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Abstract. As a candidate for the next-generation National
Air Quality Forecast Capability (NAQFC), the meteoro-
logical forecast from the Global Forecast System with the
new Finite Volume Cube-Sphere dynamical core (GFS–FV3)
will be applied to drive the chemical evolution of gases
and particles described by the Community Multiscale Air
Quality modeling system. CMAQv5.0.2, a historical ver-
sion of CMAQ, has been coupled with the North American
Mesoscale Forecast System (NAM) model in the current op-
erational NAQFC. An experimental version of the NAQFC
based on the offline-coupled GFS–FV3 version 15 with
CMAQv5.0.2 modeling system (GFSv15–CMAQv5.0.2) has
been developed by the National Oceanic and Atmospheric
Administration (NOAA) to provide real-time air quality fore-
casts over the contiguous United States (CONUS) since
2018. In this work, comprehensive region-specific, time-
specific, and categorical evaluations are conducted for me-
teorological and chemical forecasts from the offline-coupled
GFSv15–CMAQv5.0.2 for the year 2019. The forecast sys-
tem shows good overall performance in forecasting meteo-
rological variables with the annual mean biases of −0.2 ◦C
for temperature at 2 m, 0.4 % for relative humidity at 2 m,
and 0.4 ms−1 for wind speed at 10 m compared to the ME-

Teorological Aerodrome Reports (METAR) dataset. Larger
biases occur in seasonal and monthly mean forecasts, par-
ticularly in spring. Although the monthly accumulated pre-
cipitation forecasts show generally consistent spatial distri-
butions with those from the remote-sensing and ensemble
datasets, moderate-to-large biases exist in hourly precipita-
tion forecasts compared to the Clean Air Status and Trends
Network (CASTNET) and METAR. While the forecast sys-
tem performs well in forecasting ozone (O3) throughout the
year and fine particles with a diameter of 2.5 µm or less
(PM2.5) for warm months (May–September), it significantly
overpredicts annual mean concentrations of PM2.5. This is
due mainly to the high predicted concentrations of fine fugi-
tive and coarse-mode particle components. Underpredictions
in the southeastern US and California during summer are at-
tributed to missing sources and mechanisms of secondary or-
ganic aerosol formation from biogenic volatile organic com-
pounds (VOCs) and semivolatile or intermediate-volatility
organic compounds. This work demonstrates the ability of
FV3-based GFS in driving the air quality forecasting. It
identifies possible underlying causes for systematic region-
and time-specific model biases, which will provide a sci-
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entific basis for further development of the next-generation
NAQFC.

1 Introduction

Three-dimensional air quality models (3-D AQMs) have
been widely applied in real-time air quality forecasting (RT-
AQF) since the 1990s in the US (Stein et al., 2000; McHenry
et al., 2004; Zhang et al., 2012a). The developments and
applications of the national air quality forecasting systems
based on 3-D AQMs were conducted in the 2000s (Kang
et al., 2005; Otte et al., 2005; McKeen et al., 2005, 2007,
2009). Since then, improvements and significant progress
have been achieved in RT-AQF through the further devel-
opment of AQMs and the use of advanced techniques. For
example, more air pollutants in the products, more detailed
gas-phase chemical mechanisms and aerosol chemistry, and
the implementation of chemical data assimilation were avail-
able (Zhang et al., 2012b; Lee et al., 2017). Various AQMs,
coupled with meteorological models in either an online or of-
fline manner, were developed and applied in RT-AQF (e.g.,
Chuang et al., 2011; Lee et al., 2011; Žabkar et al., 2015;
Ryan, 2016). The early version of the National Air Qual-
ity Forecast Capability (NAQFC) was jointly developed by
the US National Oceanic and Atmospheric Administration
(NOAA) and the U.S. Environmental Protection Agency
(EPA) to provide forecasts of ozone (O3) over the north-
eastern US (Eder et al., 2006). Since the first operational
version over the contiguous United States (CONUS) (Eder
et al., 2009), the NAQFC has been continuously updated and
developed to provide more forecasting products (including
O3, smoke, dust, and particulate matter with a diameter of
2.5 µm or less (PM2.5)) with increasing accuracy (Mathur
et al., 2008; Stajner et al., 2011; Lee et al., 2017).

The forecast skill of a historical NAQFC, which was
based on the North American Mesoscale Forecast System
(NAM) model (Black, 1994) and the Community Multiscale
Air Quality Modeling System version 4.6 (CMAQv4.6),
over CONUS during the year 2008 was evaluated by Kang
et al. (2010a) for operational O3 and experimental PM2.5
products. Overall, maximum 8 h O3 was slightly overpre-
dicted over the CONUS during the summer, with a mean
bias (MB), normalized mean bias (NMB), and correla-
tion coefficient (Corr) of 3.2 ppb, 6.8 %, and 0.65, respec-
tively. The performance of predicted daily mean PM2.5 var-
ied: there was an underprediction during the warm season
and an overprediction in the cool season. The MBs and
NMBs during warm/cool seasons were−2.3/4.5 µgm−3 and
−19.6%/45.1%, respectively. The current version of the
US NOAA’s operational NAQFC has provided the air qual-
ity forecast to the public for O3 and PM2.5 at a horizontal
grid resolution of 12 km over CONUS since 2015. It is cur-
rently based on the CMAQv5.0.2 (released May 2014) (U.S.

EPA, 2014) coupled offline with the NAM model. Daily
mean PM2.5 was underpredicted during warm months (May
and July 2014) and overpredicted during a cool month (Jan-
uary 2015) over CONUS (Lee et al., 2017).

Efforts have been made to reduce the seasonal and region-
specific biases in the historical and current NAQFC. Devel-
opment and implementation of an analog ensemble bias cor-
rection approach was applied to the operational NAQFC to
improve forecast performance in PM2.5 predictions (Huang
et al., 2017). Kang et al. (2008, 2010b) investigated the
Kalman filter (KF) bias-adjustment technique for operational
use in the NAQFC system. The KF bias-adjusted forecasts
showed significant improvement in both O3 and PM2.5 for
discrete and categorical evaluations. However, limitations
in the underlying models and the bias correction or adjust-
ment approaches need further improvement. Characterizing
the current NAQFC forecasting skill and identifying the un-
derlying causes for region- and time-specific biases can result
in further development of the NAQFC system and improved
pollutant predictions.

As the NOAA Environmental Modeling Center (EMC) has
transitioned to devote its full resources to the development of
an ensemble model based on the Finite Volume Cube-Sphere
Dynamical Core (FV3), NAM has been no longer updated
since March 2017. The FV3 dynamic core will eventually
replace all current NOAA National Centers for Environmen-
tal Prediction (NCEP) mesoscale models used for forecast-
ing. The FV3 dynamical core was implemented in the oper-
ational Global Forecast System as version 15 (GFSv15) in
July 2019.

The NOAA National Weather Service (NWS) is currently
coordinating an effort to inline a regional-scale meteorolog-
ical model based on the same FV3 dynamic core as that in
GFSv15 to be coupled with an atmospheric chemistry model
partially based on CMAQ. The inline system is expected to
be the next generation of NAQFC and to be implemented a
few years into the future. An interim system, offline coupling
the recent CMAQ with FV3-based GFS is regarded as a can-
didate NAQFC to replace the current NAM–CMAQ system
before the inline system is applied in operational air qual-
ity forecasting. To support this new development of the in-
terim NAQFC, a prototype of the offline-coupled GFSv15
with CMAQv5.0.2 (GFSv15–CMAQv5.0.2) has been devel-
oped and applied by the NOAA for RT-AQF over CONUS
since 2018 (Huang et al., 2018, 2019). In this work, the
meteorological and air quality forecasts from the offline-
coupled GFSv15–CMAQv5.0.2 system are comprehensively
evaluated for the year of 2019. The main objectives of this
work are to (1) evaluate the forecast skills of the experi-
mental prototype of the GFSv15–CMAQv5.0.2 system, (2)
identify the major model biases, in particular, systematic bi-
ases and persistent region- and time-specific biases in major
species, and (3) investigate underlying causes for the biases
to provide a scientific basis for improving the model rep-
resentations of chemical processes and developing science-
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based bias correction methods for O3 and PM2.5 forecasts.
This work will support NAQFC’s further development and
improvement through enhancing its forecasting abilities and
generating a benchmark for the interim NAQFC that is be-
ing developed by NOAA based on the offline-coupled GFS–
FV3 v16 with CMAQv5.3 (NACC–CMAQ) (Campbell et al.,
2020). Eventually, the latest version of CMAQ (version 5.3),
which has updates in gas-phase chemistry (Yarwood et al.,
2010; Emery et al., 2015; Luecken et al., 2019), lightning ni-
tric oxide (LNO) production schemes (Kang et al., 2019a, b),
and secondary aerosol formation (in particular, secondary or-
ganic aerosol) (e.g., Pye et al., 2013, 2017; Murphy et al.,
2017) among other things, will be coupled with GFS–FV3
v16 and be implemented in the interim operational NAQFC.

2 Model system and evaluation protocols

2.1 Description and configuration of offline-coupled
GFSv15–CMAQv5.0.2

FV3 is a dynamical core for atmospheric numerical mod-
els developed by the Geophysical Fluid Dynamics Lab-
oratory (GFDL) (Putman and Lin, 2007). It is a mod-
ern and extended version of the original FV core with a
cubed-sphere grid design and more computationally efficient
solvers. It was selected for implementation into the GFS
as the next generation dynamical core in 2016 (C. Zhang
et al., 2019). The GFS–FV3 v15 (GFSv15) has been opera-
tional since June 2019. The GFSv15 uses the Rapid Radiative
Transfer Method for General Circulation Models (RRTMG)
scheme for shortwave or longwave radiation (Mlawer et al.,
1997; Iacono et al., 2000; Clough et al., 2005), the Hybrid
eddy-diffusivity mass-flux (EDMF) scheme for the planetary
boundary layer (PBL) (National Centers for Environmental
Prediction, 2019a), the Noah Land Surface Model (LSM)
scheme for the land surface option (Chen et al., 1997), the
simplified Arakawa–Schubert (SAS) deep convection for cu-
mulus parameterization (Arakawa and Schubert, 1974; Grell,
1993), and a more advanced GFDL microphysics scheme
for microphysics (National Centers for Environmental Pre-
diction, 2019b). An interface preprocessor has been devel-
oped by NOAA to interpolate data, transfer coordinates, and
convert the GFSv15 outputs into the data format required by
CMAQv5.0.2 (Huang et al., 2018, 2019). The original out-
puts from GFSv15, which have a horizontal grid with 13 km
resolution and a Lagrangian vertical coordinate with 64 lay-
ers in I/O format for the NCEP models using the NOAA En-
vironmental Modeling System (NEMSIO), are processed to
Lambert conformal conic projection by PREMAQ, a prepro-
cessor, to recast the meteorological fields for CMAQ into an
Arakawa C-staggering grid (Arakawa and Lamb, 1977) with
a 12 km horizontal resolution and 35 vertical layers (Table 1).
The first 72 h in 12:00 UTC forecast cycles from GFSv15 are

used to drive the air quality forecast by the offline-coupled
GFSv15–CMAQv5.0.2 system.

CMAQ has been continuously developed by the U.S.
EPA since the 1990s (Byun and Schere, 2006) and has
been significantly updated in many atmospheric processes
since then. Chemical boundary conditions for the GFSv15–
CMAQv5.0.2 system are mainly from the global 3-D model
of atmospheric chemistry driven by meteorological input
from the Goddard Earth Observing System (GEOS-Chem).
The lateral boundary condition for dust is from the out-
puts of the NOAA Environmental Modeling System GFS
aerosol component (NGAC) (Lu et al., 2016). The anthro-
pogenic emissions from area, mobile, and point sources in
the National Emissions Inventory of the year 2014 version
2 (NEI 2014v2) are processed by the Sparse Matrix Opera-
tor Kernel Emissions (SMOKE) modeling system. The on-
road mobile sources include all emissions from motor vehi-
cles that operate on roadways, such as passenger cars, mo-
torcycles, minivans, sport-utility vehicles, light-duty trucks,
heavy-duty trucks, and buses. On-road mobile source emis-
sions were processed using emission factors output from
the Motor Vehicle Emissions Simulator (MOVES). SMOKE
uses a combination of vehicle activity data, emission fac-
tors from MOVES, meteorology data, and temporal alloca-
tion information to estimate hourly, gridded on-road emis-
sions. The non-road, agriculture, anthropogenic fugitive dust,
non-elevated oil–gas, residential wood combustion, and other
sectors are included in the area sources. The sectors of air-
ports, commercial marine vessel (CMV), electric generating
units (pt_egu), point sources related to oil and gas produc-
tion (pt_oilgas), point sources that are not electric generat-
ing units (EGUs) nor related to oil and gas (pt_nonipm),
and point sources outside the US (pt_other) are included
in the point sources. The sulfur dioxide (SO2) and nitro-
gen oxide (NOx) from point sources in NEI 2005 are pro-
jected to the year 2019 following the methods used in Tang
et al., (2015, 2017). The biomass burning emission inven-
tory from the Blended Global Biomass Burning Emissions
Product system (GBBEPx) (X. Zhang et al., 2019) is im-
plemented for the forecast of forest fires. The GBBEPx fire
emission is treated as one type of point source. Its heat flux
is derived from satellite-retrieved fire radiative power (FRP)
to drive fire plume rise. The GBBEPx is a near-real-time fire
dataset. The fire emission implemented in the current fore-
cast cycle comes from the historical fire observation, typi-
cally 1–2 d behind. In this system, we use land use informa-
tion to classify fires as forest fire and other burning such as
agriculture burning. We assume that only forest fire can last
longer than 24 h. We assume that the forest fire emission will
continue on day 2 and beyond. Other types of fires will be
dropped. The plume rise of the point source will be driven
by the meteorology and allocated to the 35 elevated layers
in the GFSv15–CMAQv5.0.2 system by the PREMAQ pre-
processing system. Biogenic emissions are calculated inline
by the Biogenic Emission Inventory System (BEIS) version
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Table 1. Configuration of GFSv15–CMAQv5.0.2 system.

Attribute Model configuration

Forecast period January–December 2019

Domain Contiguous US

Resolution Horizontal: 12 km (442× 265); vertical: 35 layers

Physical Options

Shortwave or longwave radiation The Rapid Radiative Transfer Method for GCMs

Planetary boundary layer (PBL) Hybrid eddy-diffusivity mass-flux (EDMF) PBL

Land surface Noah Land Surface Model (LSM)

Microphysics A more advanced GFDL microphysics scheme

Cumulus The simplified Arakawa–Schubert (SAS) deep convection

Chemical options

Photolysis Inline method (Binkowski et al., 2007)

Gas-phase chemistry The Carbon Bond mechanism version 5 with active chlorine chemistry and up-
dated toluene mechanism (CB05tucl) (Yarwood et al., 2005; Sarwar et al., 2012)

Aqueous-phase chemistry AQCHEM (Sarwar et al., 2011)

Aerosol module AERO6 with non-volatile POA (Carlton et al., 2010; Simon and Bhave, 2012;
Appel et al., 2013)

3.14 (Schwede et al., 2005). Sea-salt emission is parameter-
ized within CMAQv5.0.2. While the deposition velocities are
calculated inline, the fertilizer ammonia bidirectional flux
for inline emissions and deposition velocities is turned off.
Detailed configurations of photolysis, gas-phase chemistry,
aqueous chemistry, and aerosol chemistry for CMAQv5.0.2
are listed in Table 1.

2.2 Datasets and evaluation protocols

A comprehensive evaluation of the GFSv15–CMAQv5.0.2
forecasting system is conducted for both meteorological and
chemical variables for the year 2019, including discrete, cat-
egorical, and region-specific evaluations. The products in
the first 24 h of each 72 h forecast cycle are extracted and
combined as a continuous, annual forecast. The evaluation
of meteorological variables is carried out for those results
from PREMAQ in the GFSv15–CMAQv5.0.2 system. De-
tailed information for datasets used in this study is listed in
Table S1 in the Supplement. Observed hourly temperature at
2 m (T 2), relative humidity at 2 m (RH2), precipitation (Pre-
cip), wind direction at 10 m (WD10), and wind speed at 10 m
(WS10) are obtained from the Clean Air Status and Trends
Network (CASTNET) and the METeorological Aerodrome
Reports (METAR) datasets. The majority of CASTNET sites
are suburban and rural sites. Approximately 1900 METAR
sites over CONUS are used in this study (Fig. S1 in the Sup-
plement). For the evaluation of precipitation, a threshold of

≥ 0.1 mmh−1 is used for valid records because CASTNET
and METAR have different definitions of 0.0 mmh−1 val-
ues. In CASTNET, the records without any precipitation are
given as 0.0 mmh−1, the same as those records with negligi-
ble precipitation. However, in METAR, the records without
any precipitation are left blank, the same as an invalid record.
The negligible precipitation is recorded as 0.0 mmh−1.

The air quality forecasting products that are evaluated in-
clude hourly O3, hourly PM2.5, maximum daily 8 h aver-
age O3 (MDA8 O3), and daily average PM2.5 (24 h aver-
age PM2.5) for chemical forecast. The AIRNow dataset is
used for observed hourly O3 and PM2.5. We utilize the qual-
ity assurance/quality control (QA/QC) information from the
AIRNow dataset to filter the invalid records. Remote-sensing
data from the Global Precipitation Climatology Project
(GPCP) and the Climatology-Calibrated Precipitation Anal-
ysis (CCPA) (Hou et al., 2014; Zhu and Luo, 2015) datasets
are also used for the evaluation of precipitation. GPCP is a
global precipitation dataset with a spatial resolution of 0.25◦

and a monthly temporal resolution. The CCPA uses linear re-
gression and downscaling techniques to generate an analysis
product of precipitation from two datasets: the NCEP Cli-
mate Prediction Center Unified Global Daily Gauge Analysis
and the NCEP EMC Stage IV multi-sensor quantitative pre-
cipitation estimations (QPEs). The CCPA product with a spa-
tial resolution in 0.125◦ and temporal resolution of an hour
is used in this study. Satellite-based aerosol optical depth
(AOD) at 550 nm from the Moderate Resolution Imaging
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Spectroradiometer (MODIS) Terra platform (Levy and Hsu,
2015) is used for the evaluation of monthly AOD. The sta-
tistical measures such as mean bias, the root mean square
error (RMSE), the normalized mean bias, the normalized
mean error (NME), and the correlation coefficient are used;
more details about evaluation protocols are found in Zhang
et al. (2009, 2016). The Taylor diagram (Taylor, 2001),
which includes the correlations, NMBs, and the normalized
standard deviations (NSDs), is used to present the overall
performance (Wang et al., 2015). The NMBs ≤ 15 % and
NMEs ≤ 30 % by Zhang et al. (2006) and NMBs (≤ 15 %
and ≤ 30 %), NMEs (≤ 25 % and ≤ 50 %), and Corr (> 0.5
and > 0.4) for MDA8 O3 and 24 h PM2.5, respectively, by
Emery et al. (2017) are regarded as performance criteria.
Monthly, seasonal, and annual statistics and analysis are in-
cluded. Seasonal analysis for O3 is separated into an O3 sea-
son (May–September) and a non-O3 season (January–April
and October–December). Analysis for 10 CONUS regions,
defined by the U.S. EPA (http://www.epa.gov/aboutepa, last
access: 10 August 2020), is included and listed in Fig. S1c in
the Supplement.

The metrics of false alarm ratio (FAR) and the hit rate (H)

are used (Kang et al., 2005; Barnes et al., 2009) for cate-
gorical evaluation. Observed and forecasted MDA8 O3 and
24 h average PM2.5 values are divided into four classes based
on whether the predicted and/or observed data fall above or
below the air quality index (AQI) thresholds: (a) observed
values ≤ thresholds and predicted values > thresholds, (b)
observed and predicted values > thresholds, (c) observed
and predicted values ≤ thresholds, and (d) observed val-
ues > thresholds and predicted values≤ thresholds. The FAR
and H are defined in Eqs. (1) and (2):

FAR=
a

a+ b
× 100%, (1)

H =
b

b+ d
× 100%. (2)

3 Evaluation of model forecast skills

3.1 Evaluation of meteorological forecasts

Discrete performance evaluation is conducted for postpro-
cessed meteorological fields from the GFSv15–CMAQv5.0.2
system (Table 2). The GFSv15 can predict the boundary layer
meteorological variables well. It has overall cold biases and
wet biases for annual T 2 and RH2 in 2019, respectively. It
also overpredicts WS10, and underpredicts hourly precipi-
tation. Despite the CASTNET siting being slightly different
from that of METAR, the annual and most of the seasonal
performance for the model shows a similar pattern in terms
of bias for both the CASTNET and METAR networks. The
mean biases of T 2 are mostly within ±0.5◦C except those
in February and March compared to CASTNET (Table S2 in
the Supplement). Underprediction is generally larger com-

pared to CASTNET than METAR. For a spatial distribution
of MB for seasonal T 2 compared to METAR (Fig. S2 in the
Supplement), cold biases are mainly found in the Midwest
and western US where most of the CASTNET sites are lo-
cated. GFSv15 usually underpredicts T 2 on the west coast,
the mountain states, and the Midwest. Overpredictions of T 2
in the states of Kansas, Oklahoma, the areas near the east
coast, and the Gulf Coast offset some underpredictions, re-
sulting in smaller mean biases but a similar RMSE for the
model compared to METAR as opposed to that compared to
CASTNET. The difference between observed T 2 from the
two datasets is larger in cooler months than warmer months.
The largest underpredictions occur in the spring (March,
April, May – MAM) season. In general, GFSv15 underpre-
dicts T 2 for both CASTNET and METAR, consistent with
cold biases found in other studies using GFSv15 (e.g., Yang,
2019). Such underpredictions will affect chemical forecasts,
especially the forecast of O3. Consistent with the overall
underpredictions of T 2, GFSv15 overpredicts RH2 in gen-
eral. The largest overprediction is found in spring (MBs
of 3.4 % and 2.7 % with CASTNET and METAR, respec-
tively), corresponding to the largest underprediction of T 2
in spring (MBs of −0.5 and −0.4 ◦C with CASTNET and
METAR, respectively). GFSv15 shows moderately good per-
formance when predicting wind. The annual MB and NMB
of WS10 compared to METAR are 0.4 ms−1 and 10.7 %, re-
spectively. A larger overprediction of WS10 is found with
CASTNET than with other datasets (Zhang et al., 2016).
GFSv15–CMAQv5.0.2 also gives higher overpredictions for
CASTNET compared to METAR. The largest biases in wind
speed are found in summer. GFSv15–CMAQv5.0.2 gives the
largest cold biases and wet biases in spring, indicating the
necessity of improving model performance in such seasons
in future GFS–FV3 development.

By adopting the threshold of ≥ 0.1 mmh−1, performance
compared to the CASTNET and METAR shows similar re-
sults: a large underprediction in hourly precipitation. Pre-
dicted monthly accumulated precipitation shows consistency
in spatial distribution with observations from CCPA and
GPCP (Fig. S3 in the Supplement). The high precipitation in
the southeast is captured well in spring, while the high pre-
cipitation in the Midwest and south is captured well in other
seasons. It indicates that GFSv15–CMAQv5.0.2 has good
performance in capturing the spatial distributions of accu-
mulated precipitation but has poor performance in predicting
hourly precipitation. The precipitation from the original FV3
outputs is recorded as 6 h accumulated precipitation. Artifi-
cial errors were introduced to the forecast by an issue in pre-
cipitation preprocessing during the early stage of the devel-
opment of the GFSv15–CMAQv5.0.2 system. The precipita-
tion at the first hour of the 6 h cycle would be dropped occa-
sionally. We corrected this issue and the hourly precipitation
still shows a large underprediction compared to surface mon-
itoring networks (Fig. S4 in the Supplement). It indicates the
difficulty for the forecast system in capturing the temporal
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Figure 1. Taylor diagram (Taylor, 2001) with normalized standard-
ized deviations (NSDs), Corr, and NMB for meteorological vari-
ables (T 2, RH2, WS10, WD10, and Precip) compared to the CAST-
NET and METAR datasets. The REF marker at the x axis represents
the desired performance. The closer each variable is to the REF
marker, the better a performance the forecast system has for that
variable.

precipitation, especially during summer. During the summer
season, the discrepancy in capturing the short-term heavy
rainfall worsens the model performance in predicting hourly
precipitation. Besides, we use the threshold of 0.1 mmh−1

to filter the valid records. If the model predicts precipita-
tion that did not occur, the record will be excluded from
the statistics calculation. However, all the predicted precip-
itation is counted in the spatial evaluation against the ensem-
ble datasets of GPCP and CCPA. Therefore, the spatial per-
formance of monthly accumulated precipitation shows better
agreement than its of hourly statistics.

An overall comparison of performance with the CAST-
NET and METAR datasets is performed using a Taylor di-
agram (Fig. 1). The NSDs, Corrs, and NMBs are consid-
ered. The NSDs are ratios of the variance of predicted val-
ues to the variance of observed values, following the equa-
tions by Wang et al. (2015). The NSDs represent the ampli-
tude of variability. With the NSDs closer to 1, the predicted
values have closer variance than the observed values. Con-
sistent with other analysis in this section, larger biases and
lower correlation in model wind speed and wind direction
are found for CASTNET compared to METAR. The ampli-
tude of variability of WS10 compared to CASTNET is over-
predicted (with the NSD larger than 1), while it is underpre-
dicted compared to METAR. Because of the postprocessing
smearing of hourly precipitation, the variance of predicted
precipitation is smaller than the observed one, leading to very
small NSDs for precipitation. The location of the T 2 and

RH2 points near the REF marker in the Taylor diagram indi-
cates that the GFSv15–CMAQv5.0.2 captures the magnitude
and variability of these variables well.

3.2 Overall performance of chemical forecast over the
CONUS

The performance of chemical forecasts (i.e., O3 and PM2.5)
is evaluated on monthly, seasonal, and annual timescales for
the studied period of 2019. The performance of the MDA8
O3 and the 24 h average PM2.5 (24 h average PM2.5) is re-
garded as the primary objective. Categorical performance
evaluations for MDA8 O3 and 24 h average PM2.5 are also
conducted. Table 3 shows the discrete statistics of predicted
MDA8 O3 and 24 h average PM2.5 compared to AIRNow.

The GFSv15–CMAQv5.0.2 has good performance for
MDA8 O3 on a seasonal and annual basis with MBs ≤
±1.0 ppb, NMB ≤ 2.5 %, and NME ≤ 20 %. The monthly
NMBs/NMEs are within ±15%/25%, respectively. Slight
overpredictions and underpredictions are found in both sea-
sons with MB of 1.0 and −0.2 ppb. The largest underpre-
diction is found in spring months, especially in March. The
underprediction of MDA8 O3 in spring months is consistent
with the largest underprediction of T 2 in spring. It indicates
biases in predicted T 2 could be one of the reasons for the
corresponding biases in O3 prediction. Predicted MDA8 O3
is lower than observed values in major parts of the Mid-
west and western regions during the O3 season (Fig. 2),
which is consistent with an underprediction of T 2 in sum-
mer. But GFSv15–CMAQv5.0.2 gives very high O3 in the
southeastern US, especially in areas near the Gulf Coast.
Such overpredictions compensate for moderate underpredic-
tions in the Midwest and west, causing an overall overpredic-
tion in the overall CONUS. In the non-O3 season, GFSv15–
CMAQv5.0.2 can forecast the spatial variations of MDA8 O3
well with overall underpredictions in the northeast.

Unlike the good performance for O3, GFSv15–
CMAQv5.0.2 gives significant overpredictions for 24 h
average PM2.5 with annual MB, NMB, and NME of
2.2 µgm−3, 29.0 %, and 65.3 %, respectively (Table 3). The
MBs and NMBs range from −0.2 to 5.0 µgm−3 and −2.6 %
to 59.7 % across the four seasons. With the exception of
California and the southeast, predicted 24 h average PM2.5
shows overprediction during most of the year in spring,
autumn, and winter (Fig. 3). Moderate underpredictions of
PM2.5 are found in California during spring, autumn, and
summer and are found in the southeast during summer.
Using the historical emission inventories from NEI 2005 and
NEI 2014 instead of the latest version of NEI 2017 is one of
the reasons for the overpredictions of PM2.5 concentrations
in 2019. The significant overprediction mainly occurs in
the northern regions during cooler months, indicating it
is underlaid by systematic biases. The annual emission of
primary PM2.5 and coarse-mode PM (PMC) are shown in
Fig. S5 in the Supplement. As an important surrogate for the
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Figure 2. Spatial distribution of forecasted MDA8, MB, and NMB during the O3 and non-O3 seasons. Observation from AIRNow is shown
as filled circles in the overlay plots of concentrations.

fugitive dust, the spatial distribution of large PMC emission
is associated with the regions which have the significant
overprediction in cooler months. In reality, the meteoro-
logical conditions could greatly impact the amount and
characteristics of anthropogenic fugitive dust. For example,
the snow cover and the soil moisture are important factors
in calculating the dust emissions in SMOKE. However, the
anthropogenic fugitive dust implemented in this GFSv15–
CMAQv5.0.2 system was not adjusted by the precipitation
and snow cover. It will lead to a significant overestimation in
the anthropogenic dust emission. The impact of the meteo-
rological factor on anthropogenic fugitive dust emission and
the PM2.5 prediction will be further discussed in Sect. 4.

Murphy et al. (2017) found that secondary organic
aerosols (SOAs) generated from anthropogenic combustion
emissions were important missing PM sources in Califor-
nia prior to CMAQv5.2. The largest underpredictions of
PM2.5 occur in the southeast in summer. Biogenic volatile
organic compounds (BVOCs) and biogenic SOA (BSOA)
are most active in the southeast region in summer. Many
missing sources and mechanisms for SOA formation from
BVOCs have been identified in recent years (Pye et al., 2013,
2015, 2017; Xu et al., 2018) and have resulted in signifi-
cant improvements in predicting SOA in the southeast us-
ing CMAQv5.1 through v5.3. Anthropogenic emissions and
aerosol inorganic compounds were found to have impacts on
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Figure 3. Forecasted seasonal daily PM2.5 by GFSv15–CMAQv5.0.2 overlaid observations from AIRNow and MB compared to observations
from AIRNow.
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Figure 4. Monthly AOD from MODIS (left), predicted AOD from GFSv15–CMAQv5.0.2 (middle), and predicted surface 24 h average
PM2.5 (right).

BSOA (Carlton et al., 2018; Pye et al., 2018, 2019). Such
interactions and mechanisms are not represented sufficiently
in CMAQv5.0.2, further enhancing the biases in predicted
PM2.5 in the southeast. The evaluation of predicted AOD
compared to observations from MODIS is shown in Fig. 4.

High predicted AOD in the Midwest during cooler months
shows consistency with MODIS and corresponds to high sur-
face PM2.5 predictions. High predicted AOD is missing in
California, corresponding to the underprediction of surface
PM2.5 in California. In summer months, AOD is greatly un-
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derpredicted in California and the southeast, which may be
caused by the previously mentioned missing sources of SOA.

3.3 Categorical evaluation

A categorical evaluation is conducted to quantify the ac-
curacy of the GFSv15–CMAQv5.0.2 system in predicting
events in which the air pollutants exceed moderate or un-
healthy categories for the US AQI (http://www.airnow.gov,
last access: 10 August 2020). The scatterplots for predicted
and observed MDA8 O3 and 24 h average PM2.5 are shown
in Fig. 5a and b, respectively. Numbers of the scatters in
the four areas (a) to (d) are indicated in the Eqs. (1) and
(2) in Sect. 2.2. The higher the FAR is, the more GFSv15–
CMAQv5.0.2 overpredicts the AQI leading to false air qual-
ity warnings. The higher the H is, the more successfully the
exceedances are captured by the GFSv15–CMAQv5.0.2 sys-
tem. In this study, the thresholds for the two categories of
“Moderate” and “Unhealthy for sensitive groups” are con-
sidered. Since 2018, they are defined as 55 and 70 ppb for
MDA8 O3 and 12 and 35.5 µgm−3 for 24 h average PM2.5.
For comparison with previous studies, the historical thresh-
olds are also included in the evaluation: 60 and 75 ppb for
MDA8 O3 and 15 and 35 µgm−3 for 24 h average PM2.5. The
metrics in four categories, corresponding to four thresholds,
are shown in Fig. 5c. Categorical performance under stricter
AQI standards is better than under historical standards. For
example, the FAR decreases from 48.4 % to 41.4 %, and the
H increases from 42.7 % to 45.8 % with the Moderate thresh-
old change from 60 to 55 ppb. This could be due to the better
performance of the forecast system for values closer to the
annual average level (∼ 40 ppb). The scatters are more dis-
crete for extreme values. When the thresholds of MDA8 O3
are closer to the average level, the categorical performance
increases. A similar improvement in the FAR and H for pre-
dicting categorical 24 h average PM2.5 can be found when the
threshold changes from 15 to 12 µgm−3: the FAR decreases
from 80.1 % to 70.3 %, and the H increases from 52.8 % to
57.6 %. However, the FAR is high (over 90 %) and the H

is much lower under the threshold of 35.5 µgm−3. It is be-
cause most of the false alarms occur when observed 24 h av-
erage PM2.5 is lower than 20 µgm−3 and the predicted values
are higher than 20 µgm−3. It shows the poorer performance
in correctly capturing the category of Unhealthy for sensi-
tive groups due to the significant overprediction of PM2.5 in
cooler months.

Major RT-AQF systems over the world were comprehen-
sively reviewed in Zhang et al. (2012a, b). Here we include a
comparison with more recent air quality forecasting studies.
Table S3 summarizes air quality forecasting skills reported
in the literature from assessments of other air quality fore-
casting studies from Canada (Moran et al., 2018; Russell et
al., 2019), Europe (Struzewska et al., 2016; D’Allura et al.,
2018; Podrascanin, 2019; Spiridonov et al., 2019; Stortini et
al., 2020), East Asia (Lyu et al., 2017; Zhou et al., 2017;

Peng et al., 2018; Ha et al., 2020), and CONUS (Kang et
al., 2010; Zhang et al., 2016; Lee et al., 2017), along with
that from this work. For those studies with data assimilation
in air quality forecasting, the performance from the raw re-
sults without data assimilation is presented. The performance
in predicting O3 and PM vary greatly between model sys-
tems. The discrete and categorical performance in O3 predic-
tion is not significantly better than that in PM prediction. O3
tends to be slightly overpredicted on an annual basis or for
the warmer months. The annual NMB and Corr for O3 over
the North America are 1.4 % and 0.76 for 2010 in Moran
et al. (2018), while they are 1.0 % and 0.73 in this study.
However, the performance in PM2.5 prediction varies greatly
from our study. The PM2.5 for warmer months was mod-
erately overpredicted in Russel et al. (2019), with the MBs
ranging from 3.2 to 5.5 µgm−3. The categorical performance
of GFSv15–CMAQv5.0.2 in predicting MDA8 O3 is similar
to that of the previous NAQFC (Kang et al., 2010), in which
the FAR and H are∼ 68 % and∼ 31 % for the Unhealthy for
sensitive groups category, and the H is ∼ 47 % for the Mod-
erate category. The H for PM2.5 also decreased greatly from
∼ 46 % for the Moderate category to ∼ 21 % for the Un-
healthy for sensitive groups category, and the FAR was over
90 % for the Unhealthy for sensitive groups category in Kang
et al. (2010). The overpredicted PM2.5 was also found when
using the historical 2005 NEI in a forecast for January 2015
(Lee et al., 2017). The performance was improved by updates
of 2011 NEI and real-time dust and wild fire emissions. It in-
dicates the need to improve our emission inventory. As for
the categorical performance in regions other than CONUS,
the air quality standards vary (Oliveri Conti et al., 2017).
For example, the National Ambient Air Quality Standards
(NAAQSs), the Ambient Air Quality and Cleaner Air for Eu-
rope (CAFE) Directive (2008/50/EC), and the national ambi-
ent air quality standard (GB 3095-2012) are set up by the US,
Europe, and China, respectively. Metrics also vary between
studies. The primary forecasting products are O3 and PM10
from some forecasting systems instead of O3 and PM2.5 in
this study. The threshold for a categorical evaluation of O3
used in D’Allura et al. (2018) was 83.0 µgm−3. The applied
metrics of the false alarm ratio and probability of detection
(POD) were defined the same as the FAR and H used in our
study. The FAR and POD were 36.14 % and 71.16 %, respec-
tively. The categorical evaluation of PM2.5 in Ha et al. (2020)
was applied for four categories: (1) 0–15 µgm−3, (2) 16–
50 µgm−3, (3) 51–100 µgm−3, and (4) > 100 µgm−3. The
overall FAR and detection rate for the four categories are
59.0 % and 36.1 %, respectively. Although the metrics of the
FAR and detection rate were defined for the four categories,
rather than for every single category as in this study, the cat-
egorical performance is comparable with our results. In gen-
eral, the discrete and categorical performance of O3 forecast
in this study is comparable to that of the air quality forecast-
ing systems in many regions of the world. However, the PM
forecasts vary greatly between studies. While our GFSv15–

Geosci. Model Dev., 14, 3969–3993, 2021 https://doi.org/10.5194/gmd-14-3969-2021

http://www.airnow.gov


X. Chen et al.: Evaluation of the offline-coupled GFSv15–FV3–CMAQv5.0.2 3981

Figure 5. Categorical evaluation of MDA8 and 24 h average PM2.5: (a) scatterplot of predicted and observed MDA8; the scatters are divided
into four areas using the threshold of 55 ppb for both observation and prediction. (b) Scatterplot of predicted and observed 24 h average
PM2.5; the scatters are divided into four areas using the threshold of 12 µgm−3 for both observation and prediction. (c) False alarm ratio
(FAR) and hit rate (H) in four categories for forecasts of MDA8 and 24 h average PM2.5.

CMAQv5.0.2 system shows consistent performance with the
systems covering CONUS, the high FAR and low H for the
Unhealthy for sensitive groups category with higher thresh-
olds indicate that the categorical performance could be fur-
ther improved by addressing the significant overprediction
during cooler months in this study.

3.4 Region-specific evaluation

As discussed in Sect. 3.2, biases in predicted O3 and PM2.5
vary from region to region. To further analyze the region-
specific performance of the GFSv15–CMAQv5.0.2 system,

an evaluation for 10 regions within CONUS is conducted.
By identifying the detailed characteristics of region-specific
biases and indicating the underlying causes for such biases,
this section aims to help the NAQFC to improve its forecast
ability for specific regions.

Figure 6 shows the annual model performance for MDA8
O3 and 24 h average PM2.5 in the 10 CONUS regions. In
Sect. 3.2, a slight underprediction of MDA8 O3 on an an-
nual basis was found over the CONUS. MDA8 O3 is under-
predicted in most of the regions except regions 2, 4, and 6
(Fig. 6a). The overpredictions in regions 4 and 6 are mostly
from the large biases near the coast area during the O3 sea-
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Figure 6. Annual performance of MDA8 in 10 CONUS regions (a); Taylor diagram for annual performance of MDA8 (b); annual perfor-
mance of 24 h average PM2.5 in 10 CONUS regions (c); Taylor diagram for annual performance of 24 h average PM2.5. Outliers represent
regions with NSDs > 3.5 (d).

son. Correlations between predictions and observations in
most of the regions are higher than 0.6, except for 0.55 in
region 4 and 0.50 in region 7. Poor performance in regions
4 and 7 is illustrated by the Taylor diagram (Fig. 6b). Small
Corr and NSD result in the markers of regions 4 and 7 lying
farthest from the reference point. The amplitude of variabil-
ity of the predicted MDA8 O3 is smaller than the observed
values in all the regions, especially in regions 4 and 7. The
performance in region 2 is the best, with the smallest MB or
NMB, the highest Corr, and similar variability in predictions
and observations. The time series of the MDA8 O3 for the 10
regions during 2019 is shown in Fig. S6 in the Supplement.
Regions 1, 2, 4, and 6 show different results for the O3 season
and the non-O3 season: GFSv15–CMAQv5.0.2 tends to over-
predict MDA8 O3 during the O3 season and underpredicts it

during the non-O3 season. The underprediction during spring
months, which is indicated in Sect. 3.2, can be also found in
most of the regions with obvious gaps between observed and
predicted curves in March and April. The lowest O3 predic-
tions occur at 05:00 local standard time (LST) in most of the
regions (Fig. S7 in the Supplement). For regions 4 and 6, sig-
nificant overprediction occurs not only during the O3 season
for MDA8 O3 (which mainly occurs during the daytime) but
also during the nighttime. During the non-O3 season, the bi-
ases in predicting MDA8 O3 for regions 4 and 6 are small
and consistent with good daytime predictions. However, O3
is still overpredicted during the nighttime in these regions,
associated with the collapse of the boundary layer and diffi-
culty in simulating its time and magnitude (Hu et al., 2013;
Cuchiara et al., 2014; Pleim et al., 2016).
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Consistent with the analysis in Sect. 3.2, PM2.5 is signifi-
cantly overpredicted in most of the regions except in regions
4, 6, and 9 (Fig. 6c). The underprediction during warmer
months, likely due to missing sources and mechanisms for
BSOA, compensates for the annual biases in regions 4 and
6, leading to smaller MBs or NMBs but low correlations in
these regions. The variability in predictions is much larger
than in observations, with the NSDs > 1 for all regions
(Fig. 6d). The forecast system has the best performance in re-
gion 9 with an NSD of 1.2, an NMB of −12.0 %, and a Corr
of 0.40. Figure S8 in the Supplement shows the time series
of 24 h average PM2.5 in the 10 CONUS regions. The gaps
between observed and predicted curves are large in cooler
months, but the GFSv15–CMAQv5.0.2 system has relatively
good performance in warmer months for most of the regions.
Less overprediction is found in regions 6 and 9 during cooler
months, and those regions generally show the best perfor-
mance (see Taylor diagram). The different biases across the
regions further indicate that multiple factors likely contribute
to them.

4 Discussion

4.1 Meteorology–chemistry relationships

We further quantify the meteorology–chemistry relationships
by conducting the region-specific evaluation of the meteo-
rological variables. The regional performance for the major
variables is shown in Fig. S9 in the Supplement. The re-
gional biases in T 2 predictions show high correlation with
the regional biases in MDA8 O3. It indicates that the cold
biases in the Midwest (including region 5) and the warm bi-
ases near the Gulf coast (including regions of 4 and 6) are
important factors for the O3 underprediction and overpredic-
tion in those regions, respectively. The O3–temperature re-
lationship was found (Sillman and Samson, 1995; Sillman,
1999). O3 is expected to increase with increasing tempera-
ture within a specific range of temperature (Bloomer et al.,
2009; Shen et al., 2016). The surface MDA8 O3–temperature
relationship was found at approximately 3–6 ppbK−1 in the
eastern US (Rasmussen et al., 2012). According to such rela-
tionships, the biases in T 2 predictions could explain a large
portion of the O3 biases. Heavy convective precipitation and
tropical cyclones have a large impact in the southeastern US,
which covers mainly regions 4 and 6. Therefore, the perfor-
mance in precipitation predictions is lower in those two re-
gions compared to other regions as we discussed regarding
the model performance in capturing short-term heavy rains
during summer seasons in Sect. 3.1. Meanwhile, the perfor-
mance in wind predictions in regions 4 and 6 is relatively
poor. Such performance in the meteorological predictions is
consistent with the mixed performance in PM2.5 prediction
in regions 4 and 6. The low temporal agreement shown as
correlations of predicted PM2.5 in those two regions can be

attributed to the discrepancy in meteorological inputs, mainly
in precipitation and wind.

4.2 Major biases in O3 predictions

Prediction and simulation of O3 in coastal or marine areas
are impacted by halogens chemistry and emissions (Adams
and Cox, 2002; Sarwar et al., 2012; Liu et al., 2018), in-
cluding bromine and iodine chemistry (Foster et al., 2001;
Sarwar et al., 2015; Yang et al., 2020) and oceanic halogen
emissions (Watanabe, 2005; Tegtmeier et al., 2015; He et al.,
2016). CMAQv5.0.2 only has simple chlorine chemistry for
CB05 mechanisms, and the reduction of O3 by reaction with
bromine and iodine is not included in CMAQv5.0.2. Iodide-
mediated O3 deposition over seawater and detailed marine
halogen chemistry has been found to reduce O3 by 1–4 ppb
near the coast (Gantt et al., 2017), suggesting that the missing
halogen chemistry and O3 deposition processes contribute
to overpredicted O3 in coastal and marine areas seen here.
Coastal and marine areas are also impacted by air–sea inter-
action processes, which are simply represented in the current
meteorological models without coupling oceanic models (He
et al., 2018; Y. Zhang et al., 2019a, b). For example, coastal
O3 mixing ratios are impacted by predicted sea surface tem-
peratures and land–sea breezes through their influence on
chemical reaction conditions and diffusion processes. As dis-
cussed in Sects. 3.1 and 4.1, the GFSv15–CMAQv5.0.2 sys-
tem has poorer performance in predicting the meteorological
variables in regions of 4 and 6, which could contribute to bi-
ases in O3 predictions directly or indicate missing land–sea
breezes and thus missing transport effects in the GFSv15–
CMAQv5.0.2 air quality forecasting system.

In addition to the impact of meteorological biases
and missing halogen chemistry on the O3 overpredic-
tion near the Gulf coast, the overestimated volatile
organic compound (VOC) emission could enhance the
O3 biases. The anthropogenic VOC emissions con-
tinuously decrease from historical NEIs to the 2016
NEI (http://views.cira.colostate.edu/wiki/wiki/10202/
inventory-collaborative-2016v1-emissions-modeling-90platform,
last access: 10 October 2020). We compare the VOC emis-
sions between the 2016 NEI and the emissions used in this
study. The difference in the elevated source of pt_oilgas is
shown in Fig. S10 in the Supplement. The Gulf coast is
impacted by the oil and gas sector due to the oil and gas
fields and the exploration activity near it. By comparing
the newer NEI to the current NEI we used in the system,
we found that the overestimation of the VOCs could be
one aspect of the O3 overprediction near the Gulf Coast
because we only project the SO2 and NOx from the 2005
NEI to 2019 but we do not project the VOCs for the elevated
sources. The monthly VOC emissions from the pt_oilgas
sector for July in regions 4 and 6 are 2876.0 tmonth−1, while
they are 2497.0 tmonth−1 in the 2016 NEI. The reduction
is mainly located along the coastline, where the significant
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overprediction takes place. It indicates the complicated effect
of meteorological biases, missing gas-phase chemistry, and
the overestimation of emissions on the O3 prediction in these
regions.

The O3 concentration is underpredicted for the northeast,
mid-Atlantic, Midwest, mountainous states, and northwest
(mainly corresponding to the regions 1, 3, 5, 8, and 9) during
the non-O3 season. A large difference in dry-deposition algo-
rithms between CMAQv5.0.2 and other common parameter-
izations was reported (Park et al., 2014; Wu et al., 2018). A
large discrepancy between modeled dry-deposition velocity
of O3 by CMAQv5.0.2 and the observation during winter was
shown and attributed to the deposition to snow surface. An
improvement was indicated in revising the treatment of depo-
sition to snow, vegetation, and bare ground in CMAQv5.0.2.
Lower deposition to snow was found to improve the consis-
tency between the O3 deposition modeled by CMAQv5.0.2
and the observations. Therefore, the dry-deposition module
in v5.0.2 needs to be updated and improved for more accu-
rate representation of low-moderate O3 mixing ratios (Ap-
pel et al., 2021). For the cases in this study, the predicted
snow cover for the months of January and April in winter
and spring are shown in Fig. 7a and b. The underpredicted
O3 during the non-O3 season may be caused by the overesti-
mated O3 deposition to snow in the northern regions, corre-
sponding to the previous regions 1, 3, 5, 8, and 9. The mixed
effects of the temperature–O3 relationship discussed above
and the large deposition to snow contribute to the moderate
O3 underpredictions.

4.3 Major biases in PM2.5 predictions

Major biases in PM2.5 prediction are distinguished for
warmer and cooler months in Sect. 3. To further analyze
the underlying causes for varied patterns and performance
on a season- and region-specific basis, diurnal evaluations
for PM2.5 and chemical components of PM2.5 during the O3
season and the non-O3 season are shown in Fig. 8. GFSv15–
CMAQv5.0.2 has a large seasonal variation in diurnal PM2.5,
inconsistent with the observation. While PM2.5 is underpre-
dicted during daytime in regions 4, 6, 8, and 9 during the O3
season, PM2.5 is always overpredicted across the day dur-
ing the non-O3 season except for region 9. Increased organic
carbon (OC), particulate nitrates, soil and unspecified coarse-
mode components contribute to most of the increase in pre-
dicted total PM2.5. The general cold biases over CONUS, es-
pecially in region 5, could make the GFSv15–CMAQv5.0.2
system predict higher nitrate particulates, leading to a larger
increase in PM2.5 from the O3 season to the non-O3 season.
Emissions vary from month to month in the year (Fig. S11a
in the Supplement). There are larger emissions for NH3,
NOx , VOC, primary coarse PM, and primary PM2.5 in the O3
season compared to the non-O3 season. Primary organic car-
bon (POC) emissions are higher in the O3 season. Changes in
emissions are not fully consistent with the changes in PM2.5

components, indicating that other biases or uncertainty could
also contribute to the significant overprediction during the
non-O3 season. For example, the implementation of a bidi-
rectional flux of NH3 and the boundary layer mixing pro-
cesses under more stable conditions (during the non-O3 sea-
son) in the GFSv15–CMAQv5.0.2 system need to be fur-
ther studied. Pleim et al., (2013, 2019) found that the NH3
fluxes and concentrations could be better simulated and the
monthly variations in NH3 concentrations were larger com-
pared to the raw model by implementing the bidirectional
flux of NH3. The absolute biases for diurnal PM2.5 are gen-
erally larger during nighttime in most of the regions, except
for region 9. This is consistent with the analysis by Appel
et al. (2013), which suggested that the efforts of improving
nighttime mixing in CMAQv5.0 are further needed, further
indicating the need for improvements of CMAQ in predicting
dispersion and mixing of air pollutants under stable bound-
ary layer conditions. The forecast system gives the highest
PM predictions at two peaks during the day: 06:00 and 19:00
in the O3 season and 07:00 and 20:00 in the non-O3 season at
LST, respectively, corresponding to the shifting between day-
light saving time and LST. The two diurnal peaks are caused
by the diurnal pattern of emissions (Fig. S11b). PM is mostly
emitted during the daytime from 06:00 to 18:00. With the de-
velopment of the boundary layer during the daytime, surface
PM2.5 concentrations will be reduced by the diffusion. Dur-
ing dawn and dusk, the boundary layer transits between sta-
ble and well-mixed conditions. The increased emission and
secondary production of PM2.5 will be accumulated within
the boundary layer, causing the high peaks during dawn and
dusk.

The variation in predicted PM2.5 composition between
cooler and warmer months indicates that major seasonal bi-
ases are caused by multiple factors. We introduce the Air
Quality System (AQS) dataset for the evaluation of daily
PM2.5 composition to provide additional insight into the spe-
cific reasons. Figure 9 shows the biases of the key PM2.5
composition for the cooler month of January and warmer
month of July. While the overall mean biases of PM2.5
composition, including elemental carbon (EC), ammonium
(NH+4 ), and nitrate (NO−3 ), are within ±0.5 µgm−3 for all
months of the year, the major biases in PM2.5 predictions
are mostly contributed by OC, soil components (SOIL), and
sulfate (SO2−

4 ). The soil components are estimated using the
Interagency Monitoring of Protected Visual Environments
(IMPROVE) equation and specific constituents (Appel et al.,
2013). During a cooler month, the significant overpredic-
tion in PM2.5 is mainly attributed to the overprediction in
OC and SOIL. During warmer months, the overprediction of
SOIL and sulfate compensates for the overall underpredic-
tion in OC in v5.0.2, leading to the moderate PM2.5 under-
prediction in the southeast but slight overprediction in the
Midwest, mid-Atlantic, and the northeast. These high PM2.5
SOIL concentrations are consistent in spatial characteristics
with large emissions of anthropogenic primary PM2.5 and
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Figure 7. The predicted average snow cover for (a) January and (b) April. (c) The difference in NMBs of PM2.5 by adjusting PM emission
for January. Positive values stand for improvement in biases with NMBs closer to 0. (d) MBs in PM2.5 soil composition with adjustment of
PM emission for January.

primary coarse PM in the Midwest, northeast, and northwest.
The underprediction in PM2.5 OC during summer compen-
sates for the overestimation in dust during cooler months, re-
sulting in the overall biases with an annual NMB of 30.0 %.

The large emissions of anthropogenic primary coarse PM
as well as the wind-blown dust are the major sources for
predicted PM2.5 SOIL components. Appel et al. (2013) in-
dicated CMAQ overpredicted soil components in the eastern
United States partially due to the anthropogenic fugitive dust
and wind-blown dust emissions. The overprediction in PM2.5
soil compositions by our forecast system could mainly be at-
tributed to the overestimation of the anthropogenic fugitive
dust emission because the meteorological conditions were
not included in processing the anthropogenic fugitive dust
sector. The dust-related components of aluminum, calcium,
iron, titanium, silicon, and coarse-mode particles are overes-
timated in the regions with snow and precipitation, especially
during winter, early spring, and late autumn with snow cover
in the north, which contributes to the PM2.5 overprediction,
with a more significant temporal–spatial pattern in the north
US during cooler months.

An adjustment of precipitation and snow cover for fugi-
tive dust was implemented in the operational NAQFC. The
dust-related PM emissions will be cleaned up using a fac-
tor of 0.01 when the snow cover is higher than 25 % or the
hourly precipitation is higher than 0.1 mmh−1 before they
are used as input for CMAQv5.0.2 forecast. We conduct a
sensitivity simulation for January 2019 using the GFSv15–
CMAQv5.0.2 system with the adjustment implemented in the
operational NAQFC. Figure 7c shows that the PM2.5 over-
prediction in the northern regions 1, 2, 5, and 10 during
January is greatly improved corresponding to the spatial–
temporal characteristics of snow cover. The monthly MB
and NMB for January improves from 5.5 µgm−3 and 66.9 %
to 2.1 µgm−3 and 24.0 %, respectively. The improvement is
mainly attributed to the decrease in overpredictions in PM2.5
soil components, with MBs decreased from 3.3 to 1.2 µgm−3

for January (Fig. 7d). The overprediction in the northeast and
northwest during spring is expected to be improved by the
suppression of the fugitive dust by the snow during early
spring. This indicates the importance of including the me-
teorological forecast in processing the emission of anthro-
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Figure 8. Diurnal PM2.5 in (a) the O3 season for regions 1 to 5; (b) the non-O3 season for regions 1 to 5; (c) the O3 season for regions 6 to
10; (d) the non-O3 season for regions 6 to 10. Solid curves are observed values and dashed curves are predicted values. Average of predicted
PM2.5 and components of PM2.5 within CONUS in (e) the O3 season and (f) the non-O3 season.

pogenic fugitive dust. It should be calculated inline or be ad-
justed by the meteorological forecast.

In CMAQv5.0.2, the primary organic aerosol (POA) is
processed as non-volatile. The emissions of semivolatile and
intermediate-volatility organic compounds (S/IVOCs) and
their contributions to the SOA are not accounted for in the
aerosol module. In the recent versions of CMAQ, two ap-
proaches linked to POA sources have been implemented.
One introduces semivolatile partitioning and gas-phase ox-
idation of POA emissions. The other one (called pcSOA) ac-
counts for multiple missing sources of anthropogenic SOA
formation, including potential missing oxidation pathways

and emissions of IVOCs. These two improvements lead to
increased organic carbon concentration in summer but a de-
creased level in winter. The changes vary by season as a re-
sult of differences in volatility (as dictated by temperature
and boundary layer height) and reaction rate between win-
ter and summer. Therefore, the missing S/IVOCs and related
SOA chemistry in v5.0.2 are key reasons for the OC over-
prediction and underprediction during cooler and warmer
months, respectively.
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Figure 9. Mean biases in PM2.5 compositions: (a) OC for January, (b) OC for July, (c) SOIL for January, (d) SOIL for July, (e) sulfate for
January, and (f) sulfate for July.

5 Conclusions

In this work, the air quality forecast for the year 2019 pre-
dicted by the offline-coupled GFSv15–CMAQv5.0.2 system
is comprehensively evaluated. The GFSv15–CMAQv5.0.2
system is found to perform well in predicting surface meteo-
rological variables (temperature, relative humidity, and wind)
and O3 but has mixed performance for PM2.5. Moderate cold
biases and wet biases are found in the spring season, espe-
cially in March. While the GFSv15–CMAQv5.0.2 system
can generally capture the monthly accumulated precipitation
compared to remote-sensing and ensemble datasets, tempo-

ral distributions of hourly precipitation show less consistency
with in situ monitoring data.

MDA8 O3 is slightly overpredicted and underpredicted in
ozone and the non-O3 seasons, respectively. The significant
overprediction near the Gulf Coast is associated with the
missing halogen chemistry, overestimated emission of pre-
cursors, and the poorer performance in meteorological per-
formance, which could be attributed to the missing model
representation of the air–sea interaction processes. It com-
pensates for underprediction in the west and Midwest in the
O3 season for nationwide metrics. A slight underprediction
is found during the non-O3 season, indicating the impact of
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cold biases of T 2 and the overestimated dry deposition to
the snow surface. GFSv15–CMAQv5.0.2 has poorer perfor-
mance in predicting PM2.5, compared to the performance for
O3. Significant overpredictions are found in cooler months,
especially in winter. The largest overprediction is shown
in the Midwest and the states of Washington and Oregon
due mainly to high concentrations of predicted fine fugitive,
coarse-mode, and OC compositions. The lacking suppression
of snow cover on anthropogenic fugitive dust emission and
the non-volatile approach for POA emission contribute a ma-
jor portion of the overprediction in winter. Meanwhile, the
forecasting system may be improved through updating the
emissions inventory used (i.e., NEI 2014) to NEI 2016v2 or
NEI 2017, which are more representative of the year of 2019
in the next development of next-generation NAQFC.

Categorical evaluation indicates that the GFSv15–
CMAQv5.0.2 can capture well the air quality classification
of the Moderate category described by the AQI. However,
the categorical performance is poorer for PM2.5 at the Un-
healthy for sensitive groups threshold due mainly to the sig-
nificant overprediction during the cooler months. Region-
specific evaluation further discusses the biases and underly-
ing causes in the 10 U.S. EPA defined regions in CONUS.
An update from CMAQv5.0.2 to v5.3.1 is expected to alle-
viate potential errors in missing sources and mechanisms for
SOA formation. The variations of performance between O3
and non-O3 seasons, as well as during the daytime and night-
time, indicate that further studies need to be conducted to
improve boundary layer mixing processes within GFSv15–
CMAQv5.0.2. The varied region-specific performance indi-
cates that improvements, such as bias corrections, should be
considered individually from region to region in the subse-
quent development of the next-generation NAQFC.

We have used bias analyses in this work to identify sev-
eral areas of weakness in the GFSv15–CMAQv5.0.2 system
for further improvement and development of next-generation
NAQFC. The ability of FV3-based GFS in driving the real-
time air quality forecasting is demonstrated. Further studies
are still needed to improve the accuracy in meteorological
forecast, the emissions, the aerosol chemistry, and the bound-
ary layer mixing for the future GFS–FV3–CMAQ system.

Code and data availability. The documentation and source code
of CMAQv5.0.2 are available at https://doi.org/10.5281/zenodo.
1079898 (United States Environmental Protection Agency,
2014). The GFS forecast inputs in binary (NEMSIO) format and
the coupler used in this study for the GFSv15–CMAQv5.0.2
system are available upon request. The AIRNow data is avail-
able for download through the US EPA AirData website
(https://www.epa.gov/airdata, US EPA, 2020a). The CASTNET
data are available for download from https://www.epa.gov/castnet
(US EPA, 2020b). The METAR data are available for download
from https://madis.ncep.noaa.gov (NOAA, 2020a). The GPCP data
are available through the NOAA website (https://www.ncei.noaa.
gov/data/global-precipitation-climatology-project-gpcp-monthly,

NOAA 2020b). The CCPA precipitation data are available
upon request. The MODIS_MOD04 dataset is available at
https://doi.org/10.5067/MODIS/MOD04_L2.006 (Levy and Hsu,
2015). The data processing and analysis scripts are available upon
request.
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