical assumptions used in the lidar simulator
based on established definitions of the effective radius and
effective standard deviation as well as two common distribu-
tions. Edwards and Slingo (1996) discuss the effective radius
in the context of model radiation schemes, and we will pri-
marily follow the definitions detailed in Chang and Li (2001)
and Petty and Huang (2011). The practical result of this sec-
tion (and the corresponding offline code) is pre-calculated
backscatter-to-extinction ratios as a function of the effective
radius in the form of a lookup table included in the lidar sim-
ulator and used in the online calculations. The offline code is
provided and can be re-used for calculation of the necessary
lookup tables for different lidar wavelengths, should the user
of the code want to support another instrument.

2The actual lidar wavelength is not constant and is characterised
by a central wavelength and width. The central wavelength may
fluctuate with temperature (Wiegner and Gasteiger, 2015).

The effective radius reff and effective standard deviation
σeff are defined by

reff =

∫
∞

0 r3n(r)dr∫
∞

0 r2n(r)dr
, σ 2

eff =

∫
∞

0 (r − reff)
2r2n(r)dr∫

∞

0 r2n(r)dr
, (4)

where n(r) is the probability density function (PDF) of the
distribution. Here, we follow Petty and Huang (2011), who
define the effective variance νeff which relates to σeff by
νeff = σ

2
eff/r

2
eff. Due to lack of knowledge about the real dis-

tribution of particle radii, it has to be modelled by a theo-
retical distribution, such as a log-normal or gamma distribu-
tion. The original ACTSIM assumes a log-normal distribu-
tion (Chiriaco et al., 2006) with the PDF:

n(r)∝
1
r

exp
(
−
(logr −µ)2

2σ 2

)
, (5)

where µ and σ are the mean and the standard deviation of
the corresponding normal distribution, respectively. Chiriaco
et al. (2006) use the value of σ = log(1.2)= 0.18 “for ice
clouds” (the value for liquid cloud does not appear to be
documented). In our parameterisation we used a combina-
tion of reff and σeff to constrain the theoretical distribution,
wherein the effective standard deviation σeff was assumed
to be one-fourth of the effective radius reff. This choice is
approximately consistent with σ = log(1.2)= 0.18 at reff =
20 µm (see Table 4, described below). In future updates, the
values could be based on in situ studies of size distribution
or taken from the atmospheric model output if available.

From the expression for the nth moment of the log-normal
distribution E[Xn] = exp(nµ+ n2 σ 2

2 ) and Eq. (4) we calcu-
late reff and σeff of the log-normal distribution:

reff =
E[r3
]

E[r2]
= exp(µ+

5
2
σ 2), (6)

σ 2
eff =

E[(r − reff)
2r2
]

E[r2]
=
E[r4
] − 2E[r3

]reff+ r
2
effE[r

2
]

E[r2]

=
exp(4µ+ 8σ 2)− exp(4µ+ 7σ 2)

exp(2µ+ 2σ 2)

= exp(2µ+ 6σ 2)− exp(2µ+ 5σ 2).

(7)

We findµ and σ for given reff and σeff numerically by root-
finding using the equations above. In practice, we find that
the root-finding converges well for reff between 5 and 50 µm,
which is the range most likely to be applicable in practice.

The gamma distribution follows the PDF:

n(r)∝ r(1−3νeff)/νeff exp
(
−

r

reffνeff

)
(8)

(see e.g. Eq. 13 in Petty and Huang, 2011, or Eq. 1 in Bréon
and Doutriaux-Boucher, 2005). In this case, the distribution
explicitly depends on reff and σeff and as such does not re-
quire numerical root-finding.
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Table 4. Table of sensitivity tests for the theoretical distribution assumption, effective radius reff and effective standard deviation σeff of the
cloud droplet size distribution; µ and σ are the mean and standard deviation of a normal distribution, corresponding to the log-normal distri-
bution, numerically calculated from reff and σeff, and µ∗ and σ∗ are the actual mean and standard deviation of the distribution (numerically
calculated).

Distribution reff (µm) σeff (µm) µ σ µ∗ (µm) σ∗ (µm)

log-normal 20 10 2.44 0.47 12.76 6.26
log-normal 20 5 2.84 0.25 17.72 4.43
log-normal 10 5 1.74 0.47 6.40 3.20
Gamma 20 10 9.98 7.00
Gamma 20 5 17.50 4.68
Gamma 10 5 5.00 3.54

Figure 2. (a) Theoretical distributions of cloud droplet radius based on the log-normal and gamma distributions parameterised by multiple
choices of the effective radius reff and effective standard deviation σeff. (b) Lidar ratio (LR) as a function of effective radius calculated for
different theoretical cloud droplet size distributions, laser wavelengths and effective standard deviation ratios. (c) Parameterisation of ice
cloud optical properties as a function of temperature based on Garnier et al. (2015) and Heymsfield (2005). The plot shows LR (S), LR of
CALIPSO calculated using the constant standard processing multiple-scattering coefficient η = 0.6 (SCALIPSO,η=0.6), the effective LR of
CALIPSO (S′CALIPSO), the effective radius (reff) and the multiple-scattering coefficient of CALIPSO (ηCALIPSO) determined by Garnier
et al. (2015). LRs are calculated for three wavelengths of 532 nm (solid line), 910 nm (dashed line) and 1064 nm (dotted line) by scaling with
the colour ratio.

Figure 2a shows the log-normal and gamma distributions
calculated for a number of reff and σeff values, and Table 4
summarises the properties of these distributions. The actual
mean and standard deviation of the distributions do not nec-
essarily correspond well to the effective radius and effective
standard deviation.

In ACTSIM, the volume extinction coefficient αe is cal-
culated by integrating the extinction by individual particles
over the particle size distribution:

αe =

∞∫
0

Qeπr
2n(r)dr ≈Qeπ

∞∫
0

r2n(r)dr =Qe
3qρair

4ρreff
, (9)

assuming approximately constant extinction efficiencyQe ≈

2 (which is approximately true for the interesting range of reff
and laser wavelengths) and using the relationship between
the cloud liquid mass mixing ratio q and

∫
∞

0 r2n(r)dr:

qρair =

∞∫
0

4
3
πr3ρn(r)dr =

4
3
πρ

∞∫
0

r3n(r)dr

=
4
3
πρreff

∞∫
0

r2n(r)dr, (10)

where ρ and ρair are the densities of liquid water and air,
respectively.

Likewise, the volume backscattering coefficient from par-
ticles βp is calculated by integrating backscattering by indi-
vidual particles over the particle size distribution:

βp =

∞∫
0

Qsπr
2Pπ (π)

4π
n(r)dr, (11)
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where Qs is scattering efficiency and Pπ (π) is the scattering
phase function at 180◦. Since the normalisation of n(r) is not
known until the online phase of calculation, the backscatter-
to-extinction ratio from particles kp = β/αe can be calculated
offline instead (the requirement for normalisation of n(r) is
avoided by appearing in both the numerator and denomina-
tor):

kp = βp/αe =

∫
∞

0 Qsr
2Pπ (π)/(4π)n(r)dr∫
∞

0 Qer2n(r)dr
. (12)

We pre-calculate this integral numerically for a permis-
sible interval of reff (5–50 µm) at 500 evenly spaced wave-
lengths and store the result as a lookup table for the online
phase. The integral in the numerator is numerically hard to
calculate due to strong dependency of Pπ (π) on r . Figure 2b
shows LR as a function of reff, calculated for log-normal
and gamma particle size distributions with σeff = 0.25reff and
σeff = 0.5reff. This corresponds to the lookup table we use in
the online phase of the lidar simulator. As can be seen in
Fig. 2, LR depends only weakly on the choice of the distri-
bution type and the effective standard deviation ratio.

4.3 Backscattering from ice crystals

Simulation of backscattering from ice crystals is relatively
complex compared to backscattering from liquid droplets
due to the very high variability of ice crystal microphys-
ical properties such as habit, size, orientation and surface
roughness, all of which affect LR, extinction cross sec-
tion, single-scattering albedo and the multiple-scattering co-
efficient. Common habits include hexagonal plates, hexag-
onal columns, hollow hexagonal columns, droxtals, bullet
rosettes, hollow bullet rosettes and aggregates (Baran, 2009;
van Diedenhoven, 2017). Size can be highly variable and bi-
modal with a dependence on temperature and relative humid-
ity. Orientation is commonly random or horizontally oriented
(often reported with hexagonal ice plates). The surface can
vary between smooth and rough depending on supersatura-
tion and crystal age. In general, the Mie theory cannot be
used to simulate backscattering from ice crystals because of
their irregular shape (Yang et al., 2014). While large crystals
allow the use of the geometric optics approximation to esti-
mate the optical properties, smaller crystals and diffraction
by large crystals necessitate the use of more advanced tech-
niques such as the T-matrix method, finite-difference time
domain (FDTD), discrete dipole approximation (DDA) and
others, which are generally computationally expensive. Cur-
rent global atmospheric models do not normally explicitly
parameterise the microphysical properties of cloud ice and
provide only very limited information such as ice mass con-
centration and in some cases the effective radius of ice crys-
tals in the model output. Radiative transfer schemes of atmo-
spheric models do not explicitly evaluate backscattering (the
phase function at 180◦) and therefore cannot provide this in-
formation to the simulator. Instead the phase function is pa-

rameterised by the asymmetry factor, which is likely insuffi-
cient to give an accurate estimate of backscattering.

Because the model ice crystal microphysical and optical
properties are not known, they have to be parameterised.
A first option is to parameterise the microphysical proper-
ties such as habit and size and theoretically calculate opti-
cal properties. A second option is to directly parameterise
the optical properties. This appears to be a more practi-
cal choice because of the broad availability of global re-
mote sensing measurements of optical properties from satel-
lites and ground-based lidars compared to relatively scarce
in situ measurements of ice crystals. Garnier et al. (2015)
analysed CALIPSO lidar and co-located passive infrared
data from the Imaging Infrared Radiometer (IIR) and de-
termined a global relationship between temperature, LR and
the multiple-scattering coefficient at the lidar wavelength of
532 nm. The multiple-scattering coefficient is taken as a con-
stant of 0.6 in the standard CALIPSO data processing, but
they determined that it is in fact variable between about 0.4
and 0.8. Here, we parameterise LR based on their findings.
LR varies with the lidar wavelength, a larger part of which is
due to the change in the diffraction peak and a smaller part
is due to the variation of the refractive index (Borovoi et al.,
2014). We use the colour ratio to estimate LR at lidar wave-
lengths other than 532 nm. A colour ratio of 1064 nm relative
to 532 nm is commonly estimated for dual-wavelength lidars
such as CALIOP. Here, we use a value of 0.8, approximately
consistent with the results of Bi et al. (2009) and Vaughan
et al. (2010). The effective radius is defined for non-spherical
particles as reff =

3
2

IWC
σ

, where IWC is the ice water content,
and σ is the volume extinction coefficient of ice. Heymsfield
(2005) summarised the ice crystal effective radius (related to
IWC / σ by a factor of 1.64) parameterised as a function of
temperature based on a number of field studies. We use this
relationship for determination of the effective radius. Fig-
ure 2c shows the true and effective LR based on Garnier et al.
(2015) and the effective radius based on Heymsfield (2005),
parameterised by the following equations:

S =

(
20+ (34− 20)

1/T − 1/200
1/230− 1/200

)
sr, (13)

η = 0.8+ (0.5− 0.8)
1/T − 1/200

1/240− 1/200
, (14)

reff = exp(log(16.4)+ (log(49.2)− log(16.4))

1/T − 1/213.15
1/253.15− 1/213.15

)
µm, (15)

where T is atmospheric temperature in Kelvin (K). S follows
Garnier et al. (2015, Fig. 12b), η follows Garnier et al. (2015,
Fig. 9a) and reff follows Heymsfield (2005, Fig. 2), where the
concave and convex shape (respectively) is approximated by
using 1/T as an argument of the linear approximation, and
we use a logarithmic scale of reff in the expression for reff
to avoid negative values at low temperature. Figure 2c also
shows LR when calculated with the assumption of η = 0.6
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(SCALIPSO,η=0.6) as in the standard processing of CALIPSO
data. This corresponds to the empirically found relationship
in Garnier et al. (2015, Fig. 12a) and Josset et al. (2012,
Fig. 9) with a local maximum at 225 K. LR at wavelengths
other than 532 nm is approximated by 0.8

λ−532
532 , where λ is

lidar wavelength in micrometres (µm) and 0.8 is the approxi-
mate value of the 1064 nm / 532 nm colour ratio. The param-
eterisation of LR (S in Fig. 2c) spans about the same range
of values as reported by Hopkin (2018, Fig. 5.6) (20 to 60 sr)
and Yorks et al. (2011) (10 to 60 sr). Based on CALIPSO
observations, Hu (2007) determined that while the effective
LR of global ice clouds at a lidar wavelength of 532 nm is
mostly clustered around 17 sr, horizontally oriented plates
produce a much lower effective LR below 10 sr caused by
specular reflection. These results are close to our parame-
terisation of effective LR (S′CALIPSO). In the current version
of the lidar simulator we do not parameterise horizontally
oriented plates, but in a future version they could be taken
into account by parameterising their concentration based on
temperature (Noel and Chepfer, 2010). For the ALCs we use
the same constant value of the multiple-scattering coefficient
η = 0.7 as for liquid cloud droplets (Sect. 4.5).

4.4 Cloud overlap and cloud fraction

Model cloud is defined by the liquid and ice mass mixing ra-
tio as well as the cloud fraction in each atmospheric layer.
The lidar simulator simulates radiation passing vertically at
a random location within the grid cell. Therefore, it is neces-
sary to generate a random vertical cloud overlap based on the
cloud fraction in each layer, as the overlap is not explicitly
defined in the model output. Two common methods of gener-
ating overlap are the random and maximum–random overlap
methods (Geleyn and Hollingsworth, 1979). In the random
overlap method, each layer is either cloudy or clear with a
probability given by CF, independent of other layers. The
maximum–random overlap method assumes that adjacent
layers with non-zero CF are maximally overlapped, whereas
layers separated by zero CF layers are randomly overlapped.
COSP implements cloud overlap generation in the Subgrid
Cloud Overlap Profile Sampler (SCOPS) (Klein and Jakob,
1999; Webb et al., 2001; Chepfer et al., 2008). The ALC sim-
ulator uses SCOPS to generate 10 random subcolumns for
each profile using the maximum–random overlap assumption
as the default setting of a user-configurable option. The at-
tenuated volume backscattering coefficient profile and cloud
occurrence can be plotted for any subcolumn. Due to the ran-
dom nature of the overlap, the attenuated volume backscat-
tering coefficient profile may differ from the observed profile
even if the model is correct in its cloud simulation. The ran-
dom overlap generation should, however, result in unbiased
cloud statistics.

4.5 Multiple scattering

Due to a finite FOV of the lidar receiver, a fraction of the laser
radiation scattered forward will remain in the FOV. There-
fore, the effective attenuation is smaller than calculated with
the assumption that all but the backscattered radiation is re-
moved from the FOV and cannot reach the receiver. The
forward scattering can be repeated multiple times before a
fraction of the radiation is backscattered, eventually reaching
the receiver. To account for this multiple-scattering effect,
the COSP lidar simulator uses a multiple-scattering correc-
tion coefficient η, by which the volume scattering coefficient
is multiplied before calculating the layer optical thickness
(Chiriaco et al., 2006; Chepfer et al., 2007; Chepfer et al.,
2008). The theoretical value of η is between 0 and 1 and
depends on the receiver FOV and optical properties of the
cloud. For CALIOP at λ = 532 nm a value of 0.7 is used
in the COSP lidar simulator. Hogan (2006) implemented a
fast approximate multiple-scattering code. This code has re-
cently been used by Hopkin et al. (2019) in their ceilome-
ter calibration method. They noted that η is usually between
0.7 and 0.85 for wavelengths between 905 and 1064 nm. The
ALC simulator presented here does not use an explicit calcu-
lation of η but retains the value of η = 0.7 for cloud droplets.
The code of Hogan (2006), “Multiscatter”, is publicly avail-
able (http://www.met.reading.ac.uk/clouds/multiscatter/, last
access: 1 January 2021) and could be used in a later version
of the framework to improve the accuracy of simulated atten-
uation and calibration.

5 Lidar data processing

The scheme in Fig. 1 outlines the processing done in the
framework. The individual processing steps are described be-
low.

5.1 Noise and subsampling

ALC signal reception is affected by a number of sources of
noise such as sunlight and electronic noise (Kotthaus et al.,
2016). Range-independent noise can be removed by assum-
ing that the attenuated volume backscattering coefficient at
the highest range gate is dominated by noise. This is true
if the highest range is not affected by clouds or aerosol
and if contributions from molecular scattering are negligible.
The supported instruments have a range of approximately 8
(CL31), 15 (CL51, CHM 15k) and 30 km (MiniMPL). By
assuming that the distribution of noise at the highest level
is approximately normal, the mean and standard deviation
can be calculated from a sample over a period of time such
as 5 min, which is short enough to assume the noise is con-
stant over this period and long enough to achieve accurate
estimates of the standard deviation. The mean and standard
deviation can then be scaled by the square of the range to
estimate the distribution of range-independent noise at each
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Table 5. Theoretical molecular volume backscattering coefficient
calculated at pressure 1000 hPa and temperature 20 ◦C along with
the calibration coefficient, relative to the instrument native units,
determined for the instrument based on the molecular volume
backscattering coefficient and stratocumulus lidar ratio calibration
methods.

Instrument Wavelength Molecular volume Calibration
(nm) backscattering coefficient

coefficient
(×10−6 m−1 sr−1)

CHM 15k 1064 0.0906 0.34
CL31 910 0.172 1.45× 10−3

CL51 910 0.172 1.2× 10−3

MiniMPL 532 1.54 3.75× 10−6

range bin. By subtracting the noise mean from the measured
attenuated volume backscattering coefficient we get the ex-
pected attenuated volume backscattering coefficient. The re-
sult of the noise removal algorithm is the expected attenuated
volume backscattering coefficient and its standard deviation
at each range bin.

5.2 Backscatter calibration

ALCs often report the attenuated volume backscattering co-
efficient in arbitrary units (a.u.) or as NRB (MiniMPL). If
they report it in units of m−1 sr−1, these values are often not
calibrated to represent the true absolute attenuated volume
backscattering coefficient. Assuming that range-dependent
corrections (overlap, dead time and after pulse) have been
applied to the attenuated volume backscattering coefficient
in a.u., the reported attenuated volume backscattering coeffi-
cient is proportional to the true attenuated volume backscat-
tering coefficient (inclusive of noise backscattering). In order
to have a comparable quantity to the lidar simulator and con-
sistent input to the subsequent processing (e.g. cloud detec-
tion), calibration by multiplying by a calibration coefficient
is required. Formally, the units of the calibration coefficient
depend on the units of backscattering recorded by the in-
strument, which are m−1 sr−1 in CL31 and CL51, unitless in
CHM 15k, and µs−1 µJ−1 km2 in MiniMPL; i.e. the units of
the calibration coefficient are m−1 sr−1 / (instrument units).
In the following discussion, we leave out the units. Several
methods of calibration have been previously described: cal-
ibration based on LR in fully attenuating liquid stratocumu-
lus clouds (O’Connor et al., 2004; Hopkin et al., 2019), cal-
ibration based on molecular backscattering (Wiegner et al.,
2014) and calibration based on a high-spectral-resolution li-
dar reference (Heese et al., 2010; Jin et al., 2015). In addition,
calibration can be assisted by sun-photometer or radiosonde
measurements (Wiegner et al., 2014).

Relatively large variability in the calibration coefficient
has been determined for instruments of the same model

(Hopkin et al., 2019). However, past studies can be useful
for determining an approximate value of the coefficient be-
fore applying one of the calibration methods. For the CL51,
Jin et al. (2015) reported a value of 1.2± 0.1 based on a
multi-wavelength lidar reference. Hopkin et al. (2019) re-
ported mean values of 1.4–1.5 for a number of CL31 instru-
ments (software version 202). For CHM 15k, Hopkin et al.
(2019) reported mean values between 0.3 and 0.8 for a ma-
jority of the instruments examined. The ALCF provides per-
instrument default values of the calibration coefficient (Ta-
ble 5), but a unit-specific coefficient should be determined
for an analysed instrument during the lidar data processing
step.

Calibration based on LR in fully opaque liquid stratocu-
mulus clouds has been successfully applied to large networks
of ALCs. It utilises the fact that given suitable conditions the
vertically integrated attenuated volume backscattering coef-
ficient is proportional to LR of the cloud, which can be the-
oretically derived if the cloud droplet effective radius can be
assumed. The theoretically derived value is about 18.8 sr for
common ALC wavelengths and a relatively large range of
effective radii (O’Connor et al., 2004). Another factor which
needs to be known or assumed is the multiple-scattering co-
efficient, which tends to be about 0.7–1.0 in common ALCs.
Due to its relatively simple requirements, this method is pos-
sibly the easiest ALC calibration method. The ALCF im-
plements this calibration method by letting the user identify
time periods with fully opaque liquid stratocumulus cloud,
for which the mean LR is calculated. The ratio of the ob-
served LR and the theoretical LR is equivalent to the cali-
bration coefficient. This implementation, while very easy to
perform, has multiple limitations, some of which are high-
lighted by Hopkin et al. (2019).

1. Aerosol can cause additional attenuation and scattering,
which results in LR that is different from the theoretical
value by an unknown factor. Therefore, a frequent re-
calibration may be necessary.

2. The multiple-scattering coefficient assumption may not
be accurate for the given instrument.

3. The 910 nm wavelength of CL31 and CL51 is affected
by water vapour absorption, which causes additional at-
tenuation that is currently not taken into account in the
calculation of LR.

4. Near-range attenuated volume backscattering coeffi-
cient retrieval is affected by receiver saturation and
incomplete overlap. Therefore, using stratocumulus
clouds above approximately 2 km for this calibration
method is recommended. This range is instrument-
dependent.

5. The composition of stratocumulus clouds may be un-
certain. At temperatures between 0 and −30 ◦C these
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clouds may contain both liquid and ice, which results in
a different LR than expected.

These limitations could be addressed in the future by (1)
using sun-photometer observations as an optional input to de-
termine the aerosol optical depth (AOD), (2) calculating the
multiple-scattering coefficient more accurately (such as with
the Multiscatter package of Hogan, 2006), (3) calculating the
water vapour absorption explicitly based on water vapour,
temperature and pressure fields from a reanalysis or ra-
diosonde profile data, (4) correcting the near-range backscat-
ter based on the integrated attenuated volume backscatter-
ing coefficient distribution as a function of the height of the
maximum backscatter (Hopkin et al., 2019, Sect. 5.1), or (5)
combining the attenuated volume backscattering coefficient
profile with the temperature field from a reanalysis to exclude
cold clouds.

Molecular (Rayleigh) backscattering can be accurately
calculated if the temperature and pressure of the atmospheric
profile are known (Sect. 4.2). This can be employed for abso-
lute calibration of ALCs. Given the low SNR of low-power
ALCs, several hours of integration are required to identify the
molecular backscattering (Wiegner et al., 2014). The molec-
ular backscattering is attenuated by an unknown amount of
aerosol with unknown LR, and the near-range backscatter-
ing is affected by a potentially inaccurate overlap correc-
tion. Therefore, this method alone produces calibration co-
efficients which depend on the atmospheric conditions. We
found that all studied ALCs except for the CL31 are capable
of observing the molecular backscattering (Sect. 7). There-
fore, this method may be used in addition to the liquid stra-
tocumulus LR method for cross-validation of the calibration.

5.3 Cloud detection

Cloud is the most strongly attenuating feature in ALC attenu-
ated volume backscattering coefficient measurements. Due to
this attenuation, the lidar signal is quickly attenuated in thick
cloud and can fall below the noise level before reaching the
top of the cloud. This means that the first cloud base can be
detected reliably (unless the cloud is too thin or too high and
obscured by noise), while the cloud top or multi-layer cloud
cannot be observed reliably under all conditions. The oppo-
site is true for spaceborne lidars, which can detect the cloud
top reliably but cannot always detect the cloud base. There-
fore, ALC observations can be regarded as complementary
to spaceborne lidar observations. By applying a suitable al-
gorithm, one can detect CBH and CTH as well as identify-
ing cloud layers. Instrument firmware often determines CBH
and sometimes cloud layers as part of its internal process-
ing, often using an undisclosed algorithm which is not com-
parable between different instruments and potentially not
even different versions of the instrument firmware (Kotthaus
et al., 2016). Mattis et al. (2016) compared a large number
of ALCs and found differences of up to 70 m between the
reported CBH, and others found relatively large differences

as well (Liu et al., 2015b; Silber et al., 2018). Alternatively
to instrument-reported CBH and cloud layers, it is possible
to detect cloud based on the attenuated volume backscatter-
ing coefficient profile. A relatively large number of cloud de-
tection algorithms have been proposed (Wang and Sassen,
2001; Morille et al., 2007; Martucci et al., 2010; Van Tricht
et al., 2014; Silber et al., 2018; Cromwell and Flynn, 2019).
We use a simple algorithm based on an attenuated volume
backscattering coefficient threshold applied to the denoised
backscatter, assuming that the noise can be represented by
a normal distribution at the highest range, which is unlikely
to contain cloud or aerosol if the instrument is pointing ver-
tically (this may not be true, however, for CL31, which has
a maximum range of just 7.7 km). This assumption neglects
the range-dependent molecular backscattering, which is rel-
atively small at the ceilometer wavelengths examined (910
and 1064 nm). A cloud mask is determined to be positive
where the attenuated volume backscattering coefficient is
greater than a chosen threshold plus 5 standard deviations of
noise at the given range. In addition, the observed attenuated
volume backscattering coefficient can optionally be coupled
with a simulated attenuated molecular volume backscatter-
ing coefficient and molecular backscattering removed from
the observed backscattering prior to cloud detection. This im-
proves the results in the boundary layer, especially with in-
struments which operate in the visible range and are therefore
affected by large molecular backscattering (MiniMPL). A
threshold of 2 ×10−6m−1 sr−1 was found to be a good com-
promise between false detection and misses in our South-
ern Hemisphere data relatively unaffected by anthropogenic
aerosol. Our observed and simulated results show that cloud
backscatter is generally higher than 1×10−6 m−1 sr−1, and a
threshold below 2 ×10−6 m−1 sr−1 results in excessive false
detection due to aerosol, molecular backscattering and noise
from sunlight. The threshold is an adjustable option of the
ALCF. Users are encouraged to change this value if, for ex-
ample, the data are affected by a large amount of aerosol.
This value is above the maximum molecular backscattering,
which is approximately 1.54× 10−6 m−1 sr−1 at the surface
in the case of the MiniMPL (wavelength 532 nm). Noise
is not simulated by the lidar simulator, but the cloud de-
tection algorithm allows for coupling of simulated and ob-
served profiles, whereby the noise standard deviation is taken
from the corresponding location in the observed profile. With
5 min averaging, when the standard deviation of noise is rel-
atively low, we found that the coupling does not make sub-
stantial differences in the detected cloud (not shown). While
the threshold-based algorithm is less sophisticated than other
methods of cloud detection, the vertical resolution of the sim-
ulated attenuated volume backscattering coefficient is likely
too low and the vertical derivatives of the simulated atten-
uated volume backscattering coefficient too crudely repre-
sented (Table 7) to apply any algorithm based on the vertical
derivatives of the attenuated volume backscattering coeffi-
cient. Using the same cloud detection algorithm on the ob-
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served and simulated attenuated volume backscattering coef-
ficient is essential for an unbiased one-to-one comparison of
cloud.

5.4 Water vapour absorption

Previous studies have noted that ceilometers which utilise
the wavelength of 910 nm, such as the Vaisala CL31 and
CL51, are affected by additional absorption of laser radia-
tion by water vapour (Wiegner and Gasteiger, 2015; Wieg-
ner et al., 2019; Hopkin et al., 2019). The wavelength coin-
cides with water vapour absorption bands between 900 and
930 nm, while the other common ceilometer wavelength of
1064 nm is not affected. Wiegner and Gasteiger (2015) re-
ported that it can cause absorption of the order of 20 % in the
extratropics and 50 % in the tropics. The lidar simulator does
not currently account for this. However, as the water vapour
concentration is available from the reanalyses and models, it
should be possible to use a line-by-line model to calculate the
water vapour volume absorption coefficient for each vertical
layer during the integration process. Water vapour also af-
fects calibration of the observed attenuated volume backscat-
tering coefficient. In order to use the liquid stratocumulus LR
calibration method, the attenuated volume backscattering co-
efficient has to be corrected for water vapour absorption to
achieve high-accuracy calibration. Hopkin et al. (2019) used
a simplified approach based on a parameterised curve and
reported a difference from explicit radiative transfer calcu-
lations of 2 % in the United Kingdom atmosphere (Middle
Wallop). In the future either approach should be used to in-
clude water vapour absorption in the simulator or remove the
effect of water vapour absorption from the observed lidar at-
tenuated volume backscattering coefficient to achieve an im-
proved one-to-one comparison between the observations, re-
analyses and models.

6 Description of case studies

The case studies analysed here were selected to include all
instruments supported by the framework. We compare four
different instruments (CHM 15k, CL31, CL51, MiniMPL)
deployed at three locations in NZ (Lauder, Christchurch,
Cass) with three reanalyses (MERRA-2, ERA5, JRA-55),
one NWP model (AMPS) and one GCM (UM). These case
studies aim to demonstrate capability rather than to compre-
hensively evaluate cloud simulation in the models and re-
analyses. The work detailed in Kuma et al. (2020) provides
a detailed evaluation of the UM and MERRA-2 relative to
shipborne ceilometer observations. Figure 3a shows the lo-
cation of the sites and Table 6 summarises the case studies,
which are also described in greater detail below. The sites
were chosen from available datasets to demonstrate the use
of the framework with all supported instruments. Two of the
sites also had co-located instruments: CL31 and MiniMPL

in Lauder and CHM 15k and MiniMPL in Christchurch. The
MiniMPL in Lauder and Christchurch were two different
units. The number of model levels within the range of each
instrument and vertical resolution range are listed in Table 7.

Cass is a field station of the University of Canterbury lo-
cated at an altitude of 577 m in the Southern Alps of the
South Island of NZ. The station is located far from any set-
tlements and is likely less affected by anthropogenic aerosol
relative to the other sites. We have analysed 13 d of observa-
tions with a CL51 at this station performed in September and
October 2014.

Lauder is a field station of NIWA located inland in the cen-
tral Otago region on the South Island of NZ. The station is
situated in a rural area relatively far from large human set-
tlements at an altitude of 370 m. We have analysed 13 d of
co-located MiniMPL and CL31 observations made in Jan-
uary 2018. The MiniMPL was operated in an enclosure with
a scanning head set to a fixed vertical scanning mode during
this period (elevation angle 90◦).

Observations at the Christchurch site were performed at
the University of Canterbury campus on the Ernest Ruther-
ford building rooftop at an altitude of 45 m. Christchurch is
located on the east coast of the South Island of NZ. Its cli-
mate is affected by the ocean, its proximity to the hilly area
of the Banks Peninsula, the Canterbury Plains and föhn-type
winds (Canterbury northwester) resulting from its position
on the lee side of the Southern Alps. The city is affected
by significant wintertime air pollution from domestic wood
burning and transport. The orography of the city and the ad-
jacent Canterbury Plains is very flat, making it prone to in-
versions. The Ernest Rutherford building is a five-floor build-
ing situated in an urban area, surrounded by multiple build-
ings of similar height. We have analysed 23 d of co-located
MiniMPL and CHM 15k observations performed in July and
August 2019. The MiniMPL was operated in an enclosure
with a scanning head set to a fixed vertical scanning mode
(elevation angle 90◦). The nudged run of the UM was only
available up to the year 2018. Therefore, it was not analysed
for this site.

7 Results

To demonstrate how the ALCF can be used we compared a
total of 49 d of ALC observations with the simulated lidar
attenuated volume backscattering coefficient at three sites in
NZ (Sect. 6). The observed attenuated volume backscattering
coefficient was normalised to the calibrated absolute range-
corrected attenuated volume backscattering coefficient. The
noise mean as determined at the furthest range was removed
from the attenuated volume backscattering coefficient. Cloud
detection based on an attenuated absolute volume backscat-
tering coefficient threshold of 2 × 10−6 m−1 sr−1, after re-
moving molecular backscattering and 5 noise standard devia-
tions, was applied to derive a cloud mask and CBH. We com-
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Figure 3. (a) Map showing the location of sites. Data at three sites in New Zealand were analysed: Cass, Lauder and Christchurch. (b, c, d)
Cloud occurrence histograms as a function of height above the mean sea level observed at three sites and simulated by the lidar simulator
based on atmospheric fields for five reanalyses and models. The total cloud fraction (CF) is also shown. The histogram is calculated from the
cloud mask as determined by the cloud detection algorithm.

Table 6. Location of sites and instruments. The time periods are inclusive.

Site Coordinates Surface Instruments Time period Missing Days
altitude (m)

Cass 43.0346◦ S 171.7594◦ E 577 CL51 19 Sep–1 Oct 2014 13
Lauder 45.0379◦ S 169.6831◦ E 370 MiniMPL, CL31 12–24 Jan 2018 13
Christchurch 43.5225◦ S 172.5841◦ E 45 MiniMPL, CHM 15k 17 Jul–18 Aug 2019 22–31 Jul 23

pare the statistical cloud occurrence as a function of height
above the mean sea level (a.s.l.) (Fig. 3b, c, d) and individ-
ual attenuated volume backscattering coefficient profiles (se-
lected profiles are shown in Figs. 4, 5 and 6) in this section.
In these plots 5 standard deviations of the attenuated volume
backscattering coefficient noise (Sect. 5.3) were removed. In

addition, molecular backscattering was removed by coupling
the observed data (Figs. 4a, 5a, 6a) with the molecular attenu-
ated volume backscattering coefficient calculated by the lidar
simulator based on the MERRA-2 reanalysis data. The same
applies to model data (Figs. 4b–f, 5b–f, 6b–e), but the molec-
ular attenuated volume backscattering coefficient was calcu-
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Table 7. Number of models levels and vertical resolution in the range of the instrument at the locations of the case studies. The first number
is the number of levels, followed by the minimum and maximum distance range between adjacent model levels in the lidar’s range (m).

Cass (CL51) Lauder (CL31) Lauder Christchurch Christchurch
(MiniMPL) (CHM 15k) (MiniMPL)

AMPS 42; 33–778 31; 35–528 59; 35–1021 43; 33–779 60; 33–870
ERA5 23; 222–1469 17; 220–950 30; 220–4748 25; 213–1425 31; 213–4107
JRA-55 23; 223–1479 17; 217–948 26; 217–1402 25; 213–1426 26; 213–1426
MERRA-2 34; 118–1080 26; 125–669 47; 125–1329 34; 124–1059 48; 124–1167
UM 44; 70–645 33; 32–449 65; 32–1181

lated by the lidar simulator based on the respective model
data.

7.1 Cass

We analysed 13 d of CL51 observations from the Cass field
station in late winter. Due to the location of the station at
a relatively high altitude in a varied terrain of the South-
ern Alps, the models, with their relatively coarse horizontal
grid resolution, do not represent the terrain and position ac-
curately. The orography representation of the models meant
that the virtual altitude of the station was 1115 m (AMPS),
1051 m (ERA5), 401 m (JRA-55), 914 m (MERRA-2) and
428 m (UM). The virtual position, which is the centre of the
nearest model grid cell to the site location, ranged from rela-
tively close in the Southern Alps (AMPS, ERA5, MERRA-2,
UM) to relatively far on the west coast of NZ (JRA-55) de-
pending on the horizontal resolution of the grid. The time
period examined was characterised by diverse cloud occur-
rence with periods of low cloud and precipitation, mid-level
cloud, fog, high cloud, and clear skies. Precipitation, cur-
rently not simulated by the lidar simulator, was present in
about 18 % of the observed attenuated volume backscatter-
ing coefficient profiles, as determined by visual inspection.
Figure 3b shows that predominantly low cloud and precip-
itation between the ground and 3 km a.s.l. in 25 % of pro-
files was observed. Cloud between 3 and 12 km a.s.l. was ob-
served about evenly in 2 % of profiles. While the reanalyses
and models were able to partially reproduce the peak of cloud
occurrence near 1 km a.s.l., the peak they displayed is less
vertically broad than observed, and in the UM the peak was
much weaker than observed. The lack of precipitation simu-
lation might have also contributed to this apparent difference
between observed and simulated cloud. Above 3 km a.s.l., the
reanalyses and models tended to overestimate cloud, with
only ERA5 and JRA-55 simulating close to the observed
cloud occurrence. The observed total CF was 61 %. AMPS
overestimated this value by 5 percentage points (pp), and
ERA5 and the UM reproduced almost the exact value (within
1 pp), while the other reanalyses (JRA-55 and MERRA-2)
underestimated CF by about 15 pp.

7.2 Lauder

We also analysed 13 d of CL31 and MiniMPL observations
from the Lauder station in summer. During the time period
relatively diverse cloud was observed, with periods of low,
middle and high cloud, clear sky, and a small fraction of pro-
files with precipitation (about 3 %). The altitude of the sta-
tion of 370 m a.s.l. generally had a much higher equivalent in
the reanalyses and models at 565 m (AMPS), 642 m (ERA5),
681 m (JRA-55) and 786 m (MERRA-2) due to the presence
of hills in the surrounding region (the station is in a high
valley), with the exception of the UM wherein the altitude
was 385 m. The virtual station position in the reanalyses and
models ranged from relatively close to the station in the same
geographical region (AMPS, ERA5), to a nearby location in
a more hilly region (JRA-55), a relatively distant location in
the adjacent Dunstan Mountains (MERRA-2) and a relatively
distant location in central Otago (UM). Figure 3c shows that
the CL31 observed relatively even cloud occurrence between
the ground and 3 km a.s.l. at 8 %, falling off to about 3 % be-
tween 4 and 8 km a.s.l. (the maximum lidar range of CL31
is 7.7 km). The MiniMPL observed a much weaker atten-
uated volume backscattering coefficient than CL31 below
3 km a.s.l., which was identified as an overlap calibration
issue in the MiniMPL. The MiniMPL observed substantial
amounts of cloud above 8 km not present in the CL31 ob-
servations due to its range limitation. Overall, the observed
cloud occurrence had two peaks at the ground to 3 km a.s.l.
and at about 9 km a.s.l. The simulated cloud occurrence was
generally underestimated between the ground and 5 km a.s.l.,
with the exception of the UM which reproduced the lower
half of the peak accurately and ERA5 which reproduced the
upper half of the peak accurately. Above 5 km a.s.l., the cloud
occurrence was well reproduced in ERA5 and JRA-55 but
strongly overestimated in AMPS, MERRA-2 and the UM.
The reanalyses and models also tended to have two peaks at
about 2 and 11 km a.s.l., but these were quite different from
the observed peaks, with the lower peak underestimated by
about 5 pp in the reanalyses and models and the higher peak
overestimated by about 5–10 pp. The total CF was observed
as 45 % and 60 % by CL31 and MiniMPL, respectively. CF
observed by the MiniMPL was likely higher due to its higher
maximum lidar range (CL31 missed substantial amounts of
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Figure 4. Examples of the observed and simulated attenuated volume backscattering coefficient during 24 h at Cass. The observed attenuated
volume backscattering coefficient was normalised to absolute units and denoised. The first subcolumn generated by the Subgrid Cloud
Overlap Profile Sampler (SCOPS) was used to make the plots. The red line is the station altitude. S(a) The observed effective lidar ratio
calculated by vertically integrating the attenuated volume backscattering coefficient is also shown, as are (b–f) the corresponding model
cloud liquid water, cloud ice and cloud fraction.

high cloud due to this limitation). The total CF was strongly
underestimated by the reanalyses and models by up to 31 pp
(CL31) and 28 pp (MiniMPL), with the exception of the UM
which simulated the correct CF within 3 pp.

7.3 Christchurch

The Christchurch observations were made during a total of
23 d in middle to late winter. The cloud situations were char-
acterised by the frequent occurrence of low cloud and fog,
with relatively diverse mid-level and high-level cloud and
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Figure 5. The same as Fig. 4 but for the Lauder.

periods of clear sky also present (not shown). Precipitation
was present in about 9 % of profiles and fog in about 11 %
of profiles. As the site location is relatively flat (Canterbury
Plains), the models did not have any difficulty in reproduc-
ing the altitude of the site, which was 32 m (AMPS), 72 m
(ERA5), 143 m (JRA-55) and 76 m (MERRA-2). The virtual
location was within the boundaries of the city (AMPS), on
the Canterbury Plains close to the city boundaries (ERA5,
MERRA-2) and over Lake Ellesmere about 20 km from the
city (JRA-55). Figure 3d shows that the co-located CHM 15k

and MiniMPL observed a strong peak of cloud occurrence of
26 % (CHM 15k) at about 500 m a.s.l. This was likely due to
the combined precipitation and fog as well as false detection
of aerosol as cloud. The observed cloud occurrence had a lo-
cal minimum of 2 % at about 5 km a.s.l., a secondary peak of
5 % at 7 km a.s.l. and fell off 0 % at 11 km a.s.l. The CHM
15k and MiniMPL observations showed inconsistencies of
up to 4 pp. The reanalyses and models underestimated low
cloud by 5–10 pp. With the exception of AMPS, they under-
estimated mid-level cloud by about 5 pp and represented high
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Figure 6. The same as Fig. 4 but for the Christchurch.

cloud relatively accurately. The total CF observed was 68 %,
while the reanalyses and models strongly underestimated CF
by up to 34 pp (JRA-55), with common underestimates of
around 20 pp.

7.4 Backscattering on daily scales

Figures 4, 5 and 6 show images of the attenuated volume
backscattering coefficient for three separate days taken from
the three case studies. The selected days represent some of
the best-matching profiles and demonstrate how well the re-

analyses and models can simulate cloud under favourable
conditions. As can be seen in the figures, ERA5 and the UM
perform the best in terms of the temporal and height accu-
racy of the simulated cloud (Figs. 4c, 4f, 5c, 5f, 6c). This
is likely due to the high output temporal resolution of the
UM and ERA5 of 20 min and 1 h, respectively. The UM and
ERA5 were able to represent the relatively fine structure of
cloud and to a lesser extent the optical thickness (inferred
from the strength of backscattering) of the cloud. Deficien-
cies, however, are readily identifiable. The low cloud in the
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UM (Fig. 4f) covers too large of an area relative to obser-
vations (Fig. 4a) and the high cloud has a greater vertical
extent in the UM. Likewise, the altocumulus cloud observed
in Fig. 5a is shifted by several hours in the UM (Fig. 5f).
The stratocumulus and nimbostratus cloud, visually identi-
fied based on the attenuated volume backscattering coeffi-
cient profiles, in ERA5 (Fig. 4c) is markedly lower than ob-
served (Fig. 4a), as well as optically thicker than in reality.
The mid-level cloud in ERA5 (Fig. 5c) was located about
2 km higher than observed (Fig. 5a). Precipitation observed
in Fig. 6a towards the end of the analysed period was not
present in the ERA5 simulated profile (Fig. 6c) due to lack of
precipitation simulation in the current lidar simulator (even
though rain- and snow-specific content is available from the
reanalysis). AMPS and MERRA-2 had lower cloud represen-
tation accuracy. They managed to capture the overall struc-
ture of clouds (Figs. 4b, 4d, 5b, 5d, 6b, 6d), but substantial
discrepancies were present, some of which were likely due
to the relatively low temporal resolution of 3 h. AMPS, how-
ever, has a relatively high horizontal grid resolution of 21 km.
This demonstrates that factors in the model other than resolu-
tion have a stronger influence on the quality of cloud simula-
tion. JRA-55 was identified as the last in terms of cloud rep-
resentation accuracy. JRA-55 has the lowest temporal resolu-
tion of the studied reanalyses and models of just 6 h, as well
as the lowest horizontal grid resolution of 139 km. Therefore,
it cannot be expected to capture any fine details of cloud. In
the presented profiles (Figs. 4e, 5e, 6e) one can see that the
cloud is only crudely represented. JRA-55 was able to rep-
resent the stratocumulus cloud in Fig. 4a, although its tem-
poral extent and optical thickness were overestimated. The
mid-level clouds in Figs. 5a and 6a were relatively well rep-
resented in terms of height and optical thickness given the
low temporal resolution of the reanalysis. We stress that a di-
rect attenuated volume backscattering coefficient profile in-
tercomparison is highly dependent on the temporal resolution
of the model output. The statistical intercomparison, how-
ever, should still give unbiased results if the cloud physics
are accurately simulated by the atmospheric model.

Figures 4a, 5a and 6a also show the effective LR of ob-
servations calculated by integrating the vertically attenuated
volume backscattering coefficient (Sect. 4.1). If the attenu-
ated volume backscattering coefficient is properly calibrated,
under fully attenuating cloud conditions effective LR con-
verges to the theoretical value of the LR of liquid cloud
droplets (approximately 18.8 sr at near-IR wavelengths) mul-
tiplied by the multiple-scattering coefficient (approximately
0.7; Sect. 4.5).

7.5 Molecular backscattering, aerosol backscattering
and noise

Figure 7 shows attenuated volume backscattering coefficient
histograms as a function of height for small values of the
coefficient (up to 2× 10−6 m−1 sr−1) observed and simu-

lated at the sites of the case studies, calculated for the en-
tire time period of each case study. The scale of values is
below cloud backscattering and therefore shows backscatter-
ing which results from molecular and aerosol scattering and
noise. Molecular backscattering depends on the atmospheric
pressure and temperature as well as the lidar wavelength. It
causes the main “streak” (a local maximum) visible in each
of the histograms. The observed molecular attenuated vol-
ume backscattering coefficient at the surface approximately
corresponds to the theoretically calculated value at each
wavelength: 0.0906×10−6 m−1 sr−1 (λ= 1064 nm), 0.172×
10−6 m−1 sr−1 (λ= 910 nm) and 1.54×10−6 m−1 sr−1 (λ=
532 nm) at 1000 hPa and 20 ◦C (Table 5). The molecular
backscattering in the boundary layer is, however, superim-
posed on backscattering by aerosol and cloud. In the case of
the MiniMPL observations at the Christchurch site (Fig. 7i),
the molecular attenuated volume backscattering coefficient
streak has multiple secondary streaks. These are caused by
different levels of attenuation by cloud and aerosol during
the period of the observations. These secondary streaks were
also partially reproduced by the simulator (Fig. 7j). A smaller
portion of the width of the streak is also caused by fluctua-
tions of atmospheric temperature and pressure. Under suit-
able conditions, the molecular attenuated volume backscat-
tering coefficient can be used for absolute calibration of an
instrument. With the exception of CL31 (Fig. 7c), the molec-
ular backscattering can be identified in the observed attenu-
ated volume backscattering coefficient in each case. There-
fore, it is possible to choose a calibration coefficient such
that the observed and simulated molecular attenuated volume
backscattering coefficients overlap. This can be considered a
viable alternative to the liquid stratocumulus LR calibration
method or as a means of cross-validating the instrument cali-
bration. However, it should be noted that the accuracy of this
method is affected by an unknown amount of aerosol atten-
uation. Cloudy profiles can be filtered when calculating the
histogram, and therefore the effect of cloud attenuation can
be minimised. In addition to the molecular attenuated vol-
ume backscattering coefficient streak, there is a zero-centred
streak visible in the histograms. This is caused by noise when
the signal is fully attenuated by cloud. Lastly, a zero-centred
“cone” of noise is visible in the observed attenuated vol-
ume backscattering coefficient, increasing with the square of
range. The size of this cone is particularly large in the case of
the CL31 (Fig. 7c), which is most likely the result of its low
receiver sensitivity and low power compared to the other in-
struments. The standard deviation of the cone at the furthest
range is used to determine the noise standard deviation used
by the cloud detection algorithm (Sect. 5.3).

Figure 8 shows the same information as Fig. 7 but for
clear-sky profiles only. Here, it can be seen that the zero-
centred peak caused by the complete attenuation by cloud is
no longer present. There is a clear overlap between the cen-
tre of the noise cone and the simulated molecular attenuated
volume backscattering coefficient; i.e. the noise cone is cen-
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Figure 7. Attenuated volume backscattering coefficient histograms as a function of height observed and simulated at three different sites for
the case studies calculated from all profiles. The plots show the distribution of the attenuated volume backscattering coefficient for values
which are on the scale of noise, molecular and aerosol backscattering ([−0.5, 0.5] for CHM 15k, [−1, 1] for CL31 and CL51 and [−2,
2]×10−6 m−1 sr−1 for MiniMPL). The simulated attenuated volume backscattering coefficient is based on the ERA5 atmospheric fields.
Backscattering caused by molecular backscattering (the main “streak”), noise when the signal is fully attenuated by cloud (the zero-centred
“streak”) and the range-dependent noise (the zero-centred “cone”) are also visible in the plots. The molecular backscattering is marked by a
red dashed line on the observed attenuated volume backscattering coefficient plots, the shape of which is taken from the simulated molecular
attenuated volume backscattering coefficient for the corresponding instrument and site.

tred at the observed molecular attenuated volume backscat-
tering coefficient. This is visible with all instruments includ-
ing CL31 (Fig. 8c), for which the overlap between the ob-
served and simulated molecular attenuated volume backscat-
tering coefficient is most clearly visible at about 1 km a.s.l.
Below 1 km a.s.l., the effect of boundary layer aerosol dis-
torts the molecular attenuated volume backscattering coeffi-
cient by an unknown quantity. The clear-sky histograms as
shown in Fig. 8 may therefore be preferable to the all-sky
histograms in Fig. 7 for calibration by fitting the molecular
attenuated volume backscattering coefficient. The dead time,

after-pulse and overlap MiniMPL calibration supplied by the
vendor appears to be deficient and causes range-dependent
bias in the attenuated volume backscattering coefficient pro-
file.

We now examine the noise in each instrument using the
ALCF. Figure 9 shows the distribution of the standard de-
viation of backscatter noise determined at the highest ob-
servable range of each instrument and range-scaled to 8 km.
It can be seen that the CL31 is affected by the greatest
amount of noise, peaking at about 2× 10−6 m−1 sr−1. This
is at the threshold of cloud detection of 2× 10−6 m−1 sr−1.
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Figure 8. The same as Fig. 7 but calculated from clear-sky profiles only.

Therefore, thin cloud may be obscured by noise at higher
ranges with this instrument. The MiniMPL, operating in
the visible spectral range, shows a strongly bimodal distri-
bution of the attenuated volume backscattering coefficient
noise depending on sunlight. During daytime, it peaks at
about 0.7× 10−6 m−1 sr−1, which is the second highest of
the analysed instruments. During nighttime, it peaks at about
0.02×10−6 m−1 sr−1, which is the lowest of the analysed in-
struments. The CHM 15k and CL51 peak between the night-
time and daytime MiniMPL at about 0.05× 10−6 m−1 sr−1.
The CL31, CL51 and CHM 15k show a slight reduction
of noise during nighttime, presumably because of a small
amount of incoming solar radiation at near-IR wavelengths.
The difference between the nighttime and daytime attenuated
volume backscattering coefficient noise in the MiniMPL has
been previously analysed by Silber et al. (2018) (Fig. S3),
and these results confirm their findings.

8 Discussion and conclusions

We presented the Automatic Lidar and Ceilometer Frame-
work, which combines lidar processing and lidar simulation

for the purpose of model evaluation. The lidar simulation is
based on the COSP spaceborne lidar simulator by account-
ing for the different geometry and lidar wavelength. We cal-
culated new lookup tables for Mie scattering for a number
of ALC wavelengths, developed an ice crystal backscatter-
ing parameterisation based on temperature, and implemented
noise removal and cloud detection algorithms. The frame-
work supports the most common ALCs and reanalyses. We
demonstrated the use of the framework on ALC observations
at three different sites in New Zealand and applied the li-
dar simulator to three reanalyses and two models. We found
that while some reanalyses and models such as the UM and
ERA5 show relatively good correspondence with observed
cloud, others performed relatively poorly in our time-limited
local comparison. All reanalyses and models underestimated
the total CF by up to 34 pp, with common underestimation
by 20 pp. In some cases, the observed and simulated attenu-
ated volume backscattering coefficient profiles matched rel-
atively closely in terms of time and altitude, and a better
match was observed with reanalyses with high output tem-
poral resolution such as the UM and ERA5, while reanaly-
ses with low temporal resolution did not allow for reliable
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Figure 9. Attenuated volume backscattering coefficient noise stan-
dard deviation histogram calculated for each instrument for sites
in the case studies from clear-sky profiles over the whole time pe-
riod. The noise distribution is calculated at the furthest range. The
range-scaled noise distribution is shown at a range of 8 km. “Night”
and “day” distributions are calculated separately from nighttime and
daytime profiles only.

direct (non-statistical) comparison of cloud. However, it is
clear that factors other than the horizontal and vertical res-
olution influence the cloud simulation accuracy, especially
the cloud, boundary layer and convection schemes employed
by the atmospheric model. The reanalysis and model output
temporal resolution, horizontal grid resolution and vertical
resolution are not always the same as the internal resolution
of the underlying atmospheric model. Both have an impact
on the comparison between the simulated and observed at-
tenuated volume backscattering coefficient and cloud. While
the output resolution should not have an impact on the long-
term statistics, it can be a limiting factor for direct attenuated
volume backscattering coefficient profile comparison. We
demonstrated that the ALCF could be used to identify sub-
stantial differences in the cloud attenuated volume backscat-
tering coefficient which were present in all reanalyses and
models. We showed that all the studied instruments except
for the CL31 are capable of detecting molecular backscat-
tering and that this can be used for calibration or cross-
validation of other calibration methods. We found that the
nighttime MiniMPL was subject to the lowest amount of
noise of all the instruments examined, followed by the CL51,
CHM 15k, daytime MiniMPL and CL31. Noise in the Min-
iMPL, and to a lesser extent in the other ALCs, was shown
to have a bimodal distribution due to daytime–nighttime dif-
ferences. The ALCF can therefore be useful for testing the
quality of collected data.

Currently the framework has several limitations which
should be addressed in the future. The water vapour absorp-
tion at 910 nm likely affects the instrument calibration of
the CL31 and CL51 ceilometers and limits the accuracy of
the one-to-one comparison, even though due to the relatively
high backscattering caused by cloud, the calculated cloud
masks are unlikely to be strongly affected. The lidar simula-
tor currently does not simulate backscattering from precipita-
tion. Observed precipitation is generally detected as “cloud”
by the cloud detection algorithm, while the simulated pro-
file contains no backscattering at the location of precipita-
tion (backscattering and attenuation by raindrops and snow
should be implemented in the lidar simulator in the future).
If desired, the attenuated volume backscattering coefficient
profiles affected by precipitation can be excluded before the
comparison or their fraction determined by visually inspect-
ing the observed attenuated volume backscattering to assess
their possible effect on the statistical results. Aerosol is also
not currently implemented in the simulator. Previous stud-
ies (Chan et al., 2018) characterised optical parameters of
different groups of aerosol, which could be used in a fu-
ture version of the simulator with models which provide the
concentration of aerosol in their output. In our case stud-
ies the aerosol volume backscattering coefficient was less
than 2× 10−6 m−1 sr−1 and below 4 km, which could result
in worst-case two-way attenuation of about 50 % assuming
LR of 50 sr. This should not preclude cloud detection due
to the large magnitude of typical cloud backscattering. The
ALCs also suffer from various measurement deficiencies.
Notably incomplete overlap, dead time and after-pulse cor-
rections tend to give sub-optimal results at the near range.
It is possible to use semi-automated methods to correct for
these deficiencies, such as by calculating the integrated atten-
uated volume backscattering coefficient distribution via the
height of the maximum backscattering and correcting for the
range-dependent bias (Hopkin et al., 2019, Sect. 5.1). This
method could be implemented in the framework to enable
range-dependent calibration of the observed attenuated vol-
ume backscattering coefficient.

The presented framework streamlines lidar data process-
ing and tasks related to lidar simulation and model com-
parison. The framework was recently used by Kuma et al.
(2020) for Southern Ocean model cloud evaluation in the
GA7.1 model and MERRA-2 reanalysis. Considering the ex-
isting extensive ALC networks worldwide there is a wealth
of global data. We therefore think that ALCs should have a
greater role in model evaluation. Satellite observations have
long been established in this respect due to their availabil-
ity, spatial and temporal coverage, and well-developed de-
rived products and tools. ALCs, with their diverse formats
and decentralised nature, have so far lacked derived prod-
ucts and tools which would make them more accessible for
model evaluation. We hope that this software will enable
more model evaluation studies based on ALC observations.
Development of lidar data processing is currently hampered
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by closed development of code. We note that code has very
rarely been made available with past ALC studies. Continued
improvement of publicly available code for lidar data pro-
cessing is needed to achieve faster development of ground-
based remote sensing and make it more attractive for GCM,
NWP model and reanalysis evaluation.

Code and data availability. The ALCF is open-source and avail-
able at https://alcf-lidar.github.io (last access: 1 January 2021)
as well as in a permanent archive of code and technical docu-
mentation on Zenodo at https://doi.org/10.5281/zenodo.4411633
(Kuma et al., 2021). The technical documentation is also
in the Supplement. A tool for converting Vaisala CL31
and CL51 data files to NetCDF cl2nc is open-source and
available at https://doi.org/10.5281/zenodo.4409716 (Kuma,
2020a). A tool for converting MiniMPL raw binary data
files to NetCDF mpl2nc is open-source and available at
https://doi.org/10.5281/zenodo.4409731 (Kuma, 2020b). The
observational data used in the case studies are available upon
request. The reanalyses data used in the case studies are publicly
available online from the respective projects. The Unified Model
data used in the case studies are available upon request. The Unified
Model is proprietary to the UK Met Office and is made available
under a licence. For more information, readers are advised to
contact the UK Met Office.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-43-2021-supplement.
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