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Abstract. Simple climate models (SCMs) are frequently
used in research and decision-making communities because
of their flexibility, tractability, and low computational cost.
SCMs can be idealized, flexibly representing major climate
dynamics as impulse response functions, or process-based,
using explicit equations to model possibly nonlinear climate
and Earth system dynamics. Each of these approaches has
strengths and limitations. Here we present and test a hybrid
impulse response modeling framework (HIRM) that com-
bines the strengths of process-based SCMs in an idealized
impulse response model, with HIRM’s input derived from
the output of a process-based model. This structure enables
the model to capture some of the major nonlinear dynam-
ics that occur in complex climate models as greenhouse gas
emissions transform to atmospheric concentration to radia-
tive forcing to climate change. As a test, the HIRM frame-
work was configured to emulate the total temperature of the
simple climate model Hector 2.0 under the four Represen-
tative Concentration Pathways and the temperature response
of an abrupt 4 times CO2 concentration step. HIRM was able
to reproduce near-term and long-term Hector global temper-
ature with a high degree of fidelity. Additionally, we con-
ducted two case studies to demonstrate potential applications
for this hybrid model: examining the effect of aerosol forcing
uncertainty on global temperature and incorporating more
process-based representations of black carbon into a SCM.
The open-source HIRM framework has a range of appli-
cations including complex climate model emulation, uncer-
tainty analyses of radiative forcing, attribution studies, and
climate model development.

1 Introduction

Climate models encompass a diverse collection of ap-
proaches to representing Earth system processes at various
levels of complexity and resolution. The most complex are
the Earth System Models (ESMs): highly detailed represen-
tations of the physical, chemical, and biological processes
governing the Earth system at high spatial and temporal res-
olution (Hurrell et al., 2013). These models are computation-
ally expensive and therefore can only be run for a limited
number of scenarios. Slightly less complex and more com-
putationally efficient are the Earth System Models of Inter-
mediate Complexity (EMICs) (Stocker, 2011). Finally, Sim-
plified Climate Models (SCMs) sacrifice process realism but
are computationally inexpensive (van Vuuren et al., 2011).
Although SCMs are generally low resolution in space and
time, they have a wide range of applications, including em-
ulation (Dorheim et al., 2020a), probabilistic estimates de-
manding thousands of separate model runs (Stainforth et al.,
2005; Webster et al., 2012), factor separation analysis (Meehl
et al., 2007), and Earth system model development and diag-
nosis (Meinshausen et al., 2011).

SCMs vary in complexity. Process-based SCMs such as
Hector (Hartin et al., 2015) and MAGICC (Meinshausen et
al., 2011) consist of systems of equations that represent, al-
beit in highly simplified form, carbon cycle and climate dy-
namics. Other SCMs are more abstract, consisting of a few
highly parameterized equations. Some of the more ideal-
ized SCMs (sensu Millar et al., 2017) use impulse response
functions (IRFs) to approximate climate dynamics (Millar et
al., 2017). IRF-based SCMs are themselves diverse; some
are highly idealized, such as the Impulse Response Func-
tion used in the Fifth IPCC Assessment Report (Myhre et al.,
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2013) (AR5_IR), while others are quasi process-based, only
using IRFs to approximate linear climate dynamics, with the
rest of the climate system represented by process-based equa-
tions (Strassmann and Joos, 2018; Smith et al., 2018a; Joos
and Bruno, 1996).

One of the fundamental differences between process-
based SCMs and idealized IRF-based SCMs is in their rep-
resentation of the important nonlinear climate dynamics oc-
curring during the evolution of emissions to climate impacts.
Process-based models (whether SCMs or ESMs) have equa-
tions that represent emissions accumulating as concentra-
tions, which in turn affect the energy (radiative forcing) re-
sulting in climate changes (most prominently, temperature
change) (Harvey et al., 1997; Claussen et al., 2002). The
system of equations used by process-based SCMs represents
some, though not all, of the more complex and often nonlin-
ear dynamics observed in the Earth system. These dynam-
ics include interactions between atmospheric chemical con-
stituents (Wigley et al., 2002); nonlinear relationships be-
tween greenhouse gas concentrations and energy absorption,
i.e., radiative forcing (Shine et al., 1990; Myhre et al., 2013);
and carbon–climate feedbacks such as ocean surface CO2 up-
take (Wenzel et al., 2014; Tang and Riley, 2015). Compre-
hensive process-based SCMs such as Hector and MAGICC
have thousands of lines of code and take significant effort
to expand. On the other extreme, simple impulse response
models can be expressed in a few equations and are readily
implemented, but these simplifications can produce biases in
results (van Vuuren et al., 2011; Schwarber et al., 2019). We
discuss here a framework that can be used as a test bed for
SCM development and analysis.

In this paper we document and demonstrate a highly ide-
alized IRF-based framework. This modeling framework is
configured using output from a process-based model to cap-
ture nonlinear and complex climate dynamics, we refer to
it as a hybrid impulse response modeling (HIRM) frame-
work. HIRM was configured using the open-source, object-
oriented, process-based SCM Hector v2.3.0, although in the-
ory it could potentially use information from any climate
model (ESM, EMIC, SCM). The first two experiments in this
paper demonstrate HIRM’s ability to accurately reproduce
global mean temperature, including the temperature response
to large climate system perturbations. We also demonstrate
the potential utility of this framework in an uncertainty anal-
ysis and examine how changing the response function for
black carbon impacts HIRM output. We discuss the implica-
tions of these results and potential future uses of this frame-
work.

2 Methods

2.1 Parent model description

In this study we used Hector v 2.3.0 as the parent model,
providing both of HIRM’s primary and only inputs. We se-
lected Hector because it is open source, well documented,
fast-executing, and has a structure that makes it easy to obtain
“clean” IRFs from model runs (Schwarber et al., 2019). As
noted above, however, HIRM can be coupled with any parent
model that can provide its inputs. Hector has been well docu-
mented (Hartin et al., 2015), but we provide a brief summary
here.

Hector (Hartin et al., 2015; Link et al., 2019) is an open-
source, process-based SCM carbon–climate model avail-
able at https://github.com/jgcri/hector (last access: 11 Jan-
uary 2021). The model is written in C++ and has an object-
oriented structure, allowing for substitutions of different
model components; it has both internal and external auto-
mated testing, e.g., enforced unit-checking, which provide
robustness and quality assurance. Hector models carbon and
energy flows between the ocean, atmosphere, and terrestrial
biosphere, starting with a preindustrial steady-state system
that is then perturbed by anthropogenic emissions provided
as input files. The model runs on an annual time stamp, al-
though the carbon cycle as an adaptive time step solver to en-
sure smooth numerical changes when fluxes (primarily ocean
uptake) are large. The terrestrial carbon cycle is divided into
biota, litter, and soil across multiple biomes; the ocean fea-
tures surface, intermediate, and deep pools in different hemi-
spheres, with heat uptake governed by an implementation
of the DOECLIM (Kriegler, 2005; Urban et al., 2014) one-
dimensional heat diffusion sub-model. Hector models the
dynamics of 37 different radiative forcing agents. The total
radiative forcing in turn affects global temperature change,
with all of Hector’s radiative forcing agents exhibiting the
same temperature response to change in radiative forcing. In
effect, Hector can be considered to interpret forcing assump-
tions as effective radiative forcing values, which are more
closely related to surface temperature changes than the previ-
ously used values for stratospheric-adjusted radiative forcing
(Richardson et al., 2019; Smith et al., 2018b). This has no im-
pact on the model dynamics that are our focus here and only
impacts how numerical values are selected as input settings.
Note that Hector also assumes that the temporal shape of the
response function is the same for all forcers, a simplifying
assumption that has consequences for HIRM configuration
but also the consequences of which we examine below.

2.2 HIRM description

HIRM’s total atmospheric temperature response is calculated
as the sum of the Green’s function of a temperature response
to a radiative forcing perturbation with radiative forcing time
series, an approach taken by many SCMs (Joos et al., 1999,
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2013; Van Vuuren 2011; Millar et al., 2015; Boas, 2006).
By relying on a process-based climate model to compute re-
sponse function (RF) values, HIRM is able to use a linear
IRF in a simple impulse response model and capture the ma-
jor nonlinear dynamics between the emissions to radiative
forcing calculations by using radiative forcing time series as
input data.

HIRM calculates the atmospheric temperature change
from preindustrial temperature (T ) as the sum of the temper-
ature contribution from individual forcing agents Ti (Eq. 1):

T (t)=

n∑
i=1

Ti(t). (1)

Here the individual temperature contribution is equal to the
convolution of the radiative forcing time series RFi with the
temperature response to a radiative forcing pulse IRFi for a
single radiative forcing agent (Eq. 2).

Ti(t)=

t∫
t0

RFi(t
′)IRFi(t − t

′)dt ′ (2)

The method we used to obtain RFi and IRFi for HIRM re-
lies on output from a parent process-based model. The subse-
quent sections discuss how we obtained RFi and IRFi specif-
ically from Hector. It is important to note that while HIRM
can be set up with unique IRFs for each radiative forcing
agent (as demonstrated below), this was not done in this ap-
plication since Hector uses one IRF for all species.

HIRM is an open-source R package (https://github.com/
jgcri/hirm, last access: 11 January 2021) with Doxygen-style
comments, unit tests, and online documentation via pkgdown
(Wickham and Hesselberth, 2020). The online documenta-
tion available at https://jgcri.github.io/HIRM/ (last access:
11 January 2021) documents all of the package functions and
links with a vignette (example) that demonstrates how to set
up and run HIRM. The package contains all of the IRFs and
RF inputs used in this paper that can be used in a customiz-
able configuration matrix to set up and run HIRM.

2.3 IRF derivation

As previously mentioned, one of Hector’s assumptions is
that all of Hector’s radiative forcing agents elicit the same
temperature response to a change in radiative forcing. Even
though HIRM can use a unique IRF for each radiative forc-
ing agent, for the purposes of HIRM validation exercises in
this study, HIRM’s setup must be analogous to that of its par-
ent model Hector. In this study we configured HIRM with a
single IRF that characterizes Hector’s temperature response
to all of its 37 radiative forcing agents, derived from a refer-
ence run and a black carbon (BC) emissions perturbation run
of Hector. In Hector, BC emissions are converted directly to
radiative forcing, and therefore an emissions pulse of BC is
analogous to a radiative forcing pulse. BC was chosen as the

forcing agent since there are no gas cycle or forcing interac-
tions with other species within Hector, making it straightfor-
ward to derive the IRF, but other forcing agents could have
been selected for the perturbation run. During the reference
model run Hector was driven with the Representative Con-
centration Pathway (RCP) 4.5 scenario, while for the pertur-
bation model run BC emissions were doubled relative to RCP
4.5 BC emissions in a single year. RCP 4.5 CO2 concentra-
tions were prescribed during these runs, suppressing Hector’s
normal carbon cycle–temperature feedbacks.

For the two validation experiments we did not include car-
bon cycle–climate feedbacks into the IRF as we wanted to
examine the relative importance of nonlinearities in emission
to forcing calculations, at least as represented in Hector, as
compared to nonlinearities in Hector’s forcing to tempera-
ture calculations (as represented within DOECLIM). For this
reason the IRF should represent only the response of tem-
perature to radiative forcing; otherwise, the temperature re-
sponse from these feedback mechanisms would be incorpo-
rated into the IRF, which would then be doubled-counted as
forcing time series are being used as inputs. For the replica-
tion experiments we also focus on reproducing Hector tem-
perature without carbon–climate feedbacks. Other applica-
tions of HIRM may require IRFs that include the temperature
response from carbon cycle feedbacks.

The temperature response (Tresponse) to the BC emissions
perturbation is equal to the difference between the reference
(Tref) and perturbation temperature

(
Tp
)

(Eq. 3), with the per-
turbation occurring at year t0:

Tresponse (t − t0)= Tp (t − t0)− Tref (t − t0) . (3)

The temperature response to a radiative forcing perturbation
was calculated by dividing the temperature response to the
emissions perturbation by the size of the radiative forcing
pulse (Eq. 4). The size of the radiative forcing pulse (Xy)
was set equal to the difference in radiative forcing between
the reference and emissions perturbation runs (described in
the paragraph above) in the perturbation year:

IRFi(t − t0)= Tresponse (t − t0)/Xy . (4)

This IRF had a length of 300 years, in order to ensure the IRF
was long enough to be convolved with the RF inputs; the
end of the IRF was extrapolated with an exponential decay
function to a length of 3000 years with a decay constant of
0.20. Extending the length of the IRF prevents the IRF from
being padded with zeros and having to truncate the RF inputs.

The majority of Hector’s temperature response to a radia-
tive forcing pulse occurs within the first 50 years after the
perturbation (Fig. 1). The strongest response occurs during
the perturbation year itself, with a maximum value of 0.09
(◦C W−1 m−2); by year 35 the temperature response has de-
creased by 97 % and continues to approach zero for the re-
mainder of the IRF. This IRF is used in both of the validation
experiments and case studies except where noted.
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Figure 1. The first 50 years of the global temperature response
to a radiative forcing perturbation for Hector v2.0; the remain-
ing 2500 years of the impulse response are almost constant and
slowly approach zero. Here the black carbon emissions were dou-
bled in 2010 relative to the Representative Concentration Pathway
4.5 value.

3 Validation experiments

3.1 Replication of RCP results

Emulation is used to validate HIRM by illustrating that the
HIRM framework reproduces the dynamics of a process-
based SCM with a minimal loss of information. If HIRM
can accurately reproduce or emulate the atmospheric temper-
ature of a more complex, process-based model such as Hec-
tor, then we assume that HIRM is able to capture important
nonlinear dynamics of the climate system using this setup, at
least to the extent these are captured in the SCM. Conversely,
if HIRM is unable to reproduce Hector’s global temperature
outputs, this would indicate that important processes are not
being captured by the HIRM framework.

In the first validation experiment, HIRM was set up to re-
produce Hector temperature for RCP 2.6, RCP 4.5, RCP 6.0,
and RCP 8.5. HIRM was configured for each RCP scenario
with a single IRF derived from Hector (Fig. 1) together with a
complete set of time series from Hector’s 37 radiative forcing
agents. The radiative forcing time series for these validation
experiments came from Hector output from RCP 2.6, 4.5,
6.0, and 8.5 with prescribed CO2 concentrations. The global
mean temperature outputs from Hector driven with RCP 2.6,
RCP 4.5, RCP 6.0, and RCP 8.5 were saved and used as val-
idation data for HIRM.

HIRM was able to emulate Hector’s temperature for the
four RCPs with a minimal loss of information (Fig. 2a).
The difference between HIRM and Hector total tempera-
ture, measured as the root-mean-squared error (RMSE), was
1.3× 10−9 ◦C (Fig. 2a) for each RCP scenario. The cumu-
lative percentage difference between HIRM and Hector tem-
perature was 0 % (rounded from 1.0× 10−5; other 0 % re-
sults are similar) for each RCP scenario.

3.2 Replication of 4 times CO2 results

The second validation experiment tested HIRM’s ability to
reproduce Hector’s temperature response to an abrupt 4 times

CO2 concentration step. The abrupt 4 times CO2 concentra-
tion step is a test commonly used by climate modelers to un-
derstand the climate system’s response to CO2 (Taylor et al.,
2012). In this experiment HIRM was set up with the Hector-
derived IRF and a RF input from an abrupt 4 times CO2
concentration step. The radiative forcing time series was ob-
tained from Hector runs following the CMIP5 protocol (Tay-
lor et al., 2012). HIRM’s radiative forcing time series input
was the difference in Hector radiative forcing from Hector
driven with a constant CO2 concentration of 278 ppm and
Hector driven with a CO2 concentration of 278 ppm until the
year 2010 when the CO2 concentration increased by a mag-
nitude of 4 and remained constant for the rest of the run. The
difference in Hector’s global mean temperature anomaly be-
tween the constant reference run and the perturbed step run
was then compared with HIRM’s output.

HIRM reproduced Hector’s abrupt 4 times CO2 concen-
tration step temperature response with a high degree of accu-
racy (Fig. 2b). The RMSE between HIRM and Hector tem-
perature output from the abrupt CO2 concentration step was
1.5× 10−19 ◦C with a cumulative percent difference of 0 %.
The abrupt CO2 concentration step is a standard diagnostic
test used to examine climate model responses (Taylor et al.,
2012; Eyring et al., 2016). Since HIRM was able to accu-
rately emulate Hector’s temperature response to a large step
perturbation, we conclude that the majority of the nonlin-
earities within Hector are occurring during the emissions-
to-radiative forcing portion of the emissions-to-temperature
causal chain. While this is to be expected from the general
principles of SCMs, it nonetheless provides a useful check
that our understanding of the parent model’s behavior is cor-
rect.

4 HIRM application case studies

4.1 Aerosol uncertainty case study

Uncertainties in the magnitude of historical and future radia-
tive forcing effects continue to be a crucial challenge for cli-
mate science research, and this is particularly true for aerosol
effects (Forest, 2018). In this first case study HIRM was used
to explore a range of future temperature change when ac-
counting for uncertainty in some aerosol radiative forcing ef-
fects, specifically black carbon (BC), organic carbon (OC),
indirect SO2 effects (SO2i), and direct SO2 effects (SO2d).
To do so, HIRM was again set up to recreate Hector’s RCP
4.5 temperature. In this analysis, BC, OC, SO2i, and SO2d
RF inputs were varied. Aerosol cloud indirect effects are rep-
resented in Hector as a function of SO2 emissions only, and
thus we refer to that as SO2 indirect forcing. We present a
simple demonstration of the model in this case study and
note that we have not produced probabilistic results but an
illustrative range of temperature pathways that result from
aerosol uncertainties (e.g., Smith and Bond, 2014). A full
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Figure 2. Comparison of Hector (dashed gray line) and HIRM (dashed blue line) global mean temperature anomaly from the two validation
experiments. In panel (a) HIRM was used to the recreate Hector temperature for the four RCPs. The four lines in panel (a) from lowest to
highest 2100 temperature represent results for RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. Panel (b) compares the temperature response of
HIRM and Hector from the abrupt 4 times CO2 concentration step validation test.

Table 1. The minimum and maximum 2011 radiative forcing values
from IPCC AR5 8.SM (Table 5 of Myhre et al., 2013). These values
were used to obtain the min and max aerosol uncertainty scalers for
four RF agents (BC, OC, SO2i, and SO2d). Along with the 2011 RF
of the default configuration of HIRM and Hector for RCP 4.5.

RF Min. 2011 Max. 2011 Hector default
agent RF RF 2011 RF

BC 0.05 0.87 0.40
OC −0.21 −0.04 −0.17
SO2i −1.2 0 −0.60
SO2d −0.6 −0.2 −0.35

probabilistic analysis would also involve varying additional
parameters, such as climate sensitivity, ocean heat update,
and carbon cycle parameters.

The aerosol uncertainty scalers were generated from the
2011 aerosol radiative forcing ranges reported in IPCC AR5
8.SM Table 5 (Myhre et al., 2013). The BC, OC, SO2i, and
SO2d radiative forcing IPCC ranges were individually sam-
pled at intervals of 0.04 W m−2 in 2011 (Table 1), resulting
in a total of 29 000uncertainty scalar combinations. Default
HIRM 2011 BC, OC, SO2i, and SO2d radiative forcing val-
ues were then divided by the values sampled from the respec-
tive IPCC ranges to obtain the uncertainty scalers.

HIRM was set up to run every possible combination of
the scaled RF time series a total of 29 000 times. This cre-
ated an ensemble of uncertainty runs, whose results were
constrained (i.e., filtered) by historical radiative forcing and
temperature. HIRM total radiative forcing was constrained to
match IPCC historical estimates in radiative forcing and tem-

perature change. The 2011 aerosol (SO2i, SO2d, BC, + OC)
radiative forcing was constrained to pass through an uncer-
tainty range [−1.66 to 0.14 W m−2] (similar to Myhre et al.,
2013, but adjusted to account for nitrate and dust forcing and
empirical constraints; see the discussion in Smith and Bond,
2014). HIRM temperature trend was calculated as the slope
of a linear regression and then compared to the observed tem-
perature trend range of [0.65 to 1.1] ◦C over 1880–2012 re-
ported by Hartmann et al. (2013). Cases that did not meet
these constraints were removed (see Fig. 3).

We found that the historical constraints had an unequal im-
pact on the scaled radiative forcing impacts. The tempera-
ture at the end of the century for the unconstrained ensem-
ble ranged over 2.5–3.1 ◦C; incorporating the historical con-
straints into the uncertainty analysis narrowed uncertainty in
future temperature to 2.7–2.9 ◦C (Fig. 3). The historical con-
straints had different impacts on the sampled aerosol uncer-
tainty scalers. All of the sampled OC scalers passed through
the historical constraints (Fig. 4b), while the constraints had
a modest effect on the OC, BC, and SO2d scalers (Fig. 4a, b,
and c).

The historical constraints have the most noticeable ef-
fect on the SO2i uncertainty scalers. This is because of the
large absolute magnitude of the uncertainty in aerosol indi-
rect effects (Myhre et al., 2013), which results in a large role
for assumptions about the strength of aerosol indirect cool-
ing (Tomassini et al., 2007; Meinshausen et al., 2009). This
shows that strong (negative) aerosol indirect forcing is con-
sistent with only a few numerical combinations of forcing
values from other species, at least for default Hector climate
system parameters. The sample analysis using HIRM illus-
trates how this modeling framework can be utilized to calcu-
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Figure 3. The temperature (◦C) spread from the aerosol uncertainty runs in selected years. The gray regions show all of the possible runs
before the historical constraints were put into the place; orange regions are the runs that passed through both historical temperature and
radiative forcing constraints. The uncertainty in temperature due to uncertainty in aerosol forcing decreases by 2100 because emissions of
aerosols and precursor compounds decrease over time so their influence on temperature decays over time as well. We note that uncertainty in
other climate system parameters, such as climate sensitivity and ocean heat diffusivity, were not samples in this application. Including these
uncertainties would alter these results. Note that temperature change in 2020 is larger than the applied historical constraint ([0.65 to 1.1] ◦C
over 1880–2012) because temperatures in this figure are relative to 1750.

Figure 4. Uncertainty scalers used to vary (a) black carbon, (b) organic carbon, (c) direct SO2 effects, and (d) indirect SO2 effects aerosol
RF time series in the uncertainty analysis. HIRM was run a total of 29 000 times, with every combination of uncertainty scaler represented
on the x axes of panels (a)–(d), creating an ensemble of uncertainty runs with scalars varying for all radiative forcing agents. Each panel of
this figure plots a projection of the percent of runs passing through the historical constraints as the 2011 radiative forcing agent of an agent
is varied. The vertical black line marks default 2011 RF.
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late the range of past and future temperature changes under
assumed uncertainty in aerosol radiative forcing.

4.2 HIRM as a tool for development: case study

Radiative forcing effects from aerosols are complex (Fan et
al., 2016; Bond et al., 2013), and while the physics driving
these complexities have been incorporated into ESMs, they
are not considered in most SCMs. For example, consider
black carbon (BC): unlike cooling effects from aerosols that
scatter shortwave radiation back into space, BC heats within
the atmosphere and also at the surface when deposited on
snow or ice, potentially contributing to both cloud indirect
cooling and heating effects (Bond et al., 2013). It can also in-
crease cloud amounts, as BC atmospheric heating stabilizes
the atmospheric thermal profile (Bond et al., 2013). Experi-
ments conducted with ESMs have found large differences in
the response to a step change in BC emissions compared to a
step change in CO2 (Sand et al., 2015; Yang et al., 2019).

Incorporating these dynamics into Hector would be a non-
trivial task, but HIRM can be used to estimate what effect
they would have on the model’s global temperature. For this
case study, HIRM was set up to emulate Hector RCP 4.5 as
before but with one difference: instead of pairing the BC RCP
4.5 RF time series with Hector’s single IRF, the BC RCP
4.5 RF time series was paired with a BC-specific IRF. Since
HIRM is set up with a BC-specific IRF, the results will no
longer be equivalent to Hector’s. Instead, the results illus-
trate what Hector’s temperature could be if the BC dynamics
were modified.

The BC-specific IRF was derived using output from a
study that performed BC emission step tests with the ESM
NorESM-1 (Sand et al., 2015). Mathematically, the deriva-
tive of a step response is equal to the impulse response func-
tion, and therefore we can derive an impulse response func-
tion from the step response results reported in the Sand et
al. (2015) ESM experiment. The temperature response to a
BC step in ESM experiments is well fitted by a single ex-
ponential approach to a constant response (see Yang et al.,
2019, for details). We fit the Sand et al.(2015) abrupt BC
step response as follows:

T (t)= A(1− e
−t
τ ). (5)

The results of a nonlinear optimization of this function re-
turned values of and τ that were 1.8 ◦C and 2.1 years, respec-
tively. These optimal values were used in Eq. (6), the differ-
entiated form of Eq. (5), to provide a numerical BC tempera-
ture impulse response function corresponding to the Sand et
al. (2015) result:

Rt (t)=
A

τ
e
−y
t dt. (6)

The numerical result of Eq. (6) is converted to a BC impulse
response per unit forcing by dividing by the forcing from a

133 Tg BC emissions change (used in Sand et al., 2015) using
Hector’s default forcing per unit BC emission assumptions.
With this transformation we have replaced Hectors’ default
BC representation in HIRM with the Sand et al. (2015) tem-
perature response in both magnitude and temporal behavior.

We found that the BC Sand et al. (2015) IRF has a weaker
temperature response in the perturbation year and a more
rapid decline in temperature response compared to Hector’s
global IRF (Fig. 5a). The maximum IRF response for the BC
Sand et al. (2015) IRF is 0.06 (◦C W−1 m−2), which is 0.03
(◦C W−1 m−2) cooler than Hector’s IRF. In addition, the BC
Sand et al. (2015) IRF approaches 0 (◦C W−1 m−2) faster
than Hector’s IRF. These differences are expected since the
BC Sand et al. IRF was derived from the NorESM-1 ESM,
meaning that this IRF incorporates the complex cooling and
warming effects of BC emissions, the net warming over land
as compared to no net warming over oceans (Sand et al.,
2015). When HIRM was configured with the BC Sand et
al. (2015) IRF, the global temperature was lower by 0.2 ◦C
from 1750 to 2100 under the RCP 4.5 scenario (Fig. 5b).
Based on these results, if Hector were modified to emulate
this BC response, we predict that the model’s global temper-
ature would be cooler by approximately 0.2 ◦C in 2100.

We note that the idea of different forcing agents has been
around for quite some time. For example, this has been incor-
porated mechanistically for aerosols in the MAGICC model
for around 30 years now (Wigley and Raper, 1992), and
more recently inferred by Shindell (2014) from General Cir-
culation Model results. Richardson et al. (2019) used sepa-
rate response functions for CO2, CH4, solar insolation, and
aerosols, although the differences in these response func-
tions were not discussed. As further information on species-
specific IRFs become available it will be important to quan-
tify the consequences of these different IRFs using tools such
as HIRM.

5 Discussion and conclusion

In this paper we document and test HIRM, a framework that
leverages the nonlinear dynamics of process-based SCMs
within a computationally efficient, highly idealized linear im-
pulse response model. Our two case studies demonstrate that
HIRM can be used as a test bed to quickly examine the con-
sequences of different model assumptions, and to estimate
changes in parent model behavior from including new mech-
anisms. While other IRF-based models have incorporated
nonlinear dynamics using a number of approaches (Hooss et
al., 2001; Millar et al., 2017, ADD), HIRM is able to demon-
strate nonlinear dynamics through its use of exogenous forc-
ing inputs from Hector. HIRM is available as an open-source
R package (available at https://github.com/JGCRI/HIRM,
last access: 11 January 2021), its computational flexibility
and short run time make it particularly appropriate for uncer-
tainty analyses and experimental SCM design.
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Figure 5. (a) Hector’s IRF (blue) compared with the BC Sand et al. (2015) IRF (red). (b) HIRM total temperature for the Representative
Concentration Pathway 4.5 for two HIRM cases: one that only uses Hector’s IRF (blue) and the other pairing the BC RF time series with the
BC Sand et al. (2015) IRF (red).

We demonstrated that HIRM can be used to examine
uncertainty within the climate system, and that incorporat-
ing a more realistic BC temperature response into Hector
has a significant impact on Hector’s global temperature. If
more studies corroborate the findings of Sand et al. (2015)
and Yang et al. (2019) by observing shorter timescale re-
sponses for BC temperature dynamics across a number of
ESMs and Atmosphere–Ocean General Circulation Models
(AOGCMs), then SCM modeling groups will need to con-
sider incorporating the BC temperature response dynamics
into SCMs. Some SCMs, such as MAGICC 5.3 and MAG-
ICC 6 (Tang and Riley, 2015), already exhibit multiple tem-
perature responses; interestingly, MAGICC has a shorter
timescale for the temperature response for aerosols (Schwar-
ber et al., 2019), but the resulting response in MAGICC still
has a longer timescale than that from the AOGCMs (Sand et
al., 2015; Yang et al., 2019).

During the HIRM validation experiments we demonstrate
that most of nonlinearities are in the emissions to forc-
ing steps, in which the SCM calculates concentrations from
emissions and radiative forcings from concentrations, rela-
tionships that are widely used (Etminan et al., 2016). In com-
parison the nonlinearities in going from forcing to global
mean temperature are relatively minor. This implies that ef-
forts to improve the representation of nonlinear behavior in
SCMs should be focused on emissions-to-forcing processes.
We note that we draw this conclusion by calibrating HIRM to
a single process-based SCM; this finding should be verified
using other models, including Earth System Models of In-
termediate Complexity (Claussen et al., 2002). Such EMICs
have more physically based parameterizations but low lev-
els of internal model noise, which would be valuable for
exploring the magnitude and nature of nonlinearities in go-

ing from forcing to temperature. If this finding holds for a
wider class of models, this would mean that a wide range of
model responses to forcing could be quickly simulated using
IRFs. Good et al. (2013) showed that SCMs based on step
responses work fairly well for reproducing General Circula-
tion Model (GCM) results, suggesting that the assumptions
underlying HIRM are valid.

The case studies showcase HIRM’s flexibility, which is
based on HIRM’s dependence on a parent model. Arguably
this can be viewed as a limitation or a tradeoff and allows
HIRM to be used as a tool for rapid exploration. One lim-
itation of this framework is that interactions between forc-
ing agents are not directly considered. For example, multiple
species of aerosols may contribute to cloud-indirect cooling
effects. These interactions, however, are not well constrained
(Fan et al., 2016), and for many purposes where SCMs might
be applicable, it is most important to be able to represent
the overall (large) uncertainty range, rather than interactions
among species that have yet to be definitively quantified. An
effort to represent aerosol indirect effects semi-analytically
(Ghan et al., 2013) demonstrated not only the multiple pro-
cesses that are relevant but also the difficulty in understand-
ing the drivers of the different forcing estimates from more
complex models.

Insights gained from HIRM could be useful in future work
applying impulse response functions in general and the de-
sign of simple climate models in particular. We suggest that
improvements to simple climate models should focus on im-
proving the representation of emission-to-concentration and
concentration-to-forcing relationships. As we note above,
however, it would be useful to also design comparisons with
more complex models, perhaps EMICs given their lower
noise and computational requirements, to determine the ex-
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tent to which the temperature response to forcing in more
complex models can be accurately represented by impulse
response functions, particularly on 20–30 year timescales
where GCM outputs are particularly noisy.

HIRM could also be used with data generated by other
SCMs. This could be a useful way of decomposing differ-
ences in responses between SCMs (e.g., Nicholls et al., 2020)
into differences in the emissions to forcing step compared
to differences in the model’s response to a forcing impulse.
Similarly, HIRM could be used to examine the uncertainty
due to the different forcing to temperature responses amongst
SCMs (see Schwarber et al., 2019, for examples of different
forcing to temperature IRFs).

HIRM can be used as a test bed for future SCM devel-
opment. As demonstrated here, the incorporation of a GCM-
derived temperature response function for black carbon emis-
sions results in a significantly different global mean temper-
ature response (Fig. 5). Exploration of the potential impact
of such changes can be done quickly in HIRM to decide
if changes should be incorporated into, for example, Hec-
tor. Incorporating such a change into the Hector model itself
would be a more time- and labor-intensive process for sev-
eral reasons. First, to incorporate this change into Hector one
would need to decide how to physically interpret the faster
BC response time seen in GCMs since Hector does not use
impulse response functions directly. There is some debate
whether this is due to different response over land vs. ocean
or if this is more closely related to differing hemispheric re-
sponses (Meinshausen et al., 2011; Shindell, 2014; Sand et
al., 2015). Further, explorations or model extensions using
HIRM can be accomplished without a user having to under-
stand Hector’s code, dependencies, and coding standards.

Finally, this framework could also be used for analysis
that requires capabilities not present in SCMs, for exam-
ple, regional analysis. Regional temperature trends could be
simulated by HIRM by incorporating the ratio of regional
to global temperature responses for each forcing agent into
HIRM (Sand et al., 2019; Shindell et al., 2009). This could
be particularly valuable for a region such as the Arctic, where
a variety of forcing agents, such as regional sulfate (Acosta
Navarro et al., 2016) and local black carbon (Sand et al.,
2015; Yang et al., 2019), and global forcing changes, e.g.,
Arctic amplification, all may play a role. This type of anal-
ysis could be readily accomplished using HIRM, including
the wide range of uncertainty space that should be examined
(e.g., Fig. 3). Future research with HIRM could test IRFs set
up with different climate sensitivity values and inputs from
other process-based models.

Code availability. The HIRM R package is available at https:
//github.com/JGCRI/HIRM (last access: 11 January 2021) with
an online manual available at https://jgcri.github.io/HIRM/ (last
access: 11 January 2021). The package is also archived on
Zenodo (https://doi.org/10.5281/zenodo.3756122, Dorheim and

Bond-Lamberty, 2020). Code and results related to the dis-
cussion and conclusions of this paper are available on the
Open Science Framework (OSF) at https://osf.io/kmrj8/ and
https://doi.org/10.17605/OSF.IO/KMRJ8 (Dorheim et al., 2020b).
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