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Abstract. Atmospheric boundary layers and other wall-
bounded flows are often simulated with the large-eddy simu-
lation (LES) technique, which relies on subgrid-scale (SGS)
models to parameterize the smallest scales. These SGS mod-
els often make strong simplifying assumptions. Also, they
tend to interact with the discretization errors introduced by
the popular LES approach where a staggered finite-volume
grid acts as an implicit filter. We therefore developed an
alternative LES SGS model based on artificial neural net-
works (ANNs) for the computational fluid dynamics Mi-
croHH code (v2.0). We used a turbulent channel flow (with
friction Reynolds number Reτ = 590) as a test case. The de-
veloped SGS model has been designed to compensate for
both the unresolved physics and instantaneous spatial dis-
cretization errors introduced by the staggered finite-volume
grid. We trained the ANNs based on instantaneous flow fields
from a direct numerical simulation (DNS) of the selected
channel flow. In general, we found excellent agreement be-
tween the ANN-predicted SGS fluxes and the SGS fluxes de-
rived from DNS for flow fields not used during training. In
addition, we demonstrate that our ANN SGS model gener-
alizes well towards other coarse horizontal resolutions, es-
pecially when these resolutions are located within the range
of the training data. This shows that ANNs have potential to
construct highly accurate SGS models that compensate for
spatial discretization errors. We do highlight and discuss one
important challenge still remaining before this potential can
be successfully leveraged in actual LES simulations: we ob-
served an artificial buildup of turbulence kinetic energy when
we directly incorporated our ANN SGS model into a LES
simulation of the selected channel flow, eventually resulting

in numeric instability. We hypothesize that error accumula-
tion and aliasing errors are both important contributors to the
observed instability. We finally make several suggestions for
future research that may alleviate the observed instability.

1 Introduction

Large-eddy simulation (LES) is an often-used technique to
simulate turbulent atmospheric boundary layers (ABLs) and
other wall-bounded geophysical flows with high Reynolds
numbers (e.g. rivers). These turbulent flows are challenging
to simulate because of their strong non-linear dynamics and
large ranges of involved spatial and temporal scales. LES
explicitly resolves only the largest, most energetic turbulent
structures in these flows, while parameterizing the smaller
ones with so-called subgrid-scale (SGS) models. This allows
LES to keep the total computational effort feasible for to-
day’s high-performance computing systems but makes the
quality of the results strongly dependent on the chosen SGS
model. As an SGS model based on physical principles alone
does not exist, the SGS models used today typically rely on
simplifying assumptions in combination with ad hoc empiri-
cal corrections (e.g. Pope, 2001; Sagaut, 2006).

To briefly illustrate the effects simplifying assumptions
can have, we take as an example the eddy-viscosity assump-
tion used in the popular Smagorinsky model (Smagorinsky,
1963; Lilly, 1967) and several other SGS models. Crucially,
the eddy-viscosity assumption introduces an alignment be-
tween the Reynolds stress and strain rate tensor that has
not been verified in experimental data (Schmitt, 2007). This
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makes it impossible to produce both the correct Reynolds
stresses and dissipation rates (Jimenez and Moser, 2000).
As a consequence, eddy-viscosity SGS models often require
ad hoc manual corrections (e.g. tuning the Smagorinsky co-
efficient and/or implementing a wall-damping function) or
multiple computationally expensive spatial filtering opera-
tions (e.g. scale-dependent dynamical Smagorinsky models
Bou-Zeid et al., 2005) to achieve satisfactory results.

Data-driven machine learning techniques are, in contrast,
much more flexible regarding their functional form and thus
may potentially help to circumvent the need for many of
these simplifying assumptions. This is especially valid for ar-
tificial neural networks (ANNs): simple feed-forward ANNs
with just one hidden layer are theoretically able to represent
any continuous function on finite domains (i.e. they are uni-
versal approximators; Hornik et al., 1989).

A wide effort is therefore currently underway to explore
the potential for ANNs and other machine learning tech-
niques in flow and turbulence modelling (Brunton et al.,
2020; Kutz, 2017; Duraisamy et al., 2019). In particular, mul-
tiple studies successfully modelled turbulence in Reynolds-
averaged Navier–Stokes (RANS) codes with machine learn-
ing techniques trained on high-fidelity direct numerical simu-
lations (DNSs) that resolve all relevant turbulence scales (e.g.
Kaandorp and Dwight, 2020; Ling et al., 2016a, b; Wang
et al., 2017; Wu et al., 2018; Singh et al., 2017).

Several other efforts in literature experimented with com-
parable approaches in both LES SGS modelling (Beck et al.,
2019; Cheng et al., 2019; Gamahara and Hattori, 2017;
Maulik et al., 2019; Milano and Koumoutsakos, 2002; Sargh-
ini et al., 2003; Vollant et al., 2017; Wang et al., 2018; Xie
et al., 2019; Yang et al., 2019; Zhou et al., 2019) and, inter-
estingly, parameterizations in climate–ocean modelling (e.g.
Bolton and Zanna, 2019; Brenowitz and Bretherton, 2019;
Rasp, 2020; Yuval and O’Gorman, 2020). The studies focus-
ing on LES SGS modelling similarly used DNS fields as a
basis and subsequently applied a downscaling procedure to
generate consistent pairs of coarse-grained fields (that are as-
sumed to represent the fields that a LES code would gener-
ate) and the quantity of interest (e.g. the “true” subgrid trans-
port or the closure term itself). These pairs were then typ-
ically used to train ANNs in a supervised way. Some stud-
ies showed very promising results with this method, both in
so-called a priori (offline) tests (where the predicted quan-
tity is directly compared to the ones derived from DNS) and
so-called a posteriori (online) tests (where the trained ANN
is directly incorporated as a SGS model into a LES sim-
ulation). However, these studies mostly focused on 2-D/3-
D (in)compressible isotropic turbulence (Beck et al., 2019;
Guan et al., 2021; Maulik et al., 2019; Vollant et al., 2017;
Wang et al., 2018; Xie et al., 2019; Zhou et al., 2019) and
thus do not represent wall-bounded geoscientific flows. Fur-
thermore, some of these studies (Beck et al., 2019; Maulik
et al., 2019; Zhou et al., 2019) resorted to ad hoc adjustments
(e.g. artificially introducing dissipation by combining with

the Smagorinsky SGS model, neglecting all backscatter) to
achieve stable a posteriori results. Such ad hoc adjustments
are not ideally preferred: they obscure the link between the a
priori and a posteriori implementation and re-introduce part
of the assumptions that are ideally circumvented by using
ANN SGS models.

There are also studies that attempted similar methods in
cases that better represent ABLs. Some of them focused on
LES wall modelling specifically (Milano and Koumoutsakos,
2002; Yang et al., 2019), which is challenging on its own
because of the many unresolved near-wall motions that the
wall model has to take into account. Sarghini et al. (2003)
and Gamahara and Hattori (2017), in turn, focused on SGS
modelling in the whole turbulent channel flow. Sarghini et al.
(2003) used neural networks to predict the Smagorinsky co-
efficient in the Smagorinsky–Bardina SGS model (Bardina
et al., 1980) reaching a computational time savings of about
20 %. Gamahara and Hattori (2017) directly predicted the
SGS turbulent transport with a neural network using DNS
during training. They got reasonable a priori results but did
not perform an a posteriori test. Another important step to-
wards application of these methods in realistic atmospheric
boundary layers was taken by Cheng et al. (2019). They per-
formed an extensive a priori test for an ANN-based LES
SGS model covering a wide range of grid resolutions and
flow stabilities (from neutral channel flow to very unstable
convective boundary layers). We emphasize though that for
successful integration of ANN-based SGS models in practi-
cal applications, accurate and numerically stable a posteri-
ori results are an important requirement. Recently, Park and
Choi (2021) took a step in this direction by testing an ANN-
based SGS model in a neutral channel flow both a priori and
a posteriori. They found that their SGS model introduced nu-
meric instability a posteriori, except when they neglected all
backscatter or only used single-point, rather than multi-point,
inputs. However, selecting only single-point inputs, in turn,
clearly reduced the a priori performance. Hence, it remains
an open issue whether and how the often-observed high a pri-
ori potential of ANN SGS models can be successfully lever-
aged in an a posteriori test, in particular for wall-bounded
flows like ABLs.

In addition, all the previously mentioned ANN LES SGS
models, together with traditional eddy-viscosity models, do
not directly reflect the LES approach where a staggered
finite-volume numerical scheme acts as an implicit filter, de-
spite being a common practice when simulating ABLs. Tra-
ditional eddy-viscosity models are typically derived based
on a generic filtering operation that does not consider the
finite discrete nature of the used numerical grid (i.e. it is
usually thought of as an analytical filter like a continuous
top-hat filter), while the ANN SGS models so far did not at-
tempt to compensate for all the discretization errors arising in
simulations with staggered finite volumes. These discretiza-
tion errors, however, can strongly influence the resolved dy-
namics (e.g. Ghosal, 1996; Chow and Moin, 2003; Giaco-
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mini and Giometto, 2021), especially at the smallest resolved
scales. Since the ANNs have access to both the instantaneous
DNS flow fields and corresponding coarse-grained field dur-
ing training, a unique opportunity arises to compensate also
for instantaneous discretization errors in ANN SGS models.

Within this context, there have been a couple of note-
worthy studies (Langford and Moser, 1999; Völker et al.,
2002; Zandonade et al., 2004) that introduced the frame-
work of perfect and optimal LES. Based on this frame-
work, these studies approximated the full LES closure terms
(that account for both the unresolved physics and all instan-
taneous discretization errors) with a data-driven approach
based on DNS. The statistical method they used for this
purpose though (i.e. stochastic estimation) still made addi-
tional assumptions about the functional form of the LES SGS
model (e.g. linearity). A recent study by Beck et al. (2019)
therefore used ANNs to approximate, in a similar way to the
aforementioned studies, the full LES closure terms. To con-
struct based on these ANNs an LES SGS model that is nu-
merically stable a posteriori, they combined the ANNs with
eddy-viscosity models. They did not specifically focus on the
discretization errors associated with staggered finite-volume
grids and did not consider wall-bounded turbulent flows like
ABLs.

In this study, we therefore made a first attempt to construct,
based on DNS fields, an ANN SGS model that compen-
sates for both the unresolved physics and the instantaneous
discretization errors introduced by staggered finite-volume
grids. Our ambition in doing so is to eventually improve the
a posteriori accuracy compared to LES with traditional SGS
models like the Smagorinsky model. This may potentially re-
duce the computational cost involved in LES as well, as ac-
curate results may still be achieved with much coarser, com-
putationally cheaper resolutions than currently used.

To make a step towards this ambition, our aim with the
current paper is two-fold:

1. We describe the framework of our ANN SGS model,
which takes both the unresolved physics and instanta-
neous spatial discretization errors in finite-volume LES
into account. This includes its theoretical foundations
(Sect. 2) and its implementation (Sect. 3).

2. We characterize both the a priori and a posteriori per-
formance of our ANN SGS model for a wall-bounded
turbulent neutral channel flow, without resorting to pre-
viously used ad hoc adjustments (Sect. 4). This includes
a discussion about the numeric instability we observed
a posteriori (Sect. 4.2), together with suggestions for fu-
ture studies that may help to overcome the observed in-
stability without needing the previously used ad hoc ad-
justments (Sect. 5).

2 Theoretical framework of our ANN finite-volume
LES SGS model

As mentioned in Sect. 1, one of our key objectives is to
construct an ANN LES SGS model that compensates for
the instantaneous discretization errors introduced by implicit
filtering with staggered finite-volume numerical schemes.
To derive such an SGS model, we used as a starting point
the Navier–Stokes momentum conservation equations for a
Newtonian incompressible fluid without buoyancy effects
(which is appropriate for the test case used in this study; see
Sect. 3.1):

∂uj

∂t
=−

∂uiuj

∂xi
−

1
ρ0

∂P

∂xj
+ ν

∂2uj

∂xi2
, (1)

where uj (u,v,w) [ms−1
] is the wind velocity along the

j th direction, t [s] the time, xi and xj [m] the positions in
the ith direction and j th direction, respectively, ρ0 [kgm−3

]

the density, P [Pa] the pressure, and ν [m2 s−1
] the kinematic

viscosity.
The governing LES equations are usually derived by ap-

plying a generic, unspecified filtering operation G to Eq. (1),
which introduces a subgrid term τij ≡ uiuj − ui uj that has
to be modelled (Pope, 2001; Sagaut, 2006). Traditional sub-
grid models like that of Smagorinsky (Smagorinsky, 1963;
Lilly, 1967) attempt to model τij associated with G. How-
ever, by only considering the generic operation G, they can-
not directly compensate for the discretization errors aris-
ing on a specific finite numerical grid. Although the impact
of the discretization errors can be reduced by adopting an
explicit filtering technique (for instance, by increasing the
grid resolution compared to the filter width), this is in prac-
tice often not done because of the high computational cost
(Sagaut, 2006). It may therefore be beneficial to develop a
LES SGS model that directly compensates for the introduced
discretization errors, ideally such that explicit filtering is not
required anymore.

To this end, we applied the finite-volume filtering opera-
tion GFV to Eq. (1) instead of the generic operation G. GFV

is defined as a 3-D top-hat filter sampled on an a priori de-
fined finite-volume grid, where the finite sampling implic-
itly imposes an additional spectral cutoff filter (Langford and
Moser, 1999; Zandonade et al., 2004). We used GFV to de-
rive an alternative set of LES equations (Eq. 3) that reflects
the employed finite-volume grid and removes the need for
commutation between the filtering and spatial differentiation
operators (Eq. 3; Denaro, 2011). This allowed us to explic-
itly include many instantaneous discretization errors in the
definition τij , making use of prior knowledge about the em-
ployed finite-volume grid and numerical schemes.

Considering for the sake of clarity only equidistant LES
grids, following Zandonade et al. (2004), the filtered velocity
associated with GFV, uj , at a certain grid cell with indices
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(l,m,n) can be written as

uj (l,m,n)=
1

1x1y1z

∫
�j (l,m,n)

uj (x,y,z) dx′, (2)

where 1x,1y,1z are the equidistant filter widths in the
three spatial directions,�j (l,m,n) the grid cube/control vol-
ume for uj at the considered grid cell, and x a vector in-
dicating the position (x,y,z) in the flow domain. Since we
focused in this study on staggered finite-volume grids (Ta-
ble 1), the location of each control volume �j (l,m,n) de-
pends on the j component considered (Sect. 3.2).

Applying the finite-volume filter to Eq. (1), using the di-
vergence theorem to convert the volume integrals to surface
integrals, and combining the advection and viscous stress
terms, for a certain grid cell, we get an expression similar
to that obtained by Zandonade et al. (2004):

∂uj (l,m,n)
∂t

=−
1

1x1y1z

∫
∂�j (l,m,n)

·

(
uiuj − ν

∂uj

∂xi

)
ni

· dx′−
1

1x1y1z

1
ρ0

∫
∂�j (l,m,n)

pnj dx′, (3)

where ∂�j (l,m,n) is the surface area of the control volume
�j (l,m,n), and ni , nj the ith and j th components, respec-
tively, of the outward-pointing normal vector n correspond-
ing to ∂�j (l,m,n). It is noteworthy that, by invoking the
divergence theorem, the divergence operator itself is effec-
tively replaced by surface integrals, which removes the need
for a commutative filter (Denaro, 2011) and avoids the trun-
cation errors introduced by the discretization of the diver-
gence operator on the finite grid.

The well-known closure problem does, of course, persist.
In fact, none of the terms on the right-hand side of Eq. (3) can
be determined exactly on the available finite LES grid and
therefore have to be approximated. As argued, however, by
Langford and Moser (2001) and Zandonade et al. (2004), an
optimal formulation for the pressure term is impractical and
barely more accurate than traditional finite-volume pressure
schemes.

The errors made in approximating the time derivative, in
turn, are usually constrained by the advection and diffusion
terms through the selected time step. Furthermore, the time
discretization scheme we selected (Sect. 3.1) has good en-
ergy conservation properties with a slight damping of TKE
over time (van Heerwaarden et al., 2017b).

In this study, we will therefore only consider the instanta-
neous spatial discretization errors in the advection and vis-
cous stress terms. We further note that, in contrast to eddy-
viscosity SGS models, the isotropic part of the transport
terms does not have to be incorporated in a modified pres-
sure term.

To approximate the advection and viscous stress terms on
the finite LES grid, in this study, we used second-order linear
interpolations (Sects. 3.2, 4.2). If we then consider specifi-
cally (i) the control volume of the u component and (ii) the
transport in vertical direction, we can rewrite the first term
on the right-hand side of Eq. (3) as follows:

1
1x1y1z

∫
∂�in

u (l,m,n)

(
wu− ν

∂u

∂z

)
dx′dy′

−
1

1x1y1z

∫
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u (l,m,n)

(
wu− ν

∂u

∂z

)
dx′dy′

=
1
1z

(
w(l,m,n)+w(l− 1,m,n)

2

·
u(l,m,n)+ u(l,m,n− 1)

2

− ν
u(l,m,n)− u(l,m,n− 1)

1z

−
w(l,m,n+ 1)+w(l− 1,m,n+ 1)

2

·
u(l,m,n)+ u(l,m,n+ 1)

2

+ν
u(l,m,n+ 1)− u(l,m,n)

1z

)
+

1
1z

(
τ in
wu(l,m,n)− τ

out
wu (l,m,n)

)
, (4)

where ∂�in
u (l,m,n) and ∂�out

u (l,m,n) are, respectively, the
lower and upper boundaries of the control volume cor-
responding to the u component �u(l,m,n), representing
two different subsets of the total control volume area
∂�u(l,m,n).
τ in
wu(l,m,n) and τ out

wu (l,m,n), in turn, are unknown terms
at the lower and upper boundaries of the considered control
volume and are directly defined by Eq. (4). They correct for
the unresolved physics and instantaneous discretization er-
rors introduced by the employed approximations denoted on
the right-hand side.

The correction terms for the other control volumes and
transport components can be defined in a similar manner. In
the remainder of the paper, we will denote the complete cor-
rection terms with the shorthand notation τ in

ij and τ out
ij . It is

these complete terms we aim to predict with our ANN-based
LES SGS model. To fully solve Eq. (3), after training, our
ANN SGS model only makes use of information available in
an actual finite-volume LES: for its inputs, it relies only on
the resolved flow fields u, v, w, and their boundary condi-
tions (Sect. 3.3).

3 Methodology

In this section, we will describe in detail the implementation
of our ANN SGS model. First, we will provide a description
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Figure 1. Sketch of simulated turbulent channel flow. Here, δ [m]
refers to the channel-half width.

of the DNS test case we used to train and test our ANN SGS
model (Sect. 3.1). Next, we will briefly outline how we gen-
erated the data needed to train our ANN SGS model, using
the selected DNS test case (Sect. 3.2). Subsequently, we will
describe how we designed and trained our ANN SGS model
(Sect. 3.3 and 3.4). Finally, we will specify how we tested
the a priori and a posteriori performance of our ANN SGS
model (Sect. 3.5).

3.1 DNS test case

We used as a test case a DNS of incompressible neutral chan-
nel flow (with friction Reynolds number Reτ being equal to
590) based on Moser et al. (1999). The friction Reynolds
number is a variant of the standard Reynolds number based
on the friction velocity, which is typically lower in magnitude
than the standard Reynolds number and is often used in the
context of wall-bounded turbulent flows (e.g. Pope, 2001).
The friction velocity, in turn, is a velocity scale that mea-
sures the amount of mechanically generated turbulence and
consequently is a logical scale to consider in neutral channel
flow. We note that the selected friction Reynolds number is
relatively low compared to most turbulent flows occurring in
nature.

As simulation tool, we used the high-order DNS and finite-
volume LES MicroHH code (v2.0), which has been verified
previously for the case selected in this study (van Heerwaar-
den et al., 2017b). The selected neutral channel flow is a tur-
bulent flow bounded by walls at both the bottom and top of
the domain (no-slip boundary conditions), with a mean flow
characterized by a symmetric horizontally averaged vertical
profile (Fig. 1). In the horizontal directions, periodic bound-
ary conditions were applied and a constant volume-averaged
velocity (Uf = 0.11 ms−1) was enforced by dynamically ad-
justing the pressure gradient.

We stored in total 31 3-D flow fields of the wind veloc-
ity fields u, v, and w at time intervals of 60 s after the flow
reached steady state. This time interval was large enough to
ensure that subsequent stored flow fields were (nearly) inde-
pendent, which is preferable for the training and testing of
the neural networks (Sect. 3.4 and 3.5). More details about
the used simulation setup and simulation code can be found
in Table 1 and van Heerwaarden et al. (2017b).

3.2 DNS training data generation

Using the filtering procedure outlined in Sect. 2, we calcu-
lated consistent pairs of (i) low-resolution flow velocity fields
uj (that serve as input for the ANN) and (ii) correction terms
τ in
ij , τ out

ij (that serve as the ground truth for the ANN predic-
tions) from 31 previously stored DNS flow fields (Sect. 3.1).
We used these input–output pairs as training data for our
ANNs (Sect. 3.4).

By design, the filter in Sect. 2 is directly defined by a se-
lected coarse equidistant LES resolution (Eq. 2). To generate
the training data, we selected three different typical horizon-
tal equidistant coarse resolutions with an identical coarsening
in the vertical: 192×96×64, 96×48×64, and 64×32×64
(x× y× z) cells. These three resolutions correspond to hor-
izontal coarse-graining factors, fhor, of 4, 8, and 12, respec-
tively. In the remainder of the paper, we will denote the hori-
zontal coarse-graining factor(s) used during training and test-
ing as fhor,train and fhor,test, respectively (see Sect. 3.5.1).

We note that the spatial discretization errors introduced
by the applied coarsening, specifically concern errors asso-
ciated with typically applied second-order linear interpola-
tions (Eq. 4). These interpolation errors remove a substantial
fraction of the turbulent energy remaining after applying the
filter (Eq. 2), reflecting their detrimental impact on the small-
est resolved scales (Fig. 2). Only by including their impact in
the predicted correction terms is our ANN SGS model able
to fully compensate for the spatial discretization errors in the
advection and viscous stress terms.

3.3 ANN architecture

We used feed-forward, fully connected ANNs with a sin-
gle hidden layer to predict the correction terms τ in

ij and τ out
ij

with the resolved flow fields uj as input. These are sim-
ple ANNs that facilitate computationally fast evaluations and
easy implementation. We did not use deeper, more sophisti-
cated ANNs to limit the computational cost involved in mak-
ing predictions with the ANN as much as possible. This com-
putational cost is critical for the affordability of an ANN SGS
model in an actual LES simulation (Sect. 4.2).

To introduce non-linearity in the ANN, we used as an acti-
vation function the leaky rectified linear unit (ReLu) function
(Maas et al., 2013) with the constant α set to the common
value 0.2. This non-linear activation function, together with
the linear matrix–vector multiplications and bias parameter
additions, defines the entire functional form of the ANN.

Similar to conventional LES SGS models, the ANN should
preferably act on a small subdomain of the full grid to facil-
itate integration in our simulation code (MicroHH), which
uses domain decomposition for distributed memory com-
puting. We consequently predicted with the ANN only the
τ

in/out
ij values associated with one grid cell (l,m,n) at a time.

As input to the ANN, we used the locally resolved flow fields
uj in a 5×5×5 stencil surrounding the grid cell for which we
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Table 1. Simulation specifications for direct numerical simulation of the incompressible neutral channel flow test case we used to generate
the training data (Sect. 3.2). Here, δ [m] refers to the channel-half width. Additional details about the employed code (MicroHH v2.0) are
given in van Heerwaarden et al. (2017b).

Friction Reynolds number Reτ 590
Boundary conditions horizontal directions (x,y): periodic, vertical direction (z): no slip
Domain size (x,y,z) 2πδ, πδ, 2δ
Kinematic viscosity ν 1.0× 10−5

[m2 s−1
]

Prescribed volume-averaged velocity Uf 0.11 [ms−1
]

Grid resolution (x,y,z) 768, 384, 256 (stretched in vertical)
Employed grid staggered Arakawa C grid
Spatial discretization fourth-order interpolation scheme
Time discretization three-stage, third-order Runge–Kutta scheme

Figure 2. Example stream-wise power spectra of u for the se-
lected channel flow (Sect. 3.1) at a height of 0.109δ (i.e. in the
log layer) and considering a typical coarse equidistant LES reso-
lution of 64×32×64 (x×y×z) cells (which corresponds to a hor-
izontal coarse-graining factor of fhor = 8). Here, δ [m] refers to the
channel-half width. The power spectral density E on the vertical
axis has been normalized by δ−1 and uτ−2, where uτ [ms−1

] is
the friction velocity. Here, the black line corresponds to the power
spectrum of the DNS fields, the red line to the power spectrum re-
maining after the finite-volume LES filter (Eq. 2) has been applied,
and the blue line to the spectrum remaining after both the finite-
volume filter and the second-order linear interpolations required on
the coarse LES grid (Eq. 4).

predict τ in/out
ij . Similar to Cheng et al. (2019) and Yang et al.

(2019), we opted not to make our inputs Galilean/rotational
invariant as the walls already provide an intrinsic coordinate
system and velocity reference.

To select appropriate 5× 5× 5 inputs stencils close to the
boundaries of the domain, we made use of the horizontal
periodic boundary conditions and the vertical no-slip condi-
tions. We encoded the no-slip conditions in the input stencils
by mirroring uj over the walls, such that uj linearly inter-
polated to the wall was 0ms−1. This may have helped the
ANN to distinguish the near-wall region from the bulk of

the flow, potentially removing the need for separate SGS and
wall models.

Using the 5× 5× 5 stencils in combination with the em-
ployed staggered Arakawa C grid, an asymmetric bias is in-
troduced in the ANN input and output variables if no special
care is taken. We overcame this issue by combining three
separate single-layer ANNs, where each one corresponded to
one of the three control volumes considered (Sect. 2). Here,
each received a stencil with slightly adjusted dimensions and
predicted only the correction terms (τ in

ij ,τ
out
ij ) corresponding

to the considered control volume (resulting in six outputs per
ANN; Fig. 3). This ensured symmetry in the inputs and out-
puts of the ANN (Fig. 4a) and did not increase the computa-
tional effort involved in evaluating the ANN after training.

In fact, this allowed us to reduce the number of ANN eval-
uations in the a posteriori simulation (Sect. 4.2) by almost
a factor of 2. Except for close to the walls, evaluating the
ANN with a checkerboard-like pattern was sufficient to ob-
tain all the needed correction terms (Fig. 4b). Close to the
walls, we did require (sometimes partial) ANN evaluations
at every grid cell to calculate all needed correction terms: the
checkerboard-like pattern does not provide all the correction
terms at the edges of the domain. In the horizontal directions,
we could make use of the periodic boundary conditions at the
edges of the domain.

3.4 ANN training

We trained the employed ANNs (Fig. 3) using the training
data (consisting of corresponding local 5×5×5 uj fields and
correction terms τ in/out

ij ; Sect. 3.2) we generated from 31 pre-
viously stored DNS flow fields (Sect. 3.1). The exact number
of unique samples we could extract from each flow field dur-
ing training depended on the considered fhor,train (Sect. 3.2).
For the case we mostly focused on in the a priori and a pos-
teriori tests (i.e. where fhor,train = 8; see Sect. 3.5), we could
extract 294 912 unique samples from each flow field. Of the
31 stored flow fields, we used 25 for training, 3 for validation
during training and tuning of the hyperparameters, and 3 for
the a priori and a posteriori tests (Sect. 3.5.1).
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Figure 3. Architecture of ANN framework used in this study. We combined three separate ANNs that each correspond to one of the three
considered control volumes. For more information, please refer to Sect. 3.3.

Figure 4. (a) Example two-dimensional input stencil of u,v that the ANN corresponding to the control volume of u receives, together
with four of its outputs (i.e. τ in

uu, τout
uu , τ in

uv , τout
uv ). (b) Two-dimensional visualization of the way we evaluated the ANN during a posteriori

simulations. By evaluating the ANN in checkerboard-like pattern (i.e. only evaluating the grey-shaded grid cells) and making use of the
periodic boundary conditions, we could calculate all needed correction terms except those close to the walls.

To train our ANNs, we used TensorFlow (v 1.12.0),
an open-source machine learning framework (Abadi et al.,
2016). We relied on the backpropagation algorithm (Rumel-
hart et al., 1986) incorporated within TensorFlow to mini-
mize the loss function. We defined the loss function as the
mean squared error (MSE) between the 18 DNS-derived
τ

in/out
ij,DNS components (Sect. 3.2) and the 18 ANN-predicted

τ
in/out
ij,ANN components (Sect. 3.3), combining the results from

all three separate ANNs (Sect. 3.3). We observed good con-
vergence of both the training and validation loss without
signs of overfitting for all the ANNs we tested (shown as an
example for fhor,train = 8 in Fig. 5).

Here, we chose the popular ADAM optimizer (Kingma
and Ba, 2014) with a relatively low value for the learning rate
η (0.0001) and a relatively large batch size of 1000. As our
training data contain a high amount of noise inherent to tur-
bulence, these parameter choices were in our case needed to
stabilize the training results and achieve good convergence.
For all the chosen ANNs corresponding to 2 or 3 fhor,train
(see Sect. 3.5.1), we ensured that the samples originating

from the different fhor,train were approximately equally rep-
resented in each training batch.

Besides that, we implemented preferential sampling near
the walls: during training, we selected the five horizontal lay-
ers closest to the bottom and top wall more often than the
other horizontal layers (starting from the bottom or top wall
towards the centre of the channel, respectively, with a fac-
tor of 10, 8, 6, 4, and 2). The preferential sampling restored
the balance in the training data set between the physics near
the wall and the bulk of the flow, allowing the ANN to im-
prove its performance close to the walls where a SGS model
generally matters most.

In Table 2, we give an overview of all the hyperparameters
and settings we used. The chosen initialization methods for
the weights and bias parameter are standard for the architec-
ture and activation function we selected. Furthermore, in line
with common practice, we normalized all the inputs and out-
puts with their means and standard deviations. This improved
the convergence during training and accelerated learning.
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Table 2. Fixed hyperparameters and settings used in the ANNs we trained.

No. of training iterations (epochs) 500 000 (≈ 38 epochs for fhor,train = 8, taking into account the preferential sampling)
No. of hidden layers 1
Batch size 1000
Loss function mean squared error, no regularization
Activation function leaky ReLu with α = 0.2(Maas et al., 2013)
Optimizer ADAM with β1 = 0.9, β2 = 0.999, and ε = 1× 10−8 (Kingma and Ba, 2014)
Learning rate η 0.0001
Normalization z score ( value−mean

standard deviation )
Weight/kernel initializer He uniform variance scaling initializer (He et al., 2015)
Bias initializer zeros initializer

Figure 5. Evolution of the loss corresponding to the considered
training batches (dotted lines) and the three validation flow fields
(solid lines) with a changing number of neurons in the single hid-
den layer as a function of training iteration, for the ANNs using
fhor,train = 8 (see Sect. 3.5.1). To improve readability and keep the
total computational effort involved in the training feasible, we show
here both losses only for every 10 000 iterations instead of every
single iteration.

We performed a more extensive sensitivity analysis with
the number of neurons in the hidden layer, nhidden, as it is for
our architecture a good measure of the model complexity. In
general, we found for all three selected fhor (Sect. 3.2) that
increasing nhidden, and thus increasing the model complexity,
improved the reduction of the loss function without show-
ing signs of overfitting (shown as an example for fhor = 8
in Fig. 5). However, the improvement in training loss reduc-
tion clearly reduced with increasing model complexity, while
a higher model complexity increases the computational cost
of the ANN SGS model. In the next sections, we will there-
fore focus on the results we obtained with nhidden = 64, as a
reasonable compromise between accuracy and total compu-
tational cost.

3.5 ANN testing

3.5.1 A priori (offline) test

To assess the potential a priori accuracy of our ANN SGS
model, we first compared the ANN predictions to the DNS-
derived values (Sects. 2 and 3.2) for three flow fields held out
during training (Sect. 3.4) and a single representative coarse
LES resolution (i.e. an equidistant grid with fhor,train =

fhor,test = 8; see Sect. 4.1.1). This tests the ability of our
ANN SGS model to generalize towards previously unseen
realizations of the steady state associated with the selected
channel flow (Sect. 3.1).

We especially focused, in the log layer, on τwu and the net
energy transfer towards the unresolved scales, εSGS, where
εSGS is defined and approximated as εSGS ≡−τijSij ≈

−τ
in/out,int
ij

1uj
1xj

. We calculated εSGS by interpolating all the
individual components to the grid centres (denoted here as
τ

in/out,int
ij ) and subsequently summing them. εSGS can be both

positive and negative, where positive values indicate SGS
dissipation and negative values backscatter towards the re-
solved scales. Both these processes are critical for the a pri-
ori and a posteriori performance: dissipating sufficient en-
ergy to the unresolved scales is crucial for achieving stable
a posteriori results. τwu, in turn, is also of particular interest
in channel flow: it is the vertical gradient of τwu that has to
balance the imposed horizontal pressure gradient (e.g. Pope,
2001), making τwu critical for the quality of the achieved
steady-state solution. The log layer is mainly interesting be-
cause of its universal character. In the log layer, the horizon-
tally averaged profiles of the mean velocity and Reynolds
stress tensor components become partly independent of the
Reynolds number when properly scaled with wall units (e.g.
Pope, 2001).

As a reference, we included in the comparison the sub-
grid fluxes and net SGS transfer predicted with the popu-
lar Smagorinsky (Lilly, 1967) SGS model (see Sect. 4.1.2),
which we will denote as τij,Smag and εsmag, respectively.
In the Smagorinsky SGS model, τij,Smag is modelled as
τij =−2νrSij , with νr being the modelled eddy-viscosity
coefficient and Sij being the filtered strain rate tensor (de-
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fined as Sij ≡ 1
2

(
∂ui
∂xj
+
∂uj
∂xi

)
) (Pope, 2001, e.g.). In line

with usual practice for wall-bounded flows, we augmented
the model for νr with an ad hoc Van Driest (Van Driest,
1956) wall-damping function to (partly) compensate for the
known over-dissipative behaviour close to walls (e.g. Pope,
2001; Sagaut, 2006). Consequently, νr is effectively mod-
elled as νr =

(
cs1

(
1− exp

(
−z+/A+

)))2
S, with cs being

the Smagorinsky coefficient (which is being set to 0.1), 1
being the filter size (defined as 1≡ (1x1y1z)

1
3 ), z+ the

absolute vertical distance from the closest wall normalized
by u∗ and δ, A+ an empirical constant (which is being set to
26), and S the squared filtered strain rate tensor (defined as

S = 2
(
SijSij

) 1
2 ).

To facilitate easier interpretation and comparison with the
Smagorinsky SGS model, for the ANN and DNS results, we
combined the two separate correction terms τ in

ij ,τ
out
ij . In the

remainder of the paper, we will denote the resulting com-
bined correction terms as τij,ANN and τij,DNS, where both
consist of the same nine components as τij,smag. We did this
in accordance with the way we evaluated the ANNs within
our computational fluid dynamics (CFD) MicroHH code dur-
ing the a posteriori test (Sect. 3.3).

On top of the comparison for a single coarse horizontal
resolution, we separately explored the generalization perfor-
mance of the developed ANN SGS model with respect to the
selected coarse horizontal resolution in Sect. 4.1.3 . To this
end, we trained our ANN SGS model, in three different ways,
on filtered DNS data corresponding to all selected fhor (4, 8,
and 12, respectively; see Sect. 3.2):

1. train only on filtered DNS data corresponding to fhor =

8,

2. train on filtered DNS data corresponding to fhor = 4,12,
and

3. train on filtered DNS data corresponding to all three
fhor.

For all three training configurations mentioned above, we
tested the performance of the ANN SGS models on previ-
ously unseen filtered data corresponding to all three fhor.
This thus includes several cases where the ANN SGS model
is being applied to other resolutions than seen during train-
ing.

Finally, to get some more insight into the behaviour of our
ANNs, in Sect. 4.1.4, we calculated for every input variable
in the 5× 5× 5 stencils the so-called “permutation feature
importance” (e.g. Fisher et al., 2019; Molnar, 2019; Breiman,
2001) associated with predicting τ in

wu and τ out
wu in the log layer.

The most important advantage of these “permutation fea-
ture importances” is their intuitive meaning: they indicate
how important a certain input variable is for the prediction
quality of the τ in

wu, τ out
wu in the log layer: the higher it is, the

more important that variable is. Specifically, the permutation

feature importance measures by which factor the prediction
error (in our case measured as the root mean square error
between the DNS values and ANN predictions) increases
when the information contained in that input variable is de-
stroyed, while the information in the other input variables is
retained. We destroyed the information in each input vari-
able by randomly shuffling it in the corresponding horizontal
plane. Besides that, we averaged the calculated permutation
feature importances over all three testing flow fields and over
10 different random shufflings to stabilize the results. We in-
tentionally chose not to shuffle the input variables along dif-
ferent heights. Because of the strong mean vertical gradient
in u, this would possibly introduce an unrealistic bias into
the calculated permutation feature importances. We do em-
phasize that the permutation feature importances are likely
affected by the correlations existing in our input data. The
permutation feature importances we report therefore need to
be interpreted with caution.

3.5.2 A posteriori (online) test

To test the a posteriori performance of our ANN LES SGS
model, we directly incorporated one of our ANNs (i.e. with
nhidden = 64 and fhor,train = 8) into our CFD code (Mi-
croHH v2.0) (van Heerwaarden et al., 2017b). We chose the
input and output variables of our ANN SGS model such that
the integration into our CFD code was relatively straightfor-
ward (Sect. 3.3). Furthermore, we improved the computa-
tional performance of the ANN SGS model by implement-
ing basic linear algebra subprogram (BLAS) routines from
the Intel® Math Kernel Library (version 2019 update 5 for
Linux), which has been optimized for the Intel CPUs we used
(i.e. E5-2695 v2 (Ivy Bridge) and E5-2690 v3 (Haswell)).
Still, the computational effort involved in the ANN SGS
model was large: an equivalent LES simulation with the
Smagorinsky SGS model was for our setup about a factor
of 15 faster, showing that, in its current form, our ANN SGS
model still needs more optimizations for practical applica-
tions.

With the ANN SGS model incorporated in our CFD code,
we ran a LES with an equidistant grid of 96× 48× 64 cells,
directly corresponding to the selected fhor,train = 8, for the
turbulent channel flow test case described in Sect. 3.1. Here,
we used second-order linear interpolations to calculate all the
velocity tendencies, consistent with our filtering and train-
ing data generation procedure (Sect. 2 and 3.2). Furthermore,
we initialized the LES simulation from one of the three flow
fields reserved for the a priori testing. We did this to ensure
that any possible errors in the initialization phase of the LES
(i.e. before steady state is achieved) did not impact the solu-
tion. Still, our LES ran freely from the prescribed initialized
steady-state fields, meaning that all the model and discretiza-
tion errors made in calculating the channel flow steady-state
dynamics were included.
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4 Results and discussion

In this section, we will characterize the a priori and a pos-
teriori performance of our ANN SGS model. We will first
describe the a priori performance of our ANN SGS model
and the Smagorinsky SGS model for a single coarse res-
olution (i.e. where fhor,train = fhor,test = 8; Sect. 4.1.1 and
4.1.2). Subsequently, we will discuss the generalization per-
formance of our ANN SGS model with respect to the selected
coarse resolution (Sect. 4.1.3) and the permutation feature
importances associated with the input stencils (Sect. 4.1.4).
Finally, we will describe and discuss the instability we ob-
served a posteriori (Sect. 4.2).

4.1 A priori (offline) test

4.1.1 Single horizontal-resolution ANN performance

The ANN-predicted τwu,ANN, εSGS,ANN (with nhidden = 64;
see Sect. 3.4) values in the log layer generally show excellent
agreement with the DNS-derived values (Figs. 6–9). Espe-
cially the consistency we found in the horizontal cross sec-
tions (Figs. 6a and b, 7a and b) is striking given the noisy
spatial patterns of τwu,DNS and εSGS,DNS, which the ANN
reproduces quite accurately both qualitatively and quantita-
tively. Particularly noteworthy is its ability to accurately re-
produce both negative and positive εSGS,DNS, as these are as-
sociated with backscatter and SGS dissipation, respectively.
These two processes are both critical for the quality of the a
posteriori simulations (see Sect. 4.2).

We note that the found correspondence between correction
and SGS transfer terms in the log layer of neutral channel
flow is in agreement with the results of Cheng et al. (2019),
Park and Choi (2021), and Gamahara and Hattori (2017), de-
spite our training data generation procedure additionally ac-
counting for numerical errors associated with LES where a
staggered finite-volume grid acts as an implicit filter (Sects. 2
and 3.2). Consistent with the matching horizontal cross sec-
tions, the ANN reproduces quite well the distributions and
spectra of τwu,DNS and εSGS,DNS (Figs. 8b and c, 9b and c).
The notable high normalized spectral density of τwu,DNS at
high wave modes is a direct consequence of the instantaneous
spatial discretization errors we compensate for. As these dis-
cretization errors remove a large part of the variance at the
smallest resolved spatial scales (Fig. 2), the corresponding
correction terms, including τwu, are characterized by strong
variability at the smallest resolved scales.

From the tails of the distribution and the high wave modes
of the spectra (Figs. 8b and c, 9b and c), it is apparent that the
ANN does still slightly underestimate the extremes at small
spatial scales characteristic of τwu,DNS and εSGS,DNS. Proba-
bly, these extremes were hard to predict accurately because
of their high stochastic nature and inherent rare occurrence.
Yang et al. (2019) identified this issue in the context of an
ANN-based LES wall model and found that this issue per-

sisted even when the errors were weighted inversely propor-
tional to their probability density function (PDF) (i.e. giving
extreme values larger weights in the loss function).

Extending our focus from the log layer to vertical pro-
files of horizontally averaged τwu and εSGS, in general, we
again observe quite good correspondence between the ANN
predictions and DNS-derived values (Figs. 10 and 11). In
the profile of τwu,ANN, we do see some deviations from the
τwu,DNS profile, especially close to the walls. In our training
data, the horizontally averaged flux of τwu,DNS was generally
small compared to its point-wise fluctuations. As a result, the
loss associated with τwu,DNS was probably more sensitive to
the point-wise fluctuations than the average flux, which may
have contributed to the observed deviations.

The vertical profile of εSGS,ANN, in turn, matches very
closely the profile of εSGS,DNS. The ANN approximately pro-
vides the net dissipation inferred from the DNS, which pri-
marily occurs close to the walls. Hence, this does not make
yet clear why our ANN SGS model induces the observed a
posteriori instability. In Sect. 4.2, we will elaborate more on
potential reasons why our ANN SGS model nonetheless in-
duces instability.

Extending our focus towards all components, we found
that in general the ANN correlated well with all DNS-derived
correction and SGS transfer terms (third row in Table 3 and
Fig. 12; mostly ρ = 0.6–0.9). Looking more closely at the
found correlations, we did find that the correlations differed
depending on the channel height. Closer to the walls, the cor-
relations generally slightly decreased compared to the middle
of the channel (except for the vertical layers directly adja-
cent to the wall, where most terms show a better correlation).
Here, we emphasize that we implemented a preferential sam-
pling technique (Sect. 3.4), which helped to minimize this
reduction of prediction performance close to the walls com-
pared to the middle of the channel.

Looking at the individual terms, some of them were clearly
better predicted than others (e.g. τvu vs. τvw): this was likely
related to differences in their magnitude that persisted even
after the applied normalization (i.e. the same normalization
was applied over the entire domain, meaning that some com-
ponents with strong vertical gradients still contained more
extreme values than components without a clear vertical gra-
dient) and differences in their stochastic variability and con-
sequent signal-to-noise ratio.

One clear outlier is τwu at the first vertical level (with
ρ = 0.339; not shown), which appeared to be most difficult
to predict. This component was located at the bottom wall
because of the staggered grid orientation and consequently
only the viscous flux contributed. As a consequence, the tar-
get DNS values and input patterns were different than for
other vertical levels and components, making it hard for the
ANN to give accurate predictions. Still, the magnitude of the
ANN predictions matched the DNS values reasonably well
(not shown).

Geosci. Model Dev., 14, 3769–3788, 2021 https://doi.org/10.5194/gmd-14-3769-2021



R. Stoffer et al.: LES subgrid modelling using ANNs 3779

.

Figure 6. Horizontal cross sections of τwu in the log layer (0.09375 zδ (55.3125z+)) for a representative flow field not used to train and
validate the ANNs. All values are normalized by the friction velocity uτ and half-channel width δ.

.

Figure 7. Horizontal cross sections of εSGS in the log layer (0.109375 zδ (64.53125z+)) for a representative flow field not used to train and
validate the ANNs. All values are normalized by the friction velocity uτ and half-channel width δ.

4.1.2 Single horizontal-resolution Smagorinsky
performance

Considering the individual grid points, the a priori perfor-
mance of the Smagorinsky SGS model is in sharp contrast
with the a priori ANN performance: τij,smag, and to a some-
what lesser extent εSGS,smag, shows barely any agreement
with the DNS-derived values both qualitatively and quantita-
tively (Figs. 6–9). The poor point-wise a priori performance
of Smagorinsky is well known in literature (e.g. Clark et al.,
1979; McMillan and Ferziger, 1979; Liu et al., 1994). In ad-
dition, we can also observe its known inability, in the form
we employed, to account for backscatter (e.g. Pope, 2001;
Sagaut, 2006).

In our case though, the point-wise a priori performance
of Smagorinsky is still worse than usually documented: the
found correlations with DNS in our study (mostly ρ = 0.0 at
individual heights for all correction and dissipation terms;
not shown) are lower than reported before (where ρ =∼
0. . .0.4; Cheng et al. (2019); Clark et al. (1979); McMil-
lan and Ferziger (1979); Liu et al. (1994)). Furthermore,
τwu,Smag and εSGS,smag are off by approximately 1 order of
magnitude and are too smooth (Figs. 6, 7 and 8–9b and c):
in comparison to τwu,DNS and εSGS,DNS, the PDF is nar-
rower (Figs. 8b and 9b), and the spectral energy in τij,Smag,

εSGS,smag is smaller and skewed towards low wave modes
(Figs. 8c and 9c).

This exacerbated point-wise a priori performance of the
Smagorinsky SGS model is caused by our alternative defini-
tion for τij , which, in contrast to the commonly defined τij ,
compensates for all the instantaneous discretization effects
introduced by the staggered finite volumes in both the advec-
tion and viscous flux terms (Sect. 2). As these discretization
effects remove a large part of the variance present in the LES
(Fig. 2), our τij inherently contains a large amount of vari-
ance that is not represented by Smagorinsky.

Focusing on the horizontally averaged vertical profiles of
τwu, we consequently found also that τwu,smag does not com-
pare well with τwu,DNS (Fig. 10). Except close to the walls
and the centre of the channel, the Smagorinsky SGS model
strongly underestimates the horizontally averaged τwu. We
emphasize that the correspondence close to the walls was
only achieved because of the implemented ad hoc Van Driest
wall damping function (Van Driest, 1956).

In the horizontally averaged vertical profiles of εSGS
(Fig. 11), we observe a striking characteristic that may seem
counterintuitive at first: the Smagorinsky SGS model un-
derpredicts εSGS,DNS at the walls, despite its known over-
dissipative behaviour in a posteriori tests (e.g. Pope, 2001;
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Figure 8. Performance of τwu,ANN (with nhidden = 64) in the log layer (0.09375 zδ (55.3125z+)) for a representative flow field not used
to train and validate the ANNs. Panel (a) shows the corresponding hexbin plot between τwu,ANN and τwu,DNS, where the dotted blue line
indicates the 1 : 1 line. Panel (b) shows the probability density functions and panel (c) the stream-wise spectra averaged in the span-wise
direction. τwu,ANN and τwu,DNS have been normalized by the friction velocity u−2

τ . The power spectral density E on the vertical axis in
panel (c) has been normalized by δ−1 and uτ−2. As a reference, in panels (b) and (c), τwu,smag is shown as well.

Figure 9. Performance of εSGS,ANN (with nhidden = 64) in the log layer (0.109375 zδ (64.53125z+)) for a representative flow field not used
to train and validate the ANNs. Panel (a) shows the corresponding hexbin plot between εSGS,ANN and εSGS,DNS, where the dotted blue line
indicates the 1 : 1 line. Panel (b) shows the probability density functions and panel (c) the stream-wise spectra averaged in the span-wise
direction. εSGS,ANN and εSGS,DNS have been normalized by the friction velocity u−3

τ and δ. The power spectral density E on the vertical
axis in panel (c) has been normalized by uτ−3. As a reference, in panels (b) and (c), εSGS,Smag is shown as well.

Figure 10. Vertical profiles of horizontally averaged τwu,DNS,
τwu,ANN, and τwu,smag at one representative time step not used
to train and validate the ANNs. All values are normalized by the
friction velocity u−2

τ and half-channel width δ−1.

Figure 11. Vertical profiles of horizontally averaged εSGS,DNS,
εSGS,ANN, and εSGS,smag at one representative time step not used
to train and validate the ANNs. All values are normalized by the
friction velocity u−3

τ and half-channel width δ.
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Figure 12. Vertical profiles of correlation coefficients between ANN predictions and DNS values for all correction and dissipation terms (a–
d) at one representative time step not used to train and validate the ANNs. Here, the j index refers to the considered control volume (Sect. 2).
The heights are normalized by the half-channel width δ−1. Note that the τuw,vw components are left out at the first vertical level, as these
are due to the staggered grid located exactly at the bottom wall. At the bottom wall, we imposed a no-slip boundary condition, meaning that
these components are by definition 0.

Sagaut, 2006). However, as the Smagorinsky SGS model
does not directly compensate for instantaneous discretization
errors (and thus does not re-introduce the associated inherent
variance), the Smagorinsky SGS needs to produce less dissi-
pation than our ANN SGS model to achieve stable a posteri-
ori results (see also Sect. 4.2).

All in all, our ANN SGS model is clearly better able to
represent τij,DNS and εSGS,DNS in the presented a priori test
than the Smagorinsky SGS model. This shows the promise
ANN SGS models like ours could have to construct more ac-
curate SGS models that, in contrast to traditional SGS mod-
els like Smagorinsky, additionally compensate for instanta-
neous spatial discretization errors. The most important issue
remaining, is whether and how this a priori potential can be
successfully leveraged in a posteriori simulations without in-
troducing numeric instability.

4.1.3 Multiple horizontal-resolution ANN
generalization

Overall, our ANN SGS model shows promising generaliza-
tion capabilities towards other coarse horizontal resolutions
than the one considered in the previous section. The extent to
which it is able to maintain its high a priori accuracy, how-
ever, does strongly depend on the considered ftrain,hor and
ftest,hor (Table 3).

Considering first the ANNs solely trained on fhor,train = 8
(rows 2–4 in Table 3), we find, unsurprisingly, that they
achieve their best performance when fhor,test = 8 (which is
identical to the configuration used in Sect. 4.1.1). More in-
terestingly, however, we observe that these ANNs already
have some generalization capability, even without having
seen multiple fhor,train. This does depend on the selected
fhor,test: the performance is better for fhor,test = 12 than for
fhor,test = 4 (where for multiple terms ρ < 0.5; not shown).

Comparing these ANNs to the ones trained on fhor,train =

4,12 (rows 5–7 in Table 3), first of all, we see a clear, un-
surprising improvement when fhor,test = 4,12: including the
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Table 3. Pearson correlation coefficients ρ between ANN predic-
tions (nhidden = 64) and DNS values averaged for all three test flow
fields, all heights, and all correction and dissipation terms. The dif-
ferent coarse-graining factors used during training, fhor,train, and
testing, fhor,test, are indicated. Here, the third row refers to the train-
ing and test configuration used in Sect. 4.1.1. More details about all
the indicated training and test configurations are given in Sect. 3.5.1.

fhor,train fhor,test ρ

8 12 0.624
8 8 0.758
8 4 0.526
12, 4 12 0.656
12, 4 8 0.737
12, 4 4 0.832
12, 8, 4 12 0.657
12, 8, 4 8 0.744
12, 8, 4 4 0.832

tested coarse-graining factors in the training, improves the
ANN performance in the associated a priori test. Interest-
ingly, this improvement is much larger for fhor,test = 4 than
for fhor,test = 12.

Secondly, we observe that, without using fhor,train = 8, the
ANN performance on fhor,test = 8 is only subtly lower than
the ANNs directly trained on fhor,train = 8. This shows that
our ANN SGS model may accurately generalize to other un-
seen resolutions without losing its high a priori accuracy, if
fhor,test is within the range of the used fhor,train.

Finally, comparing the previously discussed ANNs (with
fhor,train = 4,12) to the ones trained on all three considered
fhor,train (rows 8–10 in Table 3), we find that additionally in-
cluding fhor,train = 8 barely influences the ANN performance
for all terms (even when fhor,test = 8). This again highlights
the possibility our ANN SGS model may accurately gener-
alize to other resolutions, as long as the range in the training
data covers the testing situations. In doing so, the need to
include multiple intermediate fhor,train values can likely be
limited.

4.1.4 Permutation feature importance ANN

For τ in
wu and τ out

wu in the log layer, we calculated all the permu-
tation feature importances associated with the ANNs listed
in Table 3 (see Sect. 3.5.1). Generally, we found that high-
est feature importances were associated with u, and that the
feature importances corresponding to ANNs trained on two
or more resolutions were mostly lower than the ones corre-
sponding to the ANNs trained on one resolution. The for-
mer suggests that the ANN focuses mostly on the flow ve-
locity component in the mean direction, while the latter sug-
gests that the ANN becomes less sensitive on the inputs when
trained on multiple resolutions. As an example, we show in
Figs. 13 and 14 the feature importances corresponding to the

u-velocity input stencil and the ANN only trained and tested
on fhor = 8 (third row in Table 3).

Interestingly, all the calculated feature importances (in-
cluding the ones not shown in Figs. 13 and 14) suggest that
the input variables most important to the ANN are gener-
ally located close to the considered correction term. In ad-
dition, there seems to be an orientation along the mean flow
direction l, with corresponding low feature importances at
the edges in the span-wise m and wall-normal k direction.

Comparing the calculated feature importances correspond-
ing to τ in

wu and τ out
wu , in turn, we generally observe a corre-

sponding shift in the vertical. For the shown u-velocity input
stencil (Figs. 13–14), for instance, the vertical patterns cor-
responding to τ in

wu and τ out
wu are nearly mirrored versions of

each other.
All in all, these findings suggest that the employed input

stencils can be made smaller in the vertical and span-wise
direction without sacrificing their predictive value, and that
an extension along the stream-wise direction, in turn, may
help to increase the predictive value of the input stencils.

4.2 A posteriori (online) test

Our ANN LES SGS model produced numerically unstable a
posteriori results without resorting to artificially introducing
additional variance (for instance, via eddy-viscosity models)
or imposing strong ad hoc numerical constraints, which is in
agreement with the results of Beck et al. (2019), Maulik et al.
(2019), and Zhou et al. (2019).

Several other studies (Guan et al., 2021; Park and Choi,
2021; Wang et al., 2018; Xie et al., 2019; Yang et al., 2019),
in contrast, did report stable a posteriori results without re-
quiring ad hoc adjustments, although in some cases only af-
ter using single-point rather than multi-point inputs (Park and
Choi, 2021), or ensuring that sufficient training samples are
presented (Guan et al., 2021).

We emphasize though that all the aforementioned studies
(with the notable exception of Park and Choi (2021)) do not
consider wall-bounded flows. In addition, they do not com-
pensate for the instantaneous spatial discretization errors as-
sociated with a staggered finite-volume grid.

Crucially, for our setup, these spatial discretization er-
rors were substantial, removing a large part of the variance
present at high wave modes in the DNS (Fig. 2). Since we
designed our ANN SGS model to fully compensate for these
instantaneous discretization errors, our SGS model tended
to re-introduce a large amount of variance at the highest
resolved wave modes. In the a priori test, we consistently
found that the Smagorinsky SGS model, as opposed to our
ANN SGS model, strongly underestimated the small-scale
variability of τij,DNS and εSGS,DNS (Sect. 4.1.2).

The introduction of additional variance at the highest wave
modes by our ANN SGS model is on its own not necessar-
ily a problem if the energy transfer from the resolved to the
unresolved scales is sufficient. Our ANN SGS model, con-
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Figure 13. Permutation feature importance of all u velocities in the local input stencil (with indices l, m, n) associated with predicting τ in
wu

in the log layer (0.09375 zδ (55.3125z+)) using an ANN (with nhidden = 64) trained and tested only on fhor = 8, averaged over three flow
fields reserved for a priori testing and 10 random shufflings. The five panels (a–e) each show one of the five horizontal planes (indicated by
their vertical index n) present in the input stencils. τ in

wu is located in the centre of the shown horizontal plane, halfway between n= 1 and
n= 2.

sequently, needs to provide sufficient additional dissipation,
compared to the SGS models from the aforementioned stud-
ies and traditional SGS models like Smagorinsky. Promis-
ingly, a priori we found that the ANN matched well the net
dissipation inferred from the DNS (Fig. 11) and indeed pro-
vided more net dissipation than the traditional Smagorinsky
SGS model. Despite that, we observed a posteriori a gradual
pile-up of spectral energy at the smallest wave modes (shown
as an example for the u component in Fig. 15), indicating that
an overall lack of dissipation nonetheless remains.

We hypothesize that two issues prevented the ANN SGS
model from producing the required dissipation a posteriori:
(1) error accumulation and (2) aliasing errors.

In the first place, similar to Beck et al. (2019), we hypothe-
size that high-frequency errors in the ANN predictions accu-
mulated over time due to strong positive feedbacks between
our ANNs and the LES simulation. We stress that ANN SGS
models like ours can never be perfect and consequently will
always introduce errors in an a posteriori simulation that af-
fect, together with the full LES dynamics, its own inputs in
the next time step. It strongly depends on the characteristics
of the SGS model whether this can result in positive feedback
loops that cause divergence from the physical solution and
subsequent numeric instability. In this regard, eddy-viscosity
models like that of Smagorinsky have an important stabiliz-

ing property in steady-state channel flow: as soon as the en-
ergy content starts deviating from the physical solution, the
subgrid dissipation is automatically adjusted (via a change in
the gradients serving as input) to compensate for it.

Such a stabilizing property, however, was clearly lacking
in our ANN SGS model. This is not surprising: we designed
our ANN SGS model to compensate for many spatial dis-
cretization effects, which typically dampen the error accu-
mulation at high frequencies. It is well known that, due to the
chaotic nature of turbulence, small errors introduced by the
predicted transports have a tendency to grow over time (e.g.
Liu et al., 1994). On top of that, it has been shown before
by Nadiga and Livescu (2007) that “perfect” SGS models
(that exactly compensate for the unresolved physics, mod-
elling errors, and instantaneous discretization errors) are in-
herently unstable in implicit filtering LES due to the pres-
ence of multiple different attractors. These issues were likely
exacerbated by the growing need for the ANN to extrapo-
late beyond its training state once the simulation started de-
viating from the physical solution. This extrapolation likely
increased the ANN prediction errors, which would in turn
accelerate the divergence from the physical solution.

Secondly, we hypothesize that, during the a posteriori test,
aliasing errors became prominent due to the introduced vari-
ance at high wave modes. Such aliasing errors are known
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Figure 14. Permutation feature importance of all u velocities in the local input stencil (with indices l,m,n) associated with predicting τout
wu

in the log-layer (0.09375 zδ (55.3125z+)) using an ANN (with nhidden = 64) trained and tested only on fhor = 8, averaged over three flow
fields reserved for a priori testing and 10 random shufflings. The five panels (a–e) each show one of the five horizontal planes (indicated by
their vertical index n) present in the input stencils. τout

wu is located in the centre of the shown horizontal plane, halfway between n= 2 and
n= 3.

Figure 15. Time evolution of stream-wise spectra averaged in the
span-wise direction, where the colour brightness indicates the dif-
ferent time steps. Here, the light blue colours refer to the first time
steps, and the dark blue colours to the final time steps. The time
steps range from t = 0 s to t = 36 s, with intervals of 3 s.

to introduce instability when not dampened by discretiza-
tion errors and/or dealiasing techniques (e.g. Kravchenko and
Moin, 1997; Chow and Moin, 2003). The quadratic veloc-
ity products in the non-linear advection term can in princi-

ple introduce wave modes that are not supported by the finite
LES grid. The additional variance could have prevented them
from being dampened by the instantaneous spatial discretiza-
tion errors, causing them to appear as spurious resolved wave
modes in the finite LES solution. This would increase the
amount of dissipation required in the LES simulation. These
aliasing errors were not accounted for during the ANN train-
ing, as it only relied on instantaneous coarse-grained flow
fields that did not contain additional variance.

5 Conclusions and recommendations

In this study, we evaluated and developed a data-driven large-
eddy simulation (LES) subgrid-scale (SGS) model based on
artificial neural networks (ANNs) that aims to represent both
the unresolved physics and instantaneous spatial discretiza-
tion errors. We focused specifically on the widely used LES
approach where a staggered finite-volume grid acts as an im-
plicit filter, where the discretization errors can strongly inter-
act with the resolved physics.

We designed our ANN SGS model such that, similar
to conventional eddy-viscosity SGS models like that of
Smagorinsky, it can be applied locally in the grid domain: the
employed ANNs used as input only local 5× 5× 5 stencils
of the resolved wind velocity components (u,v,w). Inter-

Geosci. Model Dev., 14, 3769–3788, 2021 https://doi.org/10.5194/gmd-14-3769-2021



R. Stoffer et al.: LES subgrid modelling using ANNs 3785

estingly, an additional analysis we performed with so-called
permutation feature importances suggested that our ANNs
mostly focused on a small part of the stencils oriented along
the mean flow direction. Hence, the input stencils we used
could perhaps be further optimized by selecting smaller sten-
cils that extend along the mean flow direction.

Using as a test case turbulent channel flow (with Reτ =
590), we trained the ANNs with individual 3-D flow fields
obtained from direct numerical simulation (DNS). By apply-
ing an explicit finite-volume filter (i.e. a discrete 3-D top-hat
filter) on the high-resolution DNS fields and mimicking the
instantaneous spatial discretization errors made in the actual
LES, we generated millions of ANN input–output pairs that
allowed us to train the ANNs in a supervised manner.

Subsequently, we performed both an a priori (offline) and
a posteriori (online) test. As an a priori test, we directly com-
pared the ANN predictions to the DNS derived values for
flow fields unseen during training. Focusing first on the rela-
tively simple case where a single coarse horizontal resolution
is used during both training and testing, we found, in general,
excellent agreement for all heights in the channel: the spatial
patterns in the DNS values were well captured, and the cor-
relation coefficients between the ANN predictions and DNS
values were high (mostly between 0.6 and 1.0). For a single
coarse resolution, the ANNs were thus well able to represent
the unresolved physics and instantaneous spatial discretiza-
tion errors in the entire flow, based only on the resolved flow
fields. We do note that we did find a few shortcomings that
can possibly be improved upon: the extreme SGS fluxes were
slightly underestimated, and the predicted horizontally aver-
aged vertical profile of τwu deviated in particular close to the
walls.

In addition, we tested the generalization performance of
our ANN SGS model with respect to the selected coarse hor-
izontal resolution. We found that the ANN could be success-
fully trained on multiple resolutions simultaneously and was
in most cases able to generalize to other resolutions unseen
during training. The generalization performance was partic-
ularly good when the unseen resolution was within the range
of the resolutions seen during training, suggesting that a lim-
ited set of training resolutions may be sufficient to achieve a
good generalization performance with respect to the selected
resolution. The generalization performance of our ANN SGS
model towards other flow types and/or higher Reynolds num-
ber though is currently still an open issue. This can possibly
be overcome by applying known scalings and properties to
the inputs and outputs (e.g. Ling et al., 2016b; Yang et al.,
2019), extending the range of cases covered in the training
data set, and/or retraining a previously optimized ANN on
limited data from a new flow through transfer learning (Guan
et al., 2021).

To test our ANN SGS model a posteriori, we incorporated
a trained ANN SGS model directly into an actual LES of
the selected turbulent channel flow test case. Contrary to the
a priori test, the ANN SGS model did not produce satisfac-

tory results. Since our ANN SGS model, in contrast to tradi-
tional SGS models like that of Smagorinsky, compensated for
many spatial discretization effects by introducing additional
variance, the need for additional dissipation increased. The
ANN SGS model appeared not to provide this dissipation
sufficiently, causing an artificial buildup of TKE at high wave
modes that eventually destabilized the solution. We hypoth-
esized that our ANN SGS model did not produce sufficient
dissipation because of (1) error accumulation and (2) aliasing
errors.

We thus conclude that our ANN SGS model cannot,
in its current form, achieve computationally stable results
without resorting to previously suggested ad hoc adjust-
ments (e.g. neglecting all backscatter or combining with the
Smagorinsky SGS model). These ad hoc adjustments, how-
ever, (re-)introduce strong assumptions and obscure the link
between the a priori and a posteriori SGS model. We there-
fore would like to mention below a couple of possible alter-
native approaches, which may help to circumvent the need
for ad hoc adjustments and could therefore be worth explor-
ing further in future studies.

First of all, one way forward could be to adjust the training
procedure such that it reflects better the a posteriori simula-
tion. A potential elegant way to achieve this may be an on-
line learning procedure similar to the ones proposed by Rasp
(2020) and Guan et al. (2021), where the ANN SGS model
would be trained within the actual online LES simulation to
reproduce the correct statistics and/or the correction terms
inferred from a dynamically coupled DNS. Alternatively, er-
rors expected to be introduced by an ANN SGS model in an
a posteriori LES simulation could be added offline to the fil-
tered flow fields u, v, w during training. This may help to
reduce the sensitivity of the ANN to its own errors, allevi-
ating the need for extrapolation once the a posteriori LES
simulation starts diverging.

A second way forward may be to further improve the de-
sign of our data-driven SGS model, in particular including
more physical constraints and insights. It could, for instance,
be interesting to include the SGS transfer terms in the loss
function used during offline training, as it may allow the
ANNs to improve their representation of the net SGS trans-
fer. This could make the ANN SGS model less prominent to
a posteriori instability.

Besides that, it is likely worthwhile to further optimize the
chosen inputs, the selected machine-learning algorithm, and
the training when attempting to stabilize the a posteriori sim-
ulation. Park and Choi (2021) found, for instance, that using
single-point inputs, rather than multi-point inputs, alleviated
the observed a posteriori instability. Guan et al. (2021) ob-
served that convolutional neural networks achieved higher a
priori accuracy than the multi-layer perceptron architecture
selected in this study, and, interestingly, that the a posteriori
stability depended on the number of training samples. Possi-
bly, a corresponding further increase in the a priori accuracy
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helps to reduce the error accumulation a posteriori, making
the a posteriori simulation less prone to instability.

All in all, our developed ANN LES SGS model has, based
on its excellent a priori performance, potential to improve
the representation of the unresolved physics and discretiza-
tion errors in turbulent flows. However, the developed ANN
LES SGS model is in its current form still prone to numeric
instability in a posteriori simulations. Hence, several open
challenges remain before the potential of ANN LES SGS
models like ours can be successfully leveraged in practical
applications.
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