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Abstract. In this contribution we introduce LoopStructural,
a new open-source 3D geological modelling Python pack-
age (http://www.github.com/Loop3d/LoopStructural, last ac-
cess: 15 June 2021). LoopStructural provides a generic API
for 3D geological modelling applications harnessing the core
Python scientific libraries pandas, numpy and scipy. Six dif-
ferent interpolation algorithms, including three discrete in-
terpolators and 3 polynomial trend interpolators, can be used
from the same model design. This means that different in-
terpolation algorithms can be mixed and matched within a
geological model allowing for different geological objects,
e.g. different conformable foliations, fault surfaces and un-
conformities to be modelled using different algorithms. Geo-
logical features are incorporated into the model using a time-
aware approach, where the most recent features are modelled
first and used to constrain the geometries of the older fea-
tures. For example, we use a fault frame for characterising
the geometry of the fault surface and apply each fault se-
quentially to the faulted surfaces. In this contribution we use
LoopStructural to produce synthetic proof of concepts mod-
els and a 86 km× 52 km model of the Flinders Ranges in
South Australia using map2loop.

1 Introduction

Understanding and characterising the geometry and inter-
action between geological features in the subsurface is an
important stage in resource identification and management.
A surface or combination of surfaces can be used to repre-
sent the subsurface geometry of geological features or struc-
tural elements within 3D geological models (Caumon et al.,
2009). There are two main approaches for representing sur-

faces in 3D geological models: (1) one in which the surface
is represented by directly triangulating control points defin-
ing the surface geometry or (2) one in which the surface is
extracted as an isovalue or level set of an implicit function
(Wellmann and Caumon, 2018). Explicit surface representa-
tion in geological modelling refers to manually drawn sur-
faces and is usually time consuming and requires significant
subjective user input because surfaces are usually sculpted
to the modellers conceptual idea in a similar way to draw-
ing polylines in geographical information systems or using
computer-aided design software. Implicit surface representa-
tion involves approximating an unknown function that repre-
sents the distance to a geological surface. The implicit func-
tion can be queried anywhere throughout the model for the
value or gradient of the function. The implicit function is fit-
ted to observations that are used to infer the geometry of a
geological surface, for example the distance to the geological
surface (for stratigraphic horizons this may be the cumula-
tive thickness) or the gradient of the function (on contact or
off contact) observations. The topological relationships be-
tween different geological features, e.g. horizons, faults in-
teractions, intrusions and unconformities, are incorporated
using multiple implicit functions for different components of
the model. Implicit surface representation removes the need
to generate surfaces and allows for the geological features to
be represented directly by the implicit function value.

All implicit surface modelling techniques involve finding a
combination of weighted basis functions that fit the geolog-
ical observations. There are two main approaches used for
implicit surface modelling: (1) data-supported approaches
where the basis functions are estimated at the data points
(Calcagno et al., 2008a; Cowan et al., 2003; Gonçalves et
al., 2017; Hillier et al., 2014; Lajaunie et al., 1997) and
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(2) discrete interpolation where the basis functions are lo-
cated on a predefined support (Caumon et al., 2013; Frank et
al., 2007; Irakarama et al., 2018; Renaudeau et al., 2019).
The algorithms are often linked to commercial software,
e.g. Leapfrog1, 3D GeoModeller2 and Gocad-SKUA3. These
packages will usually only provide one algorithm for interpo-
lation, making it difficult to compare different interpolation
schemes. The algorithms are also usually black box algo-
rithms with limited ability to change algorithm parameters,
with no understanding of how the algorithm is implemented.
A recent open-source Python library, Gempy (de la Varga et
al., 2019), implements the dual co-kriging implicit interpo-
lation algorithm (Lajaunie et al., 1997) using a high perfor-
mance computational library.

In this contribution we introduce the open-source Loop-
Structural, a 3D geological modelling Python library based
on the incremental contributions of Laurent et al. (2016) and
Grose et al. (2017, 2018, 2019). LoopStructural is a new geo-
logical modelling engine developed within the Loop4 consor-
tium (Ailleres et al., 2018). The core modelling library within
LoopStructural depends on scipy (Virtanen et al., 2020),
numpy (Van Der Walt et al., 2011) and pandas (pandas de-
velopment team, 2020), the core scientific Python libraries.
A visualisation module uses LavaVu (Kaluza et al., 2020),
a minimal OpenGL visualisation package allowing for mod-
els to be visualised within a Jupyter notebook environment.
LoopStructural has been written using an object-oriented
program design with class structures designed to allow for
powerful inheritance and modularity. The design of Loop-
Structural allows development and research into geological
modelling methods to be easily performed without having to
rewrite boiler plate code for interpolation algorithms, visual-
isation and model interaction. LoopStructural is a modelling
package allowing for multiple stratigraphic groups, faults,
folds and unconformities to be represented using implicit sur-
faces. Different interpolation algorithms can be used for in-
terpolating these surfaces with the ability to mix and match
interpolation algorithms depending on the surface type be-
ing modelled. LoopStructural has native implementation of
discrete implicit modelling using a piecewise linear interpo-
lation on a tetrahedral mesh (Caumon et al., 2013; Frank et
al., 2007; Mallet, 2014, 2002), finite-difference interpolation
on a Cartesian grid (Irakarama et al., 2018; Renaudeau et al.,
2018), fold interpolation using tetrahedral meshes (Laurent
et al., 2016) and an interface to a generalised radial basis in-
terpolation (Hillier et al., 2014).

1https://www.seequent.com/products-solutions/
leapfrog-software/; last access: 15 June 2021

2https://www.intrepid-geophysics.com/product/geomodeller/;
last access: 15 June 2021

3https://www.pdgm.com/products/skua-gocad/; last access:
15 June 2021

4https://www.loop3d.org; last access: 15 June 2021

This paper begins with a background analysis of 3D mod-
elling methods and the algorithms used in implicit modelling,
with an overview of the mathematical and geological back-
grounds used in our implementation. A detailed overview of
the specifics of the implementation can be found on (http://
loop3d.github.io/LoopStructural, last access: 15 June 2021).
To demonstrate the versatility of LoopStructural and to pro-
vide a user guide we include four case studies in this paper
with corresponding Jupyter notebooks. The first case study is
a synthetic example interpolating two planar surfaces where
the height of one surface has been perturbed to simulate un-
certainty in the surface location. In this example we use the
LoopStructural API to compare three different interpolation
codes and investigate the parameters and how they are af-
fected by noise. The second example is a synthetic refolded
type 3 interference pattern from Laurent et al. (2016), where
we apply the time-aware discrete fold interpolation method
described by Laurent et al. (2016) for modelling the refolded
folds. In the third case study LoopStructural is applied to
a real dataset from the Flinders Ranges in South Australia,
where the dataset has been prepared using the pre-processing
module of the Loop workflow map2loop (Jessell et al., 2021).
In the fourth and final case study we use map2loop to aug-
ment an input dataset for a model in the Hamersley region in
Western Australia. We generate 10 unique models, demon-
strating the range of possible geometries when perturbing the
fault geometry.

2 Materials and methods

A 3D geological model can be represented by a collection of
surfaces representing geological features (e.g. fault surfaces,
stratigraphic horizons, axial surfaces of folds, unconformi-
ties) (Wellmann and Caumon, 2018). There are two main
tasks for a 3D modelling software package:

– the creation of the surfaces from geological observa-
tions and knowledge, this is known as interpolation;

– the incorporation of geological concepts into the surface
description, e.g. faulted surfaces should show displace-
ment and unconformities should be a boundary between
units.

In LoopStructural surfaces are implicitly represented by an
isovalue of one or more volumetric scalar fields (Calcagno et
al., 2008a; Caumon et al., 2013; Cowan et al., 2003; Frank et
al., 2007; Gonçalves et al., 2017; Hillier et al., 2014; Jessell,
1981; de la Varga et al., 2019; Lajaunie et al., 1997; Mal-
let, 2002, 2014; Manchuk and Deutsch, 2019; Maxelon et al.,
2009; Moyen et al., 2004; Renaudeau et al., 2019; Yang et al.,
2019). The geological rules are managed by adding the geo-
logical event (folding event, one fault, another fault, an un-
conformity) structural parameters in a time-aware approach,
where the most recent event is added first and the constraints
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are added backwards in time. Complex geological features
such as folds and faults are integrated into LoopStructural by
building a structural frame around the principal structural di-
rections of the feature being modelled. Using these structural
frames geological rules can be integrated into the modelling
workflows – e.g. fault kinematics can be added to the faulted
feature because the fault geometry is known before interpo-
lating the faulted feature or fold overprinting relationships
can be incorporated using multiple structural frames (Lau-
rent et al., 2016).

2.1 Implicit surface modelling

Implicit surface modelling involves the representation of the
geometry of a geological feature using a function f (xyz)
where the value of the function is the same along the obser-
vation of the surface. There are two possible ways of framing
this question. The first approach uses the scalar field value as
a distance from a reference horizon, e.g. the location of the
horizon for a single surface would be the value of the scalar
field. Using this approach, which we will call the signed dis-
tance approach, the same implicit function can represent con-
formable horizons where the value of each horizon is the cu-
mulative thickness from the base of the series (Caumon et
al., 2013; Hillier et al., 2014; Jessell, 1981; Manchuk and
Deutsch, 2019; Wellmann and Caumon, 2018). The second
approach, often referred to as the potential field approach,
does not specify the value of the scalar field. The potential
field approach only defines the potential field to have the
same value for specific interfaces, such as contacts between
geological units and fault traces (Calcagno et al., 2008a; de
la Varga et al., 2019). As with the signed distance field, the
potential field can represent conformable horizons – where
the value of the implicit function evaluated on the input ob-
servations can be used to infer the potential field value for
these horizons.

These implicit functions have no known analytical solu-
tion, which means that they need to be approximated from
the observations that are provided. The implicit function is
represented by a weighted combination of basis functions:

f (xyz) =

N∑
i=0

wi ·ϕi(x,y,z), (1)

where N is the number of basis functions, w are the weights
and ϕ are the basis functions. There are two approaches for
approximating the implicit function: the first approach uses
a discrete formulation for the interpolation where N is de-
fined by some sort of mesh (Caumon et al., 2013; Frank et
al., 2007; Mallet, 1992; Moyen et al., 2004), and the second
approach uses data-supported basis functions where N is de-
fined by the number of data points (Calcagno et al., 2008a;
Cowan et al., 2003; Gonçalves et al., 2017; Hillier et al.,
2014; de la Varga et al., 2019; Lajaunie et al., 1997).

2.1.1 Input data

Geological observations that are directly incorporated into
3D modelling can generally be divided into two categories:
observations that describe the orientation of a geological fea-
ture (on contact and off contact) and observations that de-
scribe the location within a geological feature (cumulative
thickness for conformable stratigraphic horizons, or location
of fault surface). In the context of a geological map, location
observations may be the trace of a geological surface on the
geological map, or a single point observation at an outcrop or
from a borehole. Orientation observations generally record a
geometrical property of the surface – e.g. a vector that is tan-
gential to the plane or the vector that is normal to the plane
(black and dashed arrows in Fig. 1).

When modelling using the potential field approach, the
value of the scalar field is inferred through the magnitude
of the normal control points. Using the signed distance ap-
proach, the value of the scalar field is defined by the value of
the observations and effectively controls the thickness of the
layers. Orientation constraints either control a component of
the orientation, e.g. specifying that the gradient of the func-
tion should be orthogonal to the observation or constrain the
magnitude and direction of the norm of the gradient of the
implicit function.

All geological observations constrain a component of the
implicit function at a location in the model:

– Observations for the location of the geological feature
will constrain the value of the scalar field f (x,y,z)=
v.

– Observations for the orientation of the contact can either

• constrain the partial derivatives of the function
∇f (x,y,z)= n or

• constrain a vector which is parallel to the contact
∇f (x,y,z) · t = 0.

It is worth noting that when constraining the partial deriva-
tive of the scalar field, the norm of the vector defines the
norm of the implicit function which controls the distance be-
tween isosurfaces. The sign of the vector must be consistent
with the polarity of the structural observation, e.g. for bed-
ding this must be the younging direction. Structural orien-
tations can also be incorporated into the model using two
tangent constraints where t1× t2 = n, where × is the vector
product. In the following sections we will outline the the-
oretical background for the piecewise linear interpolation,
finite-difference interpolation and data-supported interpola-
tion. Within all approaches, the observations are incorporated
by adding observations as constraints into a linear system of
equations.
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Figure 1. Schematic showing different types of interpolation constraints that can be applied to an implicit interpolation scheme in 2-D. There
are two interfaces: the reference horizon with a value of 0 and the next interface with a value of 1. Here we show three types of constraints:
(1) scalar field norm constraints constrain the orientation of the scalar field and the norm of the implicit function at that location; (2) scalar
field value constraints control the value of the scalar field; and (3) tangent constraints constrain only the orientation of the implicit function
not the norm. Figure adapted from Hillier et al. (2014).

2.1.2 Piece-wise linear interpolation

The volumetric scalar field is defined by a piece-wise lin-
ear function on a volumetric tetrahedral mesh. In LoopStruc-
tural the volumetric tetrahedral mesh creation is simplified
by subdividing a regular Cartesian grid into a tetrahedral
mesh where one cubic element is divided into five tetrahe-
dra (see Appendix A). The linear tetrahedron is the basis of
the piecewise linear interpolation algorithm, where the prop-
erty within the tetrahedron is interpolated using a linear func-
tion; see Appendix A for a detailed description of the linear
basis function. We use constant gradient regularisation (Cau-
mon et al., 2013; Frank et al., 2007; Mallet, 1992), where
the change in gradient of the implicit function is minimised
between tetrahedra with a shared face. The constant gradient
regularisation is as follows:

∇ϕT1
·n−∇ϕT2

·n= 0, (2)

where ∂ϕT1 is the gradient of the first tetrahedron, ∂ϕT2 is
the gradient of the second tetrahedron and n is the normal
vector to the shared face.

2.1.3 Finite-difference interpolation

The second discrete interpolation approach approximates the
interpolant using a combination of tri-linear basis functions
on a Cartesian grid. The basis functions describe the interpo-
lation as a function of the corners of the cell within which
the point where the function is to be estimated falls; see Ap-
pendix B for the trilinear basis functions. For example, to
evaluate the value of the implicit function at a point xiyizi ,
first the cell c is found using integer division of the point
coordinates and the grid step vector, where the integer corre-
sponds to the index of the cell in the grid. The local coordi-
nates (ξ , η, ζ ) are determined by finding the relative location

of the point within the cell. Different regularisation terms can
be used; for example Irakarama et al. (2018) minimise the
sum of the second derivatives:

∂2

∂xx
+
∂2

∂yy
+
∂2

∂zz
+ 2

∂2

∂xy
+ 2

∂2

∂yz
+ 2

∂2

∂zx
= 0. (3)

Alternatively, a partial differential equation such as the bend-
ing energy (Renaudeau et al., 2019) or Gaussian curvature
could be used. In LoopStructural 1.0, currently only the sum
of the second derivatives can be used. The object-oriented
program design would allow for different regularisation con-
straints to be implemented without requiring any boiler plate
code.

2.1.4 Solving discrete interpolation

Using either the piecewise linear interpolator or the finite-
difference interpolator the scalar field is defined by the node
values of the support. These can be found by solving a system
of equations with M unknowns x1, . . .,xM (Caumon et al.,
2013; Frank et al., 2007; Mallet, 2004). The unknowns can
be found by solving the linear system of equations:

A · x = b, (4)

where A is anN×M sparse matrix containing the linear con-
straints and b the right-hand side vector containing the obser-
vation of constraint value. For example, to integrate value
observations the row in the interpolation matrix A would
contain the shape parameters for the cell in which the point
is contained. The right-hand side would be the value of the
scalar field.

The interpolation problem is over-constrained, i.e. N >

M , and can be solved in a least squares sense. The least
squares problem can be solved using a number of different
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algorithms either directly where AT
·A is directly inverted,

e.g. using lower–upper decomposition, or using an iterative
algorithm such as conjugate gradient. Generally, for large
problems an iterative approach is recommended because it
requires less memory. LoopStructural allows for multiple
different solvers to be used for the least squares problem.
The default solver is the conjugate gradient algorithm imple-
mented in scipy. To speed up the solver and in some cases
improve the stability of the solution we provide the option of
adding a small value (the smallest representable float) to the
diagonal of the square matrix (AT

·A).

2.1.5 Data-supported interpolation

Another approach for implicit surface modelling is to use
basis functions that are located at the same location as data
points.

This can be done using radial basis interpolation where
the interpolation problem is attempting to approximate the
signed distance field:

f (x,y,z)=

N∑
i=0

wi ·ϕ (X)+P(x,y,z). (5)

Alternatively, the problem can be represented using dual co-
kriging (Calcagno et al., 2008b; de la Varga et al., 2019; La-
jaunie et al., 1997), where the interpolation algorithm esti-
mates the potential field, which estimates incremental differ-
ences between the scalar field for different horizons. Using
this approach, the system is separated into two parts: (1) the
orientation observations which are incorporated using the di-
rection and magnitude and (2) the difference between the po-
tential field for different horizons.

LoopStructural uses SurfE, a C++ implementation of the
generalised radial basis interpolation (Hillier et al., 2014) for
all data-supported interpolations. SurfE has three approaches
for implicit surface reconstruction (1) signed distance inter-
polation using radial basis functions, (2) potential field in-
terpolation using dual co-kriging (Lajaunie et al., 1997) and
(3) signed distance interpolation using a separate scalar field
for each surface. The interface between LoopStructural and
SurfE allows the user to access all of the interpolation pa-
rameters used by SurfE. These include access to more so-
phisticated solvers, as well as the addition of a smoothing
parameter into the interpolation.

2.2 Modelling geological features

There are three ways that the geometry of rock packages can
structurally interact in a geological model:

1. stratigraphic contacts – the contact between sedimen-
tary layers;

2. fault contacts;

3. intrusive contacts.

These geological interfaces can all be affected by deforma-
tional structures such as folds, faults and shear zones. In the
following sections we will describe how these different geo-
logical features are integrated into 3D modelling workflows
by describing how different scalar fields interact and how the
structural geology of faults and folds are added into the im-
plicit surface description.

2.2.1 Stratigraphic contacts

In an implicit geological model, the distribution of strati-
graphic packages is defined by the values of a volumetric
scalar field. The scalar field is defined by an implicit func-
tion that is fitted to observations (location and orientation)
defining the geometry of the top or base of a geological unit.
A single geological interface can be modelled using a sin-
gle scalar field, or multiple conformable interfaces can be
modelled using a single scalar field where different isovalues
are used to represent the different contacts. A stratigraphic
group can be considered as a collection of stratigraphic sur-
faces that are conformable. When modelling a stratigraphic
group, the value of the scalar field represents the distance
away from the base of a group of conformable layers.

An unconformity is a geological interface where the rock
units on either side are of significantly different ages, usu-
ally representing a period of erosion. In Fig. 3 the three con-
ventional types of unconformity are shown. In Fig. 3a. the
unconformity between the units is a disconformity and the
geometry of the disconformity is not associated with either
stratigraphic package. The disconformity is usually identi-
fied by the significant gap between the ages of the rocks. In
this type of contact the layers actually share a similar ge-
ometry and for the purpose of 3D modelling the units could
be represented by a single stratigraphic group. Angular un-
conformities (Fig. 3b) are observed when erosion occurs af-
ter some deformation (the older beds are not horizontal any-
more) and before the next deposition of sedimentary layers.
As the name suggests the angular unconformity represents a
boundary between two differently oriented stratigraphic se-
quences. In a 3D model an angular unconformity can be in-
troduced by setting the boundary between the two sequences
to be the base of the younger package. In practice, this means
that the two groups are modelled with two separate scalar
fields. In Fig. 3c a nonconformity is shown; in this type of
unconformity the geometry of the older unit defines the base
of the younger unit. This could occur when a stratigraphic
package is deposited on top of a crystalline basement.

2.2.2 Structural frames

A structural frame (Fig. 4) is a local coordinate system that
is built around the major structural elements of a geological
event. In LoopStructural structural frames are used for char-
acterising the geometry of folds where the major structural
element is the fold axial foliation (Fig. 4b) and the structural
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Figure 2. Unconformities interfaces (red lines) and geological interfaces (black lines) represent a break in depositional history. There are
different possible geometries that an unconformity can have: (a) disconformity contact between two stratigraphic packages that share a
similar geometry, (b) an angular unconformity where the younger stratigraphic package defines the geometry of the unconformity and (c) a
nonconformity where the older stratigraphic package defines the geometry of the unconformity.

direction is roughly the fold axis. A fault frame is a structural
frame where the major structural feature is the fault surface,
the structural direction is the fault slip and the intermedi-
ate direction is the fault extent (Fig. 4). In LoopStructural,
structural frames are built by first building the major struc-
tural feature which will typically have more observations,
e.g. fault surface location or axial foliations. The structural
direction is then built using any available observations of the
structural direction, e.g. local observations of the fault slip or
the fold axis, combined with an additional constraint which
sets the gradient of the scalar field to be orthogonal to the ma-
jor structural feature. The third coordinate can be built with
an arbitrary value constraint, or value constraints to specify
the extent of the field in this direction (e.g. for faults−1 and 1
specify the edges of the fault). This value constraint is com-
bined with two global orthogonality constraints specifying
that the scalar field should be orthogonal to both the major
structural feature and the structural direction.

2.2.3 Faults

“A fault is a tabular volume of rock consisting of a central
slip surface or core, formed by an intense shearing, and a
surrounding volume of rock that has been affected by more
gentle brittle deformation spatially and genetically related to
the fault” (Fossen, 2010).

When adding faults there are two aspects to modelling the
fault: (1) building the fault surface geometry and (2) integrat-
ing the fault displacement into older surfaces. Where possi-
ble, measurements of faults include the movement direction
and the magnitude of displacement. There are three broad
approaches for integrating faults into the implicit modelling
framework: (1) add the fault into the implicit description of
the surface (Calcagno et al., 2008a; de la Varga et al., 2019);
(2) apply the fault after interpolating a continuous surface
(Godefroy et al., 2018a; Laurent et al., 2013) and (3) rep-
resent the foot wall and hanging wall by separate implicit
functions. Regardless of the approach used, the geometry of
the fault surface is defined before defining the geometry of

the surfaces displaced by the fault. The fault surface can be
interpolated by building a scalar field where the fault surface
is represented by an isovalue.

In LoopStructural there are two ways of representing
faults: (1) the fault kinematics are added into the implicit de-
scription of the scalar field of the faults and applied to the
affected scalar field(s) (Grose et al., 2021a) and (2) faults
are treated as domain boundaries and separate scalar fields
are used to model the hanging wall and footwall of the fault.
The kinematics of the fault are added into the implicit de-
scription of the faulted surface. To do this a fault frame is
built (Fig. 4c) where three coordinates are interpolated: (1) a
scalar field representing the distance to the fault surface, (2) a
scalar field representing the distance along the slip direction
of the fault and (3) a scalar field representing the extent of the
fault. These coordinates can then be used to define the fault
ellipsoid, which is a volumetric representation of the area de-
formed by the fault. The displacement of the fault can be de-
fined relative to this coordinate system, e.g. the displacement
of the fault should decay away from the fault centre along
the fault extent and along the direction of displacement us-
ing the bell-shaped curve (Fig. 5d). The displacement may
decrease with distance away from the fault centre perpendic-
ular to the fault surface; this can be defined using the profile
in Fig. 5c. If the displacement is constant within the model
area the curves in Fig. 5a and b can be substituted for Fig. 5c
and d respectively. The displacement curves shown in Fig. 5
can be substituted for any function of the fault frame coor-
dinates. The same approach for combining the fault profiles
(Fig. 5) within the fault frame has been used to define a vol-
umetric fault displacement field (Jessell and Valenta, 1996;
Godefroy et al., 2018b), the latter of which was adapted from
the following Laurent et al. (2013):

δ (x)=D0
(
f0(X)

)
·D1 (f1 (X)) ·D2 (f2 (X)), (6)

whereD0,1,2 are 1-D curves (e.g. any of the curves in Fig. 5)
describing the displacement of the fault within the fault
frame.
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Figure 3. (a) Generic structural frame showing isosurfaces for three coordinates. (b) Structural frame for characterising a fold. (c) Structural
frame for characterising fault geometry.

Figure 4. Fault displacement profiles: (a) constant displacement profile, (b) infinite-extent fault displacement showing no change in fault
displacement along the fault extent or in the slip direction, (c) finite-extent fault displacement showing fault displacement decreasing with
distance away from the fault, (d) finite-extent fault bell shaped profile for characterising fault displacement along the fault extent or in the
slip direction.

The fault frame can be built using a discrete implicit mod-
elling approach as additional constraints can be added into
the interpolation to enforce the orthogonality of the three co-
ordinate systems. This is added into the interpolation matrix
by adding a constraint for every element in the mesh where
∇φ0 (x,y,z) ·∇φ1 (x,y,z)= 0. This constraint can be added
twice so that when modelling φ2 both φ0 and φ1 are orthog-
onal. In general, this means that if the fault orientation, fault

trace and fault slip direction are known, the fault can be mod-
elled. Where the fault slip is unknown, this can be substituted
by conceptual knowledge, e.g. enforcing strike-slip faults or
reverse faults.

2.2.4 Folds

Folds are challenging to model using classical implicit inter-
polation algorithms, because by definition a folded surface
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has a symmetry only defined by their axial surface. The sym-
metry is hard to reproduce by only interpolating orientations
of the folded foliation as this would require orientations to
be sampled in a symmetrical way across the axial surface
(Laurent et al., 2016; Lisle et al., 2007; Mynatt et al., 2007).
The regularisation of implicit algorithms are usually defined
to minimise some sort of curvature between observations
such as constant gradient regularisation, minimising second
derivatives using finite differences or the weighted combi-
nation of infinite basis functions (Calcagno et al., 2008a;
Cowan et al., 2003; Frank et al., 2007; Jessell et al., 2014; La-
jaunie et al., 1997; Laurent, 2016; Mallet, 2014). As a result,
to model folded geometries the geologist is required to add
interpretive constraints such as synthetic bore holes, cross
sections or simply synthetic constraints to produce model ge-
ometries that fit the geologist’s conceptual idea of the fold
(Caumon et al., 2003; Jessell et al., 2014, 2010).

There have been a number of different approaches to in-
corporating folds into implicit modelling including incorpo-
rating the fold axial surfaces (Laurent et al., 2016; Maxelon
et al., 2009), the fold axis (Hillier et al., 2014; Laurent et
al., 2016; Massiot and Caumon, 2010), both these structural
elements and fold overprinting relationships (Laurent et al.,
2016).

LoopStructural implements the following fold constraints:
the fold axis, fold axial surface and overprinting relationships
(Laurent et al., 2016) by adding additional constraints into a
discrete interpolation approach. A fold frame (Figs. 4b and 6)
is built where the principal axes of the fold frame correspond
with the direction of the finite-strain ellipsoid. The fold frame
allows for the geometry of the folded surface to be defined.

The orientation of the fold axis (FT
A) can be defined within

the fold frame by rotating the fold axis direction field by the
fold axis rotation angle (Fig. 6b2). The fold direction (FT

D) is
defined by rotating the normal to the axial foliation around
the fold axis by the fold limb rotation angle. The orienta-
tion of the folded surface is the plane defined by the fold
axis vector and the fold direction vector (Fig. 6b3). The fold
constraints have been implemented into the piecewise linear
interpolator using four main constraints, where ϕ(xyz) rep-
resents the implicit function, ∇ represents the gradient, t rep-
resents a tetrahedron where the constraint is applied and T1
and T2 are two tetrahedrons that share a face, and hs is the
expected magnitude of the gradient norm:

– The folded surface should contain the orientation of the
fold axis: FT

A · ∇ϕ(xyz)= 0.

– The folded surface will contain the fold direction (solid
red arrow in Fig. 6b3) vector: FT

D · ∇ϕ(xyz)= 0.

– The regularisation should only occur within the inter-
mediate structural direction (ex) et

x0 ·∇ϕT1(xyz)− et
x1 ·

∇ϕT2(xyz)= 0.

– A similar fold constraint is as follows: et
x · ∇ϕ(xyz)=

1
hs

.

The fold constraints require two angles to be known through-
out the model: the fold axis rotation angle (αP) and the fold
limb rotation angle (αL). The fold axis rotation angle (αP) is
the angle between the fold axis and ey (Grose et al., 2017).

The fold limb rotation angle (αL) is the angle that defines
the orientation of the folded foliation relative to fold axial fo-
liation and will be 0 in the hinge of the fold and positive and
negative in the limbs (Grose et al., 2017). Grose et al. (2017)
used the fold frame to calculate these angles for observations
and then applied interpolation either using radial basis func-
tions or by fitting an objective function (a Fourier series) to
the rotation angles within the fold frame coordinates. The
wavelength of the fold can be estimated by calculating an
experimental semi-variogram of the fold rotation angle in
the fold frame coordinates. For periodic folding, the exper-
imental variogram has a periodic curve where the first peak
indicates the half-wavelength of the fold (Grose et al., 2017).

In LoopStructural the default approach for fitting the fold
rotation angle is to fit a Fourier series. The fold axis rota-
tion angle is calculated first; the wavelength is first estimated
automatically using the gradient descent method on the ex-
perimental variogram of the fold axis. The fold rotation an-
gle is optimised using the scipy.optimize.curve_fit method
using non-linear least squares to fit wavelength and Fourier
coefficients. The fold axis can then be defined throughout the
model by applying the rotation of ey ·Rp. If the fold axis is
constant (cylindrical folding), a constant fold axis vector can
be used.

The fold limb rotation angle is calculated by finding the
complementary angle between the normal to the folded fo-
liation and ez in the plane perpendicular to the fold axis.
The fold limb rotation angle can be interpolated by fitting
a Fourier series to the observations in the same way as fitting
the fold axis rotation angle.

Grose et al. (2018, 2019) use inverse problem theory to fit
a forward model of the fold geometry to the observed fold
rotation angles. The joint posterior distribution of the fold
parameters (Fourier series coefficients, fold wavelength and
a misfit parameter) are sampled using Bayesian inference.
This allows multiple fold geometries to be explored without
perturbing the datasets. LoopStructural does not provide a di-
rect probabilistic interface; however, it is possible to define a
probabilistic representation of the fold geometry curves and
add this into the modelling workflow. An example using the
Python library emcee (Foreman-Mackey et al., 2013) is pro-
vided in the LoopStructural documentation.

3 Implementation in LoopStructural

3.1 Loop structural design

LoopStructural is written using Python 3.6+, using numpy
data structures and operations. The design of LoopStructural
follows an object-oriented architecture with multiple levels
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Figure 5. Schematic diagram of a fold adapted from Laurent et al. (2016) showing (a) fold frame, (b1) fold frame direction vectors, (b2) fold
axis defined by fold axis rotation angle, (b3) folded foliation defined by fold limb rotation around fold axis.

of inheritance. Object-oriented design allows for LoopStruc-
tural to be used as a development platform for 3D geological
modelling, where new features can be added without needing
to implement boiler plate code. There are five submodules
that can be imported into a Python environment:

1. core contains the core modelling functionalities and the
management of the geological concepts.

2. interpolation contains the various interpolation code
and supports used to build scalar fields.

3. datasets contains the test and reference datasets.

4. utils contains miscellaneous functions.

5. visualisation contains model visualisation tools.

The creation and management of different geological ob-
jects is managed by the GeologicalModel. To initialise an
instance, the required arguments are the minimum and maxi-
mum extents of the bounding box, which are specified by two
separate vectors. The default behaviour is to define a rescal-
ing coefficient as follows:

scale=max(xmax− xmin,ymax− yminzmax− zmin). (7)

Adding different geological objects can be done through us-
ing an instance of GeologicalModel. There are four different
types of observations that can be incorporated into an inter-
polation algorithm:

1. value constrains the value of the scalar field at a partic-
ular location and can either represent the location of a
surface or the distance away from the surface.

2. gradient constrains only the gradient of the scalar field;
e.g. the normal to the scalar field should be orthogonal
to two vectors within the gradient plane.

3. tangent is the scalar field and should be orthogonal to a
vector.

4. norm constrains the direction and magnitude of the
scalar field norm.

The data can be associated with the GeologicalModel us-
ing the set_data(data) method where “data” is a pandas data
frame. When added into the model the data points are trans-
formed into the model coordinate system.

3.2 Adding geological objects

Within LoopStructural geological objects such as stratigra-
phy, faults, folding event and unconformities are all repre-
sented by a GeologicalFeature. A GeologicalFeature can be
evaluated for the value of the scalar field and/or the gradient
of the scalar field at a location.

The GeologicalModel contains an ordered collection of
geological features and determines how the features interact.
For example, unconformity geological features act as a mask
to determine where the interface between packages should
be. The ordering of the GeologicalFeatures inside the model
reflects the timing of the geological events being modelled.
The most recent features are added first as their geometry is
used to constrain the older features.

There are different ways a GeologicalFeature can be added
to a GeologicalModel depending on the type of geological
object that is being modelled. The LoopStructural Geologi-
calModel class provides an interface for creating geological
objects, where different types of geological features can be
added using different functions. All geological objects are
represented by one or multiple volumetric scalar field. These
scalar fields can be built using an implicit interpolation algo-
rithm where the implicit function is approximated from ob-
servations of the scalar field. Alternatively, a GeologicalFea-
ture can be represented by an analytical function (or a com-
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Figure 6. Comparison of interpolation methods for synthetic surfaces where two isosurfaces are shown coloured by the local z coordinate:
(a) input data, (b) surfaces interpolated using PLI, (c) surfaces interpolated using FDI, (d) surfaces interpolated using SurfE; note the lower
isosurface has a non-manifold geometry.

bination of existing GeologicalFeatures). LoopStructural al-
lows for different interpolation algorithms to be specified for
different GeologicalFeatures within the same model. The in-
terpolation algorithm and any parameter definitions are spec-
ified by adding additional keyword arguments to the func-
tion. Table 1 outlines the possible arguments that can be spec-
ified for the interpolator.

3.3 Model output

LoopStructural includes a number of helper functions for
evaluating the GeologicalModel on an array of coordinates

within the model. The following functions can be called from
a GeologicalModel as shown in the code below.

– To evaluate the lithology value at a location the function
evaluate_model(xyz) returns a numpy array containing
the integer ID of the stratigraphy that was specified in
the stratigraphic column.

– To evaluate the value of a GeologicalFeature at
a location within the model the function evalu-
ate_feature_value(feature_name,xyz) returns the value
of the scalar field that represents the geological feature.
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Table 1. Interpolation keyword arguments. Default values are highlighted by bold text.

Keyword arguments Description Possible values

Interpolator_type A choice for what interpolator to use “PLI”, “FDI”, “Surfe”, “DFI”

solver Which algorithm to solve the least squares
problem (for PLI, FDI and DFI)

“cg”, “lu”, “pyamg”, “lsqr”, “lsmr”, “custom”

nelements Number of elements in the discrete interpola-
tion approach

100 : ∞, 100 000

buffer How much bigger to mesh around the model ex-
tents

0 : ∞, 0.2

cpw Weighting of value constraints in discrete least
squares problem

0 : ∞, 1

gpw Weighting of gradient constraints in discrete
least squares problem

0 : ∞, 1

npw Weighting of norm constraints in discrete least
squares problem

0 : ∞, 1

tpw Weighting of tangent constraints in discrete
least squares problem

0 : ∞, 1

regularisation Weighting of regularisation constraints in least
squares problem

0 : ∞, 1

data_region Buffer around the observations to interpolate
scalar field only on a subsection of the mesh

Boolean function, None

– To evaluate the gradient of a GeologicalFeature the eval-
uate_feature_gradient(feature_name,xyz) can be called.

Triangulated surfaces can be extracted from a Geologi-
calFeature within LoopStructural and exported into common
mesh formats, e.g. Visualisation ToolKit (.vtk) or Wavefront
(.obj). These surfaces can then be imported into external soft-
ware, e.g. ParaView5.

3.4 Model visualisation

LoopStructural has three different visualisation tools that can
be accessed from the LoopStructural.visualisation module:

1. LavaVuModelViewer. LavaVu (Kaluza et al., 2020) is
a visualisation module that provides interactive visuali-
sation. We use LavaVu for visualising triangulated sur-
faces representing the geological interfaces as well as
the scalar field representing the implicit function. The
creation and manipulation of LavaVu objects is wrapped
by the LavaVuModelViewer class which provides an in-
terface to the GeologicalModel. This is an interactive
(and static) 3D visualisation using LavaVu.

2. MapView. This is a 2D visualisation (cross section,
map) using matplotlib (Hunter, 2007) that can create a

5https://www.paraview.org/, last access: 15 June 2021

geological map from the resulting geological model. In-
put datasets can be plotted drawing the location of con-
tacts and the orientation of the contacts using the strike
and dip symbology. The scalar field can be evaluated on
the map surface, contours can be drawn or the geologi-
cal model can be plotted onto the map.

3. FoldRotationAnglePlotter. This is a visualisation mod-
ule for producing S plots and S-variogram plots for a
folded geological feature. Plotting is handled using mat-
plotlib.

4 Examples

4.1 Implicit surface modelling

In the first example we will demonstrate modelling two syn-
thetic surfaces using the same scalar field within a model vol-
ume of (−0.1,−0.1,−0.1) and (5.1,5.1,5.1). The observa-
tions are two sets of points. The first set forms a surface at
points on a regular grid for z= 4 and the second set forms a
surface at z= 0.2 ·sin(x · 10)+0.2 ·cos(y)+0.15 ·N (0,0.1)
where N (0,0.1) is a normal distribution with a mean of 0
and standard deviation of 0.1.

In Fig. 7a the data points are shown, and in Fig. 7b, c and
d the same surfaces are interpolated using the three default
interpolation algorithms in LoopStructural (PLI – piecewise
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Figure 7. Implicit surfaces calculated for regularisation constraints (0.1,0.5,1,1.5) using piecewise linear interpolator (PLI), finite-difference
interpolator (FDI) and radial basis function (SurfE).

linear interpolator, FDI – finite-difference interpolator and
SurfE – radial basis interpolation). The results for the inter-
polation using PLI and FDI are very similar, as both interpo-
lation algorithms use least squares to fit observations whilst
minimising a global regularisation term that effectively min-
imises the second derivative of the implicit function. This
means that the interpolant balances fitting the observations
with minimising the roughness of the resulting surfaces. The
radial basis interpolation used by SurfE is a direct interpo-
lation approach, which means that the interpolant must fit
all of the observations (although a smoothing constraint can
be used). In this example, because the surfaces are over-
constrained to a highly variable point set the resulting surface
is non-manifold (cannot be unfolded into a flat plane). While
this does not necessarily mean the surface is incorrect it is
geologically unlikely.

The weighting of the regularisation constraint generally
has the biggest impact on the resulting geometry when using
the discrete interpolation approaches. In Fig. 8 the regulari-
sation constraint is varied from 0.1 (rougher surface) to 1.5
(smoother surface). Lower regularisation constraints result in
surfaces that more closely fit the observations at the cost of
a more irregular surface. However, even for the lowest reg-
ularisation constraints the surfaces still do not fit every ob-
servation. There is no explicit rule for choosing the relative
weighting of the regularisation, as it is often dependent on
the surfaces being modelled. For example, when modelling

a surface where the underlying process causing the varia-
tion in the data points is non-stationary, a higher regulari-
sation constraint is appealing as the goal of the modelling is
to reproduce the effect of this process. However, if the per-
turbations are the result of a process we are trying to model
(probably a stationary process) then a lower regularisation
constraint would be appealing. A smoothing constraint can
be added into the radial basis interpolation which aims to in-
crease the smoothness of the resulting surface. The smooth-
ing constraint for data-supported methods adds a buffer to
how closely the function must fit the observations. In Fig. 8
increasing regularisation results in smoother surfaces; how-
ever, with this approach the fit to both surfaces is impacted,
which can be seen by the change in colour of the surface,
which represents the local height of the surface.

4.2 Modelling folds: type 3 interference

To demonstrate the time-aware approach for modelling folds
we reuse the case study from Laurent et al. (2016). The refer-
ence model was generated using Noddy (Jessell and Valenta,
1996) with two folding events forming a type 3 interference
pattern:

1. F1 involves large-scale recumbent folding (wavelength:
608 m, amplitude: 435 m, fold axis: N000E/45◦).

2. F2 involves upright open folding (wavelength: 400 m,
amplitude: 30 m).
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Figure 8. Structural data for refolded fold: (a) observations of S2, (b) observations of S1 showing interpolated scalar field of S2 and
(c) observations of S0 showing interpolated scalar field of S1.

Figure 9. F2 S plot showing the fold rotation angle between observations of S1 and the fold frame S2.

The structural observations were sampled from a synthetic
topographical horizon from three outcrop locations. The ax-
ial foliation to F2, S2, is shown in Fig. 9a. The observations
of S2 are used to interpolate the major structural feature of
the F2 fold frame (Fig. 12a). The axial foliation of F1, S1,
is shown in Fig. 9b, and the scalar field value of the interpo-
lated S2 is shown on the map. The fold rotation angle for F2
is calculated by finding the angle between the interpolated
S2 field and the folded S1 field and is shown in the S plot
for Fig. 10a. The red curve in Fig. 10a is a Fourier series that
is automatically fitted to the observations. The wavelength of
the fold is estimated by finding the first peak of the S vari-
ogram (Fig. 10b). Fold constraints are added into the interpo-
lation algorithm using this curve to define the geometry of the
fold along the fold axis, and the average intersection lineation
between the S1 foliation and the interpolated S2 field is a
proxy for the fold axis. The interpolated scalar field is shown
in Fig. 12b. The observations of S0 are shown in Fig. 9c, and
the scalar value of the S1 field is shown on the map. The S
plot for F1 is shown in Fig. 11a and shows two opposing fold
limbs in the data points. The red curve shows the Fourier se-
ries that characterises the geometry of the fold along the fold
axis and indicates that there are two unobserved fold hinges
away from the data points. These constraints are added into
the implicit model, and the scalar field is shown in Fig. 12c.

4.3 Integration with map2loop

In the final examples we use map2loop (Jessell et al., 2021)
as a pre-processor to generate an input dataset from regional
geological survey maps, the national stratigraphic database
and a global digital elevation model. map2loop creates
a set of augmented data files that can be used to build a
geological model in LoopStructural. The class method (Ge-
ologicalModel.from_map2loop_directory(m2l_directory,
**kwargs)) creates an instance of a GeologicalModel from
a root map2loop output directory. We will demonstrate the
interface between map2loop and LoopStructural with two
case studies (1) from the Flinders Ranges in South Australia
and (2) from the Hamersley region in Western Australia.
The first case study demonstrates the interface between
map2loop and LoopStructural for a large regional model.
The second case study shows how the conceptual model
used to generate the input dataset can be varied.

The first example uses a small study area from South
Australia using the Geological Survey of South Australia’s
open-access datasets (GSSA, 2020). The model area covers
approximately 85 km by 53 km within the Finders Ranges in
South Australia. The stratigraphic units within this area are
shown in Fig. 13a, and the outcropping geology is shown
in the geological map (Fig. 13b); the patches of the map

https://doi.org/10.5194/gmd-14-3915-2021 Geosci. Model Dev., 14, 3915–3937, 2021



3928 L. Grose et al.: LoopStructural 1.0: time-aware geological modelling

Figure 10. F1 S plot showing the fold rotation angle between observations of S0 and the fold frame S1.

Figure 11. Scalar fields: (a) S2, (b) S1 and (c) bedding.

without any geological units represent shallow Tertiary and
Quaternary cover. map2loop extracts basal contacts from
the outcropping geological units and estimates the layer
thicknesses shown in the stratigraphic column. Within this
map area all of the stratigraphic groups share a similar
deformation history and area modelled as a single super-
group. The cumulative thickness is estimated for all of the
stratigraphic horizons relative to the Pound Subgroup and is
used to constrain the value of the implicit function. There
are 15 faults within the model area with limited geometrical
information constraining only the map trace of the faults. As
a result, the faults are assumed to be vertical with a vertical
slip direction, and the displacements are estimated from the
geometry on the geological map using map2loop. The geom-
etry of the fault can be changed within LoopStructural and
map2loop to explore the uncertainty space. The overprinting
relationships of the faults are estimated from the geological
map using map2loop by analysing the intersection between
faults on the geological map. The estimated overprinting
relationships are used to constrain the order of the faults
in the geological model. The scalar field representing the
supergroup is interpolated after the observations of the strati-
graphic horizon (contacts and orientation measurements)
are un-faulted using the calculated fault displacements.
The modelling workflow is all encapsulated in the (Ge-
ologicalModel.from_map2loop_directory(m2l_directory,

**kwargs)) class method, meaning the geological model can
be produced without any user input.

The resulting geological model surfaces are shown in
Fig. 14 where the surface represents the base of a strati-
graphic group and are coloured using the stratigraphic col-
umn (Fig. 13a). The faults in the model are interpolated us-
ing a Cartesian grid with 50 000 elements and are interpo-
lated using the finite-difference interpolator, and the interpo-
lation matrix is solved using the pyamg algorithmic multi-
grid solver (Olson and Schroder, 2018). Stratigraphy is inter-
polated using a finer mesh with 500 000 elements using the
finite-difference interpolator and also using pyamg. Using a
workstation laptop with an i7 processor and 32gb of RAM
the data processing using map2loop takes approximately
1 min, building the implicit model takes approximately 8 min
and the rendering of the surfaces on a (200× 200× 100)
Cartesian grid takes 3 min. The intersection of the solid ge-
ological model and the map surface is shown in Fig. 13c,
allowing for a comparison with the input dataset. The geo-
logical model has interpolated the geological packages un-
derneath the surficial deposits.

In the second example we use map2loop to process a small
area of the Turner Syncline in the Hamersley region in West-
ern Australia using data provided by the Geological Sur-
vey of Western Australia (GSWA) (2016). The model area
is 12 km× 13 km and includes three faults. The default as-
sumption by map2loop is that the faults are vertical and are
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Figure 12. (a) Stratigraphic column for model area showing relative thickness. (b) Geological map showing bedding and faults. (c) Geological
model shown on map surface.

Figure 13. Geological model from South Australia using map2loop processed data stratigraphic surfaces using colours from Fig. 12a and
fault surfaces.

purely dip slip, and the hanging wall and displacement are es-
timated by analysing the map pattern of the faulted units (for
more information about this process the reader is referred
to Jessell et al., 2021). In this example, we have created 12
realisations of the geological model by rotating the fault slip
direction from a vertical vector around the normal to the fault
surface. The resulting models are shown in Fig. 14 where the
fault slip vector is shown as a pole on the stereonet and the
fault plane is shown by a great circle. The results show a wide
range in geometries with some structures being unlikely, for
example a rotation of 120◦ removes the map expression of
the western fault. LoopStructural provides an easy interface
to allow for the kinematics and conceptual models for differ-
ent geological features to be incorporated into the modelling
workflow.

5 Discussion

LoopStructural is the 3D geological modelling module for
Loop, a new open-source 3D probabilistic geological and
geophysical modelling platform. LoopStructural integrates
the relative timing of geological features into the descrip-
tion of the model elements using a time-aware modelling
approach where the model is built by adding geological fea-
tures in the reverse order from which they occur. This is nec-
essary for capturing the complexities of complex structural
geometries, for this approach is used for modelling refolded
folds (Fig. 12). In a similar way faults are added backwards
in time; this means that the displacements of the faults are
applied to the model prior to interpolating the faulted sur-
face. As a result, the fault displacements and overprinting
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Figure 14. The 12 model iterations where initial fault slip vector has been rotated around the normal to the fault surface. Stereonets show the
resulting fault slip vectors (poles) and the fault plane (great circles).

relationships are internally consistent. In comparison, where
faults are represented using step functions (Calcagno et al.,
2008b; de la Varga and Wellmann, 2016) the fault displace-
ments are added into the interpolation of the faulted surfaces
using the polynomial trend in the dual co-kriging system,
meaning the cumulative displacement is determined as the
best global fit, rather than incorporating the displacements of
individual faults.

LoopStructural provides a flexible open-source implemen-
tation of implicit geological modelling algorithms work-
flows. The motivation behind developing LoopStructural was
to create a framework for being able to develop new implicit
geological modelling algorithms and tools. LoopStructural
has native implementation of piecewise linear interpolation
(Caumon et al., 2013; Frank et al., 2007; Mallet, 1992, 2004),
including the fold constraints (Grose et al., 2017; Laurent et
al., 2016) and a finite-difference interpolator, minimising the
second derivative as a regularisation constraint (Irakarama et
al., 2018). In Fig. 8 we showed that choosing the regularisa-
tion weight is somewhat dependent on the quality of the in-
put dataset. For this reason, varying the regularisation weight
and interpolation approach should be a common step in im-
plicit modelling workflows. The current implementation of
the piecewise linear interpolation uses a tetrahedral mesh that
is derived from a Cartesian grid. A more sophisticated mesh

generated from an external mesh generation code could be
integrated into LoopStructural by overwriting the tetrahedral
mesh class with a custom class. Within the LoopStructural ar-
chitecture alternative regularisation constraints could easily
be incorporated. For example, it is possible to define custom
constraints for implementation within the finite-difference
scheme; the user simply has to provide a dictionary contain-
ing 3D numpy arrays, where each pixel in the array repre-
sents the 3D finite-difference mask and a relative weighting.
New interpolation schemes can be easily implemented using
various levels of inheritance to avoid re-writing boiler plate
code. For example, the interface with SurfE capitalises on the
object-oriented design of LoopStructural, where the interface
between LoopStructural and SurfE was achieved by creating
a new class which inherits the components for the base geo-
logical interpolation class. Both the piecewise linear interpo-
lator and finite-difference interpolator inherit from a base dis-
crete interpolation class which manages the assembly of the
least squares system and the solving of the least squares prob-
lem. This object-oriented design allows for the interpolation
algorithms to be interchanged and re-implemented without
modifying the other aspects of the geological modelling.

A recent focus of 3D modelling research has been to simu-
late uncertainties by framing the problem as an inverse prob-
lem, where the data points are the parameters of the forward
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model (de la Varga et al., 2019). This allows for additional
geological knowledge to be integrated into the model def-
inition such as fault displacement, fault type and fold ge-
ometry. Within LoopStructural, we have directly integrated
many aspects of the geological knowledge into the interpo-
lation schemes and model definition. The fundamental rea-
soning behind our approach is that the subjective constraints
that are required to capture the geological features with stan-
dard implicit algorithms will be one of the greatest sources
of uncertainty in the model. By incorporating the geologi-
cal concepts into the geological modelling algorithms, these
conceptual uncertainties can be integrated into a probabilistic
definition of the geological model. Currently, LoopStructural
does not have a probabilistic interface; however, all param-
eters relating to geological structures (topological ordering,
fold geometries, fault displacement and geometries) are ac-
cessible from the GeologicalModel class functions.

In Fig. 14, map2loop (Jessell et al., 2021) generates an
augmented dataset from the open-access geological survey
databases (stratigraphic database, DTM, geology shapefiles,
structural lines and structural observations). In this exam-
ple, the total time from data processing to model render-
ing was approximately 10 min. Using discrete implicit mod-
elling means that the complexity of the model is defined by
the resolution of the support, rather than the number of ob-
servations. Discrete interpolation involves solving the linear
equation A · x = b where A is a sparse matrix. Different al-
gorithms can be used for solving this linear system. For ex-
ample, the algorithmic multigrid solver used in the Flinders
Ranges model can be substituted for the default conjugate
gradient solver increasing the interpolation time. The alge-
braic solver uses multiple levels of conjugate gradient solvers
for coarse grids to approximate the solution to the interpola-
tion problem. The coarse grid solution is then used for im-
proving the solving of the next level. Other approaches to
speeding up the linear system could be applied such as using
preconditioner for the conjugate gradient solver.

The fault displacement profiles (Fig. 5) define the fault
displacement within the fault volume; however, these con-
ceptual profiles are not fitted to the observations. Godefroy
et al. (2018b) interpolate a continuous surface without obser-
vations within the fault domain and then use particle swarm
optimisation to fit the displacement profiles to the unused ob-
servations. LoopStructural cannot apply this same approach
because all data points are restored (with respect to the
fault displacement) prior to interpolating the faulted surfaces.
The displacement estimates calculated by map2loop could
be used to estimate the displacement profile along the fault
trace. The fault displacements could then be optimised using
a probabilistic representation of the model geometry param-
eters. Within the same framework it would be necessary to
include the parameterisation of the fault slip vector and fault
dip if these are defined by a conceptual model rather than
observations. However, defining a specific likelihood func-
tion for constraining the fault displacement is challenging

and may be specific to the geology in question – e.g. where
observations are abundant it would be possible to adopt the
technique from Godefroy et al. (2018b) and separate some
data from the interpolation; however, when dealing with typ-
ical regional scale map sheets most of the observations occur
on the surface with limited constraints on the 3D geometry.

6 Conclusions

In this contribution we have introduced LoopStructural, a
new open-source Python library for implicit 3D geological
modelling. The key features of LoopStructural are as follows:

– implicit 3D geological modelling algorithms using dis-
crete interpolation,

– implementation of structural geology of folds and faults
using structural frames,

– a direct link to map2loop for automated 3D geological
modelling,

– an object-oriented software design allowing for easy
development and extension of the 3D modelling algo-
rithms.

LoopStructural uses a time-aware modelling approach where
relative timing between different geological features (fold-
ing, faulting and stratigraphy features) allows for complex
overprinting relationships to be incorporated into the implicit
geological models. Folds and faults are encoded using struc-
tural frames, a curvilinear coordinate system that is oriented
with the geometry of the major structural feature of the de-
formational event. Using structural frames, the geometry of
folds and faults can be locally characterised similarly to how
a structural geologist describes the objects in the field.
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Appendix A: Tetrahedral mesh

A cube is defined by eight vertices and can be referenced
inside a Cartesian grid by the indices ijk. We subdivide each
cubic element in a Cartesian grid into five tetrahedrons. To
ensure that neighbouring tetrahedrons share common faces
two masks need to be applied. We apply the even mask when
i+ j + k is even.

The property is interpolated linearly within the element,

φ (x,y,z)= a+ bx+ cy+ dz. (A1)

This can be expressed by the values at the nodes (0–3):

φ0 = a+ bx0+ cy0+ dz0, (A2)
φ1 = a+ bx1+ cy1+ dz1, (A3)
φ2 = a+ bx2+ cy2+ dz2, (A4)
φ3 = a+ bx3+ cy3+ dz3. (A5)

Solving this set of linear equations for a, b, c, d depends
on the location of the tetrahedron nodes and has to be re-
calculated for every tetrahedron. This can be simplified by
applying a coordinate transformation to a reference tetrahe-
dron (Fig. 2). This simplifies the solution and allows for the
interpolation to be described by the barycentric coordinates
(c0c1c2c3) of the tetrahedron. The barycentric coordinates
can be used as a local coordinate system for the tetrahedron
(ξηζ ).

Since

c0+ c1+ c2+ c3 = 1, (A6)
ξ = c1, (A7)
η = c2, (A8)
ζ = c3. (A9)

The property within the tetrahedron can be interpolated using
the four shape functions below:

N0 (ξ,η,ζ )= 1− ξ − η− ζ, (A10)
N1 (ξ,η,ζ )= ξ, (A11)
N2 (ξ,η,ζ )= η, (A12)
N3 (ξ,η,ζ )= ζ. (A13)

The gradient of the function within the tetrahedron ∂φT can
be found by applying the chain rule between the derivative
of the shape function within the barycentric coordinates and
the partial derivatives with respect to the natural coordinates

and Cartesian coordinates:

∂ϕT

∂x
=

3∑
i=0

f (xi,yi,zi)

·

(
∂Ni

∂ξ

∂ξ

∂x
+
∂Ni

∂η

∂η

∂x
+
∂Ni

∂ζ

∂ζ

∂x

)
, (A14)

∂ϕT

∂y
=

3∑
i=0

f (xi,yi,zi)

·

(
∂Ni

∂ξ

∂ξ

∂y
+
∂Ni

∂η

∂η

∂y
+
∂Ni

∂ζ

∂ζ

∂y

)
, (A15)

∂ϕT

∂z
=

3∑
i=0

f (xi,yi,zi)

·

(
∂Ni

∂ξ

∂ξ

∂z
+
∂Ni

∂η

∂η

∂z
+
∂Ni

∂ζ

∂ζ

∂z

)
. (A16)
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Figure A1. Odd and even masks for extracting tetrahedrons from a Cartesian grid.

Figure A2. Schematic diagram showing transformation from tetrahedron in Cartesian space to reference tetrahedron in natural coordinates.
This transformation allows for the shape functions and derivatives to be simplified.
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Appendix B: Trilinear interpolation in a cubic element

The implicit function can be described relative to the eight
vertices of the cell using the shape functions (N0,...,7):

N0 =
1
8
(1− ξ)(1− η)(1− ζ ) , (B1)

N1 =
1
8
(1+ ξ)(1− η)(1− ζ ) , (B2)

N2 =
1
8
(1+ ξ)(1+ η)(1− ζ ) , (B3)

N3 =
1
8
(1+ ξ)(1− η)(1+ ζ ) , (B4)

N4 =
1
8
(1− ξ)(1− η)(1+ ζ ) , (B5)

N5 =
1
8
(1+ ξ)(1− η)(1− ζ ) , (B6)

N6 =
1
8
(1+ ξ)(1+ η)(1+ ζ ) , (B7)

N7 =
1
8
(1− ξ)(1+ η)(1+ ζ ) . (B8)

The derivative of the function can be calculated by applying
the chain rule, in the same way as for the linear tetrahedron,
however in this case to all eight shape functions N0...7.
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Code and data availability. LoopStructural is a free open-source
Python library licensed under the Massachusetts Institute of
Technology (MIT) license. It is currently hosted on https://
github.com/Loop3d/LoopStructural (last access: 15 June 2021)
the version associated with the publication can be found
https://doi.org/10.5281/zenodo.4649536 (Grose et al., 2021b).

Documentation is available within the package and is hosted on
https://loop3d.github.io/LoopStructural (last access: 15 June 2021).

Jupyter notebooks used for the examples in this paper are
available on https://github.com/lachlangrose/loopstructural_paper_
examples (last access: 15 June 2021) and can also be found
https://doi.org/10.5281/zenodo.4677735 (Grose, 2021).
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