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Abstract. A substantial part of Arctic climate predictability
at interannual timescales stems from the knowledge of the
initial sea ice conditions. Among all sea ice properties, its
volume, which is a product of sea ice concentration (SIC) and
thickness (SIT), is the most responsive parameter to climate
change. However, the majority of climate prediction systems
are only assimilating the observed SIC due to lack of long-
term reliable global observation of SIT. In this study, the EC-
Earth3 Climate Prediction System with anomaly initializa-
tion to ocean, SIC and SIT states is developed. In order to
evaluate the regional benefits of specific initialized variables,
three sets of retrospective ensemble prediction experiments
are performed with different initialization strategies: ocean
only; ocean plus SIC; and ocean plus SIC and SIT initializa-
tion. In the Atlantic Arctic, the Greenland–Iceland–Norway
(GIN) and Barents seas are the two most skilful regions in
SIC prediction for up to 5–6 lead years with ocean initial-
ization; there are re-emerging skills for SIC in the Barents
and Kara seas in lead years 7–9 coinciding with improved
skills of sea surface temperature (SST), reflecting the im-
pact of SIC initialization on ocean–atmosphere interactions
for interannual-to-decadal timescales. For the year 2–9 av-
erage, the region with significant skill for SIT is confined
to the central Arctic Ocean, covered by multi-year sea ice
(CAO-MYI). Winter preconditioning with SIT initialization
increases the skill for September SIC in the eastern Arctic
(e.g. Kara, Laptev and East Siberian seas) and in turn im-
prove the skill of air surface temperature locally and further
expanded over land. SIT initialization outperforms the other

initialization methods in improving SIT prediction in the Pa-
cific Arctic (e.g. East Siberian and Beaufort seas) in the first
few lead years. Our results suggest that as the climate warm-
ing continues and the central Arctic Ocean might become
seasonal ice free in the future, the controlling mechanism for
decadal predictability may thus shift from sea ice volume to
ocean-driven processes.

1 Introduction

Summer sea ice in the Arctic Ocean has lost nearly three-
quarters of its sea ice volume (SIV) since the 1970s (Kwok,
2018) caused by a reduction of both sea ice extent (SIE) and
thickness (SIT). This sea ice melt, inducing ice–albedo feed-
back, contributes to the larger warming of the atmosphere in
the Arctic than the global mean, an effect known as polar
amplification (Wadhams, 2012). Observations suggest that
the Arctic has warmed at more than twice the rate of the
globe (Holland and Bitz, 2003; Serreze and Barry, 2011;
Dai et al., 2019). Moreover, the enhanced sea ice melt and
associated transports of freshwater to the south weaken the
Atlantic meridional overturning circulation and related pole-
ward heat transport on decadal timescales (Sévellec et al.,
2017). Therefore, a realistic representation of Arctic sea ice
is an essential element of a coupled climate prediction sys-
tem.

Persistence has been recognized as a primary source of
Arctic sea ice predictability in the last 10 years (Blanchard-
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Wrigglesworth et al., 2011; Chevallier and Salas-Mélia,
2012; Chevallier et al., 2019): total SIV is the most persis-
tent variable (∼ 4 years) compared to local SIC (∼ 1 month)
and total SIE (∼ 1 season); local SIT is the second persis-
tent, ranging from seasons in the marginal ice zone (MIZ)
to approximately a year in the central Arctic Ocean (CAO).
Moreover, the persistence timescale is found to be variable in
a climate system due to advection of sea ice anomalies, heat
exchange between ocean and atmosphere, and changes in cli-
mate forcing, as reviewed by Guemas et al. (2016). For ex-
ample, the memory of SIE can re-emerge beyond its own per-
sistence (e.g. 2 to 5 months) by storing memory in the upper-
ocean heat content or SIT (Blanchard-Wrigglesworth et al.,
2011); hence, initialization of winter SIT anomalies pro-
vides some predictive capability for summer SIE with win-
ter preconditioning in several studies (Holland et al., 2011;
Chevallier and Salas-Mélia, 2012; Blanchard-Wrigglesworth
and Bitz, 2014; Day et al., 2014). As another example,
re-emergence of sea ice anomalies follows modulation of
the upper-ocean heat anomalies: if sea ice retreats anoma-
lously early in spring, more heat is stored in the oceanic
upper mixed layer that causes later freeze-up (Blanchard-
Wrigglesworth et al., 2011). Snow cover can affect sea ice
predictability in several competing ways: in early spring, the
presence of snow causes the local albedo to be high, hence
delaying melt onset. However, when snow melts, it forms
pools of water at the surface of sea ice known as melt ponds,
with a relatively lower albedo (Schröder et al., 2014).

The Arctic sea ice in the Atlantic sector can be predicted
from a few years to a decade, because of the strong role ex-
erted by the ocean heat advected from upstream and con-
verged on the position of the sea ice edge (Yeager et al.,
2015; Årthun et al., 2017; Dai et al., 2020). Some studies
suggested that sea ice persistence in the central Arctic can
be modulated by oscillation of the Arctic atmospheric circu-
lation between predominantly cyclonic and anticyclonic cir-
culation regimes over timescales of 5–7 years (Proshutinsky
and Johnson, 1997; Armitage et al., 2020). From observa-
tions, a remarkable oscillation in SIE and SIV is featuring a
pause or enhanced ice loss at a period of 7 years, correspond-
ing to some prominent modes of internal variability, such as
the winter North Atlantic Oscillation (NAO, Bitz et al., 1996;
Swart et al., 2015; Gascard et al., 2019).

To date, most seasonal prediction systems start from a SIT
reanalysis data set (Collow et al., 2015; Dirkson et al., 2017),
such as from the Pan-Arctic Ice Ocean Model and Assimi-
lation System (PIOMAS, Schweiger et al., 2011). However,
most ocean–sea ice reanalyses including PIOMAS do not ex-
plicitly assimilate SIT due to inadequate long-term observa-
tions of broad coverage. Chevallier et al. (2017) found that
the representation of SIT can differ largely due to different
local advective processes between models in the intercom-
parison of 14 state-of-the-art global ocean reanalyses. On
the other hand, even fed with identical reanalysis SIT, there
was much less agreement in predicting spatial pattern of SIC

across dynamical models in the Arctic coasts than the central
Arctic (Blanchard-Wrigglesworth et al., 2017). Such a degra-
dation of forecast skill from the central Arctic to the coasts
was found in other idealized multi-model experiments to be
associated with advective sea ice processes rather than ice
thermodynamics (Tietsche et al., 2014).

At decadal timescales, some studies indicate that directly
assimilating SIT can stimulate long-term forecast drift partic-
ularly for the total SIV in the Arctic. Alternatively, anomaly
initialization (AI), that does not correct the model climate
state but anomalies, may efficiently suppress the drift. How-
ever, AI may not necessarily improve prediction skill due to
the inconsistency between initialized variables. In compari-
son of the two initialization methods with the EC-Earth2.3
climate model, Volpi et al. (2017) found that the Arctic SIV
drifts towards a stabilized state (i.e. stable biases) with full
field initialization (FFI) to sea ice states (SIC and SIT) for
lead time longer than 5 years, whereas the drift is substan-
tially reduced by AI using identical reconstructed sea ice
states. Thus, the prediction skill in air temperature at 2 m
(TAS) over the Arctic is improved with AI in comparison
with FFI. However, the skill difference is found to be small
in predicting the Arctic sea ice area between the two initial-
ized experiments. Despite the established notion that initial
information of SIT is a key source of predictability, assimi-
lating it in operational systems actually remains a challenge.

The Arctic Ocean is changing (Jeffries et al., 2013) with
a large loss of multi-year sea ice (MYI) and a rapid tran-
sition from thick perennial towards thinner seasonal sea ice
(Wadhams, 2012; Onarheim et al., 2018; Kwok, 2018). In
the Beaufort Gyre (BG), sea ice cover becomes thinner and
weaker and is strongly associated with the acceleration of
wind-driven ocean currents since 1990s (Armitage et al.,
2020). In the Barents Sea (BS), northerly wind anomalies can
increase sea ice export from the CAO to the BS and reduce
the Atlantic inflow through the BS opening (Dai et al., 2020).
It in turn will alter local TAS via ocean and atmosphere heat
exchange. This presents a great challenge to predict decadal
changes in Arctic sea ice with predictability varying in dif-
ferent regions at different timescales (Guemas et al., 2016).
To our knowledge, most studies on predicting regional Arc-
tic sea ice conditions focused on timescales from a month to
a few years (Bushuk et al., 2019; Cruz-García et al., 2019;
Kimmritz et al., 2019). Few studies have comprehensively
examined the impacts of ocean and sea ice anomaly initial-
ization states in a climate prediction system with respect to
decadal timescales. A recent study addressed this topic by
only assimilating sea surface temperature (SST) and hence
had a special focus on increased skills by SST in the Arctic
MIZ (Dai et al., 2020).

The objective of this study is to investigate the decadal
prediction skill of Arctic sea ice in the EC-Earth3 Climate
Prediction System with anomaly initialization (EC-Earth3-
CPSAI) to ocean, SIC and SIT states. We developed a novel
method to constrain local SIV anomalies by initializing both
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SIC and SIT. As the method is developed as a prototype
for our initialization strategy implemented for the Coupled
Model Intercomparison Project phase 6 (CMIP6) decadal cli-
mate prediction project (DCPP) with EC-Earth3, the present
study provides a documentation of the new climate predic-
tion system with anomaly initialization including SIT in a
multi-category sea ice model framework. It characterizes the
performance with focus on the predictions in the Arctic.
Three sets of ensemble hindcast experiments are performed
and analysed to evaluate the benefits of respective initialized
variables and to quantify the added skill from SIT initializa-
tion.

This paper is structured as follows: Sect. 2 introduces the
climate prediction system EC-Earth3-CPSAI as well as the
experimental design; Sect. 3 examines the two sources of
forecast error such as model bias, forecast drift as well as
the imprint of initial conditions (ICs) in the first year. Sec-
tion 4 evaluates and discusses the benefits of specific initial-
ized variables at interannual to decadal scales for different
Arctic regions. Section 5 is the summary.

2 Model system and experiment design

2.1 The EC-Earth3 Climate Prediction System with
anomaly initialization (EC-Earth3-CPSAI)

EC-Earth is a state-of-the-art Earth system model developed
by the EC-Earth consortium (Döscher et al., 2021). The core
of EC-Earth consists of component models for atmosphere,
ocean and sea ice, called an AOGCM. In this study we use
the officially released AOGCM configuration of EC-Earth
model for contributions to the CMIP6, EC-Earth3 (release
v3.3.1.1). The atmospheric component is the Integrated Fore-
cast System (IFS cycle 36r4) developed by the European
Centre for Medium Range Weather Forecasts (ECMWF). It
uses the TL255 horizontal grid (i.e. triangular truncation at
wavenumber 255 in spectral space with a linearly reduced
Gaussian grid, corresponding to a spacing of about 80 km)
and 91 vertical model levels with the top level at 0.01 hPa.
The ocean component is the Nucleus for European Mod-
elling of the Ocean, version 3.6 (NEMO3.6) coupled to the
Louvain-la-Neuve sea Ice Model, version 3 (LIM3, Rous-
set et al., 2015). NEMO has a family of global ocean tripo-
lar horizontal grids (called ORCA, Madec et al., 2019). The
NEMO-LIM3 is configured with a nominal 1◦ resolution hor-
izontal grid (i.e. ORCA1) and 75 vertical levels. It is worth
noting that the sea ice model (LIM3) applies an ice thickness
distribution framework to deal with metre-scale variations in
ice thickness (Rousset et al., 2015). Unlike its earlier version
(e.g. LIM2), LIM3 allows for five ice thickness categories to
account for the non-linear dependence of sea ice processes,
in particular growth and melt, on ice thickness.

EC-Earth3 has been used to perform the CMIP6 historical
(1850–2014) and future (2015–2100) scenario simulations

with 25 ensemble members following the CMIP6 protocol
(Eyring et al., 2016) by the EC-Earth consortium. We arbi-
trarily select one member (r5i1p1f1, hereafter referred to as
FREE1) from the ensemble to obtain the model climatology
for the ocean and sea ice used in the anomaly initialization.
As there are five members of the initialized hindcast simu-
lations (see Table 1 and Sect. 2.2), we select additional four
members besides FREE1 from the 25-member uninitialized
simulations to comprise a five-member ensemble (hereafter
referred to as FREE) in order to have a fair assessment of
the forecast skill. The members of FREE are selected with
consideration to represent well the overall feature (mean and
variability) of the full ensemble (Fig. S1 in the Supplement).

The AI method in decadal climate prediction was formu-
lated by Pierce et al. (2004). This approach has already been
applied to initialize EC-Earth2.3 decadal predictions con-
tributing to CMIP5 (Hazeleger et al., 2013). A brief compar-
ison of the two generations of EC-Earth decadal prediction
system with AI is provided in Table S1 in the Supplement.
For the previous exercises, ocean-state anomalies were taken
from the product of the ECMWF Ocean Reanalysis Sys-
tem 4 (ORAS4), while sea ice anomalies were obtained from
a stand-alone simulation with the ocean–sea ice component
of EC-Earth2.3. For the current study, we derive anomalies
from the ECMWF Ocean Reanalysis System 5 (ORAS5).

ORAS5 (See details in Zuo et al., 2019) is a global ocean–
sea ice ensemble and its five ensemble members are used to
account for uncertainties in observations in the surface forc-
ing. In this study period, the ensemble spread for sea ice
is found to be representative of the analysis errors. Com-
pared to ORAS4, ORAS5 increases model resolution from
1 to 0.25◦ horizontally and from 42 to 75 levels vertically
and assimilates updated observation data sets, such as sea
ice satellite data since 1979, so ORAS5 has advantages in
providing physically consistent ocean and sea ice states, and
in better representing SST climate state and variability. In
comparison with other ocean–sea ice reanalysis (Chevallier
et al., 2017), ORAS5 represents Arctic sea ice reasonably
well and the errors in SIV (up to 10 %) are comparable to
the uncertainties in PIOMAS (Schweiger et al., 2011). Ti-
etsche et al. (2018) found there is good agreement between
SIT from ORAS5 and from L-band observations for thin ice
in the freezing season (October–December) with respect to
the interannual variability and trends of thin sea ice area over
the pan-Arctic. Therefore, it is a reasonable choice to apply
ORAS5-SIT to initialize the decadal prediction, which typi-
cally starts on 1 November.

In anomaly initialization, the initial state is generated us-
ing the reanalysis state but replacing its climatology with the
modelled climatology at a starting date (i.e. climatology of
1 November). Here both climatologies are calculated as an
average of the climatological monthly means between the 2
nearest months (i.e. October and November), over the pe-
riod 1979–2014 for ORAS5 (FREE1), as can be seen in Ta-
ble 2. Horizontally, ORAS5 data is bilinearly interpolated
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Table 1. List of experiments, reference data sets and variables in forecast skill assessment.

Name Data sources Quantities evaluated Ensemble size

REF
ERAI for atmosphere TASa 1
ORAS5 for ocean and sea ice SIC(SIE), SIT(SIV) 5

FREE CMIP6 historical, no anomaly init.(AI) SIC(SIE), SIT(SIV), TAS 5b

AI0 AI to ocean SIC(SIE), SIT(SIV), TAS 5c

AI1 AI to ocean+SIC SIC(SIE), SIT(SIV), TAS 5
AI2 AI to ocean+SIC+ (SIT+SNT) SIC(SIE), SIT(SIV), TAS 5

a TAS is a MIP (i.e. model intercomparison project) variable, defined as air temperature at 2 m. b FREE are five members from
the 25-member ensemble of the CMIP6 historical simulations, initialized from different states (r1, r4, r5, r8 and r18) selected
from the 500-year pre-industrial control with EC-Earth3 (piControl, r1i1p1f1; see Fig. S1a). r5 is one of the FREE ensembles,
referred to as FREE1. c AI0 (also AI1 and AI2) consists of five ensemble members, initialized by five sets of ocean and sea ice
states, which are based on identical model climatology of FREE1 with anomalies from respective five ORAS5 ensemble
members. SNT denotes snow thickness.

Table 2. Definitions of initial/forecast climatologies and anomalies.

Categories Climatology Anomaly

Initialization REFa: 1 November, averaged over the period 1979–2014,
obtained by linear interpolation using the monthly mean of
October and November

REFa: 1 November, dailyY=1979,...,2018 –
climatologyREFa

FREE1: the same as REFa but for FREE1 REFa

Forecast skill
assessment

REFb: monthly mean, 20-year mean over the period 1997–
2016

REFb: monthlyY=1997,...,2016 – climatologyREFb

FREE: the same as REFb but for FREE FREE: monthlyY=1997,...,2016 – climatologyFREE

AIs: the same as REFb but for forecast at lead years [1–10]c,
respectively

AIs: as FREE but for respective forecast lead years

REFa and REFb are taken from the same REF dataset as in Table 1 but covering different periods.
c The first-year forecast climatology for the period 1997–2016, denoted as Y1, are calculated using the first-year forecasts from hindcast experiments initiated every year on
1 November, for 1996–2015 (marked by the two red triangles in Fig. 3), while the climatology of 10-year lead time (Y10) is calculated using experiments initiated on
1 November, for 1987–2006, which means the forecasts were initialized 10 years prior to 1997–2016.

from 0.25 to 1◦ ORCA grid. The initialized variables in the
ocean model are three-dimensional temperature and salinity.
To avoid initial inconsistency in the large-scale dynamics of
the system, we do not initialize horizontal velocities. This is
a common approach for initialized hindcasts/predictions (see
Table 1 in Polkova et al., 2019).

The sea ice variables initialized in EC-Earth3 are ice con-
centration, ice and snow volume (denoted as Aice, V ice and
V sn) in five thickness categories at a grid-cell level. How-
ever, SIC, SIT and snow thickness (SNT) from the ORAS5
reanalysis are single values for the grid-box mean as they are
assimilation products using the sea ice model LIM2. There-
fore, the volume from ORAS5 is first calculated by multi-
plying anomaly-corrected ice or snow thickness (H ice,sn in
m) with sea ice concentration (Aice in fraction of the grid-
cell area). To derive anomaly-corrected Aice (or H ice,sn) val-
ues, we add the anomalies of ORAS5 ice concentrations (or
thickness) to the climatology of FREE and then split this cor-
rected field into different thickness categories (see Eqs. 1–5).
When anomalies are added to the model climatology, Aice

can in some cases violate the valid range [0–1]. Therefore,
a few adjustments are made: (1) if Aice

≤ 0 but AFREE1 > 0,
then Aice

= 0.05 and the ice (snow) thickness H ice
= 0.1 m

(H sn
= 0.01 m); (2) if Aice

≥ 1, then Aice
= 0.997; (3) adjust

V ice,sn again using Aice and H ice,sn obtained in steps (1)–
(2). In this study, sea ice initialization with AI is limited to
the region north of 30◦ N and leaves no modification to the
southern area in FREE1.

A major challenge is to distribute the sea ice variables
given as one category produced by LIM2 in ORAS5 into
five categories in LIM3 in EC-Earth3. Previous studies have
explored different solutions in this regard. In sea ice sea-
sonal forecasts, some assimilate satellite SIC in a multivari-
ate data assimilation scheme so as to update SIT instead of
directly assimilating it (Massonnet et al., 2015; Kimmritz
et al., 2018), while others use forecast tendencies, namely
maintaining the distribution of volume between the cate-
gories, by multiplying each category volume with the ratio
of observed over modelled mean SIT or similarly by nudg-
ing towards observations across each category (Allard et al.,
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2018; Blockley and Peterson, 2018). However, there is no
unique solution, since the multiple subgrid-scale configura-
tions can be compatible with one total SIV. For decadal pre-
diction with EC-Earth3-CPSAI, we develop a novel method
with (1) a weighting function mapping single-category Aice

onto multiple categories; (2) a multi-category thickness dis-
tribution depending on concentration levels; or (3) both when
converting the initial volume (i.e. V ice,sn) at the grid-cell
level to its subgrid, while thickness in the last category is
determined with a constraint of V ice,sn being conservative.

For each grid point with horizontal index (x,y), the
initialized Aice(x,y) will be split into different categories
gice
l (x,y) as Eq. (1), where l = 1, . . . , L, denotes the ice cat-

egory with a total number L= 5 in LIM3. By using the 300-
year pre-industrial control run with EC-Earth3 (denoted with
superscript “ctrl” hereafter), we derive the weight-likelihood
function based on the ratio of gctrl

l to Actrl at a time (t∗),
where the difference between Actrl(x,y, t∗) and Aice(x,y) is
minimum (Eq. 2). The data were calculated for 1 Novem-
ber by averaging October and November monthly means.
We assume that based on the same EC-Earth3 model ver-
sion, gice

l (x,y) is likely regulated by the weighting function
weightctrl

l (x,y) given in Eq. (2) and determined by Eq. (3).

Aice(x,y)=

L∑
l=1

gice
l (x,y). (1)

t∗ is where the difference of Actrl(x,y, t∗) and Aice(x,y) is
minimum.

weightctrl
l (x,y)= gctrl

l (x,y, t∗)/Actrl(x,y, t∗). (2)

gice
l (x,y)= weightctrl

l (x,y)Aice(x,y). (3)

The initialized V ice at the local grid point (x,y) is calcu-
lated as a product of the initialized Aice(x,y) and H ice(x,y)

(fraction of the grid-cell area and mean ice thickness, respec-
tively), which can be split into each category l as in Eq. (4).
Here, hice

l denotes ice thickness at each category in [m] and
gice
l (x,y) is in fraction [0–1].

V ice(x,y)=

L∑
l=1

gice
l (x,y)h

ice
l . (4)

vice
L (x,y)= V

ice(x,y)−

L−1∑
l=1

gice
l (x,y)h

ice
l . (5)

We note that in Eqs. (4) and (5), hice
l does not change with ge-

ographic location and time but depends on in which bin Aice

falls (ranging from 0.1 to 1 at intervals of 0.1 in Fig. 1). The
relationship between hice

l and the total ice concentration Aice

is derived from the 300-year control run. We assume the dis-
tribution of hice

l on Aice identical in the decadal experiments
and the control run. Figure 1 shows that the thickness dis-
tributions for hice

l (l = 1, . . .,4) are quite robust within each

bin, and that the more ice-covered (e.g.Aice > 0.7), the lower
variance in thickness, in other words, lower probability to
melt and shift to neighbouring bins. We neglect SIT initial-
ization when Aice is below 0.1, both because statistically
these grid points only account for 8 % of total ice-covered
ones and because an observation error of 10 % is often as-
sumed while assimilating SIC (Mathiot et al., 2012).

We aim at imposing local SIV anomalies to LIM3 while
keeping the sum of volume over all thickness categories un-
changed as in Eq. (4). Therefore, except for the last cate-
gory, hice

l (l ≤ 4) are determined by the corresponding bin
of Aice following Fig. 1, while the volume in each category
is determined by vice

l (x,y)= g
ice
l (x,y)h

ice
l . Then the resid-

ual of V ice(x,y) will be accommodated in the last category
(L= 5) as vice

L in Eq. (5) and hice
L is contingently resolved.

This method imposes the combined anomalous signals of
SIC and SIT to sea ice initialization. The same method is ap-
plied to discretize snow volume with a multi-category snow
thickness on Aice relationship (not shown).

A consistency check, also called a “sanity check”, is car-
ried out for the ICs of the ocean and sea ice model, in order
to adjust water and heat flux-relevant variables in the surface
boundary fields to the initialized gice

l , vice
l and vsn

l in a phys-
ically consistent way. The method has been used in different
sea ice prediction systems (Massonnet et al., 2015; Kimm-
ritz et al., 2018). To complete the initialization, a 1 d spin
integration is performed with a reduced time step of 100 s,
introducing a mask of coastal water (< 100 m deep) to ne-
glect SIT initialization there (indicated in Fig. 2b). This is to
ensure dynamical consistency in the initial states and avoid
numerical instabilities. The practice of masking some loca-
tions out in SIT initialization has been used in many stud-
ies, for example by introducing a threshold of SIC> 40 %
to implement full-field initialization (Blockley and Peterson,
2018) or confining modification of SIT to the Arctic basin
with a geographic weighting mask to discard initialization
changes in the marginal ice zone (Blanchard-Wrigglesworth
et al., 2017). We note that the dotted regions cover a consid-
erable area in the Laptev and East Siberian seas (Fig. 2b),
where SIT observation uncertainties are quite high and are
typically excluded from the analysis (Kwok, 2018; Xie et al.,
2018). Furthermore, because the regions are highly dynamic
and covered by first-year ice (FYI, Tilling et al., 2018), the
added skill of local initialized SIT is not expected to last
over the melting season. In order to identify the added skill
from MYI-SIT in the CAO to its adjacent waters on decadal
timescales, the ORAS5-SIC anomaly and FREE1-SIT ICs
are implemented to the dotted regions in AI2 as in AI1. In this
way, the skill difference between AI2 and AI1 in years 2–9
should arise from a remote (MYI) origin.

2.2 Sensitivity experiments with sea ice initialization

The above-described AI approach for both ocean and sea
ice ICs is hereafter referred to as AI2. A five-member en-
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Figure 1. Multi-category ice thickness hice
l

(l = 1, . . .,5) distri-
bution on total ice concentration Aice [0.1–1] at intervals of 0.1
with mean (column) and standard deviation (error bar), based
on the knowledge from a 300-year climate simulation with pre-
industrial forcing. It is used to discretize hice

l
, if the total ice

concentration Aice and volume V ice at a grid cell (x,y) are
known from anomaly initialization. For example, for all grid
cells Aice falling in the bin 0.1–0.2, hice

l
(l = 1, . . .,5) is 0.08,

0.27, 0.62, 1.15 and 3.20 m, respectively. The ice volume at
respective category (l = 1, . . .,4) is determined by vice

l
(x,y)=

gice
l
(x,y)hice

l
, where gice

l
(x,y) is split from Aice(x,y) to each cat-

egory by using a weight-likelihood function (see Eqs. 1–3). For the
fifth category, hice

5 is determined by vice
5 (x,y)/gice

5 (x,y), where
vice

5 (x,y)= V ice(x,y)−
∑4
l=1g

ice
l
(x,y)hice

l
in Eq. (5). Note that

the grid-box mean thickness H ice(x,y)= V ice(x,y)/Aice(x,y)=∑5
l=1v

ice
l
(x,y)/

∑5
l=1g

ice
l
(x,y) 6=

∑5
l=1h

ice
l

. Therefore, H ice is
regulated by both V ice and gice

l
at the local grid.

semble of the AI2 experiment is performed in this study,
with five sets of ocean and sea ice ICs generated using the
anomalies of five individual members of ORAS5, respec-
tively. ERA-Interim (hereafter as ERAI, Dee et al., 2011)
is applied as atmosphere ICs for all initialized experiments
with FFI. The same initialization strategy with AI to ocean
and sea ice, and FFI to atmosphere, has already been per-
formed for the EC-Earth2.3 decadal experiments (Hazeleger
et al., 2013; Volpi et al., 2017). Initialized ensembles of pre-
dictions (re-forecasts) start yearly on 1 November for the pe-
riod from 1979 to 2018 (a total of 40 start dates) and run
for 2 months plus 10 years. The external forcing follows
the CMIP6 DCPP protocol for dcppA-hindcast and dcppB-
forecast experiments (Boer et al., 2016). We generated 10

additional members by means of perturbed atmospheric ICs.
This whole ensemble with a total of 15 members states a con-
tribution to CMIP6 DCPP with EC-Earth3-CPSAI (see Ta-
ble S1). However, for this study, only the first five ensemble
members (with unperturbed atmospheric ICs) are used and
compared to complementary five-member ensemble predic-
tions described in the following.

Our primary interest is the impact of Arctic sea ice on
decadal prediction skill in the last two decades, which is ex-
pected to be more representative of the coming decades than
the Arctic with more MYI in the last century. In order to
investigate the sensitivity of decadal prediction skill to SIT
initialization in EC-Earth3-CPSAI, two more initialized en-
semble experiments are performed with ocean-only initial-
ization (AI0) and ocean plus SIC initialization (AI1). We
only performed five members with AI0 and AI1 for sensi-
tivity analysis, and thus for a fair comparison this study fo-
cuses only on five members for AI2 and FREE, too. For AI2,
our assessment here uses the five members initialized with
the five members of OARS5. FREE consists of FREE1 and
other four members from the 25 member ensemble of the EC-
Earth CMIP6 historical (1979–2014) and the corresponding
“medium” Shared Socioeconomic Pathway (SSP2-4.5) forc-
ing of ScenarioMIP (2015–2017, Boer et al., 2016). These
four members are deliberately selected to represent the wide
range of natural variability in the EC-Earth3 CMIP6 control
experiments from which the ensemble of EC-Earth histori-
cal simulations starts (Fig. S1a). An assessment of the over-
all feature of FREE shows no significant difference between
FREE and the full ensemble of 25 members (e.g. Fig. S1b),
even though the regional differences could be large. A sum-
mary of all experiments is given in Table 1. The ensemble
mean of the AI experiments versus that of FREE are used to
evaluate the impact of the respective initialization approach.
The benefit from ocean initialization (AI0) is known for the
Arctic MIZ (Volpi et al., 2017; Dai et al., 2020); hence, we
will not address it here. Instead, AI0 is used to compare with
AI1 to assess the added skill with SIC initialization, and the
difference between AI2 and AI1 is used to evaluate the skill
gained by SIT initialization.

2.3 Skill assessment

As reference fields (REF), the climatological annual and sea-
sonal means are calculated as 20-year averages for the period
from 1997 to 2016 based on monthly means of ORAS5 for
sea ice and SST and ERAI for TAS (Table 1), respectively.
We note that the reference data (ORAS5 and ERAI) have
been produced by assimilation of observations into NEMO
and IFS and are thus not fully independent from EC-Earth3.
It is mainly because (1) ORAS5 and FREE are both in
ORCA grids, which avoid spatial errors potentially being ei-
ther masked or enhanced by remapping from observation- to
model grid; (2) the aggregated quantities (e.g. SIE and SIV)
are not sensitive to models; (3) similar to Volpi et al. (2017),
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our main focus is to evaluate the relative skills between dif-
ferent initialization methods with EC-Earth3-CPSAI, com-
pared to the skill of FREE.

Our assessment is based on forecast anomalies (Table 2)
rather than absolute errors. The skill assessment always uses
the full 20-year period (1997–2016) for the hindcasts of each
lead year, e.g. the assessment for lead year 1 (Y1) includes
the first year re-forecasts initialized from 1996 to 2015, while
the assessment for lead year 10 (Y10) includes the 10th-
year re-forecasts starting from 1987 to 2006. The 20-year
forecast climatology is calculated for individual lead year;
therefore, the forecast anomalies vary depending on the re-
spective forecast lead year (following the recommendation
for CMIP6-DCPP, see Boer et al., 2016). This data selection
process guarantees the use of all re-forecast data available
for the period of interest and at the same time a consistent
estimation of the model and reference climatologies (García-
Serrano and Doblas-Reyes, 2012). The metrics of anomaly
correlation coefficient (ACC) and the root mean square er-
ror (RMSE) with respect to REF are computed for specific
lead time, following the method by Volpi et al. (2017). The
confidence interval is calculated with a t distribution for the
ACC and with a χ2 distribution for the RMSE. The assess-
ment of temporal development is performed at two separate
lead times: year 1 and years 2–9. The latter is typically used
to assess decadal prediction skill (Goddard et al., 2013).

Our analysis focuses on the sea ice state of SIC and SIT in
the Arctic (summarized in Table 1). Our assessment for total
SIE and SIV is applied over the Northern Hemisphere re-
gion (NH) with a typical threshold 15 % SIC and 0.15 m SIT,
respectively, to exclude the extensive areas of open water
(Schweiger et al., 2011). Additionally, TAS over the Arctic is
assessed in order to identify the local response to anomaly-
corrected SST/SIC/SIT at different timescales as well as the
impact over land due to different initialization schemes. A
TAS index is computed as field average over the polar cap do-
main, namely the region north of the 70◦ N circle (see Fig. 2).
The skill of SST is closely related to that of TAS which is
representative of the ocean–atmosphere heat exchange in the
open water. We include SST in the Supplement (Figs. S4 and
S7) to support the regional skill assessment, when comparing
the emerging/degradation of skill in SIC and SIT dependent
on the initialization scheme. The results of SNT have not yet
been included in this study because there are only very few
observations on snow depth over sea ice, leading to large un-
certainties in observations and so as evaluations (Tian-Kunze
et al., 2014).

According to the dominating physical regimes (Serreze
and Meier, 2019), the regions studied are sorted into six
groups in Fig. 2c (abbreviation explained), representing
(1–3) the Arctic Ocean in the CAO (the central Arctic
80◦ N north, CAA and the BG region), the Pacific Arc-
tic (CS/ESS/LS) and the Atlantic Arctic (KS and BS); and
(4–6) the MIZ in the Atlantic (HB, BAF and LAB) and
in the Pacific (BER) and the transition waters between the

ice-covered polar seas and the Atlantic (Greenland–Iceland–
Norway; GIN). The CAO sector is well confined by the cli-
matological September ice edge (see Fig. 2a and b), demon-
strating the dominant influence of thick MYI due to geomet-
ric constraints of Arctic coastlines. In the Arctic shelf seas,
the extent of ice-free conditions depends on ocean heat trans-
port from the Atlantic (Pacific) in winter (summer) and is
strongly modulated by the local wind patterns. By contrast,
the MIZ sector adjoins the North Atlantic/Pacific Ocean, cli-
matologically covered by thinner seasonal ice in winter (ex-
cept for the east coast of Greenland receiving thick ice trans-
ported from CAO through the Fram Strait).

3 Characterization of the initialized climate
predictions with EC-Earth3-CPSAI

It is important to measure the timescale of ICs readjustment
when using the first seasonal mean for seasonal prediction.
In a seasonal prediction system with EC-Earth3, the forecast
errors of Arctic sea ice are first attributed to the incompati-
bilities between the initialized variables, which causes a lo-
cal dynamical readjustment in a couple of weeks and then
dominated by model inherent bias (Cruz-García et al., 2021),
while in a perfect-model seasonal prediction system (no er-
rors in ICs), the forecast errors of SIV can vary with different
initialized seasons (Bushuk et al., 2019). Both studies high-
light the skill gaps due to two sources of forecast errors. In
this section, we characterize the initialized anomaly of sea ice
states and the spatial pattern of system errors. We attempt to
answer whether (1) initial forecast errors due to the incom-
patibility between initialized model variables prevails over
one season or a year, and (2) prediction years 2–9 would be
representative of decadal prediction in Sect. 4 after the model
drift due to model bias becomes prominent within a decade.

3.1 Components of sea ice initialization

The model bias for the initial dates (i.e. 1 November) is the
difference in mean state (1979–2014) between the model
and reference data that are used for obtaining the sea ice
anomaly initialization (formulated in Table 2). SIC is gener-
ally overestimated (i.e. blue areas dominate over the red ones
in Fig. 2a), and particularly there is up to 20 % positive bias
in the Atlantic MIZ (BAF, GIN and BS) and 15 %–20 % neg-
ative bias in the Pacific Arctic. In the GIN/BS, the mismatch
between the modelled and REF climatology of September
sea ice extent indicates the overestimated expansion of MYI
from CAO. Along the ice edge of GIN (typically FYI), the
positive SIC bias together with 1–2 m thicker ice suggests
the role of atmosphere–ocean heat exchange resulting in too-
fast freezing in autumn, too-thick ice in winter and too lit-
tle ice in summer as inferred from Figs. S2 and S3 for the
period 1997–2016. Compared to FREE1, FREE (i.e. ensem-
ble mean) shows similar patterns of model bias but with in-
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Figure 2. Model bias with respect to ORAS5 (REF) on 1 November for the period 1979–2014 for the single-member FREE1. (a) SIC.
Colour lines indicate the September sea ice extent (15 % SIC) climatology for ORAS5 (red), FREE1 (green) and FREE (black). (b) SIT with
dots indicating a mask for area with water depth < 100 m where no SIT initialization is applied. The maps have the bounding latitude at
56◦ N. Blue areas represent regions with more SIC and SIT in the model than REF, reflecting cold bias in surface temperature. (c) Regions
considered for Arctic sea ice. Atlantic MIZ (brown): Hudson Bay (HB), Baffin Bay (BAF) and the Labrador Sea (LAB); the GIN seas
(red); Atlantic Arctic (pink): Barents Sea (BS) and Kara Sea (KS); central Arctic Ocean (CAO, purple): central Arctic (CAR, 80◦ N north),
Canadian Archipelago (CAA) and Beaufort Gyre (BG); Pacific Arctic (blue): Laptev Sea (LS), East Siberian Sea (ESS) and Chukchi Sea
(CS); Bering Sea (BER, green).

creased magnitudes (due to a large spread in the FREE en-
semble; not shown).

Figure 3 shows differences between anomalies of REF
and of FREE1 on the initial date (1 November) in each year
during 1979–2018 aggregated for the NH SIE and SIV. For
REF, the positive anomaly of SIV has reduced by two-thirds
from ∼ 15000 to ∼ 5000 km3 in the early 1980s. Since then,
the anomalies of SIV and SIE both declined linearly with
years and shifted from positive to negative values in the early
2000s, with respect to the mean of the whole period (1979–
2014) used for initialization. The 20-year averages of anoma-
lies from 1996 to 2015 are −0.11 million km2 for SIE and
−3000 km3 for SIV, respectively. In comparison of the 20-
year averages between REF and FREE1, there is a relative
large difference in SIE (−0.11 versus−0.77) but little differ-
ence in SIV (−3 versus −3.7), suggesting the retreat of SIE
is more rapid than the thinning of SIT in FREE1 in response
to Arctic warming. In other words, the modelled sea ice is
characterized by too-fast freezing in autumn, too-thick ice in
winter and too little ice in summer as inferred from Fig. S2.

Figure 3 depicts different sea ice initialization strategies,
e.g. in the first year, low SIC (FREE1) and high SIT (FREE1)
for AI0 in contrast to high SIC (REF) and low SIT (REF) for
AI2. AI1 has the combination of high SIC (REF) and high
SIT (FREE1). We note that AI0 and AI1 are initialized with
different combinations of ocean (REF) and sea ice anomalies
(REF or FREE1), while AI2 is not. As model physics differ,
initialization shocks likely impact the prediction skill. In the
meantime, system errors (not corrected in anomaly initializa-

tion) may develop fast, if the REF anomalies of FYI (< 10 %
SIC and 0.2 m SIT) are much smaller than the positive (neg-
ative) bias (> 20 % SIC and 1 m SIT), such as in the Atlantic
(Pacific) sector in Fig. S2. Therefore, it is essential to track
the development of initialization shocks and system errors in
the next section.

3.2 Forecast drift

Figure 4 shows the monthly forecast error of SIE, SIV and
TAS for different initialization methods as a function of fore-
cast lead time in the 10-year prediction. The monthly fore-
cast error is determined by subtracting the climatological
monthly mean of REF for the period of January 1997 to De-
cember 2016, rather than forecast anomaly as defined in Ta-
ble 2. To compare, the monthly biases of FREE (FREE1) for
the respective variables were shown as grey (dashed black)
lines and filled areas in Fig. 4a–c, which are simply re-
peated annual cycles averaging for the same period (1997–
2016) with annual mean bias of 0.4 (−0.2) million km2, 5600
(2300) km3 and−0.7 (0.1) K for SIE, SIV and the Arctic cap
TAS, respectively. It is by chance that FREE1 (dashed black
line) has smaller bias in SIE, SIV and TAS over the Arctic
than the ensemble mean of FREE (thick grey line in Fig. 4,
also see FREE bias in annual min/max sea ice and mean TAS
in Figs. S2 and S3).

A general feature of all three variables is that biases in
all initialized experiments (AIs) vary in the range between
FREE1 and the ensemble mean of FREE, so that initializa-
tion results in a positive annual mean bias to the SIE and
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Figure 3. Anomalies of SIC (SIT) on 1 November aggregated for the NH sea ice extent (volume) in blue (red) during 1979–2018. The
ensemble spread (between min and max) of REF is presented by filled area, while anomalies of FREE1 are presented by dashed lines. For
AI2, the 20-year averages of anomalies taken from REF for lead year 1 (Y1, between two red triangles) are −0.11 million km2 for SIE and
−3000 km3 for SIV (straight red and blue lines), respectively. Note that the skill assessment period is from 1997 to 2016 (see Table 2), where
Y1 denotes forecast initialized from 1996 to 2015 and Y10 denotes the 10th-year forecast initialized from 1987 to 2006. Thus, the anomalies
are more positive for predictions with longer lead years assessed, as can be seen when compared to those in Y1.

SIV (i.e. larger SIE and SIV) and negative annual mean bias
to TAS with respect to FREE1, taking the annual mean bias
of AI2 (blue dots) as an example. There is a slight tendency
for the forecast error to increase for longer lead times. The
larger biases in AI experiments than in FREE1 result from
anomaly initialization where the model bias of FREE1 is not
removed from the initial state, but surplus with more positive
anomalies of sea ice for prediction with longer lead years
assessed, compared to those in the first-year forecast over
the period 1997–2016 (i.e. Y1 in Fig. 3). The differences be-
tween AIs are generally small after Y1, indicating the fore-
casts are drifted toward the model climate (as represented by
the ensemble mean). And the forecast error for SIE is rela-
tively less sensitive to different initialization than that of SIV
and TAS. On average, the long-term forecast drift is small
as indicated by the annual mean errors in AI2 (blue dots in
Fig. 4). There is a slight decline in both SIE and SIV from Y1
to Y3 followed by a return between Y5–Y7 and a tendency
of larger SIE and SIV for longer lead time. Correspondingly,
TAS in the initialized hindcasts is gradually pulled to the
colder climate over the Arctic cap domain, showing a ten-
dency of negative bias in all AIs in both winter and summer
for longer lead time, i.e. Y8–Y10.

The model biases show rather strong seasonal cycles, with
smaller biases in winter but much larger in summer for all
three variables in AIs than FREE. The roles of initialization
shocks have not been evident in all AIs since the first pre-
diction year (from 1 January). It is consistent with the results
of Cruz-García et al. (2021) that the readjustment between
surface ICs takes place within the first few weeks. These re-
sults emphasize the importance of drift correction via cor-
recting the lead-time dependent bias for multi-year predic-
tion skill assessment. Among all AIs, AI1 (pink line) shows
the least magnitude of positive seasonal bias of SIE and SIV

from Y6 afterwards and correspondingly the warmest TAS.
It seems that, for longer lead times (>Y5), AI1 performs
closest to FREE1. It suggests that AI1 with REF (ocean plus
SIC) anomaly but SIT from FREE1 initialization imposes
less strong constraints on the development of the sea ice
forecast than ocean only (AI0) and all (AI2) initialization at
decadal timescales.

3.3 Imprint of initial conditions in the first year

3.3.1 First winter forecast

In this section, we examine the immediate benefit (or degra-
dation) from initial anomalies (IC inconsistency) due to dif-
ferent initialization strategies on spatial scales. The win-
ter mean time series are considered as December–January–
February of 1996–1997 to 2015–2016 for REF and the fore-
cast of the first winter. When we calculate the anomaly of
regional averages from REF (i.e. ORAS5), the Arctic Ocean
is fully covered by sea ice during winter and there are neither
trends nor interannual variability in SIE (SIC changes below
5 %) but year-to-year changes in MYI-SIT are up to 1 m. One
exception is the Barents Sea, with high variability in SIC be-
cause it is open to the Atlantic inflow. In the Atlantic/Pacific
MIZ, the warm Atlantic/Pacific waters regulate changes in
the very thin FYI states (below 10 % SIC and 0.2 m SIT). As
mentioned before, the objective of assessing TAS changes is
to identify local changes in ocean–atmosphere heat exchange
altered by sea ice initialization.

Figure 5 depicts the ACC for the first winter predic-
tions. The stippled areas indicate where the Pearson corre-
lations are not significant (p = 0.05). In the Arctic Ocean,
the correlation for SIC (Fig. 5, left) in all experiments
(FREE/AI0/AI1/AI2) is low because the area is constantly
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Figure 4. The development of forecast drift for hindcast experiments using different initialization methods for the NH sea ice extent (a),
volume (b) and TAS over the polar cap domain (c), respectively. The drift is computed as difference of monthly climatology over 1997–2016
between forecast for a specific lead time and REF. The time series is shown as 3-month moving average, and therefore the first 3 months after
initialization (i.e. November, December and Y1-January) are masked out. The coloured lines plot the ensemble means of the experiments
initialized with ocean only (i.e. AI0, green), ocean plus SIC (AI1, pink) and ocean plus SIC and SIT (AI2, blue), respectively. The un-
initialized experiments FREE are shown as repeating annual cycles for ensemble mean (grey line) and spread (±1σ , grey shading), as well
as the member used for initialization (FREE1 in a dashed black line). The annual means of AI2 are marked with solid dots for each forecast
year.

ice-covered. The correlation for SIT (Fig. 5, centre) is signif-
icantly high in FREE in the CAO, which is further enhanced
from AI0 to AI2, resulting in the areas with significantly high
correlations expanded in the CAO towards the East Green-
land Current (EGC) in AI2. The highest correlation of SIT
(AI2) in the CAR/BG reflects the spatial scale with thinning
trends of CAO-MYI (Serreze and Meier, 2019), while the
skill of EGC in AI2 mirrors the impact of strong winter sea
ice outflow from the CAO-MYI but confined by the large
model bias (SIT, Fig. S2b). TAS in FREE shows the largest
area with significantly positive correlation over the CAO than
these with AIs. It indicates that its prediction skill is mostly
controlled by external forcing of anthropogenic greenhouse
gases (see in Fig. S1b) compared to internal variability (cor-
rected via initialization) during the last two decades.

In the MIZ (Fig. 5), FREE generally shows no signifi-
cant skill (i.e. low correlation) in SIC and SIT, except some
parts of GIN/BS/KS. Coincidentally, over the whole regions
of GIN/BS/KS, FREE shows high skill in TAS, reflecting

the influence of the increasing Atlantic heat inflow since
1990s (Serreze and Meier, 2019). ACC (SIC and TAS) in the
BS/HB are significantly increased in AI0 by ocean initial-
ization but degraded in AI1 by SIC initialization (explained
later with RMSE in Fig. 6). Comparing AI2 to AI1, the SIT
initialization significantly enhances the high correlation ar-
eas for SIC, SIT and TAS in some parts of the Baffin Bay
and KS. The major benefits of AI2 (TAS) are seen outside of
the polar cap domain, manifested as significantly enhanced
correlations over the North Atlantic Ocean.

Figure 6 illustrates the RMSE of FREE with respect to
REF and the RMSE skill scores for SIC, SIT and TAS. The
largest RMSEs of up to 25 % SIC and 1 m SIT can be seen
in the MIZ (Fig. 6, top row), mirroring the system errors
(i.e. bias) developed between autumn (1 November, Fig. 2)
and late winter (March, Fig. S2). The largest RMSE is due
to overestimated anomalies for SIC in the Atlantic and Pa-
cific MIZ and for SIT in the Arctic shelf sea coasts and the
GIN seas. The largest RMSE in TAS over the Arctic Ocean
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Figure 5. Anomaly correlation of the first winter SIC (left), SIT (centre) and TAS (right), respectively for FREE, AI0, AI1 and AI2 ex-
periments from top to bottom. The first winter forecast evaluated here is the DJF mean after initialization on 1 November, in each year of
1996–2015. The reference data are taken from ORAS5 or ERAI. Regions are stippled if not significant (p = 0.05). The black line illustrates
the polar cap domain.

is consistent with those of SIC. In order to identify the bene-
fit of specific initialized model components, we evaluate the
RMSE skill score (RMSESS), which compares the RMSE of
AI2 ensemble to the other experiments, i.e.

RMSESS= 1−RMSEAI2/RMSEINIT (6)

where “INIT” denotes the different experiment to be com-
pared, i.e. FREE, AI0 or AI1, respectively. A positive RM-
SESS indicates better accuracy (smaller RMSE) of AI2 com-
pared to INIT. Specifically, a positive RMSESS relative to
FREE (AI2 /FREE hereafter) indicates benefit from both
ocean and sea ice initialization, the RMSESS relative to
AI0 (AI2 /AI0 hereafter) indicates benefit from sea ice (SIC
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Figure 6. RMSE of FREE with respect to REF (top row) and RMSE skill score (lower rows) for the first wintertime (DJF) forecast: SIC
(left), SIT (centre) and TAS (right). The contour lines mark RMSE≥ 10 % or 0.5 m for SIC and SIT, respectively. The RMSE skill score is
calculated as 1− (RMSEAI2/RMSEINIT), where INIT denotes FREE (no init.), AI0 (no sea ice init.) and AI1 (no SIT init.). Scores above
0 denote more accurate in AI2 than INIT, and vice versa. Note that the label of the colour bar for skill score is asymmetric because the
minimum of the skill score (SS) can be far below−1 in contrast to the maximum of 1. The stippled areas in the middle columns are the same
as in Fig. 2b.

and SIT) initialization, while the RMSESS relative to AI1
(AI2 /AI1 hereafter) singles out the benefit of SIT initializa-
tion.

In the CAO, the skill score for SIC (∼ 0.05 in Fig. 6, left
column) appears to be unaffected by any initialization, with
respect to an RMSE of nearly 0 in FREE. For SIT (Fig. 6,
centre, lower three), RMSESS> 0.2 is commonly found in

the CAO and its adjacent waters (GIN/BS/KS). Combining
the gradually enhanced correlation from AI0 to AI2 (SIT) in
Fig. 5, the gained skills can be linked to the initialized MYI-
SIT, highly correlated with external forcing. For the same
reason, the correlation in Chukchi Sea enhances from AI0
to AI2 in Fig. 5, which results in high scores in AI2 /AI1
(SIT). Note that the stippled areas (e.g. ESS/LS/KS) indicate
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no difference in sea ice ICs between AI1 and AI2 (reason
in Sect. 2.1). By linking the skill changes in the local TAS,
the degradation of SIT in the ESS/LS is probably attributed
to advection of corrected SIT from the Chukchi Sea driven
by local wind pattern, which prevails over external forcing,
while the improved skill (SIT) in KS may originate from its
neighbouring waters (CAO/BS) with corrected SIT. FREE is
best for TAS in large parts of the CAO both ACC and RMSE,
presumably because the atmospheric large-scale circulation
in all initialized experiments is undertaking adjustment to the
initialized states in the first few months.

In the MIZ (Fig. 6), AI2 /FREE (SIC) is generally positive
(benefit from all init.), with exceptions in the Bering Strait
and EGC, which coincides with the maximum RMSE (SIC)
in FREE. Skills (SIT) are degraded along the ice edge of the
Labrador and GIN seas in AI2 /FREE (also in AI1 /FREE
and AI0 /FREE, not shown), showing opposite skill changes
with a positive score (> 0.5) in both AI2 /AI0 and AI2 /AI1
versus a negative score (<−1) in AI2 /FREE. The nega-
tive scores in AI2 /FREE (SIT) coincide with the maximum
bias of sea ice states (Fig. S2a and b), suggesting the major
role of model bias in causing forecast errors. On the con-
trary, the model bias (Figs. S2 and S3) is negligible in the
Hudson Bay and the improvements (SIC and SIT) are only
seen in AI2 /FREE (RMSESS> 0) but not in AI2 /AI0 and
AI2 /AI1, indicating a dominant role of ocean temperature
in shaping the growth of sea ice in this region. This supports
the results from Dai et al. (2020) that good skills in winter
prediction can be gained by assimilating SST alone in the
North Atlantic FYI regions. The impact of initialization on
TAS is mostly outside of the polar cap domain with RM-
SESS> 0.2 in the North Atlantic sector, Greenland and the
Alaska Peninsula, whereas RMSESS<−0.2 in the Pacific
Sector and eastward to the Siberian region. Similarities be-
tween all RMSESS (TAS) figures suggest that the TAS skills
are mostly attributable to the SIT initialization. Differences
between AI2 /FREE and AI2 /AI1 can be inferred that SIT
initialization is beneficial to the expansion of thick ice from
the CAO to the KS/BS, thus counteracting the Atlantic inflow
to the southern BS.

In summary, the thick ice in the CAO during winter shows
large variability in SIT (up to 1 m) but almost no changes
in SIC (< 5 %). This makes the SIT initialization perform
the best in increasing the skill of SIT in a basin scale. In
the MIZ, the very thin FYI variability depends on the At-
lantic/Pacific heat inflows. There is a direct improvement in
RMSESS (SIC) by ocean initialization (AI0) in the Atlantic
MIZ, where the model has too much ice. But AI0 works less
well in the Pacific MIZ where the model has warm bias. The
added value by SIC initialization (i.e. AI1) is limited in the
Atlantic/Pacific MIZ because the anomaly (REF) of sea ice
states is much smaller than the system errors. Alternatively,
assimilating SST is recommended to effectively constrain the
development of model bias, so as to improve the sea ice pre-
diction skill (Dai et al., 2020).

3.3.2 The first 12-month forecast

As the persistence timescales of upper-ocean heat content
and SIT can be longer than one season, we continue to iden-
tify the relative contribution from ocean and sea ice initial
constraints as the dominant source of predictability in the
first forecast year. The prediction skill in the first 12 months,
counted from the start month (i.e. November), is evaluated
by analysing the temporal development of ACC and RMSE
relative to REF (as Eqs. 1–2 in Volpi et al., 2017). The def-
inition of forecast and reference anomalies is given in Ta-
ble 2. The monthly mean of total SIE and SIV are calculated
and extracted from the first 12-month forecast initialized on
1 November from 1996 to 2015 as indicated in Fig. 3. In the
same way, the first 12-month forecasts of TAS are averaged
over the polar cap domain (see Fig. 2a) in order to investigate
the direct impact from MYI in the CAO on the atmosphere,
as most of the region north of 70◦ N is sea ice covered year
round in the climatology (Fig. S2c and d). When the correla-
tions of AIs meet, or even fall below FREE in Fig. 7, it means
that there is no skill from the initialization any more. On the
contrary, when the RMSE of AIs exceeds the FREE one, it
indicates no benefit from initialization afterwards. Addition-
ally, the thin lines in Fig. 7 represent the upper/lower bounds
of the 95 % confidence intervals obtained with a t distribution
for correlations and a χ2 distribution for RMSE. The correla-
tion with one experiment is not significant, if the confidence
interval goes below 0. Furthermore, the difference between
two experiments is not significant if those two intervals over-
lap. The results should be interpreted with cautions due to a
small sample size (N = 20).

The correlation of SIE (Fig. 7a) shows that AI0 and AI1
improve their skills over FREE only in the first month, in
contrast to AI2 for a slightly longer lead time up to 3 months.
All confidence intervals overlap, suggesting none of the dif-
ferences are statistically significant. The similarity in correla-
tion is found between AI0 and AI1 until March and between
AI0 and AI2 from April, which suggests a major contribution
of SST improvements. As all initialized experiments show a
recovery of skill in June–July, the predictive capability for
summer SIE possibly comes from pre-winter SST anomalies
that could have been stored in the ocean heat content (Hol-
land et al., 2011; Chevallier and Salas-Mélia, 2012). The re-
duction in RMSE with initialization is significant until lead
month 10 (i.e. August in Fig. 7d). Similar results are also
found in the study of Dai et al. (2020) in which the pan-Arctic
SIE can be predictable up to 12 months with the Norwegian
Climate Prediction Model (NorCPM) system by only assim-
ilating SST.

Compared to SIE, the skill in SIV (Fig. 7b) has been im-
proved significantly by all initialized experiments in the first
5 months (i.e. March). In the first 2 months, AI2 clearly out-
performs other experiments due to SIT initialization. After-
wards, there is no significant difference between initialized
experiments, indicating the major contribution of SST im-
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Figure 7. Correlation (a–c) and root mean square error (RMSE, d–f) for the NH SIE (million km2), SIV (thousand km3) and TAS (K) over
the polar cap domain, against REF for the first 12-month forecasts started on 1 November from 1996 to 2015. It is calculated for each lead
time with respect to its monthly climatology. The thin lines represent the 95 % confidence intervals obtained with a t distribution for the
correlation and a χ2 distribution for the RMSE. Open circles are used if not significant (p = 0.05). Note that the y axis has different scales.

provement. Since April, the skills of all three initialized ex-
periments meet the skill of FREE and degrade slowly with
forecast months. Until lead month 12, all correlations are
above 0.8, indicating the dominant role of external forcing.
In Fig. 7e, only AI2 shows the lowest RMSE in all experi-
ments throughout the year. By contrast, there is no significant
difference in RMSE between AI0 and AI1, because two ex-
periments apply identical SIT but different SIC initial states.
This suggests the relative importance of SIT initialization in
constraining SIV anomaly in EC-Earth3.

For TAS, analogous results with SIE are found in Fig. 7c
and f that all 95 % confidence intervals overlap, indicating
no significant difference between experiments. The improve-
ment by initialization is only significant in the first month.
The degradation in AI0/AI1/AI2 is reflected by Fig. 5 (TAS,
right) that the large-scale atmospheric circulations are un-
dertaking changes to different ocean/sea ice surface states
in the first winter months. Interestingly, the confidence inter-
vals of all experiments are mostly negative between February
and August (marked by open circles), indicating insignifi-
cant skill during the melting season, especially AI0. It can be
linked to the overestimated thick ice cover by September in
the Arctic shelf seas (Fig. S2c and d) that prevent rapid heat
exchange between atmosphere and the upper ocean during
the melting season. Therefore, it is challenging to constrain
the atmospheric states in the first 12-month forecast with sea
ice anomaly initialization.

4 Decadal-scale skill assessment

4.1 Year 2–9 average predictions

In this section, we focus on understanding the origin of
decadal predictability and the relative contribution from the
ocean, SIC and SIT initialization on the decadal timescale.
The initial year is excluded in this section because the im-
print of initial conditions is strong and discussed above. Fol-
lowing the verification framework for interannual-to-decadal
predictions (Goddard et al., 2013), prediction skill (AI0, AI1,
AI2) is averaged over forecast years 2–9 and compared to
the respective FREE projection. In contrast to the first winter
mean, the temporal smoothing over an 8-year window will
typically reduce high-frequency noise and increase signals
resulting from external forcings such as increase of green-
house gas concentrations. There is some evidence of nega-
tive trends in Arctic SIE and SIV (Fig. 3) and positive trends
in global TAS (Fig. S1) during the recent two decades in the
FREE ensemble.

Figure 8 shows that the areas with significantly positive
correlation (> 0.5) are larger in years 2–9 than that for the
first winter (Fig. 5) for all three variables and all experi-
ments. The high correlation indicates that external forcing
with warming trends determines the decadal prediction skill.
Therefore, FREE (Fig. 8, top) shows highest correlation in
SIC (outskirts of the central Arctic), SIT (BG) and TAS
(CAO), likely associated with the trends in local SIV under
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Arctic warming. In general, AI0 presents a dominant role of
ocean initialization in all experiments. The added skill (cor-
relation) by AI1 to AI0 is largest for SIC in LS and for SIT
in ESS, while AI2 improves SIC in the BG. Although SIT
initialization was not locally implemented to the ESS, sea
ice is moving, driven by advective processes or winds (Gue-
mas et al., 2016), which can result in enhanced correlations
of SIC and SIT in both AI1 and AI2 at longer lead time. The
improvements in TAS follow those of improved sea ice state
in FYI regions and expand over land as well.

With respect to RMSE in FREE (Fig. 9, first row), the spa-
tial patterns of SIT and TAS derived from the year 2–9 aver-
age are very similar to those of first winter means shown in
Fig. 6 but the magnitude is smaller. For SIC, the errors grad-
ually increase from 5 % at the outskirts of the central Arctic
(inside fully ice covered) to 10 % towards the MIZ with max-
imum of 15 % in the northern BS, reflecting the effect of the
maximum winter and summer bias on prediction skill for SIC
(Fig. S2a and c).

Both observations and climate models have suggested that
in the MIZ the variability of sea ice is largely influenced by
the oceanic heat flux convergence; therefore, the prediction
errors can be greatly reduced by advection of improved ocean
temperature, whereas little benefit from SIT initialization is
expected (Koenigk and Mikolajewicz, 2009; Årthun et al.,
2017; Onarheim et al., 2018; Bushuk et al., 2019; Dai et al.,
2020). As we discussed in Sect. 3.3.1, the model bias plays
a dominant role over initialized anomalies in forecast errors
for the MIZ. The relative skills (AI2 /FREE, AI2 /AI0 and
AI2 /AI1) for SIC and SIT in years 2–9 (Fig. 9, left two,
lower three) is very similar to those in the first winter mean
(Fig. 6, left two, lower three).

Compared with the first-winter forecast, the striking skill
changes of SIC and SIT in the inner Arctic (Fig. 6 versus
Fig. 9, left, centre two) suggests that the imprint of local sea
ice ICs are removed on longer lead times. Comparing the
centre and lower panels of Fig. 9 (SIC, left), the improved
skill in AI2 /FREE for SIC (RMSESS> 0.2, red) suggests
that ocean initialization is the most important source of pre-
dictive skill at decadal timescale, whereas the degradation of
AI2 /AI0 (RMSESS<−0.2 in blue, versus AI2 /AI1∼ 0)
in the CAR is attributed to corrected SIC. Changes in SIT in
the Arctic basin are regulated by ocean circulation such as
the BG and the transpolar drift (Davis et al., 2014). The im-
proved skill in AI2 /FREE (SIT in Fig. 9, centre) along the
Arctic shelf seas and the pathway of transpolar drift suggests
the positive effect of increasing Atlantic/Pacific heat inflows
and enhanced transpolar drift (Carmack et al., 2015). By con-
trast, there are negative effects of ocean initialization with
degraded skills for SIC and SIT in the BG region with neg-
ative RMSESS in AI2 /FREE (also AI0 /FREE, not shown)
and slightly negative in AI2 /AI1 in Fig. 9 (lower rows, left
two). This may be associated with an increasing poleward
expansion of the FYI zone in the southern BG (Bliss et al.,
2019), where a thinner sea ice cover (represented by local

SIT anomaly) will be more easily forced by wind and con-
sequently lead to stronger circulation in the BG (Armitage
et al., 2020). However, there are substantial system biases
in sea ice states in the BG in September (> 20 % SIC and
2 m SIT, Fig. S2c and d); therefore, the immediate benefit
from local SIT initialization (Fig. 6, centre) cannot hold on
timescales up to a decade in this respect.

For TAS, the area with improved skill in AI2 /FREE
(Fig. 9, right) is considerably related to increasing ocean tem-
perature of the Atlantic/Pacific inflows (Serreze and Meier,
2019), covering the North Atlantic, the eastern Arctic and ex-
panding over land. The added skill in AI2 /AI1 in the land-
ward vicinity of the BS/ESS may result from changes in local
wind pattern due to the thinning of SIT in AI2 relative to AI1.
Interestingly, TAS over the KS is degraded in AI2 /FREE
and AI2 /AI0 (but not in AI2 /AI1), indicating a negative ef-
fect from both ocean temperature and SIC initialization (AI0
and AI1). We should note that there are remarkable warm bi-
ases of the annual mean in SST and TAS for the BS/KS (see
FREE1 in Fig. S3a and c), accompanied with a large retreat
of summer sea ice in FREE1. It suggests the warm bias of
SIC in summer prevails over the cold bias of SIC in winter
(Fig. S2a and c) in years 2–9 average prediction. Although
we have found the dominant role of ocean initialization in
improving SIC and TAS prediction over the BS/KS in winter
(Fig. 6), it seems to have an opposite effect in summer. Dai
et al. (2020) have shown that the seasonal prediction skill for
the September SIE in the BS cannot be gained by assimilat-
ing SST (or correcting SIC) alone due to lack of constraint
on surface winds. Consistent with their results, SIT initial-
ization seems promising to constrain the summer retreat of
MYI (i.e. thick ice) in the northern BS/KS, thus advancing or
blocking the Atlantic heat inflow to the KS. By contrast, the
cold bias of winter SIC prevails over that of summer SIC in
the Labrador Sea (Fig. S2 versus Fig. S3), so that corrected
(thinner) SIT will make the excessive sea ice cover (biased
SIC) easier to be driven by winds. In turn, the skill in TAS
(via ocean and atmosphere heat exchange) will be improved.

4.2 Regional-mean skill for interannual-to-decadal
timescales

The results from Sects. 3.3 and 4.1 provide important in-
sights into the regional variability of sea ice prediction skill
at different timescales. It is clear that the benefit from SIT
initialization in shaping the local sea ice development does
not last beyond the first summer. However, the added skill
of SIT on decadal timescales in some FYI regions seems
associated with remote regions (CAO-MYI) which may last
for several forecast years with the support of accurate ocean
conditions. In the final analysis, we aim at providing details
on the temporal evolution of the skills of initialized hind-
casts for the Atlantic/Pacific Arctic shelf seas adjacent to the
CAO, with evidence of the expansion of poleward retreating
sea ice (Bliss et al., 2019). As the climate warming contin-
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Figure 8. Same as Fig. 5 but for years 2–9.

ues, the CAO might become seasonally ice free in the fu-
ture. Our goal is to shed light on how the key mechanism
governs the decadal predictability of the Arctic sea ice in
the coming decades. Therefore, the Barents, GIN and East
Siberian seas, and the Beaufort Gyre, are selected to repre-
sent respective physically dominated regimes. The FYI re-
gions (HB/BAF/LAB/BER) are of little interest here, as they
are heavily influenced by Atlantic/Pacific Ocean dynamics
(also system errors) and the role of CAO-MYI diminishes.
The regional assessments with groups (Fig. 2c) are shown in
Figs. S5–S7. The RMSESS are calculated on a monthly ba-
sis for each grid point in years 1–9 and then the area means

are considered as its regional skill. Regional skill scores of
AI0 /FREE, AI1 /FREE and AI2 /FREE are assessed for
SIC and SIT with red (blue) colours for positive (negative)
value of scores, indicating better (worse) accuracy of initial-
ized experiments than FREE.

The Barents Sea (BS) is representative of the Atlantic Arc-
tic regions covered by thin ice (< 1 m) where SIE varies
with interannual variability of the Atlantic Ocean heat trans-
port and is strongly modulated by local wind patterns (Ti-
etsche et al., 2018; Bliss et al., 2019). Figure 10 (top, left)
shows that SIC in the BS benefits most from ocean initial-
ization (AI0 /FREE) among all regions, with positive scores
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Figure 9. Same as Fig. 6 but for years 2–9.

through the ice growth to melting seasons for up to 5–6 lead
years, suggesting the Atlantic heat inflow as the major source
of predictability (see improved SST in Fig. S4, top, left). In
summer (August and September), the SIE retreat in north-
ern BS is more controlled by surface wind than SST; there-
fore, it is a challenge to predict (Dai et al., 2020). In gen-
eral the ocean initialization shows some promising improve-
ments of SIC in March (i.e. maximum SIE) by constrain-
ing SST for up to 5 lead years in all initialized experiments
(Fig. S4, top). Compared with AI0, the skill difference for
SIC in AI1 is negative (i.e. crossed) in the melting season for

lead years 2–6 (Fig. 10, top, second left) but positive (i.e. dot-
ted) between July and October. The degradation in AI1, ac-
companied by degraded skills of SST (Fig. S4, top, centre),
is probably related to the combination of initialized anoma-
lies with high-SIC (REF) and high-SIT (FREE1) for up to
5–6 years of lead time (Fig. 3). Compared with AI1, SIT ini-
tialization (AI2, Fig. 10, top, 3rd left) contributes to added
skill for SIC in summer months (June to August) and winter
months (October to next March) for up to 5–6 lead years. The
enhanced skills for SIC in AI2 coincide with improved win-
ter SST in the BS up to 3–4 lead years (Fig. S4, top, right),
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suggesting the important role of SIT initialization in con-
straining the retreat of MYI extent and the atmosphere states
over the CAO, namely some predictive capability for sum-
mer SIE with winter preconditioning (Holland et al., 2011;
Chevallier and Salas-Mélia, 2012; Blanchard-Wrigglesworth
and Bitz, 2014; Day et al., 2014). This in turn can improve
the ocean circulation and local wind-driven ice transport in
the adjacent northern BS during summer. With lead times
longer than 5 years, there is a tendency of larger SIE, SIV
and colder TAS over the Arctic in all AI experiments (Fig. 4).
Ocean initialization (AI0) begins to lose constraints on the
development of annual maximum SIE (Fig. S4, top, left, in
blue in lead years 7–9). By contrast, the added skills of AI1
emerge from lead year 7 onwards (dotted). The re-emerging
skill may come from the ocean decadal predictability (Dai
et al., 2020), because the degradation of SIC in lead years 7–
9 associated with a cold SST anomaly in AI0 is also found
in AI1 and AI2 with a 1- to 2-year time lag (not shown). The
occurrence of the cold SST anomaly in this case is not pre-
dictable but randomly arises from internal variability of the
coupled atmosphere and ice–ocean system, where the time
lag can be attributed to the altered atmosphere–ocean heat ex-
change by corrected SIC (AI1) and SIT (AI2), respectively.
With respect to SIT, there is almost no improvement from
all experiments in the BS (Fig. 10, bottom, left three). The
summer SIC bias (Fig. S2c) seems to play a dominant role in
summer SIT prediction so that AI0, AI1 and AI2 show neg-
ative skill scores between July to November in most years.
For the first 5 lead years, AI1 results in the worst prediction
for SIT (compared to FREE and AI0 indicated in blue and
crosses, respectively), in contrast to an opposite effect from
SIT initialization in AI2.

The GIN seas, as the neighbouring seas to BS, are the
second most beneficial region for SIC (Fig. 10, top, right
three) showing a similar impact of ocean initialization in AI0
with improved skills from July to next February for the first
few lead years. However, the prediction skill is degraded for
longer lead times. There is a contradicting feature of nega-
tive skills for winter SST in all initialized experiments com-
pared to FREE (Fig. S4, second upper rows), presumably
due to the dominant effect of winter SIC bias along the sea
ice edge (Fig. S2a). As mentioned before, the variability of
sea ice in the MIZ is largely influenced by the oceanic heat
flux convergence, and the benefit from local sea ice initial-
ization does not survive beyond the first summer. Therefore,
there is less benefit from SIC initialization to SIC predic-
tion (only present in year 1 between April and September)
than that from SIT initialization prevailing from October to
next February for several lead years (dotted in Fig. 10, top,
right two). The benefit from SIT initialization on multi-year
timescales may originate from remote regions (CAO-MYI)
as GIN is strongly influenced by the Arctic outflow along
the EGC with MYI export. With respect to SIT prediction,
the area with SIT bias in winter is larger than that in sum-
mer (Fig. S2b and d). Consequently, improved SITs in all

experiments relative to FREE are only prominent in summer
months between July and September (Fig. 10, bottom, right
three). AI2 outperforms the other initialization methods in
reducing forecast errors of SIT almost for all lead years in
GIN, particularly in summer, GIN thus being the region ben-
efitting the most from SIT initialization.

In the Pacific Arctic, represented by the ESS, the roles of
the Pacific heat inflow in summer and the Siberian High in
the ice-growth months are more important than the Atlantic
inflow (Tietsche et al., 2018). Both the ORAS5 reanalysis
(Tietsche et al., 2018) and the FREE simulations (Fig. S2b
and d) tend to produce too thick ice in winter and too slow
melting in summer. Therefore, there is little improvements in
SIC prediction in all experiments when the region is fully ice-
covered until March (i.e. no trend and no interannual vari-
ability in maximum SIE). Comparing AI1 with AI0 (Fig. 11,
left two), both SIC and SIT predictions are degraded by SIC
initialization in the first 2 lead years and slightly improved
in lead years 4–6. By contrast, AI2 outperforms AI0 and AI1
in advancing the prediction skills of winter SIC and SIT with
a lag time of 12 months. It corroborates with the finding in
the RMSESS maps with no skill in first winter but high skill
in years 2–9 (see AI2 /AI0 in Fig. 6 versus Fig. 9). The SIT
predictability may arise from remote origins driven by ad-
vective processes or winds (Guemas et al., 2016), because
ICs of SIC and SIT are identical in AI1 and AI2 in the ESS
(see Fig. 2b). The lag time of emerging skill between SIC (or
SIT) and SST in AI0 suggests some slower adjustments be-
tween ocean initial conditions, thick ice and atmosphere than
other regions.

The sea ice cover in the Beaufort Sea is dominated by a
clockwise drift, i.e. BG. It is fully ice-covered in winter and
has a decreasing trend in summer SIE with higher interan-
nual variability of thick ice cover than thinner ice cover (Bliss
et al., 2019). However, there are substantial positive biases in
September SIC and SIT (Fig. S2c and d). Similar to the ESS,
ocean initialization in all experiments improves early winter
SIC (November and December) in some years (Fig. 11, top).
The SIC and SIT initializations improve the skill in SIT in the
first 3 lead years, respectively. This confirms the discussion
in Sect. 4.1 (Fig. 6 and 9, centre) that the immediate benefit
from local sea ice initialization cannot hold on longer than a
decade.

5 Summary and conclusions

This study addresses the following questions using the global
climate model EC-Earth3: can sea ice initialization improve
the Arctic decadal prediction skill? Where and when may
the prediction of regional seas benefit/degrade from SIC and
SIT initialization? Three predictability regimes are classi-
fied according to added skill by ocean: (AI0−FREE), SIC
(AI1−AI0) and SIT (AI2−AI1) anomalies in the initializa-
tion:
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Figure 10. Regional Arctic SIC (upper) and SIT (lower) prediction in the Atlantic Arctic sector, i.e. Barents Sea (left) and GIN seas (right):
RMSE skill score of AI0 /FREE, AI1 /FREE and AI2 /FREE, respectively. AI0 /FREE is calculated as 1− (RMSEAI0/RMSEFREE),
where the ratio of RMSE is averaged over regions. Scores above 0 denote more accurate in AI0 than FREE (red), and vice versa (blue).
White colours denote a 0 score, which means RMSEs in AI0 (or AI1, AI2) and FREE are equal, respectively. Boxes for AI1 /FREE and
AI2 /FREE are stippled by dots (or crosses) if the added skill is above 0.05 (or below −0.05), which is the minimal colour interval of
RMSESS. The added skill is calculated for AI1 as (AI1 /FREE−AI0 /FREE) and for AI2 as (AI2 /FREE−AI1 /FREE), respectively.

Figure 11. As Fig. 10 but for the Pacific shelf seas: East Siberian Sea (left) and Beaufort Gyre (right).

– In general, ocean initialization included in all three ini-
tialization strategies is capable of increasing predic-
tion skill for winter SIC for a decade, thus known
as the most important source of decadal predictability.
In the Atlantic sector with predominant FYI, variabil-
ity and trend of SIE is largely influenced by oceanic
heat flux in winter. Therefore, the errors in SIC pre-
diction are greatly reduced by initialized ocean tem-
perature anomalies in the first winter (Fig. 6). Many
global climate models have shown that the upper-ocean
heat content significantly contributes to the prediction
skill of sea ice in the MIZ (Bushuk et al., 2019; Cruz-
García et al., 2019; Dai et al., 2020). Therefore, lit-
tle improvement from sea ice initialization can be ex-
pected in these regions. Consistent with their results,
we found that there is significant degradation of SIC
skill in the Hudson Bay in the first winter prediction

in both AI1 and AI2. Among all Arctic regions, the BS
has highest RMSE skill scores in AI0 for up to 5–6 years
during the melt-to-growth seasons (July to next Febru-
ary in Fig. 10). This is likely attributable to the persis-
tence of SST anomalies and advection of ocean tem-
perature anomalies from the North Atlantic. The ACC
for years 2–9 shows that there is significant skill of
SIC (AI0) outskirts of the CAO-MYI region (Fig. 8),
coincided with the significant skill of (TAS) over the
regions and expanding over land. This reflects the in-
creasing impact of ocean heat inflows and local ocean–
atmosphere heat exchange on the poleward retreat of
SIE at decadal timescales. All hindcasts show gener-
ally higher skill of SIC in the Atlantic sector than in the
Pacific sector, consistent with the results in Dai et al.
(2020).
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– In comparison with AI0, AI1 is initialized with higher
SIC anomalies (from REF) for up to 5–6 years lead
time (Fig. 3) but with identical SIT ICs to AI0 (from
FREE1). Only correcting SIC will result in inconsistent
initial SIV fields, affecting the forecast errors of sea ice
through the melting season and thereby degrade predic-
tion skill of SIE (Blockley and Peterson, 2018; Kimm-
ritz et al., 2018). There is some evidence of degradation
(i.e. AI1−AI0) in SIC/SIT/SST in the Atlantic sector
(BS/KS/GIN) in Fig. 10 and Figs. S4–S7 coinciden-
tally in the first half year for up to 5–6 years’ lead time.
On the other hand, a negative bias of SIC (Fig. S2a) in
the Bering Sea could compensate for the excessive SIC
added by AI1, so there are added skills in SIC/SIT/SST
in the first winter prediction (up to May in Figs. S5–S7).
By contrast, the Atlantic sector shows an opposite effect
due to the positive SIC bias. Alternatively, assimilating
SST is recommended to effectively constrain the devel-
opment of model bias.

– AI2 (with initialized SIT) outperforms AI0 and AI1 in
best constraining the forecast errors of the total Arc-
tic SIV in the first 12 prediction months (Fig. 7) and
in increasing correlation of SIC in the Arctic shelf seas
in year 2–9 average prediction (Fig. 8). This corrobo-
rates the findings by Cruz-García et al. (2019) that the
central Arctic SIV and the pan-Arctic SIE are corre-
lated in September over 3 continuous years in all six
global climate models used in their “idealized” experi-
ments. Theoretically, the variability of thick ice has lit-
tle connection with the upper ocean, due to the insu-
lating role played by the sea ice cover during most of
the year (Flato, 1995). From observations, the variabil-
ity and trend of perennial SIE are found to be the largest
in the September SIE minimum, in contrast to seasonal
SIE which characterizes as ice free in summer and by
the largest variability and trend in winter (Onarheim
et al., 2018). Our results provide some evidence that SIT
in the melting season can be improved by constraining
SIV anomaly in the CAO-MYI. One example is the GIN
seas, where there are large model biases in SIC and SIT
in March and September, due to the strong impact of sea
ice export from the CAO along the EGC. AI2 (with SIT
initialization) shows some improvement along the ice
edge (i.e. SIC) relative to AI0 and AI1 along the EGC
for a decade and the reduced errors in SIT along the
EGC can be linked to the reduced errors in the CAO-
MYI in Fig. 9. Another example is the Pacific Arctic,
where sea ice is fully covered by thick ice in winter.
The prediction skill of SIC in the melting season is less
dependent on the ocean heat transport and thus less pre-
dictable than in the Atlantic shelf seas. Instead, a thinner
and weaker sea ice in the melting season is prone to be
driven by wind and increases local atmosphere–ocean
surface heat flux, hence determining further evolution

of the sea ice cover. Our results show SIT initialization
in winter can reduce SIT error in the melting season in
both BG and ESS for a few lead years (Fig. 11). SIT ini-
tialization seems a promising strategy to constrain SIV
(or SIT) of CAO-MYI, which in turn constrains the ex-
pansion of poleward sea ice retreat in the melting sea-
son.

Overall, the impact of sea ice initialization on reducing sea
ice forecast errors is not just limited to the first few years
locally but can also re-emerge after 5–7 forecast years, sug-
gesting prominent modes of internal variability, such as the
winter NAO, Atlantic meridional overturning circulation or
the variability of Arctic outflow (Proshutinsky and Johnson,
1997; Swart et al., 2015; Armitage et al., 2020). The impact
of sea ice initialization contributes to a 1- to 2-year time lag
of prediction skill, due to the altered atmosphere–ocean heat
exchange by corrected SIC/SIT in AI1 and AI2.

A limit of SIT from ORAS5 is that it has no constraint by
SIT observations, although we only initialize SIT in Novem-
ber, in which ORAS5-SIT has shown some reliable results
in representing thin ice during the freezing season (October–
December) over the pan-Arctic when compared with obser-
vations by Tietsche et al. (2018). Xie et al. (2018), by directly
assimilating SIT, show that the perennial (thick) ice in CAO
could be remarkably corrected if compared with the SIC as-
similation. Therefore, the present study may underestimate
the impact of SIT initialization to CAO-MYI on the Arctic
climate prediction skill and further investigation is needed
for an accurate assessment.

To conclude, our sensitivity experiments with EC-Earth3-
CPSAI, by imposing different initialized model components,
demonstrate that AI2 (all init.) yields an improved perfor-
mance for decadal prediction for the Arctic regions, as it
provides an improvement in predicting SIE and SIV anoma-
lies and reducing errors in regional sea ice states. As cli-
mate warming continues, the central Arctic that is covered
mostly by MYI will likely become seasonal ice free in the
future. The controlling mechanism for decadal predictability
in the region may thus shift from the current SIV-persistence-
dominated regime to more ocean-driven processes. These
findings state the foundation for the AI2 approach being the
choice for a full contribution to CMIP6-DCPP, covering 60
initializations (1960–2019) with 15 ensemble members each.
A more general assessment of this system’s predictive skill
beyond the Arctic is currently in preparation.

Code and data availability. The EC-Earth model (version 3.3.1.1)
with its standard coupled model configuration (T255L91-
ORCA1L75) is used for the experiments here. The entire code
of EC-Earth is not available due to restrictions in the distribu-
tion of the atmosphere component (IFS). Confidential access to
the entire code can be granted for editors and reviewers; please
use the contact form at http://www.ec-earth.org/about/contact (last
access: 1 July 2021). For the methods of anomaly initialization
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to ocean and sea ice, we followed the approach described by
Hazeleger et al. (2013), namely by adding reanalysis anomaly
to model climatology; this can be implemented at one command
line with the utility of Climate Data Operators (CDO). The pro-
grammes used to convert one-category sea ice initial states (i.e. SIC,
SIT and SNT) to five categories and the scripts used to produce
the figures are available at https://doi.org/10.5281/zenodo.4297603
(Tian et al., 2020). Data used in this paper are available at
https://doi.org/10.5281/zenodo.4297926 (Tian, 2020). Links to
model output of sensitivity experiments can be found at the afore-
mentioned URL. The CMIP6 data (e.g. FREE and AI2) can also be
downloaded from any Earth System Grid Federation (ESGF) data
portal.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-4283-2021-supplement.
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