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Abstract. The water and energy transfers at the interface be-
tween the Earth’s surface and the atmosphere should be cor-
rectly simulated in numerical weather and climate models.
This implies the need for a realistic and accurate represen-
tation of land cover (LC), including appropriate parameters
for each vegetation type. In some cases, the lack of informa-
tion and crude representation of the surface lead to errors in
the simulation of soil and atmospheric variables. This work
investigates the ability of the Weather Research and Fore-
casting (WRF) model to simulate surface heat fluxes in a
heterogeneous area of southern France using several possi-
bilities for the surface representation. In the control experi-
ments, we used the default LC database in WRF, which dif-
fered significantly from the actual LC. In addition, sub-grid
variability was not taken into account since the model uses,
by default, only the surface information from the dominant
LC category in each pixel (dominant approach). To improve
this surface simplification, we designed three new intercon-
nected numerical experiments with three widely used land
surface models (LSMs) in WRF. The first one consisted of
using a more realistic and higher-resolution LC dataset over
the area of analysis. The second experiment aimed at inves-
tigating the effect of using a mosaic approach; 30 m sub-
grid surface information was used to calculate the final grid
fluxes based on weighted averages from values obtained for
each LC category. Finally, in the third experiment, we in-
creased the model stomatal conductance for conifer forests

due to the large flux errors associated with this vegetation
type in some LSMs. The simulations were evaluated with
gridded area-averaged fluxes calculated from five tower mea-
surements obtained during the Boundary-Layer Late After-
noon and Sunset Turbulence (BLLAST) field campaign. The
results from the experiments differed depending on the LSM
and displayed a high dependency of the simulated fluxes on
the specific LC definition within the grid cell, an effect that
was enhanced with the dominant approach. The simulation of
the fluxes improved using the more realistic LC dataset ex-
cept for the LSMs that included extreme surface parameters
for coniferous forest. The mosaic approach produced fluxes
more similar to reality and served to particularly improve the
latent heat flux simulation of each grid cell. Therefore, our
findings stress the need to include an accurate surface repre-
sentation in the model, including soil and vegetation sub-grid
information with updated surface parameters for some vege-
tation types, as well as seasonal and man-made changes. This
will improve the modelled heat fluxes and ultimately yield
more realistic atmospheric processes in the model.
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1 Introduction

The Earth’s surface is constantly changing at different
timescales (Sellers et al., 1995). Natural changes in the
land surface (vegetation) occur due to climate variability
and seasonality (Weltzin and McPherson, 1997; Crucifix
et al., 2005). However, human beings have significantly con-
tributed to non-natural and accelerated changes in land cover
(LC), especially during recent decades (Pielke et al., 2011).
These changes can be extremely important because they
modify the natural cycles of energy (Seneviratne et al., 2010),
trace gases (e.g. Muñoz-Rojas et al., 2015; Green et al.,
2019), and nutrients (e.g. Holmes et al., 2005), among oth-
ers, and because they alter ecosystems (Pielke et al., 1998).
The consequences of these alterations are difficult to predict
due to the non-linearity of the numerous connected processes
(Pielke et al., 1999). On the one hand, changes in habitat al-
ter food chains and impact vegetal and animal species (Auf-
fret et al., 2018), but also smaller organisms living within
them or in equilibrated soil, such as bacteria and viruses (Jef-
fery and Van der Putten, 2011; Blackburn et al., 2007; Rulli
et al., 2020). On the other hand, radiative and texture prop-
erties of the surface are also modified: changes in albedo
(Loarie et al., 2011), emissivity, thermal properties of the soil
(Luyssaert et al., 2014), and surface roughness (Bonan et al.,
2018). This modifies the heat and water exchange processes
between the surface and the atmosphere by altering the net
radiation at the surface. Indeed, water transfers from the soil
to the air (and vice versa) are significantly linked to the
vegetation type and soil properties: infiltration, runoff, soil
moisture, and evapotranspiration (ET) (Zhang and Schilling,
2006). All these changes in the surface energy balance have
direct or indirect feedbacks on the planetary boundary layer
(PBL) development (Combe et al., 2015), cloud formation
(Vilà-Guerau De Arellano et al., 2012), atmospheric temper-
atures (Koster et al., 2006; Christidis et al., 2013), and rain-
fall (Koster et al., 2003). This may impact surface character-
istics and vegetation activity again, and in the long term it
will restart the whole cycle by changing species (vegetation
included), which need to adapt to the modified environmen-
tal conditions (Pielke et al., 1998), with the direct or indirect
associated impacts on the first triggers: the humans (Meyer
and Turner, 1994; Rulli et al., 2020).

Since LC change decisions are typically made by local and
regional governments (e.g. Sánchez-Cuervo et al., 2012), it
is of utmost importance that these organizations understand
the direct and indirect implications of various anthropogenic
Earth surface modifications. Hence, it is crucial to quantify
the uncertainty associated with land surface representation in
weather and climate models, which is the main objective of
this paper.

Current weather and climate models rely on parameteriza-
tions to represent energy, water, and momentum exchanges
between the surface and the atmosphere. This is done by
coupling land surface models (LSMs) with the atmospheric

component of the predicting system. During the last decades,
significant effort has been made to improve LSMs (Cuxart
and Boone, 2020). On the one hand, their complexity has
been increased with equations that are able to represent the
myriad of processes involved in these exchanges (Lawrence
et al., 2019). On the other hand, these equations need accu-
rate parameters that describe the properties of the soil and
the vegetation (Cuntz et al., 2016). Both types of improve-
ments need observational measurements from experimental
sites and field campaigns to learn about surface properties
and physical processes, as well as to evaluate models.

In this context, numerous scientific initiatives have been
conducted to improve knowledge of the land–atmosphere in-
teraction processes. This has been done through the design
of experimental field campaigns: e.g. the Boreal Ecosys-
tem Atmosphere Study (BOREASl; Sellers et al., 1995),
the Global Energy and Water Cycle Experiment (GEWEX;
Chahine, 1992), and the Lindenberg Inhomogeneous Ter-
rain – Fluxes between Atmosphere and Surface: a Long-term
Study (LITFASS; Beyrich et al., 2002), among many oth-
ers. Other initiatives were focused on the intercomparison of
LSMs: e.g. the Project for Intercomparison of Land-surface
Parameterization Schemes (PILPS; Henderson-Sellers et al.,
1996) and the Global Land–Atmosphere Coupling Experi-
ment (GLACE; Koster et al., 2006). Recently, the Cloud-
Roots field experiment (Vilà-Guerau de Arellano et al., 2020)
offered an integrated multi-scale approach from leaf to land-
scape measurements complemented with models.

Some specific works have also focused on the effect of
LC through the investigation of the impacts of improving the
accuracy and resolution of LC databases used in the mod-
els (e.g. Pineda et al., 2004; Cheng et al., 2013; Santos-
Alamillos et al., 2015; Schicker et al., 2016; Jiménez-Esteve
et al., 2018). Others have focused on modelling the changes
that might occur under the assumption of possible future
changes to the surface (e.g. Li et al., 2018; De Meij et al.,
2019). These studies stated the importance of having an accu-
rate surface representation in the models to obtain improved
simulations of different variables.

In this sense, the present work was firstly motivated by
the inaccurate representation of the LC provided by the de-
fault LC dataset (International Geosphere–Biosphere Pro-
gramme from the Moderate Resolution Imaging Spectrora-
diometer, IGBP-MODIS) in the Weather Research and Fore-
casting (WRF) model over the area of analysis (southern
France), which differed significantly from the LC observed in
the area. We hypothesized that this would lead to errors in the
simulated surface energy fluxes (specifically, sensible and la-
tent heat fluxes). Also, the default configuration in WRF only
uses the information from the tabulated surface parameters of
the LC category with a higher percentage of coverage within
each grid cell (dominant approach). This may be appropri-
ate for areas with sufficiently large homogeneous surfaces,
but not for the area of study, where the LC has significant
heterogeneous patches that might impact the surface fluxes.
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This influence of the surface heterogeneous patches on the
lower troposphere is known as static heterogeneity (e.g. Pat-
ton et al., 2005; van Heerwaarden and Guerau de Arellano,
2008) and also has impacts on the PBL processes (e.g. Mar-
gairaz et al., 2020a, b), creating new (dynamical) inhomo-
geneities such as clouds or modified turbulence. This will
also impact the surface in an interaction known as dynami-
cal heterogeneity (e.g. Lohou and Patton, 2014; Horn et al.,
2015).

This study is focused on the static heterogeneity impacts
on surface fluxes through the quantification of the changes
associated with several improvements made to the repre-
sentation of the surface in the WRF model, which is the
main objective of this work. In order to strengthen the anal-
ysis, three widely used LSMs available in WRF were used:
(1) Noah (Chen and Dudhia, 2001), (2) Noah-MP (Multi-
Physics) (Niu et al., 2011), and (3) RUC (Rapid Update Cy-
cle) (Smirnova et al., 2016). The different experiments were
designed as follows. First, we improved the LC in the area
evaluated using the more realistic and higher-resolution LC
dataset from the Centre d’Etudes Spatiales de la Biosphère
research laboratory (CESBIO; Inglada et al., 2017). The re-
sults showed a high dependence of the flux on the specific LC
categories, which motivated a second experiment including
the sub-grid information on the surface, the so-called mosaic
approach (e.g. Li et al., 2013). Finally, an additional experi-
ment was carried out due to the extreme biases found in the
first two experiments over pixels mostly covered by conifer
trees in Noah-MP, with the aim of diminishing the biases by
modifying some parameters associated with the transpiration
processes of this LC category.

For the evaluation of the simulations, we took advan-
tage of the large number of instruments deployed during
the Boundary-Layer Late Afternoon and Sunset Turbulence
(BLLAST) field campaign, carried out in 2011 in south-
ern France (Lothon et al., 2014). The spatial density of
eddy-covariance (EC) towers over different vegetation types
facilitated the calculation of gridded area-averaged fluxes
(AAFs), as done in a similar way for the LITFASS experi-
ment (Beyrich et al., 2006), for which good agreement with
the fluxes measured from scintillometry was obtained. In the
present work, the AAFs were used to evaluate the results
from the WRF model coupled with the three LSMs under the
different conditions set in the experiments, and to analyse the
results based on the different LC types.

The article is organized as follows: Sect. 2 provides infor-
mation on the measurements taken during the BLLAST field
campaign and explains how the area-averaged fluxes were
calculated. Detailed information about the model configu-
ration and the different experiments is also included in this
section. In Sect. 3, we quantify the results from the different
modelling experiments, including scientific discussion about
them. Finally, a short summary and the main conclusions are
provided in Sect. 4.

2 Evaluation data, WRF model, and experimental
design

2.1 Observational data for model evaluation

The surface turbulent heat fluxes simulated by the WRF
model were evaluated during a period of the BLLAST field
campaign (Lothon et al., 2014). This campaign took place
from 14 June to 8 July 2011 on the Plateau of Lannemezan
(southern France). Its main objective was to better under-
stand the turbulence decay observed during the afternoon
transition, and the extensive instrumentation deployment in-
cluded several surface-energy-balance towers installed over
different surfaces, which were representative of the vegeta-
tion within the explored area: prairies, forests, wheat, corn,
and moor. The analysed period was from 09:00 UTC to
15:00 UTC on 19 June 2011, corresponding to part of IOP
2 during the campaign (IOP: intensive observation period).
This IOP was characterized by fair weather, no clouds, and a
typical development of the boundary layer up to 800–1000 m
above ground level (a.g.l). The IOP is representative of the
general conditions of the rest of the IOPs of the campaign
(the general meteorological conditions of the campaign can
be found in Lothon et al., 2014).

2.1.1 Observed fluxes over different vegetation types

SH and Le were calculated uniformly using the eddy-
covariance (EC) method with the specifications indicated in
De Coster et al. (2011) over five different LC types: grass,
wheat, corn, moor, and forest (conifers). The height of the
instruments above ground level (a.g.l.) was set according to
the vegetation height, which implied a homogeneous foot-
print for the five towers: 2 m for the moor, grass, and wheat
sites, 4 m for the corn site, and 31 m for the forest site (ap-
prox. 6 m above the trees). These measurements showed that
the SH was more sensitive to LC type (Fig. 1a and c) than
Le (Fig. 1b and d). This was probably linked to the different
surface properties of the vegetation types (albedo, thermal
inertia, emissivity), with more influence on the surface tem-
peratures. The highest SH was measured over the forest site,
followed by the wheat site, with peaks of around 400 and
270 Wm−2, respectively. The measurements over the grass,
moor, and corn sites showed lower values, with a maximum
SH of around 150 Wm−2 during the central hours of the day.
However, Le exhibited values that were similar for all the
vegetation types, with midday maxima around 300 Wm−2.
Nevertheless, the lowest Le was measured over the wheat
field (this crop started to dry during the experiment), while
the largest values were observed at the grass, forest, and moor
sites. Some differences were observed in the diurnal evolu-
tion of Le: the morning Le rise over the corn and wheat was
delayed with respect to the measurements over other LCs,
maybe linked to a delay in the transpiration processes asso-
ciated with these crops (a full investigation of the reasons for
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it is out of the scope of this study). In any case, it should be
highlighted that these flux values were representative of those
of the different IOPs of the BLLAST field campaign (Lothon
et al., 2014; Couvreux et al., 2016), with no water limitation
due to the regular rain events observed in the area during the
weeks before, which are typical conditions for these dates in
the area.

2.1.2 Area-averaged flux (AAF) calculation

The EC measurements from towers were used for the cal-
culation of AAF with a resolution of 1 km in a region
of 19× 19 km around the central site of the field cam-
paign: 43◦07′27.15′′ N, 0◦21′45.33′′ E; 600 m above sea level
(a.s.l.). This approach can be considered a mosaic observa-
tional method for flux computation. It was based on the mul-
tiplication of the values of the fluxes measured over each
vegetation type by their respective vegetation cover frac-
tion within each 1× 1 km pixel (see Fig. 2a and b). Finally,
the contribution from each vegetation type was summed to
provide the final values in each grid cell (area-averaged
fluxes). High-resolution and realistic LC data were needed
to construct the AAF, which were obtained from the 30 m
LC database prepared by CESBIO based on Landsat-5 data
(Inglada et al., 2017) (Fig. 2b). Hence, the main assumption
of the AAF calculation was to consider the same SH and Le
for sites with the same LC type at different locations, also
implying the following simplifications (a further discussion
is included after the list).

1. There were no flux differences depending on the soil
type.

2. There was no difference in activity for the same vegeta-
tion type in the area.

3. There was no horizontal variability of the soil moisture
(SM).

4. The radiation and the wind forcing was the same for all
the pixels, without altitude influences.

5. All the forests were considered coniferous (evergreen
needleleaf forest – ENF).

6. Fluxes over urban and bare soil surfaces were estimated
using a simple model.

(1) Two soil types were the dominant ones in the evalua-
tion area based on the 1× 1 km pixels from the soil database
of WRF (United States Department of Agriculture, USDA):
clay loam (81 % of the area) and loam (19 % of the area).
Since the dominant soil type in the pixels wherein the mea-
surements were taken was clay loam, pixels with loam were
not included in the evaluation of the model. Therefore, the
limitation based on the soil type was ultimately not a prob-
lem. This area is shown in Fig. 2d with a black rectangle.

(2) The area analysed is relatively small to expect signifi-
cant differences between the natural vegetation belonging to
the same category. Although the limitation based on the pos-
sible different vegetation state can be more important in crop
areas, seeding dates are normally coincident between fields
in the area.

(3) Regarding the effect of possible SM differences within
the area, two aspects should be noted. On the one hand, the
potential SM horizontal variability due to possible inhomo-
geneous precedent rainfall over the area was not taken into
account. However, the SM input in the model is provided
with a coarse resolution of 1◦ and does not show any small-
scale details. This is a well-known limitation of mesoscale
models which is sometimes addressed through the assimila-
tion of SM data from satellites or with previous long sim-
ulations that serve to spin up the surface in order to obtain
the appropriate SM initial values (De Rosnay et al., 2013;
Angevine et al., 2014; Santanello et al., 2016). In our case,
this limitation of mesoscale modelling is an advantage be-
cause it allows us to perform a fairer model–observation
comparison since this limitation also exists in the AAF. The
impact of applying a spin-up period to the model is investi-
gated later.

On the other hand, some of the SM horizontal variability is
caused by the different properties of the vegetation patches,
affecting runoff, infiltration, evapotranspiration, and finally
the SM content associated with each vegetation type. This
LC effect on SM may be implicitly included in the fluxes that
were measured over each individual vegetation type. In any
case, we investigated the effect of including the SM horizon-
tal heterogeneity with a higher resolution in the model initial-
ization (not shown). This was done by using high-resolution
SM satellite data from the Disaggregation based on Physical
And Theoretical scale Change (DISPATCH) (Merlin et al.,
2013; Molero et al., 2016) product at 1 km of resolution, but
conserving the original range of SM variability within the
area evaluated. The effect of including this SM spatial het-
erogeneity was minimal in the flux simulations (in part due
to the conservation of the range of SM values).

(4) The limitation due to the radiation and wind forcing,
which were assumed to be equal in all the pixels, is ex-
pected to have a small impact due to the fair weather, with
no clouds, and light wind conditions on 19 June (Lothon
et al., 2014). However, some differences could exist between
some pixels situated at different altitudes over the area (most
of the pixels were in the range of altitude between 400 and
650 m a.s.l., with minimum and maximum altitude of 282
and 696 m a.s.l. in the whole evaluated area).

(5) The limitation of considering all forests to be conifer-
ous was due to the fact that the campaign only included mea-
surements over this type of tree, and not over broadleaf de-
ciduous forests (the other forest category in the area). There-
fore, the measurements taken over conifers were extrapolated
to areas covered by deciduous for the calculation of the AAF.
This limitation was addressed by converting all the forest in
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Figure 1. (a) Observed sensible heat flux (SH) on 19 June 2011 during the BLLAST campaign over different vegetation types. (b) The same
for the latent heat flux (Le). (c, d) Same as in (a) and (b), but with the time series smoothed for a better visualization of the main differences
between vegetation types. The flux values were calculated using the eddy-covariance technique with averaging windows of 30 min.

the WRF model to conifer, which allowed a fairer model–
observation comparison at the expense of losing the analysis
over one LC category (deciduous forest).

(6) For the urban surfaces, SH and Le were calculated fol-
lowing a simple Penman–Monteith type model (De Bruin
and Holtslag, 1982) shown in Eqs. (1) and (2), respectively:

SH= β ·
Rn−G

1+β
, (1)

Le=
Rn−G

1+β
, (2)

where Rn (Eq. 3) is the net radiation, defined as

Rn = (1−α) ·SW ↓ +LW ↓ −ε σ T 4
s , (3)

andG (Eq. 4) is the ground heat flux, considered a fixed frac-
tion of Rn:

G=Gfrac ·Rn. (4)

In these equations, SW ↓ and LW ↓ are the measured down-
ward shortwave and longwave radiative fluxes, respectively.
The albedo (α), emissivity (ε), the fraction of energy used
for ground heat flux (Gfrac), and the Bowen ratios (β)
were considered constant, with values of 0.15, 0.92, 0.3
(stable) / 0.5(unstable), and 5, respectively, obtained from
Lemonsu et al. (2004) and Grimmond and Oke (1999) for
urban surfaces. These simplifications could have led to some
overestimation of the urban effect on the total fluxes, since
the urban surfaces in the area were surrounded by gardens,
prairies, and trees (so-called urban diffuse in the CESBIO
LC dataset). However, the 30 m resolution LC dataset should
be appropriate to deal with the urban and vegetation patches.

Despite the high-quality data and the efforts made to re-
duce uncertainties in the AAF, the evaluation of models with
surface observations is a necessary task which is not straight-
forward. The observational measurements are almost always
linked to uncertainties that can add limitations to the evalu-
ation process (Bou-Zeid et al., 2020). In our case, the mea-
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surements were taken at heights that implied homogeneous
footprints, but even in this case, other uncertainties are al-
ways present (Mauder et al., 2020), especially in the case of
the measurements taken over vegetation with tall canopies,
where heat storage can have an important role in the surface
energy balance.

2.1.3 Performance scores

Three performance scores were used to evaluate the modelled
fluxes using the AAF as a benchmark. The first one is Bias
(Eq. 5), which is subsequently referred to as the bias:

Bias=

N∑
i=1
[Fluxsim(i)−Fluxobs(i)]

N
, (5)

where Fluxsim(i) is the simulated SH or Le for each grid cell
and each analysed hour, with N being the total number of
data used, and Fluxobs(i) is the respective value computed
from the AAF (observations). The average was performed
for all the analysed hours (from 09:00 to 15:00 UTC) and
for all the grid cells covered by a certain land cover category
within the analysed area (note how in Table 3 these values are
averaged for the whole area without land cover distinction).
Hence, although the bias provides an indication of the sys-
tematic overestimation or underestimation of the modelled
flux, the averaging can lead to undesired conclusions, since
positive and negative values can compensate in some cases
(especially if contrasting LC categories are merged).

We also include the root mean square error (RMSE),
which is the root mean of the squared differences between
the model and observed fluxes at each analysed hour and for
all the grid cells with a certain land cover category:

RMSE=

√√√√√√
N∑
i=1
[Fluxsim(i)−Fluxobs(i)]

2

N
. (6)

Finally, the standard deviation of the error (Eq. 7) is also in-
cluded, which provides an indication of the model random
error; i.e. values close to zero will indicate that the model
error tends to be systematic, while large values indicate that
the error is variable and randomly distributed:

SD=

√√√√ 1
N − 1

N∑
i=1
| [Fluxsim(i)−Fluxobs(i)] −Bias |2. (7)

2.2 WRF model

The WRF-ARW (Weather Research and Forecasting–
Advanced Research WRF) v.4.1.3 (Skamarock et al., 2019)
was used to run the different numerical experiments. The
model ran for 60 h (from 12:00 UTC on 18 June 2011 to

00:00 UTC on 21 June), but only the central hours of 19 June
were evaluated. The first 21 h of the simulation were used as
spin-up, and the diurnal cycle of 20 June was not analysed
due to the presence of clouds in the area, which made it more
difficult to carry out the strategy designed for the main ob-
jective (Pedruzo-Bagazgoitia et al., 2017). The simulations
were configured with four nested domains of 27, 9, 3, and
1 km resolution.

The inner domain covered an area of 120× 120 km2, but
only an area of 19×19 km2 around the central point was eval-
uated, which had the same grid as the AAF used for the eval-
uation; i.e. the centre of the central pixel was located at the
same location as the centre of the AAF used for the evalu-
ation. More details about the WRF technical configuration
common to all experiments are included in Table 1.

2.2.1 WRF land surface models (LSMs)

In order to add robustness to the study, three different LSMs
available in WRF were analysed. The information below is
mostly extracted from the literature.

1. Noah (Chen and Dudhia, 2001). Noah is a widely used
LSM resulting from collaboration among many differ-
ent institutions. It is the default option in WRF and is
used in many other models, with an important applica-
tion in operational models from the National Centers
for Environmental Prediction (NCEP). The model con-
siders four soil layers, where it computes temperature
and soil moisture. It takes into account the type of veg-
etation (LC category), monthly vegetation fraction, and
soil type to calculate the runoff, ET, and root zone. Since
WRF v.3.6, there has been a mosaic option available in
the model (Li et al., 2013) to deal with the sub-grid het-
erogeneity (this option is not activated by default).

2. Noah-MP (Noah Multi-Physics) (Niu et al., 2011). It is
an extension of the Noah LSM that allows the use of
multiple options for land–atmosphere processes (e.g. in-
filtration, runoff), resulting in a total of more than 4000
combinations (the default options are used in this work).
This LSM contains a separate vegetation canopy with
a two-stream radiation transfer approach, shading ef-
fects, and complex physics for the snow–ice processes
within the soil. This LSM uses a different set of param-
eters for each vegetation category than Noah, with more
vegetation-dependent parameters.

3. RUC (Rapid Update Cycle) (Smirnova et al., 2016). It
uses nine soil layers with higher density close to the sur-
face. It has a complex treatment of snow processes. In
the warm season, it corrects soil moisture in cropland
areas to compensate for irrigation. This model also al-
lows a mosaic approach for the sub-grid treatment of
cell heterogeneity, but it is different than in Noah, with
albedo values that correspond only to parameters asso-
ciated with the dominant LC category. The vegetation
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Table 1. Details about the WRF model configuration common to all simulations. *National Centers for Environmental Protection (NCEP)
FNL (final) Operational Model Global Tropospheric Analyses, continuing from July 1999 (NCEP, 2000).

Model version WRF-ARW v.4.1.3

Number of domains four
Resolution of domains 27, 9, 3, 1 km
Initial and boundary data NCEP-FNL* data (1◦), every 6 h
PBL scheme Yonsei University (YSU, Hong et al. (2006))
Surface-layer scheme MM5 similarity (Jiménez et al., 2012)
Land surface models Noah, Noah-MP, RUC
Microphysics scheme WRF single-moment three-class (Hong et al., 2004)
Longwave radiation scheme Rapid Radiative Transfer Model (RRTM; Mlawer et al. (1997))
Shortwave radiation scheme Dudhia (Dudhia, 1989)
Number of vertical levels 40
Time step 90, 30, 10, 3.3 s
Model initial date 18 June 2011 at 12:00 UTC
Period analysed 19 June 2011 (09:00–15:00 UTC)
Leading time (spin-up) 21 h

parameters used are obtained from the same look-up ta-
ble as in Noah.

For each LSM, we analyse the results for the different land
cover categories of the studied area, but we ignore the results
associated with the urban category for two main reasons:
(1) this category is normally problematic for LSMs without a
specific and additional urban parameterization (which is not
activated in this work), and (2) their values were estimated
with a simple model in the AAFs; i.e. no measurements were
available. However, due to the difficulties removing this cate-
gory in a real case study, the errors are shown throughout the
paper to illustrate these issues, but the analysis of the results
is out of the scope of this work. In any case, the percentage
of coverage of the urban category in the analysed area was
relatively small (see Fig. 2a–c).

2.3 Experimental design

We performed a set of four different modelling experiments
aimed at checking the sensitivity of the model to different
changes in the representation of the surface. These experi-
ments are summarized in Table 2 and explained below.

2.3.1 DEFAULT experiment

In this experiment we used the default configuration for
the surface representation in WRF, i.e. the LC dataset from
IGBP-MODIS (21 categories) and a dominant approach for
the sub-grid heterogeneity, which means that the fluxes were
calculated taking into account only the surface parameters
of the dominant LC category, i.e. assuming that no sub-grid
variability exists even when this information is available. The
dominant LC category is the one with the highest percentage
of coverage within each pixel. This method has an intrinsic
dependency on the number of LC categories in the dataset.
For example, a pixel with 40 % water, 30 % conifer forest,

and 30 % deciduous forest will be treated as water, since it
is the dominant category despite both types of forest cov-
ering 60 % of the total surface of the grid. On the contrary,
the dominant category would be forest if both types of forest
were merged into a single category.

It is expected that these simulations will be limited by
the fact that the representation of the LC in the area by
IGBP-MODIS is not totally correct in comparison with re-
ality (shown later). Also, the dominant approach implies that
the model does not take advantage of the higher resolution of
the LC datasets.

2.3.2 NEW-LC experiment

In this experiment, we used a more realistic LC dataset than
IGBP-MODIS, obtained from 30 m resolution data prepared
by CESBIO (Inglada et al., 2017). Figure 2a shows a satellite
image of the area evaluated, which serves to visually validate
the CESBIO LC at 30 m resolution (Fig. 2b). The inaccurate
representation of the pixel-dominant LC by IGBP-MODIS is
revealed in Fig. 2c, and the more appropriate surface repre-
sentation of the dominant LC categories for each pixel used
in the NEW-LC experiment is shown in Fig. 2d.

In order to incorporate the more realistic LC from CES-
BIO in the WRF model, first, the different categories of
the new LC dataset (CESBIO, 17 categories) were trans-
formed into the most appropriate ones of the WRF default
LC dataset (IGBP-MODIS). That is, the same 21 LC cate-
gories of IGBP-MODIS were conserved, following a simi-
lar approach as done in Pineda et al. (2004) and in Schicker
et al. (2016). We used the transformations indicated in Ap-
pendix A, with some special considerations.

– The two types of forest distinguished by CESBIO
(conifer and deciduous) were transformed to conifer
(evergreen needleleaf forest, ENF), since the EC mea-

https://doi.org/10.5194/gmd-14-3939-2021 Geosci. Model Dev., 14, 3939–3967, 2021



3946 C. Román-Cascón et al.: Surface impacts on fluxes in WRF

Table 2. Summary of the simulations and the names used throughout the paper. Note how some experiments were not possible (–) for some
LSMs.

EXPERIMENTS Noah Noah-MP RUC

DEFAULT
DEFAULT-Noah DEFAULT-Noah-MP DEFAULT-RUC

Default setting

NEW-LC
NEW-LC-Noah NEW-LC-Noah-MP NEW-LC-RUC

More realistic and higher-resolution LC

MOSAIC
MOSAIC-Noah – MOSAIC-RUC

NEW-LC and mosaic approach

FOREST
– FOREST-Noah-MP –

NEW-LC and conifer transpiration increased

Figure 2. (a) Satellite picture of the area analysed (from © Google Earth, image Landsat/Copernicus). (b) CESBIO land cover map from 30 m
resolution data. (c) Dominant land cover (1 km) used in the default experiment (DEFAULT) from the IGBP-MODIS database. (d) Dominant
land cover (1 km) used in NEW-LC experiment, obtained from the CESBIO land cover map shown in (b). The black rectangle indicates
the area with a soil type dominated by loam, which was not used for the evaluation. The rest of the area was characterized by clay loam
(dominantly), as the pixels including the sites where the EC measurements were taken (maximum 4 km away from the central point of
the BLLAST field campaign, indicated with a black x symbol). The complete names corresponding to each LC category abbreviation are
included in Appendix A.

surements used in the AAF were taken over this type of
forest due to the lack of measurements over deciduous
broadleaf forest. As commented before, the measure-
ments taken over conifers were extrapolated to the areas
with deciduous forests in the AAF calculation. By con-

verting all the forest to conifer in WRF, the observation–
model comparison was fairer.

– The two possible types of crop in CESBIO (winter and
summer crop type, i.e. wheat and corn, respectively)
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were transformed to the single cropland category avail-
able in IGBP-MODIS. Hence, we did not take advan-
tage of the differentiation of crop type by CESBIO, but
it is important to note that wheat surfaces only covered
2.8 % of the analysed area (Fig. 2b).

– The four different urban categories in CESBIO were
transformed to the single urban definition in IGBP-
MODIS. Most of the urban surfaces of the area evalu-
ated were defined as diffuse urban (8.2 %) and industrial
zones (0.8 %).

This new LC information was incorporated into the mod-
elling system following the technical details included in Ap-
pendix B. Note how even using a more realistic LC dataset
over the area, the sub-grid information was not used because
the dominant approach was maintained in this experiment.

2.3.3 MOSAIC experiment

Sub-grid heterogeneity is important in the case of the
BLLAST area due to the small scale of the LC patches (see
Fig. 2b). This makes the area very appropriate for investigat-
ing the use of a mosaic approach in the model, as done in
the labelled MOSAIC experiment. The mosaic approach im-
plies that the flux is computed for each LC category (tiles)
within each grid cell based on the surface parameters tab-
ulated for each one and then averaged taking into account
the percentage of coverage of each tile: that is, taking into
account the sub-grid surface heterogeneity. In this context,
Noah (see Li et al., 2013, for a complete description of the
Noah mosaic approach) and RUC allow the possibility of us-
ing this approach in the WRF modelling system. The LC im-
provements of the NEW-LC experiment were also included
here. More technical details about the model implementation
of this experiment are included in Appendix B.

2.3.4 FOREST experiment

The last experiment was motivated by the large surface flux
errors found over pixels covered by conifer (ENF) in previ-
ous simulations using Noah-MP. Specifically, this LSM over-
estimated the SH and underestimated the Le. We hypothesize
that this was caused by a parameterized resistance to transpi-
ration that was too high. Hence, we designed the FOREST
experiment for Noah-MP. We modified three parameters for
ENF with the values used in Bonan et al. (2014).

1. The slope of the Ball–Berry conductance (the inverse
of the stomatal resistance to transpiration) equation is
the so-called MP in Noah-MP and is usually known as
g1 (the slope parameter). The Ball–Berry equation (Ball
et al., 1987) linearly relates the stomatal conductance to
the CO2 assimilation rate:

gs = g0+ g1 An ·
hs

cs
. (8)

In this equation, the slope (g1) represents the sensitivity
of the stomatal conductance to assimilation, CO2 con-
centration, humidity, and temperature. It is the param-
eter that most affects the plant’s transpiration (Cuntz
et al., 2016), which increases with larger slope values.
The g0 parameter is the minimum conductance, hs and
cs are the fractional relative humidity and the CO2 con-
centration at the leaf surface, respectively, and An is the
net leaf CO2 assimilation.

MP has a default tabulated value of 6 for ENF for Noah-
MP, a value that is significantly different compared to
the values assigned for other categories (9 for most of
them, including, for example, deciduous broadleaf for-
est – BDF). The lower value for ENF limits the transpi-
ration processes and could be the reason for some of the
Le underestimation, leading to more energy being dis-
tributed to SH. This parameter was optimized in Bonan
et al. (2014), and a value of 9 was also used for ENF in
their study.

2. The minimum leaf conductance or the interception
in the Ball–Berry equation (g0, indicated as BP in
the Noah-MP scheme) was changed from 0.002 to
0.01 mol H2O m−2 s−1, as in Bonan et al. (2014) for
ENF.

3. The maximum carboxylation rate at 25 ◦C (Vcmax25) is
a photosynthetic parameter that was changed from 50
to 62.5 µmolm−2 s−1, as used in Bonan et al. (2014),
which is a value also selected according to previous lit-
erature. The range of observational values in their work
for ENF ranged from 48 to 72 µmolm−2 s−1, and a value
of 62.5 µmolm−2 s−1 was finally selected.

Hence, these three parameters were modified in Noah-MP
according to Bonan et al. (2014), following the technical de-
tails included in Appendix B. Indeed, these changes allowed
for more evapotranspiration in the ENF forest, which should
improve the evaluation in our case study. It should be noted
that the g1 parameter (MP) was the one which most influ-
enced the results, as indicated in Cuntz et al. (2016) and
as observed in additional previous experiments performed in
our case (not shown). In any case, the objective of this exper-
iment was to demonstrate the high impact of the associated
vegetation parameters on the surface fluxes, not the optimiza-
tion of these values for the specific tree species present in the
area analysed here.

2.3.5 Pre-experiments: soil moisture and initial
conditions

The previous experiments were performed with initial con-
ditions obtained from NCEP-FNL data (NCEP, 2000) and
using the soil moisture initial conditions included in these
files (1◦ horizontal resolution without small-scale details).
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The impact of these initial conditions has been investigated
in two pre-experiments.

One the one hand, the most controversial issue was related
to the soil moisture initial value used in the model. Indeed,
each LSM used in WRF should be appropriately run for a
long time in order to provide appropriate soil moisture val-
ues in accordance with the specific LSM dynamics (De Ros-
nay et al., 2013; Angevine et al., 2014). This should lead to
more appropriate (and realistic) initial SM values. However,
as commented before, the AAFs used to evaluate the model
were based on the assumption of homogeneous soil moisture
in the area, similar to the SM field obtained with the 1◦ reso-
lution of NCEP-FNL. Therefore, in order to perform a fairer
comparison of the model with the AAF, the spin-up was not
used in our study to avoid the SM horizontal heterogeneity.
Also, the simulated soil moisture is, to a large extent, driven
by the simulated rainfall, which might be different depending
on the LSM used. This can cause undesired differences in the
rainfall between the LSM during the spin-up time, which is
not appropriate for the comparison performed. However, the
impact of performing longer spin-up times was checked in
the SPIN-UP pre-experiment (spin-up of 1 month).

On the other hand, we also performed some pre-
experiments aimed at quantifying the impact of using differ-
ent initial condition data. The results obtained with NCEP-
FNL were compared to those obtained with ERA-Interim;
data from both have a similar horizontal resolution.

The impact of these two experiments related to the pre-
vious initial conditions is summarized and discussed in the
next section.

3 Results: turbulent flux sensitivity to surface changes

The model skill simulating the AAF fluxes is quantified in
this section for the different experiments listed in Table 2.
The results are shown and commented individually for each
experiment. Since some of the results and the associated dis-
cussion differed significantly depending on the LSM used,
the results were subdivided for each LSM. As a general ref-
erence, Table 3 shows a summary of the total scores (in the
whole evaluated area) obtained for SH and Le using the dif-
ferent LSMs and for all the experiments performed.

3.1 DEFAULT experiment versus NEW-LC experiment

3.1.1 Noah

The bias of the simulated SH and Le by the DEFAULT-Noah
simulation relative to the observations (the AAF) is shown
in Fig. 3a and d, respectively. The results are presented for
each LC category, taking into account the dominant LC of
each grid cell (1 km) in the model. Note that the DEFAULT
experiment includes 10 LC categories in the area based on
the IGBP-MODIS database. The total bias values for SH and
Le (represented as blue dashed horizontal lines) are close to

0 Wm−2 due to the compensation effect when merging cells
with positive and negative biases, but the SD has significant
values due to these differences among LC categories, with
some surfaces that systematically present noticeable biases.
Pixels represented as WiF (wild forest) in the model (27 % of
the total area) normally present an overestimation of the SH,
while the mixed forest (MixF) pixels (14 %) underestimate
it (Fig. 3a). For the Le, the pixels covered by SaW (woody
savanna, which represent 33 % of the area) are normally char-
acterized by a remarkable Le underestimation, with bias val-
ues around −100 Wm−2 (Fig. 3d).

The definition of some of the LC categories existing in
the DEFAULT experiment did not appropriately represent the
real LC of the area (as seen in Fig. 2c), but they notably
influenced the simulated model errors. This is the first in-
dicator of the high dependency of the model results on the
LC categories. Then, based on the main hypothesis, the re-
sults should improve using a more realistic LC representation
(NEW-LC experiment).

The all-area-averaged results for SH and Le from NEW-
LC-Noah are shown in Table 3. In this experiment, the LC
was modified towards a more realistic representation using
the high-resolution data from CESBIO. This led to five LC
categories that were present in the area of study as dominant
LC, with evergreen needleleaf forest (ENF) and grass (Gra)
covering 45 % and 47 % of the total area, respectively. The
SH biases observed in the DEFAULT experiment were im-
proved in the NEW-LC, especially for ENF and Gra, with
slightly negative (close to zero) values. This led to a slightly
negative SH bias in the whole area (Fig. 3b, see the horizontal
red dashed line). For the Le bias (Fig. 3e), the opposite is ob-
served, with a slight Le overestimation mainly caused by the
Le overestimation over ENF (too much ET simulated by the
model in this forest type). As will be shown later, this result
contrasts with the findings obtained with the rest of LSMs.

The bias is a good indicator of systematic errors for spe-
cific LC categories, but it is a poor indicator of the total
model behaviour in the area (it can mix positive and nega-
tive values, leading to neutral ones). Hence, the SD and the
RMSE have also been included. The SD was also diminished
in the NEW-LC experiment, with less variability in the error
in the new experiment. In the case of the RMSE (Fig. 3c and
f), the results are shown by real LC categories (not model
categories), whose fractions of coverage are very similar to
those used in the NEW-LC experiment (slightly different due
to small differences in the categories; e.g. corn and wheat in
the real LC were merged into crop in the model).

The SH RMSE (Fig. 3c) improved for the total area when
using the improved LC dataset from 56 Wm−2 (DEFAULT-
Noah) to 44 Wm−2 (NEW-LC-Noah). The vertical bars in
Fig. 3c indicate the RMSE for each real LC category (the
LC categories used in the AAF). They provide information
about the types of vegetation associated with larger errors,
i.e. vegetation types whose processes or parameters are not
well represented by the model. In this case, the SH improve-
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Table 3. Summary of the scores (Wm−2) calculated for the evaluated area for each LSM (columns) configured for each experiment (raws).
The first value refers to the sensible heat flux (SH) and the second one to the latent heat flux (Le). Some experiments were not possible (–)
for some LSMs. The scores used are the bias (systematic error), standard deviation (SD) (random error), and the root mean square error
(RMSE).

Bias (Wm−2) – SH/Le SD (Wm−2) – SH/Le RMSE (Wm−2) – SH/Le

Experiment Noah Noah-MP RUC Noah Noah-MP RUC Noah Noah-MP RUC

DEFAULT −4/−8 69/−21 75/−68 59/78 69/43 62/52 56/76 96/46 97/81
NEW-LC −17/34 66/−42 77/−70 42/54 93/81 48/54 44/63 116/90 90/85
MOSAIC −16/18 – 84/−61 44/42 – 50/51 43/42 – 97/76
FOREST – 38/−11 – – 66/54 – – 77/56 –

ments in the NEW-LC experiment (red bars) are observed for
all the pixels except for the only pixel wherein the dominant
LC is wheat, associated with a larger SH flux than corn in
the observations (see Fig. 2). In any case, wheat crops only
covered 0.3 % of the total area as the dominant LC category
(one pixel), and therefore the contribution to the total RMSE
values was small. The results for Le RMSE (Fig. 3f) also
show significant improvements when using the improved LC
dataset, except for pixels covered by urban area (with a small
impact on the total values due to their scarce presence –
2.4 % – as dominant pixels and for which the results are out
of the scope of this work). The Le improvement was more
substantial in pixels covered by grass than by forest, since
Le is slightly overestimated in the forest pixels (see ENF in
Fig. 3e). Notice how, besides the better LC pixel distribu-
tion in the NEW-LC experiment, we also avoided using some
LC categories associated with large errors in the DEFAULT-
Noah experiment, such as the unrealistic SaW pixels related
to large Le underestimation (Fig. 3d).

3.1.2 Noah-MP

Most of the LC categories showed a positive SH bias for
DEFAULT-Noah-MP (Fig. 4a) and a slight negative Le bias
(Fig. 4d), especially for pixels whose dominant LC was a
type of forest (ENF, WiF, DBF, MixF, or SaW). The SD was
the largest for SH and the smallest for Le among the differ-
ent LSMs (see DEFAULT-Noah-MP in Table 3). This led to
a large SH error and to the smallest error amongst the LSMs
compared for Le (despite the slight underestimation), with
RMSE values of 96 and 46 Wm−2, respectively (see Fig. 4c
and f and also Table 3).

Contrary to what happened with Noah, the results were
generally (all area) worse in the NEW-LC experiment, even
for the case of SH in which the RMSE was already high. The
SH bias remained positive, mainly influenced by the signifi-
cantly high SH bias in ENF pixels (more than+150 Wm−2),
while the biases over the grass and crop pixels were close
to zero (Fig. 4b). For the Le, important negative biases
were observed in pixels mostly covered by ENF (around
−120 Wm−2), but with lower errors for grass or crop pix-

els. The contrasting differences among the biases for the two
more common LC categories (grass and forest) led to high
values of SD. The urban pixels were characterized by impor-
tant biases, but their small proportion as the dominant LC
category led to a small contribution to the total error.

This error variability among categories and the fact that
the 45 % of the total area was covered by ENF led to final
RMSE values of NEW-LC-Noah-MP (horizontal red dashed
line in Fig. 4c) significantly higher than those of DEFAULT-
Noah-MP (shown in blue), increasing the total SH RMSE up
to 116 Wm−2 and the Le RMSE up to 90 W m−2, with a sig-
nificant worsening for the forest and urban pixels. However,
the bars in Fig. 4c and f also illustrate the improvement in the
crop, moor, and grass pixels for SH and grass for Le, but they
were not enough to compensate for the large errors found
over the ENF pixels. This was not observed in the Noah ex-
periment (previous subsection), which uses a different set of
vegetation parameters than Noah-MP for each LC category.
This suggests that the biased results for Noah-MP could be
partially caused by some vegetation parameters that were in-
appropriate for the ENF LC category, which is a hypothesis
investigated later in the FOREST experiment.

3.1.3 RUC

The SH and Le biases obtained when using the DEFAULT-
RUC simulation are the highest ones among the compared
LSMs (see comparative Table 3), while the SD values are
similar to the other LSMs. Hence, RMSE values of 97 and
81 Wm−2 for SH and Le, respectively, were obtained for the
DEFAULT-RUC simulation. There is a systematic SH over-
estimation for all the LC categories (Fig. 5a) for DEFAULT-
RUC, which is especially aggravated by pixels unrealistically
represented by WiF (Wild forest), with a bias of more than
100 Wm−2 covering an important fraction of the total anal-
ysed area (27 %). The Le is systematically underestimated
(Fig. 5d) for all the LC categories, which shows a tendency
towards too little ET in this LSM in this studied case, es-
pecially in LC categories with shorter vegetation (SaW, Sav,
and Gra).
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Figure 3. (a) Sensible heat flux (SH) bias box plots by model LC category (x axis) for the default Noah simulation (DEFAULT-Noah).
Values are calculated for all the pixels with the specific LC category as dominant in the entire analysed area from 09:00 to 15:00 UTC
(hourly values). The standard deviation (SD) is indicated with stars for each LC category. The horizontal coloured dashed line indicates the
mean bias in the area analysed, and the black pointed line indicates the SD (these values are also indicated in the legend). The horizontal
black solid line indicates the line of 0 Wm−2 bias. The box plots indicate the 50 % of the distribution (from percentile 25 to percentile 75),
the upper and lower whiskers the rest of the distribution, and the red crosses the outliers. Note that these figures include the variability due
to the number of pixels with the same LC category as the dominant one (variable depending on their coverage) and also the variability due
to the 7 h analysed. (b) Same for the results obtained from the Noah simulation with the improved LC (NEW-LC-Noah). (c) SH root mean
square error (RMSE) for DEFAULT-Noah and NEW-LC-Noah for each real LC in the area. The horizontal dashed lines indicate the mean
RMSE for the whole analysed area. (d–f) Same as (a)–(c) but for the latent heat flux (Le). The percentages included with the x labels refer
to those covered by each category with respect to the total evaluated area.

These biases, the SD, and the RMSE values were very
similar in the NEW-LC-RUC experiment using the more re-
alistic LC, with SH RMSE of 90 Wm−2 and Le RMSE of
85 Wm−2. The values obtained for each LC category (Fig. 5b
and e) were within the same order of magnitude as those ob-
tained in the DEFAULT-RUC experiment or even higher, as
is the case of the SH simulated in grass surfaces, with a re-
markable overestimation of around +75 Wm−2. This led to
very similar (and high) RMSE values for the DEFAULT and
NEW-LC experiments (Fig. 5c and f). Although the SH simu-
lation improved for the grass and corn pixels, it worsened for

the forest pixels. For the Le, the opposite was observed: the
biases of the forest and crop pixels improved but worsened
for the grass ones, which were associated with ET that is too
low. Note how the RMSE in the NEW-LC experiment over
grass surfaces was higher than 100 Wm−2 in RUC, while it
was around 40 Wm−2 in the rest of the analysed LSMs for
which grass surfaces were normally associated with improve-
ments.

Although it is not shown in this work, we detected a higher
sensitivity of this LSM to the soil type in comparison with the
other LSMs. Thus, the parameters associated with clay loam
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Figure 4. Same as in Fig. 3 but for Noah-MP.

could be inappropriate for this LSM, leading to a wrong par-
titioning of the net radiation in the model (Le that is too low
and SH that is too high). In contrast, the sensitivity of RUC
to the LC categories was the lowest one among the compared
LSMs. In any case, the analysis of the relative contribution
of the soil type to the surface fluxes is out of the scope of
this study. In addition, the soil moisture values used to ini-
tialize this LSM should be corrected due to its different SM
dynamics and baseline (see the discussion included for the
pre-experiments in Sect. 3.5).

3.1.4 NEW-LC experiment overview

In general, the simulation of the fluxes in the NEW-LC ex-
periment improved over pixels mostly covered by grass and
crop. However, the specific analysis from previous subsec-
tions revealed how changing the LC representation in the
model towards a more realistic one (NEW-LC) did not nec-
essarily lead to an improvement of the fluxes in the whole
analysed area for all the LSMs. In Noah-MP, this was mainly
caused by the errors found in the pixels mostly covered by

coniferous forest (ENF), for which the simulated values of
the fluxes were extreme (overly positive SH bias and nega-
tive Le bias). This notably impacted the scores over the anal-
ysed area due to the high percentage of pixels wherein the
dominant LC was forest (46 %). Noah-MP includes more and
different parameters associated with this vegetation type, an
aspect that will be investigated later in the FOREST experi-
ment. In contrast, Noah is the LSM least affected by errors
in the conifer forest, and, indeed, it is the LSM that most im-
proves the simulation of the surface fluxes in the NEW-LC
experiment.

This is clearly observed in Fig. 6, where the SH and
Le at 12:00 UTC for the different dominant LC categories
(colours) are plotted against the fraction covered by the dom-
inant LC category within each pixel. Panels (a) to (c) (SH)
and (e) to (g) (Le) show the simulated values for the differ-
ent LSMs, while panels (d) and (h) show the observed values
from the AAF for comparison. The dependency on the frac-
tion of the dominant category is clearly observed for the AAF
in Fig. 6d (SH) for forest and grass pixels: the higher the per-
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Figure 5. Same as in Fig. 3 but for RUC.

centage of forest, the higher the SH, since forests were asso-
ciated with the highest values of observed SH. The opposite
is observed for the grass pixels, with SH diminishing for in-
creasing percentages since grass EC measurements showed
the lowest SH values. These dependencies are slightly ob-
served for the Le (Fig. 6h, Le) due to the similar Le values
measured over all the surface types with the EC towers (see
Fig. 1b and d). Coming back to Fig. 6, one can deduce that
Noah is the LSM that provides the most realistic values in
comparison with the AAF from a visual comparison, espe-
cially for Le.

The other LC category associated with large biases was the
urban one. In this case, the effect on the scores of the total
area was minimal, since only 2.4 % of the pixels have urban
area as the dominant LC category. As commented before, a
fair discussion about the absolute values of the errors found
over this type of LC is out of the scope of this article due to
the relatively high uncertainties in the AAFs and the lack of a
specific urban parameterization in the model, with values for

Noah and Noah-MP that are too extreme: 0 Wm−2 for Le;
see the grey circles in Fig. 6e and f.

Furthermore, the dependence of the AAF with the percent-
age of coverage of the dominant LC in each pixel is clearly
observed in Fig. 6d and h, which is inherent to the methodol-
ogy used in the AAF calculation. However, this dependence
is hardly seen from the model outputs (as expected using the
dominant approach; note the small slope of the scatter plots
for each coloured category). As commented before, it should
be noted that, by default, these LSMs use a dominant ap-
proach for each grid cell with only some surface information
(LAI, roughness length, or albedo) from the dominant LC
(Li et al., 2013). This led to well-differentiated flux values
for each category (Fig. 6).

Hence, from the NEW-LC experiment, we can conclude
that there is a high dependence of the fluxes on the LC
type in WRF, which can lead to important biases if the pa-
rameters and processes associated with specific categories
(conifer forest in this case) are not appropriate. These results
agree with those found by Couvreux et al. (2016), wherein
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12 IOPs of the same field campaign were simulated with
the ARPEGE (Courtier and Geleyn, 1988), AROME (Seity
et al., 2011), and ECMWF models (Simmons et al., 1989),
with grid sizes of 10, 2.5, and 16 km, respectively. In this
work, the SH was systematically overestimated over the area
analysed by the three models. Indeed, a larger SH overesti-
mation was found for the ARPEGE model in two of the three
evaluated pixels close to the area, the surface of which was
represented as forest. This also highlights the issues found
over this type of vegetation cover, which was enhanced with
a dominant approach (as in WRF in this work and in AROME
in Couvreux et al., 2016). This simplified approach does not
take advantage of the available sub-grid surface information
and motivated the MOSAIC experiment, for which the sub-
grid heterogeneity was taken into account in the Noah and
RUC models.

3.2 MOSAIC experiment

The scores obtained using the mosaic approach in the Noah
and RUC LSMs are shown in Table 3, with significant im-
provements in comparison to the NEW-LC experiment in Le.
For Noah, a reduction of almost 20 Wm−2 in the Le RMSE
(from 63 to 45 Wm−2) was observed as a result of a decrease
in the bias and in the SD. For RUC, the improvement in the
Le RMSE was of 9 Wm−2. The SH scores are nearly unmod-
ified in Noah and worse in RUC-MOSAIC.

For the case of Noah, Fig. 7 shows the simulated SH and
Le obtained from the NEW-LC and MOSAIC experiments.
The use of the mosaic approach (panels b and e) caused a
merging effect among values from different categories on
the simulated fluxes in comparison with the dominant one
(panels a and d), with results that better resemble the fig-
ures obtained from the AAF (panels c and f). This is particu-
larly clear for SH, for which the stronger dependence of the
fluxes on the type of dominant LC (Fig. 7a) is removed in the
mosaic approach (Fig. 7b). The impact was larger on pixels
wherein the dominant LC was forest, which were associated
with more extreme flux values. Also note the nearly zero val-
ues of Le in the dominant approach in urban pixels (panel d)
and the Le values that depend on the fraction of urban area
within each pixel (panel e). The correlations of the fraction of
coverage of the dominant LC category and the surface fluxes
are included in the legend for each LC category in Fig. 7.
This correlation depends on the strength of the flux values
associated with the specific categories. For example, the anti-
correlation observed in Fig. 7e for the urban pixels is due to
the strong impact when increasing the percentage of cover of
this LC category. Thus, if a pixel with 100 % urban area were
present, its Le value would tend to 0 Wm−2 using a mosaic
approach, as observed when using the dominant method in
Fig. 7d.

However, this merging effect was only slightly observed
for the case of the MOSAIC experiment in RUC (Fig. 8).
This was probably caused by the fact that the mosaic ap-

proach used in RUC is applied for different variables than
in Noah. In the case of RUC, only average emissivity, LAI,
roughness length, and plant resistance are calculated based
on the percentage of each land cover. In RUC, the averaged
albedo, which is the parameter that has the highest impact on
the net radiation of each grid cell, subsequently affecting SH
and Le, is not used. Figure 9 shows the albedo differences
between NEW-LC and MOSAIC used by the Noah (upper
figures) and RUC models (bottom figures). While the values
for MOSAIC-Noah (Fig. 9b) consisted of a weighted average
from the different LC of each grid cell, it was not the case for
MOSAIC-RUC (Fig. 9d), which diminished the impact of the
mosaic approach application in the RUC model.

Adding a mosaic approach caused a change in the LC
percentage technically used for some LC categories. This is
clearly observed in the comparison of the percentages shown
in Fig. 1b and d. For example, 2.2 % of the pixels were char-
acterized as urban with the dominant approach (panel d),
while the coverage using a mosaic approach increased up to
9 % (panel b). In this case, the mosaic approach increases the
percentage of urban fluxes contributing to the averaged val-
ues, although in a much more diffuse way (concentrated in
more pixels). However, the extreme effect of pixels consid-
ered fully urban is removed. This is also the case for the crop
pixels that cover 9.9 % of the area (wheat and corn) shown in
Fig. 1b (taking into account the sub-grid variability), but only
3.9 % as the dominant category in 1× 1 km pixels (Fig. 1d).

In any case, the mosaic approach might always be more
realistic than the dominant one; in the latter, the sub-grid in-
formation is not used and a unique LC type is defined, even
when the combination of secondary and similar LC cate-
gories has a higher percentage than the dominant one (e.g.
40 % conifer, 30 % dense shrub, and 30 % open shrub). If the
resulting dominant category is associated with inappropriate
parameters (e.g. conifer in the example and in our case), the
error will be greater in the dominant approach. For this rea-
son, it is also crucial to be cautious with some LC definitions
that could lead to fluxes that are too extreme. This can have
an important impact on the results of the simulations, either
with a dominant or a mosaic approach, as stated in Mallard
and Spero (2019). Furthermore, appropriate flux measure-
ments for model evaluation over urban surfaces still remain
a challenge, and the LSMs present issues without an addi-
tional urban parameterization included, which is an aspect
that should be better analysed in future studies.

3.3 FOREST experiment

The previous experiments revealed the large biases in simu-
lated surface fluxes associated with conifer forests (ENF) for
Noah-MP, with overly low simulated values of Le and overly
high SH in comparison with the observed values (Fig. 6).
This was also the case for RUC (Fig. 6d and i), but in this
case the biases were not limited to the ENF pixels and also
extended to all the categories.
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Figure 6. SH (a–d) and Le (e–h) simulated at 12:00 UTC by each LSM: Noah (a, e), Noah-MP (b, f), and RUC (c, g). The x axis shows
the total fraction covered by the dominant LC category in each respective pixel. The results are provided for the different LC categories with
colours. Panels (d) and (h) represent the same but for the gridded area-averaged fluxes (AAFs) calculated from the EC measurements, which
are used for the model evaluation.

Since the biases were only observed in ENF for Noah-MP,
we hypothesize that this was caused by overly high resistance
to the transpiration parameterized for these type of trees. We
explained in Sect. 2.3.4 the motivation for this experiment
and we justified the changes applied based on the parameter
values used in Bonan et al. (2014) for ENF. Specifically, we
changed the values of the g1, g0, and Vcmax25 parameters.
These modifications should lead to increased transpiration
and therefore also to decreased SH. Indeed, this is observed
in the results: the RMSE decreases to 77 Wm−2 for SH and
to 56 Wm−2 for Le, which are lower errors compared to the
NEW-LC-Noah-MP experiment (see Table 3). This was the
result of an improvement in the systematic error found in the
ENF pixels due to the reduction in the extreme biases found
in ENF. Specifically, the ENF mean bias reduced from +156

to +85 Wm−2 for SH and from −110 to −32 Wm−2 for Le
when comparing the NEW-LC and the FOREST experiments
(these results are not shown in figures), while the SD values
remained similar, illustrating how we improved the system-
atic bias associated with this LC type due to incorrect pa-
rameters related to the evapotranspiration of these trees in
this case study.

The results are consistent with the fluxes shown in Fig. 10,
where the SH and the Le observed at the forest site (black
line) were compared to the simulated values obtained with
the central pixel of the domain completely (100 %) covered
by ENF (conifer, blue) or by ENF with these parameters
changed (red line). These two additional simulations shown
in Fig. 10 would correspond to the NEW-LC Noah-MP and
the FOREST Noah-MP experiments, respectively. However,
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Figure 7. Same as in Fig. 6 but comparing the results from Noah-NEW-LC (using a dominant approach) and from Noah-MOSAIC (using
a mosaic approach). Panels (c) and (f) correspond to the area-averaged fluxes (AAFs) from observations, which are considered to be the
reference. The correlation between the fluxes and the fraction of coverage of the dominant LC category is included in the legend for each LC
category within each pixel, with the number of pixels used in brackets.

in these graphics the effect of the change is analysed in a
clearer way for the whole diurnal cycle. Again, it is demon-
strated how the tuning of these parameters towards less re-
sistance to transpiration provided better results than the orig-
inal parameters tabulated for ENF for both SH and Le. The
slope of the Ball–Berry equation (g1) is the parameter that
most influenced the results, which does not seem appropri-
ate in this area for this type of tree, since it limits transpira-
tion too much. As asserted in Medlyn et al. (2011), g1 is the
key parameter for plant stomatal conductance, being quite
variable among species in areas with different environmen-
tal conditions. The authors suggested that g1 should increase
with increasing temperatures, as might be the case in our
study, compared to the values tabulated for this LC category
in the model. The results of the present work indicate that
the tabulated values, which were developed for other region
and dates or even with a different type of conifer or den-

sity of trees, should be revised. This is consistent with the
scientific demand for systematic experimental observations
representative of different scales (Vilà-Guerau de Arellano
et al., 2020) from the leaf level (as stomatal conductance) to
the landscape and model grid scales (for example, reliable
area-averaged fluxes).

3.4 Analysis of the simulated evaporative fraction (EF)

The previous analyses provided information about the biases
and the RMSE of SH and Le independently for the different
experiments and LSMs. However, these analyses did not take
into account the total energy available to be partitioned into
the atmospheric fluxes, which may be different depending
on the surface type. Hence, in Fig. 11 we present the evapo-
rative fraction (EF= Le/(Le+SH)) for each LSM (panels)
sorted by the real LC categories of each grid cell for the dif-
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Figure 8. Same as in Fig. 7 but for NEW-LC-RUC (dominant) and MOSAIC-RUC (mosaic).

ferent experiments performed (DEFAULT in blue, NEW-LC
in red, MOSAIC in orange, and FOREST in green). The val-
ues obtained from the AAF are also included as a reference
in dark grey in the different panels. The highest observed val-
ues were in pixels with grass as the dominant LC, while in
the forest ones the EF was around 0.5. The values observed
from the EC towers (representing a homogeneous surface)
are indicated with black circles and represent what would be
expected in a pixel completely covered by each LC category.
For example, EF is 0.73 for grass surfaces and 0.45 for forest
ones.

In Noah (Fig. 11a), the DEFAULT experiment (blue) pro-
vided a large variation in the EF of each real LC category.
This resulted from the unrealistic and varied LC representa-
tion in this experiment. The NEW-LC experiment (red) par-
tially corrected the large EF variability, especially for the
grass and forest pixels. Therefore, in general, not only were
the SH and Le biases corrected, but also the flux partitioning,
except for the moor and urban pixels with a scarce presence.
In addition, the MOSAIC experiment (in orange) served to

improve the simulated values of EF, which were very close
to those obtained from the AAF.

The DEFAULT experiment in Noah-MP (Fig. 11b) sys-
tematically underestimated the EF (blue) in comparison to
the observations (dark grey). The NEW-LC experiment (red)
served to correct this underestimation in all LC categories
except in the forest and urban grid cells. As discussed be-
fore, the Le was significantly underestimated in the forest
(ENF) pixels, while the SH was overestimated, which led to
underestimation of EF. This was partially corrected in the
FOREST experiment (represented with green in Fig. 11b) by
applying modified parameters that made transpiration easier
from these plants. However, even with these changes, the EF
values obtained from the model were far from those from the
observations.

RUC (Fig. 11c) exhibited the smallest sensitivity to the
modifications performed in each experiment in comparison
to the other LSMs. As commented before, the LC changes
in RUC had a lower impact on the results, which were more
impacted by the soil type (not shown) than by LC. Hence,
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Figure 9. Model albedo over the analysed area. Comparison of the grid values between the dominant (a, c) and the mosaic (b, d) approaches
for Noah (a, b) and for RUC (c, d). Note the absence of change in the mosaic approach using RUC.

RUC showed a general tendency to underestimate EF with
systematic Le underestimation and SH overestimation for all
the LC categories, as was previously observed.

3.5 Pre-experiments (initial conditions)

As commented in Sect. 2, the impact of the data used to
initialize the model has also been investigated and quanti-
fied. These are named pre-experiments because their impact
is mainly limited to the initial values used to initialize the
model (i.e. they do not alter surface parameters that affect
the whole simulation as in the experiments analysed before).
Two pre-experiments were designed: (1) SPIN-UP, in which
the WRF model was run with each LSM for a longer time
(1 month) before the analysed period, allowing us to ob-

tain SM values more appropriate for the specific dynamics
of each LSM; and (2) ERA-INTERIM, in which the WRF
model was initialized with a different set of initial and bound-
ary condition data from ERA-Interim (ERA-Interim, 2009).
Note how in this case the boundary conditions can have a
small impact every 6 h in the simulation, not only at the start-
ing time (boundary conditions). The rest of the model config-
uration of these experiments was the same as in the NEW-LC
experiments; therefore, their scores are compared in Table 4
to those obtained with the NEW-LC experiment (using initial
conditions from NCEP-FNL and no spin-up time).
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Figure 10. (a) Sensible heat flux (SH) from two simulations with the evaluated pixel completely covered by the original ENF (conifer, blue)
and ENF-mod (conifer with parameters modified, red). The observations made over the forest site are indicated with a black line. (b) Same
for the latent heat flux (Le). The model results were obtained using the Noah-MP land surface model for 19 June 2011. The biases and root
mean square error (RMSE) are included.

Figure 11. Evaporative fraction (EF= Le/(SH+Le)) for the different LSMs used: (a) Noah, (b) Noah-MP, and (c) RUC. The results
are ordered by the real dominant LC type of the pixels (vertical subdivisions) and for the different experiments performed: DEFAULT
(blue), NEW-LC (red), MOSAIC (orange, only in Noah and RUC), and FOREST (green, only in Noah-MP). The values obtained from the
observations (AAF) are indicated with dark-grey box plots. Black circles indicate the EF obtained from the EC towers for each corresponding
(homogeneous) surface.

3.5.1 SPIN-UP experiment

With the SPIN-UP experiment, we have checked the LSMs’
sensitivity to auto-spin up their SM values by performing
longer simulations (1 month before the model output is used
and analysed). As discussed before, in our case this was not
appropriate to allow a fairer model–observation comparison
(the AAFs used to evaluate the model were based on the as-
sumption of homogeneous SM, which does not exist after

the spin-up time). Also, the inherent differences between the
LSMs cause variations in the rainfall simulated by WRF in
each LSM, which make the comparison of the LSMs’ scores
difficult (Anonymous, 2021).

The analysis of the scores obtained from the SPIN-UP
experiment in Table 4 reveals that the biases worsened for
Noah (from−17 to−35 Wm−2 and from 34 to 59 Wm−2 for
SH and Le, respectively), while the SD values were similar,
leading to a larger RMSE for both fluxes. For Noah-MP the
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Table 4. Summary of the scores (Wm−2) calculated in the whole evaluated area for each LSM (columns) configured for each pre-experiment
(raws, SPIN-UP, and ERA-INTERIM). The scores of the NEW-LC experiments are included to quantify the impact of the change in the initial
conditions. The first value refers to the sensible heat flux (SH) and the second one to the latent heat flux (Le). Some experiments were not
possible (–) for some LSMs. The scores used are the bias (random error), standard deviation (SD) (systematic error), and the root mean
square error (RMSE).

Bias (Wm−2) – SH/Le SD (Wm−2) – SH/Le RMSE (Wm−2) – SH/Le

Pre-experiment Noah Noah-MP RUC Noah Noah-MP RUC Noah Noah-MP RUC

NEW-LC (for comparison) −17/34 66/−42 77/−70 42/54 93/81 48/54 44/63 116/90 90/85
SPIN-UP −35/59 54/−21 47/−46 42/52 100/89 49/53 50/78 115/90 68/68
ERA-INTERIM −16/45 75/−39 – 43/55 89/77 – 43/70 119/85 –

bias was corrected (from 66 to 54 Wm−2 and from −42 to
−21 Wm−2 for SH and Le, respectively), but at the expense
of an increase in the SD, which led to similar RMSE val-
ues. This LSM showed biases with a different sign depend-
ing on the LC category (see Fig. 4), especially for forest (SH
overestimation and Le underestimation) and grass (the oppo-
site), which led to a mean bias value that should be analysed
with caution: the value for the whole area, as shown in Ta-
ble 4, includes compensating errors the can lead to erroneous
conclusions. In the case of RUC, the SPIN-UP experiment
improved the biases for both fluxes (from 77 to 47 Wm−2

and from −70 to −46 Wm−2 for SH and Le, respectively),
while the standard deviation of the error is the same, lead-
ing to a substantial reduction of the RMSE. Indeed, this was
suspected in Angevine (2021) since the RUC model has a dif-
ferent baseline and dynamics for the soil moisture than Noah,
Noah-MP, and the NCEP-FNL data (based on Noah). In this
case, leading the model to auto-spin up some time is conve-
nient, since the fluxes simulated by this LSM improved with
their RUC-specific SM values. Hence, the SM initial value
for RUC should be higher than for Noah (in this case study),
which corrects the Le underestimation and the SH overesti-
mation observed in Fig. 5.

3.5.2 ERA-INTERIM experiment

Not only can the SM have an important effect on the model
results, but the rest of the atmospheric variables used to ini-
tialize the model can also impact the whole simulation. This
possibility was studied using a different database to initialize
the model (ERA-Interim versus NCEP-FNL). The compari-
son of the scores obtained with the ERA-INTERIM experi-
ment slightly affects the evaluation: in Noah the bias changed
from −17 to −16 Wm−2 for SH and from 34 to 45 Wm−2

for Le, leading to similar RMSE values. In the case of Noah-
MP, the bias varied from 66 to 75 Wm−2 for SH and from
−42 to −39 Wm−2 for Le, also with similar RMSE values.
Therefore, although there is an impact of the initial condi-
tions on the evaluation of the model, in this case the effects
were not very large. Nonetheless, using other datasets with
higher resolution (as ERA-5) could lead to improvements

due to the improved resolution used at the model initializa-
tion, but additional experiments aimed at investigating the
impact of the resolution of the data used to initialize the
model are out of the scope of this article.

4 Summary and conclusions

The changes in the LC of the Earth’s surface trigger var-
ied and sometimes unpredictable consequences at different
spatiotemporal scales, affecting biophysical processes in the
soil and in the atmosphere. Hence, it is crucial to know more
about the impacts of the LC changes on all these processes.
In this work, we investigated the sensitivity of turbulent heat
fluxes simulated by the WRF model to the manner in which
the surface is represented in it.

To this aim, different sensitivity experiments were per-
formed for a case study over a heterogeneous area in the
south of France. They were evaluated with gridded area-
averaged fluxes (AAFs) computed from tower measurements
installed over five vegetation types (forest, corn, wheat,
grass, and moor) during the BLLAST field campaign. In or-
der to add robustness to the study and to detect differences,
the experiments were carried out using three LSMs available
in WRF: Noah, Noah-MP, and RUC.

First, a control experiment was performed with the default
options in WRF: LC from the IGBP-MODIS database and
a dominant sub-grid approach; i.e. the model used the tabu-
lated surface parameters of the LC category with the highest
percentage of coverage in each pixel. We hypothesized that
these simulations were limited because of the large differ-
ences between the LC representation and the actual surface
and because of the loss of LC information at the sub-grid
scale.

Thus, a new experiment was designed (named NEW-LC)
that improved the surface representation by adding the LC
information from the 30 m resolution CESBIO maps, which
were much more accurate and realistic in the area than the
default IGBP-MODIS dataset. The observed changes in the
surface fluxes were dependent on the LSM used due to their
differences in the parameters associated with each vegetation
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type and also to their different representation of the surface
processes. The improvement was clear for Noah for all the
LC categories. RUC was the LSM that showed the weakest
response of the fluxes to the LC categories, without substan-
tial changes in the scores. Noah-MP showed some improve-
ments in pixels covered by crops or grass, but they also ex-
hibited an important SH overestimation and Le underestima-
tion in the surface fluxes simulated over pixels mainly cov-
ered by conifer forest (ENF). The ENF biases contributed
significantly to the total model error due to their relatively
high percentage of coverage (45 %) in the analysed area. The
NEW-LC experiment revealed the need for a correct repre-
sentation of LC in the analysed area, in part due to the high
dependency of the fluxes on the LC categories. In addition,
the appropriate characterization of surface parameters asso-
ciated with some LC categories (e.g. conifer) still needs to
be improved, as was also discussed in previous works (e.g.
Li et al., 2013; Cuntz et al., 2016).

In the second experiment (named MOSAIC), the sub-grid
heterogeneity (below 1 km) was taken into account with a
mosaic approach in Noah and RUC, meaning that the fluxes
in each grid were calculated as weighted averages from indi-
vidual surface fluxes obtained from each tile or LC category.
The mosaic approach caused more homogeneity among the
surface fluxes simulated in the analysed pixels, which cor-
responded better to the AAF used as benchmark data. This
improvement in the surface representation led to improved
scores for Noah (especially for Le), while smaller changes
were observed in RUC. This was because in RUC the mosaic
approach did not include the use of pixel-averaged albedo
values based on the percentages of each LC category, as done
for the surface roughness, LAI, and emissivity. In Noah, the
albedo was also averaged, significantly contributing to the
improvements, since the albedo is the parameter that seems
to have a larger impact on the net radiation available to be
partitioned into SH and Le.

Finally, a last experiment (named FOREST) was moti-
vated by the issues found in the conifer pixels for Noah-
MP. The modifications in the FOREST experiment were con-
ducted to reduce the resistance of conifer trees to transpira-
tion using updated parameters as used in Bonan et al. (2014).
The effect of these changes was to facilitate transpiration pro-
cesses, coinciding better with the observations and improv-
ing the scores.

Two additional pre-experiments aimed at checking the
model sensitivity to the initial conditions were performed.
In the first one, a spin-up period of 1 month was applied for
each LSM in order to obtain more appropriate SM values
for each pixel. This was very important for the case of RUC
since the SM in this LSM has different dynamics and a differ-
ent range of values than Noah, Noah-MP, and the SM from
NCEP-FNL, leading to improved scores with a corrected SM
value. In the second pre-experiment the sensitivity to the ini-
tial conditions was checked by comparing the NCEP-FNL

results with those using ERA-Interim, with a slight impact
on the simulation scores.

This work demonstrates the importance of a correct repre-
sentation of LC in the area which is evaluated, as was also
shown in previous works (Cheng et al., 2013; Schicker et al.,
2016; Jiménez-Esteve et al., 2018). This can considerably af-
fect the simulation of the fluxes that will drive the associated
boundary-layer processes. Also, it is worth using a mosaic
approach to benefit from the sub-grid surface information
that is normally available.

In any case, the particular conditions of the region and
dates analysed mean that some specific conclusions might
not be applicable to other regions or even to the same re-
gion under different conditions. For example, it is also pos-
sible that in our case we observed more ET over the conifer
trees than in the model due to the possible particularities of
the area. Hence, the parameters adjusted in the model for
the conifers could be due to the differences among species
belonging to the same LC category (Granier et al., 1989),
tree density, tree age (Sellin, 2001), or the specific surface
conditions of this case study (for example, with relatively
high values of SM). All these aspects open an interesting
new line of research with the objective of improving the pa-
rameters associated with each vegetation type, which could
be achieved, among others, by including leaf-level measure-
ments of stomatal conductance in experimental campaigns,
as recently stated in Vilà-Guerau de Arellano et al. (2020).

The possible uncertainties in the EC measurements used to
evaluate the model should also be taken into account, espe-
cially over vegetation types for which it is somehow more
difficult to have accurate or representative high-frequency
measurements, as in the case of forest. Furthermore, the cal-
culation of the AAF consists of important assumptions based
on the spatial extrapolation of EC data that can add uncer-
tainty to the data used for the evaluation. In our case, they
were also constructed using a simple estimation of the fluxes
for urban surfaces due to the lack of measurements. This
could also be associated with errors (although with a small
percentage of coverage in the analysed area). All these nec-
essary simplifications that were done again highlight the im-
portance of having extensive measurements over a wide vari-
ety of surface types (Cuxart and Boone, 2020) and including
atmospheric measurements, soil measurements, and those re-
lated to the plant physiology and status.
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Appendix A

Table A1 shows the LC transformation performed in the
NEW-LC experiment.

Table A1. LC categories in CESBIO and respective transformation to the IGBP-MODIS LC categories. The respective codes of each dataset
are included in the central columns. * All crop types were transformed to the single cropland category available in IGBP-MODIS; however,
most of the crop types in the area were summer crop (mainly corn). ** Deciduous forests were transformed to the LC category of evergreen
needleleaf forest (conifers), even when a deciduous broadleaf forest category was available in IGBP-MODIS. This was done due to the lack
of measurements over deciduous trees, which resulted in the area-averaged maps used to evaluate the model being constructed with data
from the conifers; this strategy allowed a fairer model–observation comparison. Abbreviations used in the text and figures are indicated with
brackets.

Name and code in CESBIO Code and name in IGBP-MODIS

Summer crop* 11 12 Cropland (Cro)
Winter crop 12 12 Cropland (Cro)
Deciduous broadleaf forest** 31 1 Evergreen needleleaf forest (ENF)
Evergreen needleleaf forest 32 1 Evergreen needleleaf forest (ENF)
Grass 34 10 Grassland (Gra)
Moor 36 6 Closed shrublands (CShr)
Dense urban 41 13 Urban (Urb)
Diffuse urban 42 13 Urban (Urb)
Industrial and commercial areas 43 13 Urban (Urb)
Roads 44 13 Urban (Urb)
Mineral surfaces 45 16 Barren or sparsely vegetated
Beaches and dunes 46 16 Barren or sparsely vegetated
Water 51 17 Water
Glaciers and snow 53 15 Snow and ice
Prairies 211 10 Grassland (Gra)
Orchards 221 8 Woody savanna (WSa)
Vineyards 222 8 Woody savanna (WSa)
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Appendix B: Technical details about the experiments

B1 NEW-LC experiment

Two variables were modified in the geo_em_d04.nc file (the
fourth-domain output from the geogrid.exe programme of the
WRF preprocessing system – WPS). On the one hand, the
LANDUSEF variable was modified, including the new per-
centages for each LC category in all the 1 km grid cells of
the fourth domain. The same was done for the rest of the
domains, but only in the area covered by the inner domain.
On the other hand, the dominant LC category in each pixel
was calculated based on the new information, which served
to modify the LU_INDEX variable in the same files as before.

These files with the modified LANDUSEF and LU_INDEX
variables were re-incorporated into the WPS system, and the
rest of the preprocessing programmes were executed, i.e. un-
grib.exe and metgrid.exe, obtaining the final met_em files
used to run the model. Note how in order to use these modi-
fied files in the model simulations, the surface_input_source
parameter in the WRF namelist.input file was set to 3.

B2 MOSAIC experiment

To activate the mosaic approach, some options should be in-
cluded in the namelist.input file of WRF. In the case of Noah,
the sf_surface_mosaic option should be set to 1. The mo-
saic_cat option indicates the maximum number of tiles to be
used, which was set to 19, the maximum possible in our area.
In the case of RUC, the mosaic_lu and mosaic_soil should be
included and set to 1.

B3 FOREST experiment

The three parameters modified in the FOREST experiment
were changed in the MPTABLE.TBL file of WRF. This file
contains the vegetation parameters tabulated from the differ-
ent LC categories for the two LC datasets available in WRF.
Since our simulations used the IGBP-MODIS LC dataset,
we changed these parameters in the corresponding section
within the file. Specifically, we modified MP from its origi-
nal value (6) to 9, BP from 0.002 to 0.01 molH2Om−2 s−1,
and Vcmax25 from 50 to 62.5 µmolm−2 s−1 for the LC type 1
(ENF). This was done before running the WRF simulation
with the Noah-MP LSM.
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Code and data availability. The source code of the Weather
Research and Forecasting model (WRF v4.1.3) is avail-
able at https://github.com/wrf-model/WRF/releases (last
access: January 2021). The initial and boundary data
used for the specific analysed period can be downloaded
at https://rda.ucar.edu/datasets/ds083.2/ (last access: Jan-
uary 2021: NCEP (2000); last access: 10 January 2021)
(https://doi.org/10.5065/D6M043C6). Additional initial and bound-
ary data (ERA-Interim) were also used, which can be downloaded
at https://rda.ucar.edu/datasets/ds627.0/ (last access: May 2021:
ERA-Interim (2009); https://doi.org/10.5065/D6CR5RD9). The
CESBIO land use dataset (Inglada et al., 2017) for 2011 can
be downloaded from the OSO CESBIO web page: http://osr-
cesbio.ups-tlse.fr/oso/posts/2016-10-06-cartes-2009-2011/ (last
access: January 2021). The BLLAST data are accessible at
https://www7.obs-mip.fr/bllast/. All the data and scripts used
in this work are available on Zenodo (Román-Cascón et al.,
2021) (https://doi.org/10.5281/zenodo.4449761), including (1) the
area-averaged flux (AAF) data used to evaluate the model, with
the data and scripts; (2) the scripts and data used to prepare the
WRF experiments, including the modified geo_em*.nc files used
to change the land cover of the domains; (3) the scripts and data
used to process and analyse the WRF output; (4) the scripts used to
prepare the figures; and (5) the WRF output for the domain used
for each simulation in this work.
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