
medusa
–

Reference Guide to the
Configuration and Code Generation Tool

medusacocogen
(for SVN revision 388ff of medusa)

Guy Munhoven
Université de Liège, Belgium

http://www.astro.ulg.ac.be/~munhoven

30th August 2018

Contents
1 General Overview 3

2 Main Building List 4

3 Fundamental Component and Species Definition File For-
mats 6
3.1 Solutes . 6
3.2 Solids . 10
3.3 Solute Systems . 12
3.4 Advanced Topics for Components and Species 13

3.4.1 Material characteristics names 13
3.4.2 Organic matter class 14
3.4.3 Data inheritance . 17

4 Processes and Equilibria 18
4.1 The <ChemicalReaction> XML Element 18
4.2 Processes . 20

1

http://www.astro.ulg.ac.be/~munhoven

4.2.1 Process Definition File Format 20
4.2.2 Advanced Topics for Processes 23

4.3 Equilibria . 24
4.3.1 Equilibrium Description File 24

5 Immaterial and Volume-less Properties 25
5.1 Age or Production Time of Solids 25
5.2 Isotopic Properties of Solids 27

6 Building libmedusa.a 29

A Rate Law Library 29
A.1 Source File Format for MODLIB Rate Law Files 30

A.1.1 Preamble: Metadata 31
A.1.2 Code Part . 34

A.2 Commented Example: DELTAPC_POWN_C 35
A.2.1 Preamble . 35
A.2.2 Module Code . 37
A.2.3 Application in a Process Description File 39

A.3 Rate Law Library Reference 41

B Law of Mass-Action Library 52
B.1 Source File Format for Law of Mass-Action MODLIB Files . . . 52

B.1.1 Preamble . 52
B.1.2 Code Part . 54

B.2 Commented Example: MODLIB_R1R2P1P1 55
B.2.1 Preamble . 55
B.2.2 Module Code . 56
B.2.3 Application . 59

B.3 Law of Mass-Action Library Reference 59

2

1 General Overview
The medusa code configuration and generation tool medusacocogen
is used to produce critical parts of the Fortran 95 source code of medusa.
The standard medusa source code contains only the common framework,
for mixing and transporting the constituents. The actual composition of the
solid and solute phases, together with the chemical and physical properties
of the species (solubility, diffusion coefficients, etc.), the processes that af-
fect them (chemical reactions, kinetic rate laws) and the thermodynamic
equilibria that may affect subsets needs to be integrated into medusa’s
differential-algebraic equations framework used to solve the underlying sys-
tem of advection-diffusion-reaction equations.

medusacocogen itself is also written in Fortran 95. The selection of
constituents, processes and equilibria is based upon XML definition files. To
process the XML code of the definition files, medusacocogen calls upon
the Fortran 95 µxml library, developed especially for this purpose, but inde-
pendent and usable for more general usage. The XML-processing capacities
of the µxml library are still very limited (hence the µ in the name). Stan-
dard conforming comments are correctly recognized and filtered out; syntax
and nesting errors are detected. Attribute content can be delimited by sim-
ple or by double quotes. CDATA sections are recognized and processed (this
is required, e.g., for code snippets). Entity processing is, however, not yet
supported (as of SVN revision 32 of µxml), not even for the five predefined
entities " ("), ' (’), & (&), < (<) and > (>). These
five should, however, be introduced in the future. For the common usage of
XML, however, not even these are indispensable. Entity processing in XML
is unfortunately a recursive process requiring a lot of overhead. Furthermore
only the most basic character encoding us-ascii is supported. <!DOCTYPE>
definitions are detected, but ignored. They may nevertheless be included for
checking consistency of the prepared XML files with external utilities.

medusacocogen calls upon an extensible library of modules implement-
ing various rate law expressions and chemical equilibrium relationships.

This document describes the formats and element trees of the different
XML files required to produce a compilable source file tree of medusa. The
code generation is not 100% automatic. For one purpose or the other users
have, e.g., to provide relatively low-level support (verbatim code, etc.) that
requires some knowledge of naming conventions inside medusa. These in-
ternals of medusa are described as well.

In the appendix, we also outline the structure of the module files for
the rate laws and the laws of mass action for typical chemical equilibria,
and the underlying API (application programming interface) that must be

3

respected to make the modules usable by medusa and how to make available
the information required by medusacocogen to produce code that can be
reliably integrated into the medusa source file tree.

The source code of medusacocgen is located in the src-mcg directory
of the tree retrieved from the medusa SVN repository. Please refer to the
companion “Installation and Compilation Guide” for detailed informations
about system requirements and about the procedure for downloading and
installing the required source files.

2 Main Building List
medusacocogen reads the list of definition files for the components to
include, and the processes and equilibria to consider in an XML file called
list.xml. The root element of that list is <MedusaCoCoGen>. Its recognized
child elements are as follows.

• <Composition> lists the components (species) and systems to include:
each component to include is referred to by one of three empty elements

– <Solid file="solid.xml " order="nn " />

– <Solute file="solute.xml " order="nn " />

– <SoluteSystem file="solsys.xml " order="nn " />

The file attribute is mandatory for all of these and gives the pathname
of the respective definition file, relative to the execution directory of
medusacocogen. The order attribute is optional and its value nn
must be integer. It allows to set the order by which the species are
assembled in medusa. The order and interdependency of the species
influences on the compactness of the Jacobian of the equation system,
and may thus impinge on the computational efficiency of the model.
Order numbers need not to be consecutive. For solids and solutes, the
order number is taken as is; for solute systems, which group solutes,
the given order number is used for the system itself, and as an offset for
the actual components, to be resolved according to the definition in the
given file (see section 3.3 below). If the order attribute is omitted, the
species and systems are ordered by order of appearance in list.xml;
if one order number appears more than once, they are treated on a
first-read–first-processed basis.

• <Processes> lists the process definition files for the processes to con-
sider, each one referred to by an empty element of the form

4

<Process file="process.xml " />

where the mandatory file attribute gives the pathname of the defini-
tion file for that process, relative to the directory where medusacoco-
gen executes from.

• <Equilibria> lists the definition files for the chemical equilibria to
consider, each one referred to by an empty element

<Equilibrium file="process.xml " />

where the mandatory file attribute gives the pathname of the defini-
tion file for that equilibrium, similarly to <Process> above.

Each one of the <Composition>, <Processes> and <Equilibria> elements
may appear once at most; they may be omitted or left empty if adequate.
Duplicate file names are detected and processed only once.

Below follows the list.xml that is used to configure medusa for use
with mbm. In this version, medusa considers a sediment with four different
solid components, one solute system (which includes three solute species—its
definition file is reproduced and detailed as an example in section 3.3 below)
plus two individual solute species, three processes and one chemical equilib-
rium. In this example, taken from the standard distribution of medusa, all
of the XML files are located in a xml subdirectory in the directory where the
medusacocogen executable medusa_cocogen_xml is run from (normally
src-mcg).

1 <?xml version="1.0"?>
2

3 <!-- List of XML files for components required for the MEDMBM
configuration -->

4

5 <MedusaCoCoGen>
6

7 <Composition>
8 <Solid file="xml/clay.xml" order="1" />
9 <Solid file="xml/calc.xml" order="2" />

10 <Solid file="xml/arag.xml" order="3" />
11 <SoluteSystem file="xml/dic.xml" order="4" />
12 <Solid file="xml/orgm.xml" order="8" />
13 <Solute file="xml/o2.xml" order="9" />
14 <Solute file="xml/ca.xml" order="10" />
15 </Composition>

5

16

17 <Processes>
18 <Process file="xml/proc_arag_diss.xml" />
19 <Process file="xml/proc_calc_diss.xml" />
20 <Process file="xml/proc_orgm_oxic.xml" />
21 </Processes>
22

23 <Equilibria>
24 <Equilibrium file="xml/equi_dic.xml" />
25 </Equilibria>
26

27 </MedusaCoCoGen>

3 Fundamental Component and Species Def-
inition File Formats

The formats of the different definition files will now be presented. For each
kind, we will outline the main features in a descriptive text, and then consider
one or two examples to precise and illustrate the details.

3.1 Solutes
Definition files for solutes must provide all the information that medusa
requires about a solute: names, alkalinity content, code snippets to calculate
diffusion coefficients or to evaluate properties from parametrizations, and
possibly conservation properties for setting up mass balances. “Solutes” are,
however, not limited to dissolved substances in this context, but encompass
sediment properties in the solute phase, including isotopic signatures colour
tracers.

The root element of a solute’s definition file is <Solute>. It has gener-
ally only one attribute, type, which defines how the evolution of the solute
property should be dealt with in medusa:

• with type="normal", the usual partial differential equations are used
to control the evolution of the solute’s concentration; <CodeBits> (see
below) must include a <DiffCoeff> element with the code snippet for
calculating the diffusion coefficient

• with type="parameterized", the solute’s concentration is not meant
to be controlled by a partial differential equation, but calculated di-
rectly from a parametrization; in this case, <CodeBits> must include a

6

<TotalConcentration> element with the code snippet to perform that
calculation.

• with type="ignored" (default), the component is simply disregarded
by medusacocogen.

For more advanced usage, the <Solute> root element may also include a
class attribute (see section 3.4.2 below) which can, however, most often be
omitted. If omitted, ts value defaults to BasicSolute.

Further characteristics of the general layout of a solute’s XML definition
file will be exposed with a concrete definition file as a support. Here we have
chosen the definition file of bicarbonate, hco3.xml, which can be found in
the src-mcg/xml directory:

1 <?xml version="1.0"?>
2

3 <Solute type="normal">
4

5 <Names>
6 <Generic>HCO3</Generic>
7 <Long>Bicarbonate Ion</Long>
8 <ShortID>hco3</ShortID>
9 </Names>

10

The <Names> element must be present exactly once and it must include three
child elements:

• <Generic> gives the generic name of the component. The generic name
is used to refer to the component in rate laws and laws of mass-action in
other XML definition files and also as a variable name in the netcdf
files generated by medusa. The generic name must not contain any
spaces; it may contain underscore characters though. Its length is
limited to 20 characters (set by the PARAMETER n_lmaxnamesgen in
MOD_MEDUSA_COCOGEN).

• <Long> gives the long name of the component used, e.g., as the long
name attribute for the variables in the netcdf files. Its length is
limited to 30 characters (set by the PARAMETER n_lmaxnameslong in
MOD_MEDUSA_COCOGEN).

• <ShortID> gives a short identificator that is used to construct the vari-
able names for indices or special properties of the solute in the medusa
source code. It must obviously not contain any spaces. Its length

7

is limited to 10 characters (set by the PARAMETER n_lmaxshortid in
MOD_MEDUSA_COCOGEN).

11

12 <CodeBits>
13 <DiffCoeff>
14 <Fortran requires="wtmpdc">
15 <![CDATA[
16 ! D_HCO3 : from Boudreau (1997, Table 4.8, in cm2/s)
17 {varname} =
18 & (5.06D-6 + 0.275D-6*wtmpdc)*dp_cm2_p_sec
19]]>
20 </Fortran>
21 </DiffCoeff>
22 </CodeBits>
23

The <CodeBits> element includes code snippets for various purposes. Nor-
mal solutes must include a <CodeBits> element with a <DiffCoeff> child-
element, providing the code basis for calculating the solute component’s
diffusion coefficient. One may of course envisage future developments and
transpositions of medusacocogen to produce medusa instances in differ-
ent programming languages. The code snippets may therefore theoretically
have to be included for any programming language. Relevant code snippets
are thus encapsulated in a child element of <DiffCoeff> referring to the
name of the programming language. As medusa currently only exists in
Fortran, medusacocogen also only takes into account the <Fortran> tag.
The actual code is quoted as character data (non-parsable) within <![CDATA[
. . .]]>. medusacocogen receives such code “as is” from the XML parser
and inserts it into the final Fortran 95 source code file mdiffc.F, after hav-
ing replaced the {varname} placeholder will be replaced by the actual name
or array element reference for the diffusion coefficient of the component.
White space, blank lines and comments are preserved. Other components
may include, as illustrated in the “parameterized” example component be-
low. Please notice that the pre-requisites that can be listed via the requires
attribute are currently not utilized.

24

25 <Alkalinity units="eq/mol">1</Alkalinity>
26

The <Alkalinity> tag can be used to indicate the alkalinity carried by each
mol of the component. The content can be given either numerically or in

8

terms of internal medusa variables (see below). This alkalinity content is
used for the mass balance diagnostics (see below), if required.

The <ConservationProperties> (the units attribute is only given for
documentation purposes, but is otherwise ignored) is used to set up the mass
balance equations

27

28 <ConservationProperties units="mol/mol">
29 <C> 1</C>
30 </ConservationProperties>
31

32 </Solute>

Calcium is typically treated as a parametrized component in seawater: its
concentration is conservative and can be expressed as a function of salinity,
which is one of the boundary conditions that a host model needs to provide.
For simplicity, we also consider it to be conservative in the surface sediments.

1 <?xml version="1.0"?>
2

3 <Solute type="parameterized">
4

5 <Names>
6 <Generic>Ca</Generic>
7 <Long>Calcium</Long>
8 <ShortID>ca</ShortID>
9 </Names>

10

11 <CodeBits>
12 <TotalConcentration units="mol␣m-3␣seawater">
13 <Fortran requireslibrary="libthdyct"
14 requires="wtmpk,␣wsalin,␣wdbsl,␣rho">
15 <![CDATA[
16 {varname} = TOTCA(wtmpk, wsalin, wdbsl) * rho
17]]>
18 </Fortran>
19 </TotalConcentration>
20 </CodeBits>
21

22 </Solute>

9

3.2 Solids
Definition files for solids must provide all the information that medusa re-
quires about a solid: names, alkalinity content, physical properties such as
its density or its molar mass, chemical composition, code snippets to calcu-
late properties such as saturation concentrations or solubility products, and
possibly conservation properties for setting up mass balances. Similarly to
solutes, “Solids” are, once again, not limited to actual substances in this
context, but encompass all properties in the solid phase of the sediment, in-
cluding isotopic signatures, colour tracers and immaterial properties, such as
age or time of formation.

The root element of a solid’s definition file is <Solid>. It has generally
only one attribute, type, which defines how the evolution of the solid is to
be controlled in medusa:

• with type="normal", the usual partial differential equations are used
to control the evolution of the solid’s concentration;

• with type="ignored" (default), the component will be disregarded by
medusacocogen.

For more advanced usage the <Solid> may further include a class or a
master attribute (see sections 3.4.2 and 5.1 below). The class attribute
can nevertheless generally be omitted, in which case its content defaults to
BasicSolid; the master attribute is intended for special purposes. At this
stage, there is no parameterized type of solids.

Further characteristics of the general layout of a solid’s XML definition
file will again be exposed with a concrete definition file as a support. Here
we chose the definition file of opal, which can be found in opal.xml in the
src-mcg/xml directory:

1 <?xml version="1.0"?>
2

3 <Solid type="normal">
4

5 <Names>
6 <Generic>Opal</Generic>
7 <Long>Opal</Long>
8 <ShortID>opal</ShortID>
9 </Names>

10

The <Names> element must fulfil the same requirements for solids as for
solutes (see p. 7).

10

11 <PhysicalProperties>
12 <Density units="kg/m3">2100</Density>
13 <MolWeight units="kg/mol">0.0600843</MolWeight>
14 </PhysicalProperties>
15

The <PhysicalProperties> element may have two child elements.

• <Density> provides the density [kg/m3] of the component;

• <MolWeight> provides a first estimate of the molar mass of the com-
ponent. This is re-calculated for consistency reasons from the chemical
composition, when available from <ChemicalComposition> (next).

16 <ChemicalComposition>
17 <Si>1</Si>
18 <O >2</O>
19 </ChemicalComposition>
20

<ChemicalComposition> is optional. If present, it should have as many child
elements as there are chemical elements that constitute the component being
defined. Each child element tag of <ChemicalComposition> is equal to the
chemical symbol of a chemical element included and its content is equal to
the number of atoms of that element per component molecule (here SiO2
requires thus two child elements: <Si> with the content 1 and <O> with the
content 2).

21 <CodeBits>
22 <SaturationConc units="mol/m^3">
23 <Fortran>
24 <![CDATA[
25 ! ! Faure (1991) Inorganic Geochemistry,
26 ! ! Eqn (11.93), page 201:
27 ! ! [H4SiO4] at equilibrium with
28 ! ! amorphous silica = 10^{-2.4} mol/litre
29 ! {varname} = 10.0D+00**(-2.4D+00)*1.0D+03
30

31 ! Hurd (1973) GCA37:2257-2282,
32 ! cited by Archer et al (1993):
33 ! solubility of opal at 4 degC = 1000 uM
34 {varname} = 1.0D+00
35]]>

11

36 </Fortran>
37 </SaturationConc>
38 </CodeBits>
39

40

41 <Alkalinity units="eq/mol">0</Alkalinity>
42

43

44 <ConservationProperties units="mol/mol">
45 <Si> 1</Si>
46 </ConservationProperties>
47

48 </Solid>

For numerical stability reasons, it is mandatory to include one solid com-
ponent that is inert and has the attribute type="normal". Its root element
must have the attribute extra="mud". If several components happen to have
this extra attribute, the first of these that medusacocogen registers takes
this special role.

3.3 Solute Systems
The root element for a solute system is <SoluteSystem>. Similarly to the
<Solute> root element in the definition files of normal solutes, it can have a
type attribute. The class attribute may be used to further consider the kind
of system we have (e.g., acid-base system), but it is currently only included
for information purposes and not taken into account by medusacocogen
during code generation. <SoluteSystem> has two mandatory child elements:

• <Names> must provide the three different names for the solute system
(as for solutes and solids);

• <Composition> lists the files of the individual solutes that make up the
system, similarly to the <Composition> in the main list.xml.

The definition file for Dissolved Inorganic Carbon (dic.xml) is reproduced
below:

1 <?xml version="1.0"?>
2

3 <SoluteSystem type="normal" class="acid-base">
4

5 <Names>

12

6 <Generic>DIC</Generic>
7 <Long>Dissolved Inorganic Carbon</Long>
8 <ShortID>dic</ShortID>
9 </Names>

10

11 <Composition>
12 <Solute file="xml/co2.xml" disso="0" order="3" />
13 <Solute file="xml/hco3.xml" disso="1" order="2" />
14 <Solute file="xml/co3.xml" disso="2" order="1"/>
15 </Composition>
16

17 </SoluteSystem>

Please notice that the attribute disso, which gives the dissociation level
with respect to the fundamental acid in the acid-base system, is currently
only reserved, but not processed. The final order of the individual species
that will be used for medusa’s internal arrays is obtained by adding the
value of the order attribute in the solute system definition file to that of the
solute system itself given in the main composition list list.xml.

3.4 Advanced Topics for Components and Species
3.4.1 Material characteristics names

Some inside knowledge about how the names of variables holding quantitative
material properties are built in medusa is indispensable for an efficient usage
of medusacocogen. The most commonly required such variables are the
molar compositions of components, which are required, e.g., in the stoichio-
metric definition of reactions and also to set up mass balance conservation
equations.

Whenever a component has a <ChemicalComposition> tag in its defini-
tion file, one variable is declared in MOD_MATERIALCHARAS for each entry in
that <ChemicalComposition>, to hold the molar content in the given chem-
ical element. The name of each such molar composition variable is obtained
by appending the chemical symbol of the element to the short ID of the com-
ponent, as given by the <ShortID> child of the <Names> element, separated
by an underscore (_). The variables are initialized to the content of the ele-
ments, which must be numeric and will be converted to DOUBLE PRECISION.
The chemical composition data included in the opal.xml file above thus lead
to the declarations

DOUBLE PRECISION, SAVE :: opal_si = 1.0D+00
DOUBLE PRECISION, SAVE :: opal_o = 2.0D+00

13

Please notice that tag names in the XML files are case-sensitive while For-
tran 95 variable names are not.

These variables are provided for possible use in medusa. Whether they
are actually used cannot be predicted in all generality. They are used for
organic matter components, e. g., for which it is mandatory to include the
<ChemicalComposition> in the definition file (see section 3.4.2 below).

Whenever the chemical composition is provided in the definition
file, code is inserted into the subroutine SOLIDS_STOECHIOMETRY in
MOD_MATERIALCHARAS to recalculate the molar mass of the component, for
optimal mass conservation. If you plan to include components with exotic
chemical compositions, please check in mod_basicdata_medusa.F whether
the required atomic masses are already provided and if not, please com-
plete the missing information therein by following the given obvious naming
systematics. mod_basicdata_medusa.F currently only includes data for the
most common chemical elements.

The variable name for the molar mass of a component is obtained from
its short ID prefixed by ‘mol_’. It is generated for every solid, and declared
in MOD_MATERIALCHARAS. Again, for the opal.xml, the following declaration
is included in MOD_MATERIALCHARAS:

DOUBLE PRECISION, SAVE
& :: mol_opal = 6.00843000000000002E-002

The initial value at declaration is taken from the <MolWeight> entry of
the <PhysicalProperties> element (the difference with the given value of
0.0600843 stems from the conversion to DOUBLE PRECISION).

The name of the variable carrying a solid’s density is obtained by prefixing
the short ID of the solid with ‘rho_’. In the opal.xml example above, this
leads to

DOUBLE PRECISION, PARAMETER , PRIVATE
& :: rho_opal = 2100

3.4.2 Organic matter class

Organic matter, be it in solid or solute phase, requires additional informa-
tion regarding their composition. Organic matter solids and solute compo-
nents must therefore be marked with a special class attribute in the root
element of their definition file (<Solid> or <Solute>) which must be set
to OrgMatter_CNP. In addition, a <ChemicalComposition> child element is
mandatory, even for solutes of this class, that either defines

14

• the simplified stoichiometric composition in terms of C, N and P only,
by including only the three tags <C>, <N> and <P> – the additional
characteristics are then derived from these three by assuming that or-
ganic matter has the chemical “formula” (CH2O)c(NH3)n(H3PO4)p, c,
n and p being the values to be given by <C>, <N> and <P>, respectively
(106, 16 and 1 resp. for the classical Redfield composition);

• or the general stoichiometric composition in terms of C, N, P, O and H,
by including the five tags <C>, <N>, <P>, <O> and <H>, in which case or-
ganic matter is assumed to have the chemical “formula” CcNnPpOoHh,
c, n, p, o and h being the values of the respective tag analogues.

In the first case, the variables holding the chemical composition in O and H
are also declared and initialized according to the simplified composition.

In both cases an additional variable which holds the number of moles
of O2 released for each mole of organic matter produced, is declared in
MOD_MATERIAL_CHARAS and initialized on the basis of the available data in
the chemical constituents. Its name is obtained by appending the suffix
‘_remin_o2’ to the short ID of the organic matter component. The same
amount of O2 will of course be consumed during oxic remineralization of the
organic component.

Particulate Organic Matter Below, we reproduce orgm.xml, the defini-
tion file for a particulate organic matter component (orgm.xml can be found
in src-mcg/xml):

1 <?xml version="1.0"?>
2

3 <Solid type="normal" class="OrgMatter_CNP">
4

5 <Names>
6 <Generic>OrgMatter</Generic>
7 <Long>Organic Matter</Long>
8 <ShortID>om</ShortID>
9 </Names>

10

11 <PhysicalProperties>
12 <Density units="kg/m3">1450</Density>
13 <MolWeight units="kg/mol">3.55326</MolWeight>
14 </PhysicalProperties>
15

16 <ChemicalComposition>

15

17 <C>106</C>
18 <N> 16</N>
19 <P> 1</P>
20 </ChemicalComposition>
21

22

23 <Alkalinity units="eq/mol">(-om_n-om_p)</Alkalinity>
24

This example illustrates how the medusa specific names of the variables that
carry the material characteristic data for organic matter are used: each mole
of organic matter carries as much alkalinity as they contain N and P, and
it carries it in negative form. As explained in section 3.4.1 the N content of
an organic matter component, in moles of N per mole of organic matter, is
given by the variable om_n for an organic matter component with a short ID
om (from line 8 above). Similarly, for P the respective variable is om_p.

25

26 <ConservationProperties units="mol/mol">
27 <C> om_c</C>
28 <O2> -om_remin_o2</O2>
29 </ConservationProperties>
30

31 </Solid>

Dissolved Organic Matter Organic matter can also be considered in
the fluid phase, as dissolved organic matter (DOM). DOM components are
special cases of solutes. Their definition files must include all the elements re-
quired for solutes in general (<Names>, <CodeBits>, <Alkalinity>, . . .) plus
the extra ones for class="OrgMatter_CNP" (e.g., <ChemicalComposition>):

1 <?xml version="1.0"?>
2

3 <Solute type="normal" class="OrgMatter_CNP">
4

5 <Names>
6 <Generic>DissOrgMatter</Generic>
7 <Long>Dissolved Organic Matter</Long>
8 <ShortID>dom</ShortID>
9 </Names>

10

11

16

12 <ChemicalComposition>
13 <C>106</C>
14 <N> 16</N>
15 <P> 1</P>
16 </ChemicalComposition>
17

18

19 <CodeBits>
20 <DiffCoeff>
21 <Fortran>
22 <![CDATA[
23 ! D_DOM : approximate average value for estuarine
24 ! natural DOM samples from Balch and Gueguen (2015)
25 ! Environmental Chemistry 12(2):253-260,
26 ! DOI:10.1071/EN14182
27 ! Reported range: 2.42E-6 to 10.7E-6 cm^2 s^-1
28 {varname} = 6.56D-6*dp_cm2_p_sec
29]]>
30 </Fortran>
31 </DiffCoeff>
32 </CodeBits>
33

34

35 <Alkalinity units="eq/mol">(-dom_n-dom_p)</Alkalinity>
36

37

38 <ConservationProperties units="mol/mol">
39 <C> dom_c</C>
40 <O2> -dom_remin_o2</O2>
41 </ConservationProperties>
42

43 </Solute>

3.4.3 Data inheritance

Some components may be intimately linked to each other and share some
common characteristics; the same may be true for some processes (see sec-
tion 4.2.2 below). To call upon of such data inheritance into account, the
root element (<Solute> or <Solid>) may include a master="OtherCompo "
attribute, where OtherCompo is the generic name of the component from
which any missing data should be taken. The description file of OtherCompo

17

must have been read in before the current component’s data chain is being
initialised. This is a limitation to bear in mind: in order to avoid having to
implement complex circular referencing detection schemes in medusacoco-
gen, it is expected that the user itself controls the order by which the list
the definition files in the lists.

A typical example of a component that uses data inheritance is C13-
OrgMatter , which is a solid component of class SolidColour. For consis-
tency, it must have the same C:N:P:O:H composition as bulk organic mat-
ter: the chemical composition is therefore inherited from the XML-tree of
the component with the generic name OrgMatter by including the attribute
master in the <Solid> root element and setting it to "OrgMatter", and
by providing only the specific data for C13-OrgMatter, as illustrated in the
description file orgm_c13.xml from src-mcg/xml:

1 <?xml version="1.0"?>
2

3 <Solid type="normal" class="SolidColour" master="OrgMatter">
4

5 <Names>
6 <Generic>OrgMatter_C13</Generic>
7 <Long>Organic Matter C13</Long>
8 <ShortID>om_c13</ShortID>
9 </Names>

10

11

12 <PhysicalProperties/>
13

14

15 <ConservationProperties/>
16

17 </Solid>

The omitted <ChemicalComposition> data will be taken from OrgMatter.

4 Processes and Equilibria

4.1 The <ChemicalReaction> XML Element
We call upon the same <ChemicalReaction> element to describe chemical
reactions such as

nAA + nBB + nCC −→ nDD + nEE

18

in process and in equilibrium definition files alike. We therefore present this
element first.

The chemical reagents on the left-hand side will be called the reactants,
those on the right-hand side the products. The <ChemicalReaction> element
has been designed to represent the stoichiometry of such reactions in an
XML format. A <ChemicalReaction> element has as many child elements
as there are reagents. The child elements come as two types: <Reactant>
and <Product>. Both have the following common structure:
<Reactant id="r1">

<Name>GenericNameofA</Name>
<StoechCoeff>nA</StoechCoeff>

</Reactant>

<Product id="p1">
<Name>GenericNameofD</Name>
<StoechCoeff>nD</StoechCoeff>

</Product>

Each reagent, reactant or product, is identified in <Name> by its generic name.
The stoichiometric coefficient of each reagent is given in the <StoechCoeff>,
either numerically, or by calling upon declared variables from medusa, more
particularly those from the MOD_MATERIALCHARAS module.

When medusacocogen parses a <ChemicalReaction> element, it scans
the list of components already registered. The <Composition> element of
list.xml is processed before the <Processes> and <Equilibria> elements
so that all the components modelled or parametrized are already known.
Components that are not yet listed are added with the type="ignored".

The attribute id that can be used with both element types provides a
means to refer to the different reagents by a freely chosen ID.1 One of these
IDs will be used, e.g., in the rate laws to specify the reagent with respect to
which the reaction rate is expressed. Normally these IDs should be unique
within one single <ChemicalReaction> element. This is however currently
not enforced by medusacocogen, and left to the responsibility of the users.
Since each process or chemical equilibrium definition file must have one and
only one <ChemicalReaction>, the IDs are also unique within each definition
file and referring to one of the reagents by their ID does not lead to any
ambiguities.

In addition to id, any of the elements can have a wildcard attribute,
whose value will be a freely chosen character string that will be searched for

1I usually name the reactants r1, r2, . . . and the products p1, p2, . . .

19

in the contents of all the <StoechCoeff> children of all the <Reactant> and
<Product> elements and all of its occurrences will be replaced by the short
ID of the component referenced in the <Name> child of the respective reagent.
An application of this feature is illustrated below.

The complete symbolic reaction above is encoded as
<ChemicalReaction>

<Reactant id="r1">
<Name>GenericNameofA</Name>
<StoechCoeff>nA</StoechCoeff>

</Reactant>

<Reactant id="r2">
<Name>GenericNameofB</Name>
<StoechCoeff>nB</StoechCoeff>

</Reactant>

<Reactant id="r3">
<Name>GenericNameofC</Name>
<StoechCoeff>nC</StoechCoeff>

</Reactant>

<Product id="p1">
<Name>GenericNameofD</Name>
<StoechCoeff>nD</StoechCoeff>

</Product>

<Product id="p2">
<Name>GenericNameofE</Name>
<StoechCoeff>nE</StoechCoeff>

</Product>

<ChemicalReaction>

4.2 Processes
4.2.1 Process Definition File Format

The root element for a process definition file is <Process>. It generally
has a realms attribute to delimit the realms where the process must be

20

considered: dbl – in the diffusive boundary layer; reaclay – in the reactive
layer.2 The realms attribute takes a comma separated list of the realms
where the process should be considered as its value. Processes involving
solids must not be considered in the diffusive boundary layer.

The rest of the elements of a process definition file will be exposed be-
low on the basis of the process description file for the oxic degradation of
OrgMatter = (CH2O)c(NH3)n(H3PO4)p

OrgMatter + rO2

−→ cCO2 + pH2PO−
4 + nNO−

3 + (n+ p)H+ + (c+ n)H2O

which we rewrite by adding (n+p)HCO−
3 on both sides in order to eliminate

H+ via the equilibrium CO2 + H2O ⇀↽ HCO−
3 + H−,

OrgMatter + rO2 + (n+ p)HCO−
3

−→ (c+ n+ p)CO2 + pH2PO−
4 + nNO−

3 + (c+ 2n+ p)H2O.

This process definition can be found in proc_orgm_oxic.xml in the directory
src-mcg/xml).

1 <?xml version="1.0"?>
2 <Process realms="reaclay">
3

4 <Names>
5 <Generic>OrgMatterOxicDegrad</Generic>
6 <Long>Orgm oxic degradation</Long>
7 <ShortID>oxicd</ShortID>
8 </Names>
9

<Process> has a <Names> child element just like <Solute>, <Solid> and
<SoluteSystem> presented before.

10

11 <ChemicalReaction>
12

13 <Reactant id="r1" wildcard="{om}">
14 <Name>OrgMatter</Name>
15 <StoechCoeff>1</StoechCoeff>
16 </Reactant>
17

2Additionally, tranlay and corelay are reserved realm names for future developments,
in case reactions could also be allowed to take place in the transition layer and the core
layers.

21

The preceding <Reactant> has a wildcard attribute: the contents of all
the <StoechCoeff> sub-children of the current <ChemicalReaction> will be
searched for the character string held in that attribute (i.e., {om} here) and
replace that character string by the short ID of the component referenced in
the same element (i.e., OrgMatter) as specified in its definition file.

18

19 <Reactant id="r2">
20 <Name>O2</Name>
21 <StoechCoeff>{om}_remin_o2</StoechCoeff>
22 </Reactant>
23

24 <Reactant id="r3">
25 <Name>HCO3</Name>
26 <StoechCoeff>({om}_n+{om}_p)</StoechCoeff>
27 </Reactant>
28

29

30 <Product id="p1">
31 <Name>CO2</Name>
32 <StoechCoeff>({om}_c+{om}_n+{om}_p)</StoechCoeff>
33 </Product>
34

35 <Product id="p2">
36 <Name>H2PO4</Name>
37 <StoechCoeff>{om}_p</StoechCoeff>
38 </Product>
39

40 <Product id="p3">
41 <Name>NO3</Name>
42 <StoechCoeff>{om}_n</StoechCoeff>
43 </Product>
44

45 <Product id="p4">
46 <Name>H2O</Name>
47 <StoechCoeff>({om}_c+{om}_n+{om}_n+{om}_p)</

StoechCoeff>
48 </Product>
49

50 </ChemicalReaction>
51

22

52

53 <RateLaw reference_id="r1" subr="MONOD1_C">
54 <RateConstant type="globalconstant"/>
55 <HalfSatConstant type="globalconstant"/>
56 <MonodConc>O2</MonodConc>
57 <Proportional>OrgMatter</Proportional>
58 </RateLaw>
59

60

61 </Process>

The reference_id attribute of the <RateLaw> element indicates that the
reaction rate to be calculated by the subroutine MONOD1_C is for the reactant
that has id="r1" in the <ChemicalReaction> above. Since it is a reactant,
the rate will get a negative sign.

The child-elements of <RateLaw> are specific for the rate law provided by
the subroutine MONOD1_C.

A comprehensive list with all the rate laws currently available in the
library can be found the section A.3 in the appendix.

4.2.2 Advanced Topics for Processes

Similarly to the <Solid> and <Solute> root elements in solid and solute
description files, the special attribute master="SomeOtherProcess " can also
be used with the <Process> root element. Here, SomeOtherProcess must
be the name of a process previously registered, called the master process.
If the master process has not yet been registered medusacocogen aborts
with an error.

In addition, the <RateLaw> element in a process description file may get
the attribute xref="SomeOtherProcess ", where SomeOtherProcess must
again be the name of a process previously registered. Missing information
is then taken from the <RateLaw> element in that process’s description file.
The rate law referred to can be of a different type, as long as it includes tag
names that correspond to those that are missing.

Both techniques are used in the description file related to solid’s produc-
tion time concentrations (see section 5.1 below for details about production
time concentration of solids).

23

4.3 Equilibria
4.3.1 Equilibrium Description File

Equilibrium and process definition files are very similar. The only differ-
ence is that the <RateLaw> XML element in a process definition file is re-
placed by a <LawOfMassAction> XML element in an equilibrium definition
file. In addition, the <LawOfMassAction> cannot have a reference_id at-
tribute, as it would not make sense. The chemical equilibrium is described
by a <ChemicalReaction> element, similar to what we have seen for pro-
cesses above. The usage of <LawOfMassAction> is analogue to the usage of
<RateLaw> in process description files.

Below, the equilibrium description file for the carbonate equilibrium (file
equi_dic.xml from src-mcg/xml is reproduced.

1 <?xml version="1.0"?>
2

3 <Equilibrium>
4

5 <Names>
6 <Generic>EquiDIC</Generic>
7 <Long>Carbonate Equilibrium</Long>
8 <ShortID>eqdic</ShortID>
9 </Names>

10

11

12 <ChemicalReaction>
13

14 <Reactant id="r1">
15 <Name>CO2</Name>
16 <StoechCoeff>1</StoechCoeff>
17 </Reactant>
18

19 <Reactant id="r2">
20 <Name>CO3</Name>
21 <StoechCoeff>1</StoechCoeff>
22 </Reactant>
23

24 <Reactant id="r3">
25 <Name>H2O</Name>
26 <StoechCoeff>1</StoechCoeff>
27 </Reactant>

24

28

29 <Product id="p1">
30 <Name>HCO3</Name>
31 <StoechCoeff>2</StoechCoeff>
32 </Product>
33

34 </ChemicalReaction>
35

36

37 <LawOfMassAction subr="R1R2P1P1">
38 <Reactant1>CO2</Reactant1>
39 <Reactant2>CO3</Reactant2>
40 <Product1>HCO3</Product1>
41 </LawOfMassAction>
42

43

44 </Equilibrium>

A comprehensive list with all the laws of mass-action currently available
in the library can be found the section B.3 in the appendix.

5 Immaterial and Volume-less Properties

5.1 Age or Production Time of Solids
The particle age or equivalently, the date or time of production of a solid can
be used to construct an “age model” for the synthetic core produced during
an simulation experiment.

medusacocogen can produce the required source and sink terms for the
corresponding evolution equations for the solid’s production time concentra-
tion. It is therefore necessary to include a component description file for the
production time concentration of the solid for which such equations should
be generated. This is essentially a solid’s definition file, where the <Solid>
root element has the class="SolidProductionTime" attribute, and also the

Below, we reproduce the description file for the production time of calcite
(file calc_pt.xml from src-mcg/xml).

1 <?xml version="1.0"?>
2

3 <Solid type="normal" class="SolidProductionTime"
4 master="Calcite">

25

5

6 <Names>
7 <Generic>CalcitePT</Generic>
8 <Long>Calcite Produc. Time</Long>
9 <ShortID>calc_pt</ShortID>

10 </Names>
11

12 <PhysicalProperties/>
13

14 <ConservationProperties/>
15

16 </Solid>

In addition, for each process that affects the master solid, a corresponding
process definition file must be provided to take the effect on Production
Time into account. However, since it is rather the transformation of the
Production Time during an already defined process that must be considered,
the “process” that transforms the Production Time is intimately linked to the
characteristics of the physical process itself. Therefore, we must be sure that
the rate constants etc. are consistent. Rather than copying them manually
into the description file for the Production Time, we use the inheritance
feature offered by medusacacogen: The root <Process> element gets a
master attribute, to have the realms attribute contents inherited from the
master process; the <RateLaw> element may use the xref attribute to link
the rate law to that of a previously read in process definition, and take over
any missing information from that rate-law.

The process definition file that describes the effect of calcite dissolution
on calcite Production Time concentration is reproduced below. It can be
found in proc_calc_diss_pt.xml in the directory src-mcg/xml.

1 <?xml version="1.0"?>
2

3 <!-- Provide the ’master’ attribute to derive ’realms’ content
-->

4 <Process master="CalcDissolution">
5

6 <Names>
7 <Generic>CalcPTDissolution</Generic>
8 <Long>CalcitePT Dissolution</Long>
9 <ShortID>calcd_pt</ShortID>

10 </Names>
11

26

12

13 <ChemicalReaction>
14

15 <Reactant id="r1">
16 <Name>CalcitePT</Name>
17 <StoechCoeff>1</StoechCoeff>
18 </Reactant>
19

20 </ChemicalReaction>
21

22

23 <!-- Provide the ’xref’ attribute to derive the missing
24 information - simply copy the pp_XYZ from the xref
25 process onto pp_RST from the process described here.

-->
26 <RateLaw reference_id="r1" xref="CalcDissolution">
27

28 <Proportional>CalcitePT</Proportional>
29

30 </RateLaw>
31

32 </Process>

5.2 Isotopic Properties of Solids
The treatment of isotopic signatures of solids is very similar to that of the
age tracer above, calling upon the inheritance of properties and rate law
parameters. Isotopic signatures of solids are considered to belong to a general
class of “colours”, i. e., properties devoid of volume. Solids’ colours are
characterized by a class attribute set to SolidColour, as in the description
file calc_c13.xml for 13C in calcite (Ca13CO3):

1 <?xml version="1.0"?>
2

3 <Solid type="normal" class="SolidColour" master="Calcite">
4

5 <Names>
6 <Generic>Calcite_C13</Generic>
7 <Long>Calcite C13</Long>
8 <ShortID>calc_c13</ShortID>
9 </Names>

27

10

11

12 <PhysicalProperties/>
13

14

15 <ConservationProperties/>
16

17 </Solid>

The dissolution of Ca13CO3 is then linked to the general calcite dissolution
with the process description file proc_calc_c13_diss.xml :

1 <?xml version="1.0" encoding="US-ASCII"?>
2

3 <Process realms="reaclay">
4

5 <Names>
6 <Generic>CalcC13Dissolution</Generic>
7 <Long>Calcite C13 Dissolution</Long>
8 <ShortID>calcd_c13</ShortID>
9 </Names>

10

11

12 <ChemicalReaction>
13

14 <Reactant id="r1">
15 <Name>Calcite_C13</Name>
16 <StoechCoeff>1</StoechCoeff>
17 </Reactant>
18

19

20 <Product id="p1">
21 <Name>DIC13</Name>
22 <StoechCoeff>1</StoechCoeff>
23 </Product>
24

25 </ChemicalReaction>
26

27

28 <RateLaw reference_id="r1" xref="CalcDissolution">
29 <Proportional>Calcite_C13</Proportional>
30 </RateLaw>

28

31

32 </Process>

6 Building libmedusa.a
The executable of medusacocgen is called medusa_cocogen_xml, and is
built in its source directory src-mcg. It is normally called from the Makefile
in src-med, which in turn may be done from the Makefile of a particular
application.

It can nevertheless also be executed from src-mcg. In this case, the code
is only generated and left in src-mcg/gen, but not copied over into the source
tree under src-med. When called by
cd [...]/src-med
make codegen

the generated code is furthermore copied into src-med/gen. Some parts
offer a certain degree of customization, as indicated by the final message
printed during the make codegen. medusacocogen, however, produces
fully usable general purpose templates for those parts (subroutines essen-
tially). These can be used as is with
make usetemplates

or the templates, that can be found in src-med/gen/template, can be
adapted, stored in a safe place (e.g., inside the source file directory for your
application) and copied or linked into src-med/gen/include, from where
the compiler includes them. As soon as the required files are in place, the
generation of libmedusa.a can then be completed by
make libmedusa.a

The resulting library archive libmedusa.a, together with all the *.mod files,
must then be made accessible to the building procedure for your application.

A Rate Law Library
The rate law library already includes a series of modules to cover the most
common rate law expressions. The source files of these so-called MODLIB
modules are located in src-mcg/lib. Each module therein provides an im-
plementation of one rate-law expression. The library of rate law functions
can be extended. New rate law expressions can be made available by devel-
oping Fortran 95 modules similar to those in the modlib_xyz.F source files

29

in src-mcg/lib. The way to to this has been designed such that a maximum
of flexibility can be combined with a minimum of processing overhead.

In this appendix section, we will first describe the format of these special
source files, provide a commented example, illustrate how to request a par-
ticulate rate law in a process definition file and how to transmit the required
information.

A.1 Source File Format for MODLIB Rate Law Files
The module source files must be structured as follows:

• First comes a preamble which is delimited by a pre-processor switch
#ifdef CFG_MEDUSACOCOGEN . . . #endif. It is made of a series of
Fortran 95 namelists providing the meta-information required by the
medusacocogen to integrate the rate-law module into medusa. The
first of these namelists provides the general characteristics of the rate-
law implementation:

– name of the subroutine that is used to evaluate the rate-law for a
given set of parameter and component concentration values

– name of the derived type that collects the process parameter in-
formation: parameters include here the references to modelled
solid sediment and porewater components, parametrized compo-
nents, parametrized solubilities, solubility products, etc., as well
as global constants

– number of parameters
– a formal expression of the rate law implemented, using a simple

substitution scheme for the rate law parameters.

The next ones provide the informations about the parameters. There
must be one such namelist per parameter.

• The actual module source code follows the preamble. It must

– define a derived type definition to encapsulate the parameters of
the rate law.

– contain a subroutine to evaluate the rate law and its derivatives
with respect to all the modelled components.

For medusacocogen, MODLIB files are data files with a one-line header
and data organized in a series of namelists, where the first one specifies

30

how many there are; for medusa, MODLIB files are source files, where the
initial (meta-)data section is hidden, because CFG_MEDUSACOCOGEN will not
be defined during compilation.

It is the developer’s responsibility to ensure that the metadata in the
preamble is consistent with the module source code.

A.1.1 Preamble: Metadata

As explained above, the preamble is composed of a series of Fortran namelists
that hold meta-data about the subroutine that is used to evaluate the rate
law expression. This part of the file is hidden by the pre-processor switch
#ifdef CFG_MEDUSACOCOGEN . . . #endif during compilation of the file as the
source code of a module. The first namelist is
&ratelaw_config
c_name = ’RATELAW_NAME’
c_pp_type = ’PP_RATELAW_NAME’
n_param = n
c_expression = ’Rate-law fct({#1}, {#2}, ..., {#nn})’
/

where

• c_name holds the name under which the rate law is registered in
medusa; it must be unique in the current model instance.

• c_pp_type holds the name of the Fortran derived type that will be
defined and that holds the parameters of the rate law. It should be
equal to ‘PP_’ followed by the rate law name as given by c_name.3 By
“parameters” we understand here all the concentration references and
constants that enter the rate law expression.

• n_param holds the number n of parameters that are required describe
the rate law adequately.

• c_expression gives a the format string for the mathematical represen-
tation of the ratelaw. Each parameter is referred to by a token ‘{#i }’,
where i refers to the order at which the namelist that defines it appears
hereafter (from 1 for the first to n for the last).

3The TYPE name can theoretically be freely chosen. However, historically, c_pp_type
was set to ’PP_’ // UPCASE(c_name). Some parts of medusacocogen might still rely
on this.

31

This first namelist is followed by n namelists, of which each has the following
layout:
&ratelaw_data
c_kindofparam = ’...’
c_typecomponame = ’...’
c_xmltagname = ’...’
c_xmlattstocheck = ’...’
c_dummylabel = ’...’
/

In this second type of namelists

• c_kindofparam determines the kind of parameter

– gk – global constant, currently to be read in from medusa.rrp at
runtime

– pf – parameter function, such as a solubility product
– pc – parametrized concentration
– io – model variable, which medusa refers to by its io index.

• c_typecomponame is the name, which can be freely chosen, by which
the parameter is going to be referred to (e.g., SolubilityConstant,
RateConstant, . . .), and that will be used as a component name in the
declaration of the TYPE PP_RATELAW_NAME. It should be meaningful and
must follow the standard requirements for Fortran identifiers.

• c_xmltagname is optional. By default, the derived type component
name given by c_typecomponame is also used as the XML tag name for
referring to the parameter in the XML file. This can be overridden by
setting c_xmltagname to a different name.

• c_xmlattstocheck is optional. It can be used to provide a comma-
separated list of attributes that can be used in the parameter’s tag
name to point out possible pathways to medusacocogen to derive
the required information. The two most common applications involve
type and code attributes.
A type attribute can be used for rate constants or rate orders, which
are generally global constants, to specify that

– the values for these constants should be read from a configuration
file (type="globalconstant");

32

– they should use one of medusa’s known parameter constants, e.g.,
from MOD_BASIC_DATA module (type="basicconstant" – not yet
implemented, but see below for a workaround based upon param-
eter functions);

A code attribute can be used with elements related to parameter func-
tions or parametrized concentrations to indicate which parametrization
to chose, or how the evaluate it:

– typically, for a solubility product (exemplified here by an XML
element <OmegaSolubilityProduct>), the <RateLaw> entry
<OmegaSolubilityProduct code="SolubilityProduct">

Aragonite
</OmegaSolubilityProduct>

instructs medusacacocgen to base the parameter function eval-
uation on the code provided in the <SolubilityProduct> entry
in the <CodeBits> section of the component whose generic name
is Aragonite.

– For a parameterized total concentration (exemplified here by an
XML element <ConcProductParamConc>) the <RateLaw> entry
<ConcProductParamConc code="TotalConcentration">

Ca
</ConcProductParamConc>

instructs medusacacocgen to base the parameterization evalu-
ation on the code provided in the <TotalConcentration> entry
of the <CodeBits> section of the component whose generic name
is Ca;

– by using the special value code="verbatim", one may even pro-
vide Fortran one-line expressions for the parametrization: e.g., for
a parametrized saturation concentration (exemplified here by an
XML element <SaturationConc>), the <RateLaw> entry

<SaturationConc code="verbatim">
cct_ksp_calc/cct_ttcc_ca

</SaturationConc>

instructs medusacacocgen to insert the content of the element
“as is” (verbatim) into the Fortran code.
This is also the workaround that can be used to overcome the not-
yet-implemented processing of type="basicconstant" for global
constants.

33

• c_dummylabel defines a (short) symbol for parameters that are not of
kind io when substituting the tokens in c_expression from the first
namelist by actual names – io parameters refer to modelled variables,
whose tokens are going to be substituted by their generic names.

A.1.2 Code Part

The Fortran source code for the module itself directly follows the preamble,
which is delimited by #ifdef CFG_MEDUSACOCOGEN . . . #endif.

The module and its contents must strictly comply with the following
naming scheme, which allows medusa to use it correctly.

1. The module name must by equal to the name of the rate law as given
by c_name in the ratelaw_config namelist, prefixed by ‘MODLIB_’.

2. the module must declare a new derived type, with the name given
by c_pp_type (also from the first namelist). This derived type must
include n elements (as given by n_param), whose names are given by
the c_typcomponame entries of the ratelaw_data namelists.

3. The module must contain a subroutine, whose name is given by c_name
(RATELAW_NAME in this example) and whose dummy argument list must
be as follows:

SUBROUTINE RATELAW_NAME(pp_param, ac,
& arate, darate_dac)

TYPE(PP_RATELAW_NAME), INTENT(IN)
& :: pp_param
DOUBLE PRECISION, DIMENSION(:), INTENT(IN)
& :: ac
DOUBLE PRECISION, INTENT(OUT)
& :: arate
DOUBLE PRECISION, DIMENSION(SIZE(ac)), INTENT(OUT)
& :: darate_dac
OPTIONAL :: arate, darate_dac

Notice that the pp_param dummy variable must be of the TYPE just
declared in the module.
This subroutine must be able to evaluate the rate law expression as a
function of the component concentrations provided in ac and return
the result in arate, and to evaluate the derivatives of the rate law with
respect to the ac components and return the results in darate_dac.

34

A.2 Commented Example: DELTAPC_POWN_C

Below, we reproduce commented excerpts from modlib_deltapc_pown_c.F
which provides a subroutine for the evaluation of rate laws of the form R =
kC1(Ksp − P1C2)n that can be used to describe the kinetics of aragonite
dissolution.

Notice that starting with Fortran 95, it is possible to include comments
in namelist files.

A.2.1 Preamble

The preamble starts with the #ifdef CFG_MEDUSACOCOGEN pre-processor di-
rective:

1 #ifdef CFG_MEDUSACOCOGEN
2 &ratelaw_config
3 c_name = ’DELTAPC_POWN_C’
4 c_pp_type = ’PP_DELTAPC_POWN_C’
5 n_param = 6
6 c_expression = ’{#1}␣*␣[{#6}]␣*␣({#2}␣-␣[{#4}][{#5}])**{#3}’
7 /

This MODLIB file implements a rate law called ‘DELTAPC_POWN_C’ with six
parameters (variable concentrations, constants, etc.). Details regarding these
six parameters are provided by the six ratelaw_data namelists that follow.

8 ! Parameter 1
9 &ratelaw_data

10 c_typecomponame = ’RateConstant’
11 c_xmlattstocheck = ’type’
12 c_kindofparam = ’gk’
13 c_dummylabel = ’k’
14 /

The first parameter (referred to by the placeholder {#1} in c_expression)
is a global constant. Its XML element in the <RateLaw> element of a
process description file will be <RateConstant> since no c_xmltagname is
given. Furthermore, medusacocogen should check the type attribute of
<RateConstant> for extra information.

15 ! Parameter 2
16 &ratelaw_data
17 c_typecomponame = ’SolubilityProduct’
18 c_xmlattstocheck = ’code’
19 c_kindofparam = ’pf’

35

20 c_dummylabel = ’ksp’
21 /

Parameter #2 is a parameter function (c_kindofparam = ’pf’) according
to c_xmlattstocheck and medusacocogen should look for a code at-
tribute for information about which parameter function to use and how to
apply it.

22 ! Parameter 3
23 &ratelaw_data
24 c_typecomponame = ’RateOrder’
25 c_xmlattstocheck = ’type’
26 c_kindofparam = ’gk’
27 c_dummylabel = ’n’
28 /

Parameter #3 is similar to Parameter #1.
29 ! Parameter 4
30 &ratelaw_data
31 c_typecomponame = ’acConcProductParam’
32 c_xmltagname = ’ConcProductParam’
33 c_xmlattstocheck = ’code’
34 c_kindofparam = ’pc’
35 /

Parameter #4 is similar to parameter #2, except that the element name
for the derived type declaration should not be used in the XML files, where
the one given by c_xmltagname should be used instead. Variable names for
parameterized concentrations normally start with ‘ac...’, in medusa and
the variable names that refer to indices for modelled components or species
start by ‘io...’.

36 ! Parameter 5
37 &ratelaw_data
38 c_typecomponame = ’ioConcProductSpecies’
39 c_xmltagname = ’ConcProductSpecies’
40 c_kindofparam = ’io’
41 /
42 ! Parameter 6
43 &ratelaw_data
44 c_typecomponame = ’ioProportional’
45 c_xmltagname = ’Proportional’
46 c_kindofparam = ’io’
47 /

36

Parameters #5 and #6 refer to modelled variables, according to the value of
c_kindofparam. medusacocogen must derive their io indices.

48 #endif

The line with the #endif ends the preamble.

A.2.2 Module Code

49 !---+----1----+----2----+----3----+----4----+----5----+----6-
50 !==
51 MODULE MODLIB_DELTAPC_POWN_C
52 !==

The name of the module must be equal to the chosen name for the rate law,
as given by the c_name from the ratelaw_config namelist above, prefixed
by ‘MODLIB_’.

53

54 ! For laws of the form k * c3 * (k_sp - p1*c2)**n
55 ! (as DELTACC_POWN_P, with c1 parameterized)
56

57

58 IMPLICIT NONE
59

60 TYPE PP_DELTAPC_POWN_C
61 DOUBLE PRECISION :: RateConstant ! k value
62 DOUBLE PRECISION :: SolubilityProduct ! k_sp value
63 DOUBLE PRECISION :: RateOrder ! n value
64 DOUBLE PRECISION :: acConcProductParam ! p1 value
65 INTEGER :: ioConcProductSpecies ! io_c2
66 INTEGER :: ioProportional ! io_c3
67 END TYPE
68

The module must provide a derived type collecting all the parameters of the
rate law. It is recommended to name this derived type by the name of the
rate law, prefixed by ‘PP_’. The names of the elements of the derived type are
given by the c_compotypename parts of the ratelaw_data namelist above.

69

70 ! Sample usage in the XML declarations:
71 !
72 ! <RateLaw reference_id="r1" subr="DELTAPC_POWN_C">

37

73 !
74 ! <RateConstant type="globalconstant"/>
75 ! <RateOrder type="globalconstant"/>
76 ! <SolubilityProduct code="SolubilityProduct">Aragonite

</SolubilityProduct>
77 ! <ConcProductParam code="TotalConcentration">Ca</

ConcProductParam>
78 ! <ConcProductSpecies>CO3</ConcProductSpecies>
79 ! <Proportional>Aragonite</Proportional>
80 !
81 ! </RateLaw>
82

83

84 CONTAINS
85

86 !--
87 SUBROUTINE DELTAPC_POWN_C(pp_param, ac, azdn,
88 & arate, darate_dac)
89 !--
90

91 IMPLICIT NONE
92

93

94 ! Argument list variables
95 ! -----------------------
96

97 TYPE(PP_DELTAPC_POWN_C), INTENT(IN)
98 & :: pp_param
99 DOUBLE PRECISION, DIMENSION(:), INTENT(IN)

100 & :: ac
101 DOUBLE PRECISION, INTENT(IN)
102 & :: azdn
103 DOUBLE PRECISION, INTENT(OUT)
104 & :: arate
105 DOUBLE PRECISION, DIMENSION(SIZE(ac)), INTENT(OUT)
106 & :: darate_dac
107

108 OPTIONAL :: arate, darate_dac
109

Finally, the module must contain a subroutine that has the name of the rate

38

law and the standardized dummy argument list.
110

111 ! Local variables
112 ! ---------------
113 ...
114

115

116 ! Instructions
117 ! ------------
118 ...
119

120 IF (PRESENT(arate)) THEN
121 arate = ...
122 ENDIF
123

124 IF (PRESENT(darate_dac)) THEN
125 darate_dac(:) = 0.0D+00
126 darate_dac(...) = ...
127 ENDIF
128

129 RETURN
130

131 !--
132 END SUBROUTINE DELTAPC_POWN_C
133 !--
134

135

136 !==
137 END MODULE MODLIB_DELTAPC_POWN_C
138 !==

A.2.3 Application in a Process Description File

The information provided in the preamble of this MODLIB file can now be
used as follows in the <RateLaw> element of a process description file:
<RateLaw reference_id="r1" subr="DELTAPC_POWN_C">

<RateConstant type="globalconstant"/>
<RateOrder type="globalconstant"/>

39

<SolubilityProduct code="SolubilityProduct">
Aragonite

</SolubilityProduct>
<ConcProductParam code="TotalConcentration">

Ca
</ConcProductParam>
<ConcProductSpecies>CO3</ConcProductSpecies>
<Proportional>Aragonite</Proportional>

</RateLaw>

As indicated by the subr attribute of <RateLaw>, the subroutine that should
be called to evaluate this rate law is DELTAPC_POWN_C. medusacocogen
will look for that subroutine in modlib_deltapc_pown_c.F (name of the
subroutine, prefixed by ‘MODLIB_’, all set to lower case for the file name of
the source code) to read in the information about the parameters required for
that rate law. To set up the code for initializing the components of the process
parameter type PP_DELTAPC_POWN_C, the child elements of <RateLaw> will
be interpreted as follows:

• Both the RateConstant (parameter #1) and the RateOrder (param-
eter #2) are global constants to be read from an external config-
uration file (medusa.rrp) by medusa at runtime, as indicated by
type="globalconstant". This also explains why both elements are
left empty – all the information required is already present.

• The solubility product (parameter #3, child <SolubilityProduct>)
should be that of the component with the generic name Aragonite.
The code attached as <SolubilityProduct> to that component should
be used for this purpose, as indicated by code="SolubilityProduct".

• The parametrized concentration in the concentration product (param-
eter #4, child <ConcProductParam>) should be the component with
the generic name Ca. Its concentration is evaluated with the code
attached under <TotalConcentration> to that component, as indi-
cated by code="TotalConcentration". Alternatively, this could have
been done by the following form of the element for parameter #4,
<ConcProductParam>:

<ConcProductParam code="verbatim">
cct_ttcc_ca

</ConcProductParam>

if the short ID of Ca is ca, and that the total concentration for a
parametrized component, that has a <TotalConcentration> entry in

40

its <CodeBits> and that this total concentrations is stored in a variable
whose name is obtained by prefixing the short ID with cct_ttcc_.
The special value verbatim of the code attribute indicates that the
contents of the <ConcProductParam> elements are to be inserted “as
is” (verbatim) into the Fortran code.

• The modelled concentration (parameter #5) in the concentration prod-
uct should be the component with the generic name CO3.

• The proportional concentration (parameter #6) in the rate law should
be the component with the generic name Aragonite.

A.3 Rate Law Library Reference
The basic medusacocogen comes already with a rich library of rate law
MODLIB fies for rate laws. Their interfaces are detailed below, together with
application examples.

LINEAR1

Rate laws of the form
R = kC1

Example:
<RateLaw reference_id="ref_id" subr="LINEAR1">

<RateConstant type="globalconstant"/>
<Proportional>GenNameCompo1</Proportional>

</RateLaw>

PLINEAR1

Rate laws of the form
R = λC1

where the rate constant λ is obtained by a parameter function or a parameter
constant from MOD_BASICDATA_MEDUSA.
Example: Radiocarbon decay in calcite

R = λ[CalciteC14]

41

<RateLaw reference_id="ref_id" subr="PLINEAR1">
<RateConstant code="verbatim">

dp_lambda_C14
</RateConstant>
<Proportional>CalciteC14</Proportional>

</RateLaw>

PRODUCT2

Rate laws of the form
R = kC1C2

Example: Fe2+ oxidation by O2

R = k[Fe2plus][O2]

<RateLaw reference_id="r1" subr="PRODUCT2">
<RateConstant type="globalconstant"/>
<Proportional1>Fe2plus</Proportional1>
<Proportional2>O2</Proportional2>

</RateLaw>

PPRODUCT2

Rate laws of the form
R = λC1C2

where the rate constant λ is obtained by a parameter function or a parameter
constant from MOD_BASICDATA_MEDUSA.

PRODUCT2_SIDINH1

Rate laws of the form

R = k C1 C2
1

1 + exp ((C3 −Kic)/Kis)

with a non normalized sigmoid inhibition function
Example: organic matter oxidation by MnO2 reduction, with inhibition by
oxygen

R = k [OrgMatter] [MnO2] 1
1 + exp (([O2]−Kic)/Kis)

42

<RateLaw reference_id="r1" subr="PRODUCT2_SIDINH1">

<RateConstant type="globalconstant"/>
<Proportional1>OrgMatter</Proportional1>
<Proportional2>MnO2</Proportional2>
<InhibConstant type="globalconstant"/>
<InhibScale type="globalconstant"/>
<InhibitionConc>O2</InhibitionConc>

</RateLaw>

DELTA1_C

Rate laws of the form
R = kC1(Ksat − C2)

Example: opal dissolution

R = k[Opal](Ksat − [H4SiO4])

<RateLaw reference_id="refid" subr="DELTA1_C">
<RateConstant type="globalconstant"/>
<DeltaSaturationConc code="SaturationConc">
Opal

</DeltaSaturationConc>
<DeltaConc>H4SiO4</DeltaConc>
<Proportional>Opal</Proportional>

</RateLaw>

Alternatively
<RateLaw reference_id="refid" subr="DELTA1_C">

<RateConstant type="globalconstant"/>
<DeltaSaturationConc code="verbatim">

cct_ksat_opal
</DeltaSaturationConc>
<DeltaConc>H4SiO4</DeltaConc>
<Proportional>Opal</Proportional>

</RateLaw>

DELTACC_POWN_C

Rate laws of the form
R = kC1(Ksp − C2C3)n

43

Example: aragonite dissolution

R = k[Aragonite](Ksp − [Ca][CO3])n

when Ca is also an explicitly modelled component (type="normal"):
<RateLaw reference_id="r1" subr="DELTACC_POWN_C">

<RateConstant type="globalconstant"/>
<RateOrder type="globalconstant"/>
<SolubilityProduct code="SolubilityProduct">

Aragonite
</SolubilityProduct>
<ConcProductSpecies1>Ca</ConcProductSpecies1>
<ConcProductSpecies2>CO3</ConcProductSpecies2>
<Proportional>Aragonite</Proportional>

</RateLaw>

DELTAPC_POWN_C

Rate laws of the form
R = kC1(Ksp − P1C2)n

Example: aragonite dissolution

R = k[Aragonite](Ksp − [Ca][CO3])n

when Ca is a parametrized component (with type="parameterized"):
<RateLaw reference_id="r1" subr="DELTAPC_POWN_C">

<RateConstant type="globalconstant"/>
<RateOrder type="globalconstant"/>
<SolubilityProduct code="SolubilityProduct">

Aragonite
</SolubilityProduct>
<ConcProductParam code="TotalConcentration">

Ca
</ConcProductParam>
<ConcProductSpecies>CO3</ConcProductSpecies>
<Proportional>Aragonite</Proportional>

</RateLaw>

44

OMEGA1_C

Rate laws of the form
R = kC1(1−

C2

Ksat
)

Example: calcite dissolution following linear kinetics

R = k[Calcite](1− [CO3]/Ksat)n

when Ca is a parametrized component (with type="parameterized"):
<RateLaw reference_id="r1" subr="OMEGA1_C"

requires="Calcite,␣Ca">
<RateConstant type="globalconstant"/>
<OmegaConc>CO3</OmegaConc>
<OmegaSaturationConc code="verbatim">

cct_ksp_calc/cct_ttcc_ca
</OmegaSaturationConc>
<Proportional>Calcite</Proportional>

</RateLaw>

OMEGA1_POWN_C / OMEGA1_POWN_A

Rate laws of the form
R = kC1(1−

C2

Ksat
)n

Example: calcite dissolution following non-linear kinetics

R = k[Calcite](1− [CO3]/Ksat)n

when Ca is a parametrized component (with type="parameterized"):
<RateLaw reference_id="r1" subr="OMEGA1_C"

requires="Calcite,␣Ca">
<RateConstant type="globalconstant"/>
<RateOrder type="globalconstant"/>
<OmegaConc>CO3</OmegaConc>
<OmegaSaturationConc code="verbatim">

cct_ksp_calc/cct_ttcc_ca
</OmegaSaturationConc>
<Proportional>Calcite</Proportional>

</RateLaw>

45

OMEGA1_POWN_C and OMEGA1_POWN_A are identical except for one detail: while
OMEGA1_POWN_C is safe-guarded against negative values of the proportional
concentration (the rate is set to zero for negative values of that concentra-
tion), OMEGA1_POWN_A is not. Safeguarding against negative concentration
values helps to stabilize the model, in case the numerical procedure leads to
negative values for physical constituents. However, production time concen-
trations can be negative (if the average production time is negative). For
production time equations, OMEGA1_POWN_A must therefore be used instead
of OMEGA1_POWN_C. Parameter inheritance works without problems between
the two versions, as they share the same parameter names.

OMEGACC_C

Rate laws of the form
R = k C1

(
1− C2C3

Ksp

)
Example: calcite dissolution following linear kinetics

R = k [Calcite]
(

1− [Ca] [CO3]
Ksp

)

when Ca is also an explicitly modeled component (type="normal"):
<RateLaw reference_id="r1" subr="OMEGACC_C">

<RateConstant type="globalconstant"/>
<ConcProductSpecies1>Ca</ConcProductSpecies1>
<ConcProductSpecies2>CO3</ConcProductSpecies2>
<SolubilityProduct code="SolubilityProduct">

Calcite
</SolubilityProduct>
<Proportional>Calcite</Proportional>

</RateLaw>

MONOD1

Rate laws of the form
R = k

C1

Khsat + C1

Example:
<RateLaw reference_id="refid" subr="MONOD1">

<RateConstant type="globalconstant"/>
<HalfSatConstant type="globalconstant"/>

46

<MonodConc>GenNameCompo1</MonodConc>
</RateLaw>

MONOD1_C

Rate laws of the form
R = k C1

C2

Khsat + C2

Example: oxic degradation of organic matter

R = k [OrgMatter] [O2]
Khsat + [O2]

<RateLaw reference_id="r1" subr="MONOD1_C">
<RateConstant type="globalconstant"/>
<HalfSatConstant type="globalconstant"/>
<MonodConc>O2</MonodConc>
<Proportional>OrgMatter</Proportional>

</RateLaw>

MONOD1_HYPINH1_C

Rate laws of the form

R = k C1
C2

Khsat + C2

Kinh

Kinh + C3

Example: organic matter degradation by full denitrification, with inhibition
by oxygen

R = k [OrgMatter] [NO3]
Khsat + [NO3]

Kinh

Kinh + [O2]

<RateLaw reference_id="r1" subr="MONOD1_HYPINH1_C">
<RateConstant type="globalconstant"/>
<HalfSatConstant type="globalconstant"/>
<MonodConc>NO3</MonodConc>
<InhibConstant type="globalconstant"/>
<InhibitionConc>O2</InhibitionConc>
<Proportional>OrgMatter</Proportional>

</RateLaw>

47

MONOD1_HYPINH2_C

Rate laws of the form

R = k C1
C2

Khsat + C2

Kinh,1

Kinh,1 + C3

Kinh,2

Kinh,2 + C4

Example: organic matter degradation by sulphate reduction, with inhibition
by oxygen and nitrate

R = k [OrgMatter] [SO4]
Khsat + [SO4]

Kinh,1

Kinh,1 + [O2]
Kinh,2

Kinh,2 + [NO3]

<RateLaw reference_id="r1" subr="MONOD1_HYPINH2_C">
<RateConstant type="globalconstant"/>
<HalfSatConstant type="globalconstant"/>
<MonodConc>SO4</MonodConc>
<InhibConstant1 type="globalconstant"/>
<InhibitionConc1>O2</InhibitionConc1>
<InhibConstant2 type="globalconstant"/>
<InhibitionConc2>NO3</InhibitionConc2>
<Proportional>OrgMatter</Proportional>

</RateLaw>

MONOD1_HYPINH3_C

Rate laws of the form

R = k C1
C2

Khsat + C2

Kinh,1

Kinh,1 + C3

Kinh,2

Kinh,2 + C4

Kinh,3

Kinh,3 + C5

Example: organic matter degradation by sulphate reduction, with inhibition
by oxygen, nitrate and iron oxide

R = k [OrgMatter] [SO4]
Khsat + [SO4]

Kinh,1

Kinh,1 + [O2]
Kinh,2

Kinh,2 + [NO3]

× Kinh,3

Kinh,3 + [FeOH3]

<RateLaw reference_id="r1" subr="MONOD1_HYPINH3_C">
<RateConstant type="globalconstant"/>
<HalfSatConstant type="globalconstant"/>
<MonodConc>SO4</MonodConc>

48

<InhibConstant1 type="globalconstant"/>
<InhibitionConc1>O2</InhibitionConc1>
<InhibConstant2 type="globalconstant"/>
<InhibitionConc2>NO3</InhibitionConc2>
<InhibConstant3 type="globalconstant"/>
<InhibitionConc3>FeOH3</InhibitionConc3>
<Proportional>OrgMatter</Proportional>

</RateLaw>

MONOD1_SIDINH1_C

Rate laws of the form

R = k C1
C2

Khsat + C2

1
1 + exp ((C3 −Kic)/Kis)

with a non normalized sigmoid inhibition function
Example: organic matter degradation by full denitrification, with inhibition
by oxygen

R = k [OrgMatter] [NO3]
Khsat + [NO3]

1
1 + exp (([O2]−Kic)/Kis)

<RateLaw reference_id="r1" subr="MONOD1_HYPINH1_C">
<RateConstant type="globalconstant"/>
<HalfSatConstant type="globalconstant"/>
<MonodConc>NO3</MonodConc>
<InhibConstant type="globalconstant"/>
<InhibScale type="globalconstant"/>
<InhibitionConc>O2</InhibitionConc>
<Proportional>OrgMatter</Proportional>

</RateLaw>

MONOD1_SIDINH2_C

Rate laws of the form

R = k C1
C2

Khsat + C2

1
1 + exp ((C3 −Kic,1)/Kis,1)

× 1
1 + exp ((C4 −Kic,2)/Kis,2)

49

with two non normalized sigmoid inhibition functions
Example: organic matter degradation by sulphate reduction, with inhibition
by oxygen and nitrate

R = k [OrgMatter] [SO4]
Khsat + [SO4]

1
1 + exp (([O2]−Kic,1)/Kis,1)

× 1
1 + exp (([NO3]−Kic,2)/Kis,2)

<RateLaw reference_id="r1" subr="MONOD1_SIGINH2_C">
<RateConstant type="globalconstant"/>
<HalfSatConstant type="globalconstant"/>
<MonodConc>SO4</MonodConc>
<InhibConstant1 type="globalconstant"/>
<InhibScale1 type="globalconstant"/>
<InhibitionConc1>O2</InhibitionConc1>
<InhibConstant2 type="globalconstant"/>
<InhibScale2 type="globalconstant"/>
<InhibitionConc2>NO3</InhibitionConc2>
<Proportional>OrgMatter</Proportional>

</RateLaw>

MONOD1_SIDINH3_C

Rate laws of the form

R = k C1
C2

Khsat + C2

1
1 + exp ((C3 −Kic,1)/Kis,1)

× 1
1 + exp ((C4 −Kic,2)/Kis,2)

× 1
1 + exp ((C5 −Kic,3)/Kis,3)

Example: organic matter degradation by sulphate reduction, with inhibition
by oxygen, nitrate and iron oxide

R = k [OrgMatter] [SO4]
Khsat + [SO4]

1
1 + exp (([O2]−Kic,1)/Kis,1)

× 1
1 + exp (([NO3]−Kic,2)/Kis,2)

× 1
1 + exp (([FeOH3]−Kic,3)/Kis,3)

50

<RateLaw reference_id="r1" subr="MONOD1_SIDINH3_C">
<RateConstant type="globalconstant"/>
<HalfSatConstant type="globalconstant"/>
<MonodConc>SO4</MonodConc>
<InhibConstant1 type="globalconstant"/>
<InhibScale1 type="globalconstant"/>
<InhibitionConc1>O2</InhibitionConc1>
<InhibConstant2 type="globalconstant"/>
<InhibScale2 type="globalconstant"/>
<InhibitionConc2>NO3</InhibitionConc2>
<InhibConstant3 type="globalconstant"/>
<InhibScale3 type="globalconstant"/>
<InhibitionConc3>FeOH3</InhibitionConc3>
<Proportional>OrgMatter</Proportional>

</RateLaw>

RAMP1

Rate laws of the form
R = k min(C1

K1
, 1)

Example:
<RateLaw reference_id="refid" subr="RAMP1">

<RateConstant type="globalconstant"/>
<RampMaxConstant type="globalconstant"/>
<RampConc>GenNameCompo1</RampConc>

</RateLaw>

RAMP1_C

Rate laws of the form
R = k C1 min(C2

K1
, 1)

Example: oxic degradation of organic matter

R = k [OrgMatter] min([O2]
Kmax

, 1)

<RateLaw reference_id="r1" subr="RAMP1_C">
<RateConstant type="globalconstant"/>

51

<RampMaxConstant type="globalconstant"/>
<RampConc>O2</RampConc>
<Proportional>OrgMatter</Proportional>

</RateLaw>

B Law of Mass-Action Library

B.1 Source File Format for Law of Mass-Action MODLIB
Files

The structure of the MODLIB files for Mass-Action Laws is similar to that of
the Rate Law files:

• The files start with a preamble with a series of namelists providing the
general information of the implemented law, such as the name by which
it can be called and the number of parameters it has, as well as the
parameter definition

• After the preamble starts the actual source code of the MODLIB module,
which provides

– a derived type that collects the parameters of the law
– a first subroutine to evaluate the equilibrium relationship related

to the law of mass-action
– another subroutine to set the equilibrium constant in the derived

type from the boundary conditions.

B.1.1 Preamble

The preamble is again hidden from the core module source by the pre-
processor switch #ifdef CFG_MEDUSACOCOGEN . . . #endif. It contains a se-
ries of namelists: the first one is
&eqlbrel_config
c_name = ’EQLBREL_NAME’
c_ep_type = ’EP_EQLBREL_NAME’
n_param = n
c_expression = ’Equil. rel. fct({#1}, {#2}, ..., {#nn}) = 0’
/

In this first namelist

52

• c_name holds the name under which the equilibrium relationship is
registered in medusa; it must be unique in the current model instance.

• c_ep_type holds the name of the Fortran derived type that will be de-
clared and that collects the parameters of the relationship. It should be
equal to ‘EP_’ (Equilibrium Relationship) followed by the relationship
name as given by c_name.4 By “parameters” we understand here the
equilibrium constant and all the concentration references that enter the
rate law expression.

• n_param holds the number n of parameters that are required to set
up the relationship c_expression gives a the format string for the
mathematical representation of the equilibrium relationship. As in the
Rate Law section, each parameter is referred to by a token ‘{#i }’,
where i refers to the order at which the namelist that defines it appears
hereafter (from 1 for the first to n for the last).

This first namelist is followed by n namelists (where n is the number of
parameters required to describe the equilibrium relationship adequately).
Each one of these n namelists has the following layout:
&eqlbrel_data
c_typecomponame = ’...’
c_xmltagname = ’...’
c_kindofparam = ’...’
c_dummylabel = ’...’
/

In these second type of namelists

• c_typecomponame is the name (to be freely chosen), by which
the parameter is going to be referred to (e.g., EquilibConstant,
ioReactant1, . . .) and that will be used as a component name in
the definition of the TYPE PE_EQLBREL_NAME.

• c_xmltagname is optional. By default, the derived type component
name given by c_typecomponame is also used as the XML tag name for
referring to the parameter in the XML file. This can be overridden by
setting c_xmltagname to a different name.

4The TYPE name can theoretically be freely chosen. However, historically, c_ep_type
was set to ’EP_’ // UPCASE(c_name). Some parts of medusacocogen might still rely
on this.

53

• c_kindofparam determines the kind of parameter; there are less possi-
bilities covered here than with the rate laws

– bc – to be derived from the boundary conditions
– io – model variable, which medusa refers to by its io index.

• c_dummylabel allows to define a (short) symbol for parameters that
are not of kind io when substituting the tokens in c_expression from
the first namelist by actual names – io parameters refer to modelled
variables, whose tokens are going to be substituted by their generic
names.

B.1.2 Code Part

The Fortran source code for the module it self follows the preamble, which
is encapsulated by #ifdef CFG_MEDUSACOCOGEN . . . #endif.

The source code of the actual MODLIB module follows the preamble. It
must fulfil the following requirements (in the examples quoted below, we use
EQLBREL_NAME as a rate-law name – this name can be freely chosen, but must
be unique in the library):

• its name must be equal to the name of the rate law, prefixed by
‘MODLIB_’

• it must make available a derived type whose name is given by the law
name, prefixed by ‘EP_’ (Equilibrium Parameters) and which encapsu-
lates the parameters of the law;

• it must contain a first subroutine to evaluate the equilibrium relation-
ship related to the law of mass-action, and which has the name of the
law and the following standard dummy argument list:

SUBROUTINE EQLBREL_NAME(ep_param, ac,
& aeqrl, daeqrl_dac)

TYPE(EP_EQLBREL_NAME), INTENT(IN)
& :: ep_param
DOUBLE PRECISION, DIMENSION(:), INTENT(IN)
& :: ac
DOUBLE PRECISION, INTENT(OUT)
& :: aeqrl
DOUBLE PRECISION, DIMENSION(SIZE(ac)), INTENT(OUT)
& :: daeqrl_dac
OPTIONAL :: aeqrl, daeqrl_dac

54

• it must contain a second subroutine to initialize the equilibrium con-
stant in the law of mass-action, and which has the name of the law
prefixed by ‘SET_EQUILCT_’ and the following standard dummy argu-
ment list:

SUBROUTINE SET_EQUILCT_EQLBREL_NAME(ep_param, ac)

TYPE(EP_EQLBREL_NAME), INTENT(INOUT)
& :: ep_param
DOUBLE PRECISION, DIMENSION(:), INTENT(IN)
& :: ac

B.2 Commented Example: MODLIB_R1R2P1P1

B.2.1 Preamble

1 #ifdef CFG_MEDUSACOCOGEN
2 &eqlbrel_config
3 c_name = ’R1R2P1P1’
4 c_ep_type = ’EP_R1R2P1P1’
5 n_param = 4
6 c_expression = ’[{#4}]**2␣-␣{#1}␣*␣[{#2}]*[{#3}]␣=␣0’
7 /
8 ! Parameter 1
9 &eqlbrel_data

10 c_typecomponame = ’EquilibConstant’
11 c_kindofparam = ’bc’ ! equilibrium constant, to be set
12 ! from the boundary conditions
13 c_dummylabel = ’K’
14 /
15 ! Parameter 2
16 &eqlbrel_data
17 c_typecomponame = ’ioReactant1’
18 c_xmltagname = ’Reactant1’
19 c_kindofparam = ’io’
20 /
21 ! Parameter 3
22 &eqlbrel_data
23 c_typecomponame = ’ioReactant2’
24 c_xmltagname = ’Reactant2’
25 c_kindofparam = ’io’

55

26 /
27 ! Parameter 4
28 &eqlbrel_data
29 c_typecomponame = ’ioProduct1’
30 c_xmltagname = ’Product1’
31 c_kindofparam = ’io’
32 /
33 #endif

B.2.2 Module Code

34 !---+----1----+----2----+----3----+----4----+----5----+----6-
35 !==
36 MODULE MODLIB_R1R2P1P1
37 !==
38

The name
39 ! For equilibrium relationships
40 ! P1**2 - K * R1*R2 = P1*P1 - K * R1*R2 = 0
41

42 IMPLICIT NONE
43

44 TYPE EP_R1R2P1P1
45 INTEGER :: ioReactant1 ! io of R1
46 INTEGER :: ioReactant2 ! io of R2
47 INTEGER :: ioProduct1 ! io of P1
48 DOUBLE PRECISION :: EquilibConstant ! K value
49 END TYPE
50

The module must provide . . .
51

52 ! Sample usage in the XML declarations:
53 !
54 ! <LawOfMassAction subr="R1R2P1P1">
55 ! <Reactant1>CO2</Reactant1>
56 ! <Reactant2>CO3</Reactant2>
57 ! <Product1>HCO3</Product1>

56

58 ! </LawOfMassAction>
59

60

61 CONTAINS
62

63 !--
64 SUBROUTINE R1R2P1P1(ep_param, ac, aeqrl, daeqrl_dac)
65 !--
66

67 IMPLICIT NONE
68

69

70 ! Argument list variables
71 ! -----------------------
72

73 TYPE(EP_R1R2P1P1), INTENT(IN)
74 & :: ep_param
75 DOUBLE PRECISION, DIMENSION(:), INTENT(IN)
76 & :: ac
77 DOUBLE PRECISION, INTENT(OUT)
78 & :: aeqrl
79 DOUBLE PRECISION, DIMENSION(SIZE(ac)), INTENT(OUT)
80 & :: daeqrl_dac
81

82 OPTIONAL :: aeqrl, daeqrl_dac
83

The module must contain a subroutine that has the name of the equilibrium
and the standardized dummy argument list.

139

140 ! Local variables
141 ! ---------------
142 ...
143

144

145 ! Instructions
146 ! ------------
147 ...
148

149 IF (PRESENT(aeqrl)) THEN
150 aeqrl = ...

57

151 ENDIF
152

153

154 IF (PRESENT(daeqrl_dac)) THEN
155 daeqrl_dac(:) = 0.0D+00
156 daeqrl_dac(...) = ...
157 ENDIF
158

159

160 !--
161 END SUBROUTINE R1R2P1P1
162 !--
163

164

165

166 !--
167 SUBROUTINE SET_EQUILCT_R1R2P1P1(ep_param, ac)
168 !--
169

170 IMPLICIT NONE
171

172

173 ! Argument list variables
174 ! -----------------------
175

176 TYPE(EP_R1R2P1P1), INTENT(INOUT) :: ep_param
177 DOUBLE PRECISION, DIMENSION(:), INTENT(IN) :: ac
178

Finally, the module must contain a subroutine that has the name of the rate
law prefixed by ‘SET_EQUILCT_’ and the standardized dummy argument list.

179

180 ! Local variables
181 ! ---------------
182 ...
183

184

185 ! Instructions
186 ! ------------
187 ...
188

58

189 ep_param%EquilibConstant = ...
190

191 RETURN
192

193 !--
194 END SUBROUTINE SET_EQUILCT_R1R2P1P1
195 !--
196

197

198 !==
199 END MODULE MODLIB_R1R2P1P1
200 !==

B.2.3 Application

B.3 Law of Mass-Action Library Reference
R1P1P2

The R1P1P2 law is for equilibrium relationships of the form

[P1] [P2]
[R1]

= K

or
[P1] [P2]−K[R1] = 0

which arises, e.g., for the bicarbonate dissociation

HCO−
3 + H2O↔ CO−

3 + H3O+

The reactant and the two products must be components with
type="normal".

R1R2P1P1

The R1R2P1P1 law is for equilibrium relationships of the form

[P1]2
[R1] [R2]

= K

or
[P1]2 −K[R1] [R2] = 0

59

which arises, e.g., for the carbonate equilibrium

CO2 + CO2−
3 + H2O↔ 2 HCO−

3

All of the reactants R1 and R2 as well as the product P1 must be components
with type="normal".

R1R2P1P2

The R1R2P1P2 law is for equilibrium relationships of the form

[P1] [P2]
[R1] [R2]

= K

or
[P1] [P2]−K[R1] [R2] = 0

. All of the reactants and products must be components with
type="normal".

P1P2

The P1P2 law is for equilibrium relationships of the form

[P1] [P2] = K

or
[P1] [P2]−K = 0.

A typical example of a reaction where this equilibrium relationship is appro-
priate is the self-ionization of water

2 H2O↔ OH− + H3O+.

Both products must be components with type="normal".

60

	General Overview
	Main Building List
	Fundamental Component and Species Definition File Formats
	Solutes
	Solids
	Solute Systems
	Advanced Topics for Components and Species
	Material characteristics names
	Organic matter class
	Data inheritance

	Processes and Equilibria
	The <ChemicalReaction> XML Element
	Processes
	Process Definition File Format
	Advanced Topics for Processes

	Equilibria
	Equilibrium Description File

	Immaterial and Volume-less Properties
	Age or Production Time of Solids
	Isotopic Properties of Solids

	Building libmedusa.a
	Rate Law Library
	Source File Format for MODLIB Rate Law Files
	Preamble: Metadata
	Code Part

	Commented Example: DELTAPC_POWN_C
	Preamble
	Module Code
	Application in a Process Description File

	Rate Law Library Reference

	Law of Mass-Action Library
	Source File Format for Law of Mass-Action MODLIB Files
	Preamble
	Code Part

	Commented Example: MODLIB_R1R2P1P1
	Preamble
	Module Code
	Application

	Law of Mass-Action Library Reference

