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Abstract. The ocean plays a key role in modulating the cli-
mate of the Earth system (ES). At the present time it is also
a major sink both for the carbon dioxide (CO2) released
by human activities and for the excess heat driven by the
resulting atmospheric greenhouse effect. Understanding the
ocean’s role in these processes is critical for model projec-
tions of future change and its potential impacts on human
societies. A necessary first step in assessing the credibility of
such future projections is an evaluation of their performance
against the present state of the ocean. Here we use a range
of observational fields to validate the physical and biogeo-
chemical performance of the ocean component of UKESM1,
a new Earth system model (ESM) for CMIP6 built upon
the HadGEM3-GC3.1 physical climate model. Analysis fo-
cuses on the realism of the ocean’s physical state and cir-
culation, its key elemental cycles, and its marine productiv-
ity. UKESM1 generally performs well across a broad spec-
trum of properties, but it exhibits a number of notable biases.
Physically, these include a global warm bias inherited from
model spin-up, excess northern sea ice but insufficient south-
ern sea ice and sluggish interior circulation. Biogeochemi-
cal biases found include shallow remineralization of sink-
ing organic matter, excessive iron stress in regions such as
the equatorial Pacific, and generally lower surface alkalinity
that results in decreased surface and interior dissolved inor-
ganic carbon (DIC) concentrations. The mechanisms driving
these biases are explored to identify consequences for the be-

haviour of UKESM1 under future climate change scenarios
and avenues for model improvement. Finally, across key bio-
geochemical properties, UKESM1 improves in performance
relative to its CMIP5 precursor and performs well alongside
its fellow members of the CMIP6 ensemble.
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1 Introduction

The climate dynamics of the Earth system are a product in
large part of the two interacting geophysical fluids at the
planet’s surface: the atmosphere and the ocean. Both are
reservoirs for heat and the greenhouse gas carbon dioxide
(CO2), one of several climatically relevant chemical con-
stituents. Because of the high specific heat capacity of wa-
ter, as well as the chemical buffering capacity of seawater,
the ocean stores the majority of the Earth system’s active re-
serves of both. Over the past few centuries, the atmospheric
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concentration of CO2 has risen exponentially from its quasi-
stable interglacial background of around 278 to more than
400 ppm. This growth is largely driven by the release of CO2
through anthropogenic processes such as fossil fuel combus-
tion, land clearance and cement production. This change in
the CO2 airborne fraction of the atmosphere has also altered
its radiative transfer properties toward retaining a greater
fraction of outgoing long-wave radiation, resulting in atmo-
spheric warming and change to the climate of the Earth sys-
tem. Further, for the reasons identified above, the ocean is
the destination for the majority of these anthropogenic per-
turbations in both heat and carbon dioxide (e.g. Archer, 2005;
Kuhlbrodt et al., 2021).

Leaving aside the relatively static inventory within the
geosphere, the Earth’s carbon cycle partitions this element
dynamically between atmosphere, ocean and land systems,
including the living systems of the marine and terrestrial bio-
sphere. While ongoing climate change is driven in the first in-
stance by change in carbon (as CO2) in the atmosphere, this
reservoir represents only approximately 1.4 % of the total
(pre-industrial) dynamic pool (Ciais et al., 2013), compared
with 6.0 % for land systems (excluding permafrost) and
92.6 % for ocean systems (excluding seafloor sediments).
This dominance of the ocean reflects the solubility of inor-
ganic carbon in seawater, and ultimately the majority frac-
tion of these anthropogenic emissions is expected to be ab-
sorbed into the ocean (Archer, 2005). However, the magni-
tude of this, as well as the rate at which it occurs, is de-
pendent upon a raft of physico-chemical and biological pro-
cesses, including surface solubility, deep ocean ventilation
and circulation, and biological uptake and deep sequestra-
tion via sinking biogenic particles. Representing this uptake
within an Earth system model (ESM) requires realistic per-
formance across many aspects of its simulated ocean state,
both physical and biogeochemical and surface and interior.

The situation is similar for heat, with observations over
recent decades showing a clear upward trend in ocean heat
content since the 1960s at the earliest and accelerating since
the 1990s (Levitus et al., 2012; Cheng et al., 2017). Approx-
imately 90 % of the anthropogenic imbalance in the Earth’s
heat content is stored within the ocean (Meyssignac et al.,
2019). Consequently, and similarly to carbon, simulating this
important property requires ESMs to accurately represent a
broad range of physical phenomena, such as ocean circula-
tion and mixing that distribute heat, as well as sea ice that
caps its exchange and affects albedo.

This paper is concerned with the realism of the ocean com-
ponent of UKESM1 during CMIP6 historical-period simula-
tions (1850–2014; Eyring et al., 2016). It has the three fol-
lowing primary goals.

– First, to evaluate the performance of UKESM1 against
observational metrics and identify biases in physical
and biogeochemical properties.

– Second, to identify the first-order causes of biases found
and elucidate where modelled processes may be less re-
alistic.

– Third, to identify avenues for addressing model limita-
tions and weaknesses in future versions.

Model performance is evaluated across a broad range of
properties to identify biases, with analysis focusing on the
near-present period of 2000–2009 because of the greater
availability of observational data in recent decades. Over-
all, this paper aims to facilitate subsequent more in-depth
analyses of the model by identifying ocean states or pro-
cesses where its representation is weaker. A summary anal-
ysis across all of UKESM1’s components can be found in
Sellar et al. (2019).

The paper is structured as follows. A brief introduction to
UKESM1 is presented, with an emphasis on its ocean com-
ponents, followed by outlines of the model simulations used
and the observational datasets selected for their evaluation.
Results are then presented for the physical ocean, sea ice
and marine biogeochemistry components, with surface and
interior bulk properties, dynamical and biogeochemical pro-
cesses, and time series examined. Discussion is focused on
the major biases identified, proposals for reducing these in
future model revisions and an evaluation of UKESM1 in the
context of peer (and precursor) CMIP models.

2 Methods

2.1 Earth system model

This study utilizes UKESM1, a new state-of-the-art model
built to simulate the coupled physical and biogeochemical
dynamics of the Earth system, including its atmosphere,
ocean and land systems. UKESM1 uses the Hadley Centre
Global Environment Model version 3 Global Coupled (GC)
version 3.1 configuration, HadGEM3-GC3.1 (Williams et al.,
2017; Kuhlbrodt et al., 2018), as its core physical climate
model. This is then extended through the addition of interac-
tive stratospheric–tropospheric trace gas chemistry, land bio-
geochemistry and ecosystem dynamics, and ocean biogeo-
chemistry. In addition to the internal dynamics of these com-
ponents, the resulting ESM includes couplings between them
to represent potential feedback processes or interactions that
may impact the time evolution of the modelled climate. Sel-
lar et al. (2019) provides an overview of UKESM1, includ-
ing its development and tuning, while Yool et al. (2020) de-
scribes the spin-up of its pre-industrial control (piControl)
state ahead of historical-period (1850–2014) simulations.

Figure S1 in the Supplement shows a schematic overview
of the constituent models of UKESM1. In outline, UKESM1
is comprised of closely coupled atmosphere and land sub-
modules that are linked through an explicit coupler module,
OASIS3-MCT_3.0 (Valcke, 2013; Craig et al., 2017), to cou-
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pled ocean and sea ice submodules. All three major Earth
system (ES) components – atmosphere, land and ocean –
are themselves built from submodels that separately repre-
sent domains, such as physical dynamics, biogeochemistry
and ecosystem dynamics.

The physical dynamics of the atmosphere of UKESM1 are
represented by GA7.1 (Mulcahy et al., 2018; Walters et al.,
2019), which includes processes such as mass transport, ra-
diative transfer, thermodynamics and the water cycle. The
UK Chemistry and Aerosols model (UKCA; Morgenstern
et al., 2009; O’Connor et al., 2014) is coupled to GA7.1 and
includes stratospheric and tropospheric chemistry together
with separate aerosol (Mann et al., 2010) and dust schemes
(Woodward, 2011). UKESM1 adds several couplings that are
absent in GA7.1, including natural emissions of monoter-
penes, dimethyl sulfide (DMS) and primary marine organic
aerosols (PMOA), all of which are calculated dynamically
from land and ocean components and which permit addi-
tional climate feedbacks. The atmosphere in UKESM1 also
serves as a conduit for mineral dust, transferring this from
bare soil on land into the ocean where it can fuel biologi-
cal production and CO2 uptake. Mulcahy et al. (2018, 2020),
Sellar et al. (2019) and Archibald et al. (2020) provide further
details of the atmospheric chemistry and aerosol schemes in
UKESM1.

Physics and biogeochemistry on land in UKESM1 is
represented by the Joint UK Land Environment Simulator
(JULES; Best et al., 2011; Clark et al., 2011). This is closely
coupled to the Top-down Representation of Interactive Fo-
liage and Flora Including Dynamics model (TRIFFID; Cox,
2001; Jones et al., 2011), which represents plant and soil dy-
namics on land. TRIFFID developments new to CMIP6 in-
clude updated plant parameterizations (Kattge et al., 2011),
increased plant functional types (Harper et al., 2016), the pro-
duction of volatile organic compounds (Pacifico et al., 2015),
and nitrogen limitation of terrestrial primary production and
carbon uptake (Wiltshire et al., 2021). TRIFFID represents
land use by agriculture by reserving grid cell time-varying
fractions for occupation by crops and pasture. For further de-
tails of UKESM1’s land component, please refer to Sellar
et al. (2019).

The physical ocean component in UKESM1 makes use of
the Nucleus for European Modelling of the Ocean frame-
work (NEMO; Madec et al., 2016) This is comprised of
an ocean general circulation model, Océan PArallélisé ver-
sion 9 (OPA9; Madec et al., 1998; Madec, 2008) and is
coupled here to a separate sea ice model, the Los Alamos
Sea Ice Model version 5.1.2 (CICE; Hunke et al., 2015).
OPA9 is a primitive equation model of ocean dynamics and
is used within UKESM1 at a horizontal resolution of approx-
imately 1◦ on a tripolar grid (Madec and Imbard, 1996) with
enhanced equatorial resolution (the extended ORCA1 grid,
eORCA1). This shared configuration of NEMO, dubbed
“shaconemo”, is used by a number of European research
groups, and many of its grid-resolution-dependent settings

are aligned with these other ESMs (NEMO v3.6_stable;
available from http://forge.ipsl.jussieu.fr/shaconemo, last ac-
cess: 2 June 2021). Some other parameter settings (typically
resolution-independent ones) are drawn from the GO6 con-
figuration of NEMO developed in the UK (Storkey et al.,
2018). More complete descriptions of the NEMO and CICE
configurations used in UKESM1 (GO6, GSI8), including de-
tails of its sensitivity and resulting tuning, can be found in
Storkey et al. (2018), Ridley et al. (2018) and Kuhlbrodt et al.
(2018), while Kuhlbrodt et al. (2021) investigates ocean heat
uptake.

Marine biogeochemistry in UKESM1 is represented by the
Model of Ecosystem Dynamics, nutrient Utilisation, Seques-
tration and Acidification (MEDUSA-2.1). MEDUSA-2.1 is
“intermediate complexity” with a double size-class ecosys-
tem that represents phytoplankton, zooplankton and partic-
ulate detrital pools, and which explicitly includes the bio-
geochemical cycles of nitrogen, silicon and iron nutrients, as
well as the cycles of carbon, alkalinity and oxygen (Fig. S2
in the Supplement). During its inclusion within UKESM1, a
number of changes were introduced from its earlier prede-
cessor model, MEDUSA-2, described in Yool et al. (2013),
and the version used here is identified as MEDUSA-2.1
to distinguish it. These changes include updated carbonate
chemistry (Orr and Epitalon, 2015), the addition of empir-
ical submodels of dimethyl sulfide (DMS; Anderson et al.,
2001) and primary marine organic aerosol (PMOA; Gantt
et al., 2011, 2012), and code improvements such as variable
volume (VVL) and the XML Input–Output Server (XIOS)
(Meurdesoif, 2013). Within UKESM1, MEDUSA interacts
with other model components via the following feedback
connections: atmosphere–ocean exchange of CO2, ocean-to-
atmosphere fluxes of DMS and PMOA, and deposition of
terrestrial iron to the ocean via atmospheric dust transport.
A more complete description of MEDUSA-2.1 can be found
in Appendix A.

In addition to the biogeochemical tracers of MEDUSA-
2.1, UKESM1 includes the chlorofluorocarbon tracer, CFC-
11 (Orr et al., 2017). This artificial tracer has an atmospheric
time history analogous to that of anthropogenic CO2 and can
be used as a marker for recently ventilated water masses (Key
et al., 2004). It can be measured from seawater samples with
high accuracy and provides an additional measure here for
evaluating simulated circulation.

UKESM1 is the successor model to its CMIP5 predeces-
sor, HadGEM2-ES (Collins et al., 2011). Many of its com-
ponents are evolved versions of those in the earlier model,
including its land surface, physical atmospheric core and at-
mospheric chemistry components (Sellar et al., 2019). How-
ever, in the specific case of the ocean in UKESM1, its dynam-
ical core, grid domain, sea ice and marine biogeochemistry
are wholly new and replace the corresponding components in
HadGEM2-ES. Consequently, there is no direct traceability
between the oceans of the two generations of CMIP model.
Nonetheless, as part of the assessment of UKESM1, elements
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of its performance relative to that of HadGEM2-ES are ex-
amined in Sect. 4.2.

2.2 CMIP6 simulations

This study utilizes simulations of the UKESM1 model per-
formed as part of the sixth phase of the Coupled Model In-
tercomparison Project (CMIP6). Model output is taken from
the piControl and historical simulations of CMIP6 and from
an ensemble of nine members, consistent with Sellar et al.
(2019). Each ensemble member represents a branch at a dif-
ferent time point from the piControl, after which the new
simulation experiences time-varying changes in atmospheric
and land use properties characteristic of the historical pe-
riod from start 1850 to end 2014. Ensemble branch points
were chosen selectively to span the variability in the model’s
multi-decadal behaviour (Sellar et al., 2019). To achieve
this, the model’s behaviour across two major ocean modes
was sampled: the Atlantic Multi-decadal Oscillation (AMO;
Kerr, 2000), and the Inter-decadal Pacific Oscillation (IPO;
Zhang et al., 1997; Power et al., 1999). Table S1 in the Sup-
plement lists the local run IDs of the simulations compris-
ing the ensemble, together with their branch times from the
piControl. The mean of this nine-member ensemble is used
throughout the following analysis, except where stated oth-
erwise.

2.3 Datasets and evaluation

Model analysis in this study is focused on a subset of ocean
properties. More complete evaluations of other UKESM1
components can be found in the dedicated studies of Mulc-
ahy et al. (2018) and Mulcahy et al. (2020) (aerosols),
Archibald et al. (2020) (atmospheric chemistry), and An-
drews et al. (2019) (radiative forcing, feedbacks and climate
sensitivity). Sellar et al. (2019) provides a summary overview
of the full model.

The specific observational datasets used for evaluation are
as follows:

– World Ocean Atlas 2013, for ocean physical (interior;
Locarnini et al., 2013; Zweng et al., 2013) and bio-
geochemistry (Garcia et al., 2014a, b, interior, surface;)
fields;

– Hadley Centre Sea Ice and Sea Surface Temperature
(HadISST.2.2; Titchner and Rayner, 2014) for ocean sea
surface temperature (SST) and sea ice fields;

– National Sea Ice Data Centre for sea ice thickness
(Stroeve and Meier, 2016) and sea ice index (Fetterer
et al., 2017);

– Estimating the Circulation and Climate of the Ocean
(ECCO) V4r4 (Forget et al., 2015; Fukumori et al.,
2019) for ocean hydrodynamic circulation state;

– Smeed et al. (2018) for RAPID-MOCHA time series
measurements of the Atlantic meridional overturning
circulation (AMOC) at 26◦ N;

– SeaWiFS (O’Reilly et al., 1998) for surface ocean
chlorophyll concentration;

– Oregon State University Ocean Productivity group for
VGPM (Behrenfeld and Falkowski, 1997), Eppley-
VGPM (Carr et al., 2006) and CbPM (Westberry et al.,
2008) vertically integrated primary production;

– Rödenbeck et al. (2013) for observationally derived
global air–sea CO2 flux and surface pCO2;

– Lana et al. (2011) for surface dimethyl sulfide (DMS)
concentrations;

– Global Ocean Data Analysis Project v1.1 (Key et al.,
2004) and v2 (Olsen et al., 2016; Lauvset et al., 2016)
for interior and surface carbonate biogeochemistry, in-
cluding anthropogenic CO2;

– Moriarty and O’Brien (2013) for the COPEPOD dataset
of gridded zooplankton biomass.

Links to these datasets are given in Appendix D.
In addition, several derived variables are calculated from

observational and model fields.

– Mixed layer depth (MLD) is calculated in the same way
from both observed and modelled 3D fields of poten-
tial temperature. MLD is determined to be the depth
at which the vertical profile of potential temperature
is 0.5 ◦C lower than that at the depth of 5 m. Alterna-
tive MLD schemes using similar thresholds in potential
density (either fixed or variable with temperature) were
also examined, but global coverage was less complete
with these (especially in sea ice regions), so the poten-
tial temperature criterion was favoured.

– Modelled integrated AMOC and Drake Passage trans-
ports are calculated here using the BGC-val toolkit (de
Mora et al., 2018). In the case of AMOC, the calcula-
tions are based on those of Kuhlbrodt et al. (2007) and
McCarthy et al. (2015) and use the cross-sectional area
at the 26◦ N transect to calculate the maximum depth-
integrated current. Drake Passage transport is calcu-
lated following Donohoe et al. (2016) as the total depth-
integrated current along a north–south transect between
the South American continent and the Antarctic Penin-
sula. The methods for both transports are described in
de Mora et al. (2018).

– Model anthropogenic CO2 is estimated by differencing
dissolved inorganic carbon (DIC) fields from the histori-
cal simulation of each ensemble member with the corre-
sponding DIC field from the piControl at the same rela-
tive time point. For example, we estimate anthropogenic
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CO2 in 1990 from a given historical ensemble member
as the difference between this member’s DIC field at
this particular time and the DIC field from the piCon-
trol simulation from the same time point, i.e., the time
that corresponds to 140 years (i.e. 1990− 1850= 140)
after the historical ensemble member branched from the
piControl. This approach aims to account for drift in the
simulations, although it omits changes driven by diver-
gence in circulation and biogeochemistry between the
historical and piControl simulations. These are assumed
to be small in this method.

Evaluation primarily uses the period 2000–2009 of the
CMIP6 historical simulation and compares to correspond-
ing periods of observational data. Some evaluated properties
are not as comprehensively sampled, but we assume that the
same time period is likely to be representative of the ocean’s
state and use this for consistency. The results shown make
use of monthly climatologies of both model output and ob-
servational data (where available) for this period. A number
of figures illustrate observed and modelled properties (and
the biases of the latter) for the June–July–August (JJA) and
December–January–February (DJF) meteorological seasons
that correspond respectively to Northern Hemisphere sum-
mer and winter (and Southern Hemisphere winter and sum-
mer).

Throughout, fields of observational and model prop-
erties are plotted on their original horizontal and ver-
tical grids. Where these properties are directly inter-
compared, for instance in difference plots, observa-
tional fields are first regridded to the model grid (us-
ing the scatteredInterpolant function of MATLAB
v2020a). In Sect. 4.2, horizontal fields of UKESM1 output
are compared with those from fellow CMIP6 models, and
here all models are regridded to a common, uniform 1◦ grid.

3 Results

3.1 Surface physical ocean

Figure 1 shows observed (HadISST; Titchner and Rayner,
2014) and simulated global-scale sea surface temperature
(SST) for summer and winter in both hemispheres, together
with (model–observed) patterns of difference. The model re-
produces the main observed features, including latitudinal
and seasonal gradients, upwelling regimes and major fronts.
A number of biases are also evident, including warm biases
up to 4 ◦C in upwelling regimes (especially the equatorial Pa-
cific), a general warm bias in the Southern Ocean, cool biases
of up to −2 ◦C throughout the subtropics, and a marked cold
bias in the North Atlantic of greater than −4 ◦C. The former
Pacific biases occur in December–January–February (DJF)
when tropical atmospheric convection is primarily over the
western Pacific warm pool, and the east–west pressure gra-
dient is seasonally at a maximum. This gradient drives east–

Figure 1. Observational (a, b; HadISST) and simulated (c, d) sea
surface temperature for northern (a, c, e; JJA) and southern (b, d,
f; DJF) summer. Differences (simulated–observed) for both seasons
shown in (e, f). Temperature (and difference in temperature) in ◦C.

west wind stress and equatorial Ekman-induced upwelling,
and a poor representation of this in UKESM1 likely leads
to reduced upwelling and the warm SST bias. A warm bias
close to the North American coastline and strong cold bias in
the western North Atlantic occur due to resolution-dependent
errors where the Gulf Stream separates too far north and then
extends too zonally across the North Atlantic (Marzocchi
et al., 2015; Hirschi et al., 2020). Similar but less marked
biases occur in the Pacific in association with the Kuroshio
Current. In general, surface temperature biases in the model
have strong latitudinal patterns associated with major cur-
rents and patterns of upwelling and downwelling and are per-
sistent across the seasons. To illustrate the full seasonal cy-
cle, Fig. S3 in the Supplement shows Hovmöller diagrams of
latitudinal mean observed and simulated SST.

SST exhibits a number of major climate modes such as
the Interdecadal Pacific Oscillation (IPO) and Atlantic Mul-
tidecadal Oscillation (AMO) that can introduce persistent
and large-scale shifts in temperature that are of compara-
ble magnitude to the model biases identified above. For in-
stance, the IPO has a negative index (cooler than reference)
during the time period shown in Fig. 1, but a positive in-
dex (warmer than reference) during the preceding 2 decades
(Salinger et al., 2001; Hu et al., 2018). Models also have cli-
mate modes, but these can be out of phase with those ob-
served, and they may occlude or exaggerate biases. Figure S4
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in the Supplement partially addresses this by repeating the
difference plot from Fig. 1 but for the 3 preceding decades.
The resulting patterns of model–observation difference are
generally consistent between the decades and for both sea-
sons, suggesting that they represent model biases rather than
variability mismatch. In particular, persistent features include
the strong cold bias in the western North Atlantic, warm bi-
ases in the equatorial Atlantic and Pacific basins (the latter
seasonally), and a general warm bias in the Southern Ocean.
As most other observational datasets used in the evaluation
of UKESM1 properties are more restricted in the time peri-
ods they have available, similar analyses are more difficult.
However, given the primary role of SST in many ocean pro-
cesses, the apparent dominance of model bias in SST over its
temporal variability is suggestive that mismatches in major
climatic modes are of secondary importance in our analysis.

Figure S5 in the Supplement parallels Fig. 1, showing the
observed (WOA, 2013; Zweng et al., 2013) and simulated sea
surface salinity (SSS) for summer and winter, together with
(model–observed) differences. UKESM1 shows a general
negative bias in SSS (≈ 1 PSU) but with significant regions
of positive bias in the tropical Atlantic and Indian oceans
(< 1 PSU). There are also “hotspots” of bias in the Bay of
Bengal (positive), off the west (negative) and east (positive)
coastline of equatorial South America, in the Yellow and East
China seas (negative), and in the Arctic (both positive and
negative). These regions are mostly located close to major
riverine inputs, and likely reflect model inaccuracies in the
precise location and magnitude of associated freshwater ad-
ditions.

Remaining with the surface ocean but moving to high-
latitude regions, Fig. 2 shows the observed and simulated
sea ice concentrations at the seasonal maxima, March in
the Arctic and September in the Antarctic (HadISST; Titch-
ner and Rayner, 2014). In general terms, the model repro-
duces the observed Northern Hemisphere sea ice patterns,
with complete ice cover in the main Arctic basin, Baffin Bay
down to Davis Strait, Hudson Bay, cover on the eastern mar-
gins of Newfoundland and Greenland, and bounding the Bar-
ents Sea. In the Arctic, simulated maximum sea ice area is
15.3× 106 km2, compared with an observational maximum
of 13.9×106 km2. This relationship is reversed in the Antarc-
tic, with a simulated maximum of 11.8× 106 km2 compared
to 16.3× 106 km2 observed. As Fig. 2e and f show, this
general pattern of excess sea ice in the Arctic and a deficit
around Antarctica generally persists seasonally, with a mod-
elled Arctic minimum of 8.7 compared to 4.7× 106 km2 ob-
served, and a model Antarctic minimum of 2.7 compared to
2.6×106 km2 observed. Modelled Arctic sea ice also reaches
its seasonal minimum slightly earlier than observed, in Au-
gust rather than September. In the Arctic, sea ice typically
persists for multi-year periods, such that this bias towards
excess ice area in UKESM1 is accompanied by sea ice cover
that is also excessively thick. Thicknesses are up to 5 m in the
simulated “dome” of sea ice over the north pole, compared to

Figure 2. Observational (a, b; HadISST) and simulated (c, d) maxi-
mum annual sea ice cover for the Arctic (March; a, c, e) and Antarc-
tic (September; b, d, f). Sea ice cover is non-dimensional, and val-
ues less than 0.15 have been masked. The bottom row shows the
seasonal sea ice extent (> 15 % cover; in 106 km2) for the polar
regions of each hemisphere.

flatter observational estimates that are closer to 3 m (Fig. S6
in the Supplement; Stroeve and Meier, 2016).

In response to ongoing climate change, Arctic sea ice
shows one of the most pronounced trends within the Earth
system over recent decades (Brennan et al., 2020). Figure 3
shows simulated Arctic and Antarctic sea ice extent over
the full historical period (1850–2014), together with obser-
vational estimates (HadISST, Titchner and Rayner, 2014;
NSIDC, Fetterer et al., 2017) for recent decades. Much
as with sea ice extent itself, UKESM1 performs better in
the Arctic, with similar negative trends since 1980. In the
Antarctic, however, the discrepancy in seasonal extent al-
ready noted is exacerbated by a negative trend in maximum
sea ice extent in UKESM1 opposite to the rising trend actu-
ally observed (although this observed trend may be reversing;
Parkinson, 2019).

The Earth’s ocean and atmosphere interact principally at
their interface, but turbulent mixing of the ocean ventilates

Geosci. Model Dev., 14, 3437–3472, 2021 https://doi.org/10.5194/gmd-14-3437-2021



A. Yool et al.: Evaluating the ocean component of UKESM1 3443

Figure 3. Observational (black, HadISST; grey, NSIDC) and simulated (blue) sea ice extent in the Arctic (a) and Antarctic (b) across
the historical period (1850–2014), with recent (1985–2014) trends shown. Panels show extent for September and March, which roughly
correspond to the seasonal minima and maxima. The model ensemble mean is shown, with ±1 SD shaded in blue to show their variability.

its upper layer with both physical and biogeochemical con-
sequences. As described in Sect. 2.3, this layer is character-
ized from both observational and model fields of 3D potential
temperature using a 0.5 ◦C change criterion. Figure 4 shows
the observed and modelled thickness of this mixed layer, to-
gether with (model–observed) patterns of difference. Again,
the model reproduces the main features of the ocean, includ-
ing strong seasonality at high latitudes, deep mixed layers
(> 100 m) throughout the year in the Southern Ocean (away
from sea ice), and shallow mixed layers (< 50 m) in equato-
rial upwelling regions. When and where the mixed layer is
shallow, the model tends to exaggerate this with even shal-
lower mixed layers, most noticeably during the summer at
temperate latitudes. At subpolar latitudes in the Southern, At-
lantic and Pacific oceans, deep mixing in the winter is more
pronounced in the model, with larger areas experiencing mix-
ing to deeper than 500 m. These model biases towards both
shallower and deeper mixed-layer depths are more clearly
visible in Fig. 5, which shows the frequency at which differ-
ent mixed-layer depths occur seasonally. While median fre-

quencies are similar between the model and those that are
observation derived, modelled summer and winter distribu-
tions can be seen to be shifted shallow and deep respectively.

Table 1 lists the global means (or mean integrals) of these
surface physical properties across both the full historical pe-
riod and the corresponding piControl period. For both of
these simulation ensembles, the variability and ranges of
each of these properties are given, together with the simple
linear trend over the full 165-year period.

3.2 Interior physical ocean

Switching to the ocean interior, Figs. 6 and 7 respectively il-
lustrate zonally averaged depth profiles of temperature and
salinity along so-called “thermohaline transects” of the At-
lantic, Southern and Pacific oceans for both UKESM1 and
observations (Locarnini et al., 2013; Zweng et al., 2013).
These transects are created from basin zonal means of the
plotted properties. They track southward down the Atlantic
into the Southern, before reversing direction to travel north-
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Figure 4. Observationally derived (a, b; World Ocean Atlas) and
simulated (c, d) mixed-layer depth for northern summer (a, c, e;
JJA) and southern summer (b, d, f; DJF). Differences (simulated–
observed) for both seasons shown in the bottom row. Mixed-layer
depth derived from full three-dimensional fields of potential tem-
perature, using a temperature difference criterion (Monterey and
Levitus, 1997). In this, mixed layer depth is the depth at which po-
tential temperature differs from that at 5 m by 0.5 ◦C. White regions
are those where this criterion fails (i.e. ocean interior temperature
is never cooler than that at 5 m by the 0.5 ◦C criterion; typically
sea ice covered regions). Mixed layer depth is in metres and shown
on a logarithmic scale.

ward from the Southern into the Pacific, with the aim of
broadly following water mass properties from young, freshly
ventilated North Atlantic Deep Water (NADW) through to
much older North Pacific waters. For the purposes of this
transect, the Arctic Ocean is considered a northern extension
of the Atlantic, while the Indian Ocean – west of the Malay
Archipelago and including its sector of the Southern Ocean
– is entirely omitted from consideration. In both cases, ob-
served and modelled interior properties are shown, together
with a difference plot to highlight biases.

For ocean temperature, while there are spots of cooler bi-
ases in the upper ocean (< 1000 m), temperature is gener-
ally positively biased in the upper 3000 m. This is more pro-
nounced in the Atlantic basin, in particular at tropical lati-
tudes, where midwater (100–1000 m) biases up to 4 ◦C are
found in the model. The bias in southward-moving NADW
(> 1000 m) is consistent with the warm bias in SST shown
in its subpolar source regions in Fig. 1. Comparable Pa-
cific biases are much lower, and tropical latitudes instead

Figure 5. Frequency (in areal terms) of observation-derived (a;
WOA) and simulated (b) seasonal mixed-layer depths. Mixed-layer
depth derived here using a 5 m temperature criterion (0.5 ◦C) and
full three-dimensional fields of potential temperature (Monterey and
Levitus, 1997). Hemispheres have been temporally aligned so that
seasons co-occur (i.e. summer is JJA for the north and DJF for the
south). Circles indicate the medians for each seasonal period (i.e.
the 50 % of ocean area mark).

Table 1. Selected ocean physical properties averaged across both
the historical ensemble (upper rows) and corresponding segments of
the piControl (lower italicized rows). For each property, the statis-
tics refer to the full 165-year period from 1850–2015. The final
statistic, M , is the linear slope of the change in the property across
this full period.

Property Mean σ Min. Max. M

[units]

AMOC 15.83 1.191 12.60 18.80 0.200
[Sv] 14.77 0.877 12.61 16.88 −0.024
Drake 151.52 5.908 139.75 164.18 −0.197
[Sv] 154.33 4.017 144.84 163.37 0.128
SST 17.76 0.175 17.45 18.42 0.015
[◦C] 17.67 0.075 17.45 17.88 −0.002
Temperature 3.78 0.008 3.76 3.80 −0.000
[◦C] 3.77 0.007 3.76 3.79 −0.001
SSS 34.31 0.015 34.27 34.34 −0.001
[PSU] 34.31 0.013 34.28 34.34 −0.001
Salinity 34.73 0.000 34.73 34.73 −0.000
[PSU] 34.73 0.000 34.73 34.73 −0.000
N sea ice 12.23 0.519 10.69 13.39 −0.025
[106 km2] 12.15 0.387 11.18 13.30 0.017
S sea ice 11.35 0.890 8.34 13.08 −0.092
[106 km2] 11.87 0.554 10.44 13.27 −0.013
MLD 50.06 0.729 48.02 52.17 0.017
[m] 49.99 0.547 48.61 51.59 −0.010
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Figure 6. A “thermohaline circulation” section of observed (a)
and modelled (b) zonal average potential temperature. Difference
(simulated–observed) is shown in (c). The section tracks south-
wards “down” the Atlantic basin from the Arctic to the South-
ern Ocean, before tracking northwards “up” the Pacific basin from
the Southern Ocean to the Bering Strait. The aim is to capture
the stereotypical transport of deep water from its formation as a
“young” water mass in the high North Atlantic through to its end
as an “old” water mass in the North Pacific. Dotted lines mark the
“boundaries” of the Southern Ocean at 40◦ S in each basin. Poten-
tial temperature in ◦C.

show a cold bias in the upper 500 m. At depth (> 3000 m),
both basins show negative biases, which again are more pro-
nounced in the Atlantic. Southern Ocean temperatures ex-
hibit small positive biases, most clearly in the Atlantic sector,
although these switch sign at depth into the Atlantic proper
as already mentioned. Patterns of ocean salinity broadly mir-
ror those of temperature in the Atlantic basin, with cor-
responding positive biases in the upper 3000 m and nega-
tive biases below. The model’s Pacific basin is more uni-
formly fresh in the upper 1000 m, with smaller positive bi-
ases beneath and negligible biases below 3000 m. Overall,
temperature and salinity patterns indicate that the Atlantic
is a warmer, more evaporative basin in the model, with its
most positive upper-ocean biases located there, as well as its
largest negative biases in the deep ocean. Figure S7 in the
Supplement shows the corresponding patterns in potential
density anomaly (σθ ; referenced to atmospheric pressure).
These show the model ocean, particularly the Pacific basin, to

Figure 7. A thermohaline circulation section of observed (a)
and modelled (b) zonal average salinity. Difference (simulated–
observed) is shown in (c). Salinity is given in practical salinity units
(PSU). Figure 6 explains the format of this section.

be more stratified vertically compared to observations, with
generally lower-density surface waters (< 1000 m) overlying
more dense deep waters. This bias suggests that the model’s
parameterization of vertical mixing may be insufficient, re-
ducing the transfer of heat from the surface to deeper layers
(and potentially weakening the deeper circulation; see be-
low).

This pattern of biases in the zonal sections above indi-
cates differences in the balance of interior water masses
in UKESM1 compared to that of the real ocean. Obser-
vationally, zonally averaged North Atlantic circulation be-
low 1000 m is dominated by the transports associated with
North Atlantic Deep Water (NADW) and the Antarctic Bot-
tom Water (AABW). NADW is produced by the subduc-
tion of cool, salty water at subpolar latitudes in the north of
the basin, and its southward-moving cell overlies a denser
cell of Antarctic Bottom Water (AABW) travelling north-
ward from its production in the Southern Ocean. To illustrate
this, Fig. 8a shows a reconstruction of the global stream-
function of the ocean’s meridional overturning circulation
(MOC), produced by the Estimating the Circulation and Cli-
mate of the Ocean consortium (ECCO; Forget et al., 2015;
Fukumori et al., 2019). This is an ocean reanalysis product
in which the MOC is a result of a model simulation that
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Figure 8. Observationally derived (a) and simulated (b) meridional
overturning circulation (MOC) for the global ocean. The observa-
tional circulation is derived from the ECCO V4r4 ocean circulation
reanalysis for the period 1992–2017. The model circulation shown
is based on the decadally averaged streamfunction, 2000–2009.
Both plots include the components from parameterized mesoscale
eddies (Gent and McWilliams, 1990; Gent et al., 1995). MOC is in
Sv with a contour interval of 2 Sv.

has been constrained with observations (for a more complete
overview, see Jackson et al., 2019). In this, the upper posi-
tive (clockwise) overturning cell extends its influence below
2000 m (in red; driven by circulation in the North Atlantic),
overlying the negative overturning cell (in blue) of AABW.
Figure 8b shows the corresponding MOC in UKESM1. In
general, this follows the pattern shown in the ECCO reanal-
ysis, although with a slightly stronger maximum MOC at
40◦ N and a weaker AABW cell northward of the Antarctic
Circumpolar Current (ACC). We note that the southernmost
part of the overturning associated with AABW is stronger in
UKESM1 than in ECCO (around 6 against 4 Sv), suggest-
ing that sinking around Antarctica is stronger in UKESM1.
Stronger sinking in UKESM1 around Antarctica, combined
with a slightly weaker NADW than observed, indicates a
more dominant role for AABW in the model and is consistent
with the colder and fresher biases found in the deep ocean
(particularly the Atlantic) in Figs. 6 and 7, as well as biases
in biogeochemical fields (see below).

While Fig. 8 shows a time-averaged and zonally aver-
aged state of the MOC, ocean circulation exhibits significant
variability (Mayewski et al., 2009; Smeed et al., 2018). An-
nual mean observation-based estimates of the Atlantic MOC
(AMOC) from the RAPID-MOCHA array at 26.5◦ N range
from 14.6 to 19.3 Sv between 2004 and 2016 (Smeed et al.,
2018). In the Southern Ocean, the Drake Passage, i.e. the
channel between the Antarctic Peninsula and South Amer-
ica, focuses the ACC that rings Antarctica and from inter-

mittent sampling has a transport estimated at 173± 11 Sv
(Donohoe et al., 2016). Figure 9 shows time series of both of
these major transports across the full historical period for all
nine ensemble members (and includes RAPID-MOCHA ob-
servations of the AMOC). UKESM1’s pre-industrial AMOC
is typically lower than that found by RAPID-MOCHA (Yool
et al., 2020, consistent with the spatial displacement men-
tioned previously) but strengthens by approximately 3 Sv
in 1850 to a maximum of around 17 Sv by the 1990s.
This increase in AMOC strength, which ends in UKESM1
around 2000, is almost certainly causally linked to temporal
trends in negative radiative forcing driven by anthropogenic
aerosol emissions in the Northern Hemisphere over this pe-
riod (Menary et al., 2020). Increases in these, driven by in-
dustrial activity, cool the north relative to the south, change
the inter-hemispheric thermal gradient and result in increas-
ing AMOC strength in response. Although good observa-
tional data are absent prior to the construction of the RAPID-
MOCHA array, this rise in AMOC strength is consistent with
model reanalysis over this period (Jackson et al., 2016), al-
though it is possibly overestimated in CMIP6 models such as
UKESM1 (Menary et al., 2020). The subsequent decline dur-
ing the first decades of the 21st century matches that found by
RAPID-MOCHA (Smeed et al., 2018) and reanalysis (Jack-
son et al., 2016). The modelled AMOC increase in UKESM1
is absent in the parallel segments of the piControl simulation
that do not experience these anthropogenic changes (see the
linear trends in Table 1).

Time-averaged over the historical period (≈ 150 Sv),
Drake Passage transport in UKESM1 is lower than that
which was estimated (Donohoe et al., 2016), although across
the full ensemble and its long-period variability, the model
intermittently reaches the range observed (Fig. 9). Through-
out the historical period, the ensemble exhibits consider-
able multi-decadal- to centennial-scale variability in mod-
elled ACC strength (135–173 Sv; see also Table 1). Unlike
AMOC strength, where the ensemble shows a clear trend
that all members follow, ACC strength is much less aligned
across the ensemble, most clearly in the period 1850–1930.
Between 1930 and 1980, however, the ensemble spread is
reduced and most ensemble members exhibit a weak ACC.
However, following this point most strengthen notably, re-
covering from this earlier minimum to reach higher values
more consistent with the recent observations. The increase
in ACC strength after 1970 is consistent with development
of the Antarctic ozone hole and strengthened westerlies over
the Southern Ocean, which then drives a stronger ACC (e.g.
Li et al., 2016). Nonetheless, as Fig. 9 shows, two of the nine
members do not exhibit this minimum around 1970, suggest-
ing that while a forced climate driver may be operating on
ACC strength, it cannot completely override internal vari-
ability in the Southern Ocean.
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Figure 9. Time series plots of the ocean circulation during the historical period from 1850 to 2015. Panels show annual averages of AMOC
(a) and Drake Passage (b) transport for all nine ensemble members (coloured lines) and the ensemble mean (solid black line). Observational
data of AMOC transport from the RAPID-MOCHA array is shown in grey for the period 2003–2015. For additional clarity, Fig. S8 in the
Supplement re-plots this panel to focus on this recent period.

3.3 Surface nutrient biogeochemistry

Figures 10–16 present model–observation intercomparisons
for a range of key surface biogeochemical properties, show-
ing seasonal geographical fields and zonal Hovmöller di-
agrams (where possible). Similarly to Table 1, Table 2
presents global-scale statistics for major biogeochemical
properties, including variability and trends across both the
full historical period and the corresponding period of the pi-
Control simulation. Table 3 compares global and regional
means for the same properties with corresponding obser-
vational means for the 2000–2009 period. To summarize
across these properties, Fig. S9 in the Supplement addition-
ally shows seasonal and regional Taylor diagrams.

In terms of surface concentrations of the macronutrients
that regulate biological productivity in the ocean, UKESM1
shows some shared and some divergent biases. For dis-
solved inorganic nitrogen (DIN; Fig. 10), while the ma-
jor, circulation-driven features occur (i.e. subtropical gyre
lows, upwelling highs), the model is typically biased posi-
tive, with excess nutrients most obvious in the tropical Pa-
cific and in the Arctic Ocean (see also Fig. S9). Globally,
the model’s mean is 7.8 compared to an observational mean
of 5.2 mmolm−3 (+48 %). However, in regions such as the
North Atlantic, the model is biased negative with winter max-
imum concentrations much lower (≈ 5 vs. ≈ 10 mmolm−3)
in this important productive region. The North Pacific, by
contrast, exhibits the year-round high nutrient concentrations
that characterize this region (12 vs. 10 mmolm−3). How-
ever, the spatial distribution of North Pacific DIN, particu-
larly around the Bering Straits, biases inflow concentration
to the Arctic Ocean and is responsible for the excess concen-
tration in this region.

Figure 10. Observational (a, b; World Ocean Atlas) and simu-
lated (c, d) surface dissolved inorganic nitrogen shown geograph-
ically for northern (a, c; JJA) and southern summer (b, d; DJF)
and as zonal Hovmöller diagrams (e, f). Concentrations are given
in mmolNm−3.
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Table 2. Selected ocean biogeochemical properties averaged across both the historical ensemble (upper rows) and corresponding segments of
the piControl (lower italicized rows). For each property, the statistics refer to the full 165-year period from 1850 to 2015. The final statistic,
M , is the linear slope of the change in the property across this full period.

Property Mean σ Min. Max. M

[units]

Surface DIN 7.52 0.146 7.18 7.90 0.008
[mmolNm−3] 7.49 0.125 7.20 7.82 0.003
Surface silicic acid 9.30 0.312 8.69 10.10 0.038
[mmolSim−3] 9.16 0.189 8.66 9.58 −0.010
Surface iron 0.52 0.005 0.50 0.53 −0.000
[µmolFem−3] 0.52 0.004 0.51 0.53 0.000
Surface DIC 2020.70 16.299 2000.76 2059.53 3.267
[mmolCm−3] 2002.35 1.043 1999.81 2005.20 −0.017
Surface alkalinity 2317.76 1.617 2314.60 2321.42 0.265
[meqm−3] 2316.09 0.817 2314.10 2317.93 −0.053
Surface O2 252.05 0.735 249.28 253.33 −0.060
[mmolO2 m−3] 252.42 0.334 251.43 253.35 0.009
Ocean O2 190.50 0.373 189.87 191.17 0.050
[mmolO2 m−3] 190.41 0.279 189.88 190.89 0.051
NPP 47.96 0.728 46.04 49.83 −0.014
[PgCyr−1] 48.01 0.682 46.05 49.74 −0.003
Air–sea CO2 flux 0.81 0.674 −0.17 2.45 0.129
[PgCyr−1] −0.02 0.118 −0.33 0.26 −0.001
Aeolian iron 2.41 0.228 1.89 3.07 −0.002
[GmolFeyr−1] 2.41 0.219 1.88 3.12 0.003

In MEDUSA, silicic acid is a key limiting factor for the
growth of the model’s large phytoplankton, the diatoms. As
Fig. 11 shows, away from the Southern Ocean where it
is strongly biased positive (≈ 63 vs. ≈ 32 mmolm−3; Ta-
ble 3), the model is typically biased negative. Globally, the
model’s mean is 10.1 compared to an observational mean
of 7.5 mmolm−3 (+50 %). While silicic acid concentrations
are generally low throughout the tropical and subtropical
ocean (maxima< 20 mmolm−3), modelled concentrations
are much more depleted throughout the year (maxima<
5 mmolm−3). In the North Pacific, unlike with DIN, seasonal
maximum silicic acid concentrations are significantly lower
than observed in this region (4.5 vs. 21.3 mmolm−3).

Alongside nitrogen and silicon (the latter for diatoms
only), phytoplankton productivity in MEDUSA is addition-
ally limited by the micronutrient iron. An important source
of iron to the ocean is via deposition of aeolian dust that
has been lifted from desiccated land surfaces and trans-
ported by winds (Tagliabue et al., 2017; Kok et al., 2018).
MEDUSA represents this source of iron to the ocean, and
in UKESM1 this flux of dust is driven by dynamic land–
atmosphere interactions (Woodward, 2011). Figure 12 com-
pares the simulated flux of iron from dust with the obser-
vationally derived dataset of Mahowald (2005). Following
Yool et al. (2013), dust is scaled in UKESM1 such that to-
tal iron added to the ocean by deposited dust is approxi-
mately 2.6 GmolFe yr−1 (excluding the Mediterranean Sea),

and the Mahowald (2005) panel is similarly scaled. In gen-
eral, UKESM1 exhibits similar spatial patterns to the ob-
servational product, including high deposition downwind of
arid regions, such as the Sahara, and corresponding low de-
position where air masses do not intersect with land, such
as over the Southern Ocean. However, several key areas of
low deposition are more pronounced in the model, includ-
ing the Southern Ocean, the Peruvian upwelling and the
Equatorial Pacific. These regions are also those where ex-
cess DIN occurs, indicating that at least one source for these
biases may be excessively strong iron limitation on biologi-
cal activity. To further illustrate this, Fig. S11 in the Supple-
ment shows the dominant nutrient limitation for both phy-
toplankton types. Noticeably, compared to other runs em-
ploying MEDUSA (Yool et al., 2013), iron stress is more
pronounced in UKESM1, especially compared to nitrogen
stress, with the Southern Ocean and almost the whole of the
Pacific being iron-limited for non-diatom phytoplankton, and
diatom phytoplankton being iron-stressed across the Equato-
rial Pacific. Corresponding observational patterns of nutrient
stress are more sparsely available (Moore et al., 2013). How-
ever, UKESM1’s nutrient limitation overlaps the major ob-
served patterns, including widespread nitrogen stress in the
Atlantic Ocean and iron stress throughout the Pacific and
Southern oceans, as well as at high latitudes in the North
Atlantic (Moore et al., 2013). Nonetheless, the simplicity
of MEDUSA prevents it from representing the limitation of
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Table 3. Selected biogeochemical properties averaged for specific geographical regions for annual mean fields. Observed and model values
shown, with model values averaged over the historical ensemble. Regional abbreviations are “St” for subtropical (10–40◦), “Eq” for equatorial
(10◦ S–10◦ N) and “Sp” for subpolar (40–70◦). In the Southern Hemisphere, the subpolar region falls primarily within the Southern Ocean,
although as its northern margin is delineated at−50 rather than−40◦ N, the southern margins of the southern subtropical Atlantic and Pacific
extend to−50◦ N. The Indian Ocean is excluded from this analysis for simplicity. Throughout, the model domain used matches that available
from observational fields.

Field Global Southern St S Atl Eq Atl St N Atl Sp N Atl St S Pac Eq Pac St N Pac Sp N Pac Arctic

Surface DIN

Observed 5.227 23.473 3.904 0.366 0.436 4.444 2.515 2.472 0.456 9.942 3.298
Model 7.757 25.676 4.952 0.058 0.273 3.039 8.543 8.004 3.256 9.632 8.503

Surface silicic
acid

Observed 7.512 32.019 2.665 2.048 1.487 3.185 1.855 2.828 3.151 21.299 8.329
Model 10.092 62.875 5.869 0.411 0.743 2.163 1.978 0.415 0.430 4.496 4.572

Surface chlorophyll

Observed 0.219 0.164 0.249 0.361 0.195 0.517 0.131 0.184 0.143 0.558 0.342
Model 0.262 0.387 0.335 0.071 0.106 0.406 0.252 0.249 0.138 0.509 0.472

Primary
production

Observed 0.317 0.099 0.345 0.555 0.359 0.360 0.277 0.461 0.323 0.338 0.115
Model 0.356 0.309 0.466 0.324 0.217 0.365 0.358 0.510 0.263 0.466 0.153

Surface DIC

Observed 2071 2192 2113 2036 2100 2117 2074 1991 2008 2058 2053
Model 2058 2211 2096 2022 2100 2084 2055 1981 1985 2030 2021

Surface
Alkalinity

Observed 2355 2350 2410 2386 2446 2353 2373 2317 2324 2268 2206
Model 2327 2361 2371 2363 2438 2299 2335 2291 2286 2201 2171

Air–sea CO2
flux

Observed 1.043 −0.047 2.156 −1.493 1.331 5.136 1.665 −2.623 2.229 1.755 2.748
Model 1.350 2.122 1.862 −1.556 0.573 8.050 1.171 −3.442 1.954 5.120 3.176

phytoplankton found by Moore et al. (2013) for the macronu-
trient phosphorus and the micronutrients cobalt, zinc and vi-
tamin B12.

Switching to the marine biology, Fig. 13 presents surface
chlorophyll, the main light-harvesting pigment used by phy-
toplankton. Again, the model exhibits both positive and neg-
ative biases relative to observations but with a general pos-
itive bias (0.26 vs. 0.22 mgchlm−3). Most noticeably, mod-
elled summer concentrations of chlorophyll in the Southern
Ocean are biased positive throughout the year, particularly in
the unproductive winter, when the model continues to simu-
late moderate concentrations even at high latitudes (although
winter observations are less reliable or absent). In part, the
positive bias of chlorophyll concentrations in UKESM1 are
driven by the reduced extent of winter sea ice in this hemi-
sphere, although, on the observational side, global satellite-
based algorithms have also been shown to underestimate sur-

face chlorophyll in this region (Johnson et al., 2013). At the
Equator, the model is biased positive in the Pacific (0.25
vs. 0.18 mgchlm−3), while being strongly biased negative
in the Atlantic (0.07 vs. 0.36 mgchlm−3). Meanwhile, in
the subtropical gyres, the model simulates lower concentra-
tions than observed throughout, particularly in the Atlantic
Ocean, whereas the lowest observed concentrations occur in
the southern Pacific subtropics. At high northern latitudes,
maximum chlorophyll concentrations are typically slightly
lower than those observed, although, much as in the Southern
Hemisphere, moderate winter concentrations extend much
further poleward than observed.

Figure 14 presents the corresponding distributions of net
primary production, the process driving consumption of
surface nutrients, biological uptake of dissolved CO2, and
the ultimate source of organic matter for the ocean’s food
web. The observations shown here are the simple mean
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Figure 11. Observational (a, b; World Ocean Atlas) and simulated
(c, d) surface dissolved silicic acid shown geographically for north-
ern (a, c; JJA) and southern summer (b, d; DJF) and as zonal Hov-
möller diagrams (e, f). Concentrations are given in mmolSim−3.

of three observation-driven estimates of productivity algo-
rithms: VGPM (Behrenfeld and Falkowski, 1997), Eppley-
VGPM (Carr et al., 2006) and CbPM (Westberry et al.,
2008). Generally, although with some of the same model bi-
ases already noted, simulated patterns clearly replicate those
observed. Integrated globally, modelled productivity across
the UKESM1 ensemble averages 44.3 PgCyr−1, compared
with an average of 39.5 PgCyr−1 estimated by the three
algorithms. Regionally, the clearest bias lies again in the
Southern Ocean, where modelled productivity is both greater
and geographically more extensive, with a large summer
bloom that extends further south towards Antarctica (0.31
vs. 0.10 gCm−2 d−1). Another discrepancy lies in the trop-
ics, where UKESM1’s productivity is more focused along
the Equator in the Pacific, with generally lower productivity
in the subtropical gyres. In addition, while productivity is fo-
cused in shelf regions in both observations and the model,
in the model it extends further into the open ocean than ob-
served, where productivity is generally restricted to a narrow
band around the continents. Finally, in terms of seasonal ex-
tent, modelled productivity is typically broader, with posi-
tive biases extending further polewards during winter in both
hemispheres.

Figure 12. Observational (a; Mahowald (2005)) and simulated en-
semble mean (b) aeolian deposition of iron. Due to its large dy-
namic range, deposition flux is shown on a logarithmic scale. De-
position is given in µmolFem−2 yr−1.

Figure S12 in the Supplement shows the time series of net
primary production and its main driver, DIN, across the his-
torical period for all nine ensemble members. Earlier plots
evaluated the geography and phenology of both fields in the
early 21st century, but this plot makes it clear that neither
property is at equilibrium at this time. Global surface DIN
shows a pronounced rise (approximately 5 %) from 1950 to
around 2000, consistent across the ensemble, but by 2014
this increase has been entirely reversed. Meanwhile, primary
production has no clearly comparable 20th century trend but
declines from around 2000 (approximately 2 %). In terms
of the main production regions, the North Atlantic and the
Southern Ocean drive these global signals, with production
unsurprisingly lagging that of DIN (Fig. S12).

The critical role of primary production as the source of
organic carbon (and chemical energy) on which marine ecol-
ogy runs means that the realism of its representation in mod-
els has consequences across marine biogeochemistry. To il-
lustrate this, Figs. S13 and S14 in the Supplement compare
UKESM1 surface fields of a higher trophic level (meso-
zooplankton) and a climatically active biogenic gas (DMS)
with observational estimates. As would be expected, both
properties scale closely with productivity and share a num-
ber of the same geographical biases. While much of the
ocean shows good model–observation agreement, mesozoo-
plankton biomass in the Southern Ocean is significantly el-
evated in both summer and winter compared with Moriarty
and O’Brien’s (2013) dataset, and is more focused around
the Antarctic Polar Front (Fig. S13). The corresponding
biomasses in both seasons in the Northern Hemisphere are
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Figure 13. Observational (a, b; SeaWiFS) and simulated (c, d) sur-
face chlorophyll shown geographically for northern (a, c; JJA) and
southern summer (b, d; DJF) and as zonal Hovmöller diagrams (e,
f). Missing observational data at high latitudes because of polar
night or sea ice appear as white regions in both geographical and
Hovmöller panels. Concentrations are given in mgchlm−3.

better reproduced, although they still have biases, including
lower North Pacific mesozooplankton, a region where their
abundance has long been known to play a role in seasonal
dynamics (Steele and Henderson, 1992). Switching to DMS,
the model actually shows pronounced negative biases in the
Southern Ocean in contrast with other properties (Fig. S14).
Elsewhere, regions of high concentration are also typically
more geographically confined in the model, with maximum
values lower than those observed. The relatively good gen-
eral agreement with the observational (Lana et al., 2011)
dataset in part relates to the tuning of the underlying (Ander-
son et al., 2001) DMS model, although the divergence where
observed concentrations are high, especially the Southern
Ocean, suggest this real-world property is a more complex
function of primary production than modelled in UKESM1.

Figure 14. Observational (a, b) and simulated (c, d) vertically in-
tegrated net primary production shown geographically for northern
(a, c; JJA) and southern summer (b, d; DJF) and as zonal Hov-
möller diagrams (e, f). Missing observational data at high latitudes
are shown as zero because of polar night or sea ice. Primary pro-
duction is given in gCm−2 d−1.

3.4 Surface carbon biogeochemistry

Figure 15 compares the annual mean surface concentrations
of DIC and alkalinity, two key carbonate chemistry proper-
ties that constrain the ocean’s exchange of CO2 with the at-
mosphere. In both cases, the model reproduces the spatial
patterns well, with the following main features: elevated DIC
at high latitudes, a strong Atlantic–Pacific alkalinity gradi-
ent and generally lower concentrations of both at lower lati-
tudes. Globally, both model mean DIC and alkalinity are bi-
ased slightly negative compared to observations, with impli-
cations for interior concentrations of DIC (see Sect. 3.5). No-
ticeable regional biases include positive biases for both prop-
erties in the Southern Ocean (particularly around Antarctica)
and negative biases in alkalinity in the North Atlantic and
(especially) the North Pacific.

Critically linked to surface DIC and alkalinity, Fig. 16
shows the observed and modelled patterns of air–sea ex-
change of CO2. This is a key Earth system property, as
its integrated magnitude modulates the accumulation of an-
thropogenic CO2 in the atmosphere with its absorption by
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Figure 15. Observational (a, c; GLODAPv2) and simulated (b, d)
annual average surface dissolved inorganic carbon (a, b) and total
alkalinity (c, d). DIC is given in mmolCm−3, and alkalinity is given
in meqm−3.

Figure 16. Observed (a, b; Rödenbeck et al., 2013) and simu-
lated (c, d) air–sea CO2 flux shown geographically for northern
(a, c; JJA) and southern summer (b, d; DJF), and as zonal Hov-
möller diagrams (e, f). Red colours indicate CO2 flux into the
ocean, while blue colours denote outgassing CO2. Flux is given in
mmolCm−2 d−1.

sinks such as the ocean and the land. The observational
product used here fits a simple ocean mixed-layer biogeo-
chemistry scheme to observations of surface ocean CO2 par-
tial pressure, and then extrapolates this globally (Rödenbeck
et al., 2013). Much as with its surface carbonate chemistry,
the model reproduces the main features of air–sea CO2 ex-
change, including zonal bands of ingassing and outgassing,
pronounced equatorial outgassing in the Pacific, and strong
seasonal ingassing at high latitudes in the Northern Hemi-
sphere. However, the model also exhibits a number of bi-
ases in its regional and seasonal patterns of flux. While ob-
servations suggest that the Southern Ocean is a complex
mix of summer ingassing and winter outgassing, the model
is biased towards ingassing, with weaker and more geo-
graphically limited outgassing in the southern winter. Fur-
ther, though showing similar patterns to those observed, the
model exaggerates seasonal ingassing in the Northern Hemi-
sphere, particularly during late winter and spring at subtrop-
ical latitudes. Note that, again, the reliability of this obser-
vational product is lower in less sampled regimes, such as
the Southern Ocean and during winter. Overall, the ocean is
a net sink for CO2, with the model simulating total uptake
of 2.05 PgCyr−1 compared to an observational estimate of
1.60 PgCyr−1 (although observational products differ on this
quantity; see below). Figure S15 in the Supplement shows
corresponding plots of surface pCO2, a function of surface
DIC, alkalinity, temperature and salinity (Rödenbeck et al.,
2013). Biases in these fields illuminate those in CO2 flux,
for instance much lower pCO2 in the North Atlantic drives
stronger uptake, while higher pCO2 in the Southern Ocean
damps down outgassing in this region.

To complement Fig. 16’s geographical snapshot, Fig. 17
shows the time series of CO2 uptake across the historical
period for the UKESM1 ensemble, together with the obser-
vationally derived estimate of Khatiwala et al. (2009). The
plot shows the varying rate in the rise of oceanic uptake of
CO2 across this period, with growth from the 1850s until the
1930s, followed by stalling growth until the 1950s and finally
strong continuous growth to the present day. With some vari-
ability, particularly in the early decades, the ensemble tracks
the observationally estimated uptake, reproducing the same
pace and features but with the ensemble estimating a slightly
lower flux than estimated (88.5 %; integrated 1850–2013).
The plot also shows UKESM1’s piControl simulation to il-
lustrate the magnitude and period of variability with constant
background atmospheric xCO2. This shows CMIP6’s histor-
ical period beginning (and the piControl period ending) in
1850, approximately a century after the Industrial Revolution
and significant fossil fuel CO2 emissions began. This differs
from the Khatiwala et al. (2009) product, which estimates
ocean CO2 uptake over the more complete period of anthro-
pogenic emissions. Note that the observational estimate here
for the present day is more closely matched by the model
than the preceding dataset of Rödenbeck et al. (2013), al-
though this is not unexpected given the large uncertainties in-
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Figure 17. Time series of globally integrated air-to-sea CO2 flux,
showing observationally estimated mean (solid black) and range
(grey shading; Khatiwala et al., 2009) and simulated piControl (thin
black) and historical ensemble (solid colours). Air-to-sea fluxes are
given in PgCyr−1. Note that while the historical era of CMIP6 ex-
periments begins in year 1850, the Industrial Revolution – and up-
take of anthropogenic CO2 by the ocean – began prior to this date.

Figure 18. Observed (a, c; Key et al., 2004) and modelled (b, d) ver-
tically integrated anthropogenic CO2 (a, b; molCm−2) and CFC-
11 (c, d; µmolm−2) in the 1990s. GLODAPv1.1 is used here as the
time period used overlaps that of observational CFC-11.

volved in estimating this flux. The influx of CO2 into the sur-
face ocean is also documented in the mean and trend statistics
of surface DIC and air–sea flux in Table 2, in particular how
they compare with the corresponding piControl period.

The air–sea flux is just the first stage of ocean storage
of anthropogenic CO2, and Fig. 18 illustrates its fate once
in the ocean interior. The upper row shows estimated and
simulated vertically integrated anthropogenic CO2 for the
1990s (the normalized period for Key et al., 2004). As de-
scribed in Sect. 2.3, model anthropogenic CO2 is estimated
by subtracting the 3D fields of DIC from historical and

piControl simulations aligned in time. In a broad outline,
UKESM1 reproduces most of the geographical patterns of
storage, with Southern Ocean uptake distributed into the
southern sectors of the Atlantic, Pacific, and (especially) In-
dian basins; maximum column inventories in the North At-
lantic; and much lower storage at low latitudes, in the North
Pacific, and around Antarctica. However, the modelled dis-
tributions of anthropogenic CO2 also show some clear dis-
crepancies with observational estimates. For instance, al-
though exhibiting high column inventories in the Greenland–
Iceland–Norwegian seas, the model ensemble does not sim-
ulate the corresponding high observationally estimated con-
centrations off Newfoundland in the west of the Atlantic.
More significantly, the pattern of anthropogenic CO2 being
transported southward at depth in the North Atlantic shows
a strong east–west gradient that does not correspond with
that observed. To investigate this further, Fig. 19 shows ob-
servational and model sections across the Atlantic at 30◦ N
for both anthropogenic CO2 and CFC-11. The former is es-
timated from observations, while the latter is measured di-
rectly. These show a general deficit in UKESM1 in tracer
concentrations between approximately 1000 and 3000 m in
depth west of the mid-Atlantic ridge. In the case of CFC-
11, the model completely misses a distinctive water mass
with high concentrations immediately adjacent to the coast
of North America at approximately 1800 m. As already noted
for the surface ocean in Sect. 3.1, grid resolution introduces
errors into transport pathways, and UKESM1’s poor repre-
sentation of Deep Western Boundary Current (DWBC) re-
turn flow may be an interior example of similar limitations,
coupled potentially to discrepancies in patterns in convec-
tion and deep mixing in the vicinity of the Labrador Sea (e.g.
Handmann et al., 2018).

One major issue with the preceding estimate of anthro-
pogenic CO2 in the ocean is that it must be separated from
the natural background of DIC in the ocean. In the case of
the model, this is straightforward (although there remain sev-
eral ways of doing so), but it is challenging observationally.
The datasets used in this study, Key et al. (2004) and Lauvset
et al. (2016), use different methodologies (as well as differ-
ently sized underlying databases) to estimate and separate
anthropogenic and natural CO2. As this complicates evalu-
ation of the model’s distributions, the lower row of Fig. 18
shows the vertical inventory of CFC-11, a conservative artifi-
cial tracer accumulating within the ocean similarly to anthro-
pogenic CO2. Relatively straightforward to quantify to high
precision, and without any natural background, this tracer
serves as a loose proxy for anthropogenic CO2 (Dutay et al.,
2002; Doney et al., 2004). As such, it provides a second per-
formance measure against which to compare the interior re-
distribution of surface anthropogenic CO2 uptake. Overall,
UKESM1’s CFC-11 distributions better match those of the
observational dataset than anthropogenic CO2. However, the
same differences also arise, particularly the east–west gra-
dient in Atlantic column inventory, likely for the same rea-
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Figure 19. Observed (a, c; Key et al., 2004) and modelled (b, d)
Atlantic sections (30◦ N) of anthropogenic CO2 (a, b; mmolCm−3)
and CFC-11 (c, d; nmolm−3) in the 1990s.

sons suggested above. The model also exhibits more exten-
sive coastal uptake of CFC-11 in the Weddell Sea.

3.5 Interior biogeochemistry

Figures 20 and 21 show intercomparisons of ocean interior
DIN and DIC, with Figs. S16–S19 in the Supplement show-
ing the corresponding intercomparisons for other tracers. Per
Fig. 6, the plots use a thermohaline transect to illustrate the
connection between young water masses in the North At-
lantic through to old water masses in the North Pacific.

In the case of DIN, the main observational features are re-
produced, including the low concentrations in the Arctic and
(especially) the surface oligotrophic gyres, generally lower
concentrations within the NADW, a limb of elevated con-
centrations within the Antarctic Intermediate Water (AAIW),
intermediate concentrations within the Southern Ocean, and
the highest concentrations in the North Pacific, particularly
at midwater depths. However, despite this agreement on the

Figure 20. A thermohaline circulation section of observed (a) and
modelled (b) zonal average dissolved inorganic nitrogen. Difference
(simulated–observed) is shown in (c). Concentrations are given in
mmolNm−3. Figure 6 explains the format of this section.

main patterns of features, the model also exhibits a num-
ber of pronounced biases. In the Atlantic basin, small pos-
itive biases in near-surface waters overlie strong negative bi-
ases in the upper 3 km, where maximum concentration dif-
ferences of more than 10 mmolNm−3 occur. In the South
Atlantic, these negative biases occur in association with
the northward-moving limb of AAIW (approximately 1 km
depth) that supplies DIN to the North Atlantic but which can
be seen to be less pronounced in UKESM1 (and also in the
salinity field of Fig. 7). Meanwhile, in deeper waters the bias
is reversed to strongly positive, as the more sluggish AABW
circulation shown in Fig. 8 is ventilated less efficiently, ac-
cumulating excess DIN while accruing an oxygen deficit
(Fig. S17). This split of biases is generally aligned with the
NADW and AABW water masses in this basin. In the Pa-
cific basin this pattern is broadly repeated, although with a
stronger positive bias in the upper 1 km and less pronounced
(but similar sign) biases at depth. More clearly than in the
Atlantic basin, the model shows a shallow focused layer of
maximum DIN concentration in the upper 1 km, while obser-
vations indicate a more gradual change in DIN concentration
with depth. An indication of its source lies in Fig. S17, which
shows the corresponding transect for dissolved oxygen. Oxy-
gen concentrations are typically highest at the surface where
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Figure 21. A thermohaline circulation section of observed (a) and
modelled (b) zonal average dissolved inorganic carbon. Difference
(simulated–observed) is shown in (c). Concentrations are given in
mmolCm−3. Figure 6 explains the format of this section.

they are replenished by the atmosphere and progressively
lower in older water masses as oxygen is consumed by rem-
ineralization of sinking organic matter driven by the biolog-
ical pump. Based on these fields, UKESM1 exhibits a bias
towards shallower remineralization, with less nitrogen reach-
ing the deep-ocean interior through sinking particles, and
corresponding overconsumption of oxygen in shallower wa-
ters and underconsumption at depth.

Figure S16 shows the corresponding situation for silicic
acid, a nutrient that is primarily consumed by diatom phyto-
plankton in the ocean (and by diatom phytoplankton only in
UKESM1). Unlike nitrogen, which is incorporated in organic
matter and widely used in cellular biochemistry, silicic acid
is polymerized to make protective shells (frustules) and is re-
turned to solution principally by physicochemical dissolution
rather than active remineralization (Kamatani, 1982). Conse-
quently, its biological turnover is slower, and a greater pro-
portion of biogenic silica (opal) reaches the deep ocean than
nitrogen. Coupled to the current mode of the thermohaline
circulation, which has deep-water formation in the Atlantic
and the oldest water masses in the Pacific, this results in a
deep nutrient distribution where the highest concentrations
occur in the Pacific basin. UKESM1 generally reproduces
the differences in the nitrogen and silicon distributions but
with a number of biases. Principally, the AABW cell in the

Atlantic is a more significant reservoir of silicic acid, while
the North Pacific maxima is decreased. The silicon nutricline
in the North Pacific is also deeper, although this is shallower
in the South Pacific. Overall, the model shows a less skewed
silicon cycle, with a greater fraction of total silicon stored in
the Atlantic than observed.

As Fig. 21 shows, the biological coupling between nitro-
gen and carbon means that the distribution of DIC in the
ocean shares a number of common patterns with nitrogen (al-
beit against a high background concentration driven by CO2
solubility). As a consequence, UKESM1’s DIC distribution
also shares a number of the same biases, including NADW
negative biases and AABW positive biases. However, mod-
elled DIC has an additional negative bias across the global
domain, indicating that the ocean of UKESM1 has a lower
mean DIC concentration than observed, 2289.4 as compared
to 2337.6 mmolCm−3 (−2.1 %; Key et al., 2004). Figure 22
shows the corresponding profiles of modelled and observed
DIC, together with corresponding profiles of alkalinity, an-
thropogenic CO2 and CFC-11. As shown by Figs. 16 and
17, this difference in DIC concentration does not prevent
the model from realistically simulating the rate of ocean ex-
change and uptake of anthropogenic CO2 over the historical
period, but it alters the model ocean’s carbonate chemistry
system, including ocean pH, potentially with consequences
(see Sect. 4.3).

Figure S18 shows the corresponding distributions of al-
kalinity. While patterns of surface alkalinity are primarily
driven by the hydrological cycle (evaporation, precipitation
and runoff), interior alkalinity is affected by marine biogeo-
chemistry. In UKESM1 a simplified alkalinity cycle is rep-
resented with only the net production of calcium carbonate
(CaCO3; calcite polymorph) affecting alkalinity distributions
(i.e. “hard tissues pump” only, no “soft tissues pump”; cf.
Marinov and Sarmiento, 2004). As this production of CaCO3
is ultimately tied to the production of organic material, the
patterns of bias in alkalinity overlap with those already seen.
However, a significant mismatch in model alkalinity is a gen-
eral negative surface bias. As alkalinity balances dissolved
CO2, bicarbonate and carbonate, it regulates total DIC con-
centration, with a negative bias in alkalinity acting to reduce
total DIC concentration. Such a negative DIC bias at the sur-
face preconditions the interior ocean to lower DIC, consistent
with Fig. 21. To further illustrate this model bias, Fig. S20
in the Supplement shows the observed and simulated rela-
tionships between salinity and alkalinity. Each data point is a
surface alkalinity vs. surface salinity, and the plot shows the
linear relationship between these properties (cf. Lee et al.,
2006) and the offset from the observed relationship exhib-
ited by UKESM1. The calculated regressions intersect at a
salinity of 35 PSU, although model alkalinity generally lies
below that observed even above this value.
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Figure 22. Observed (GLODAPv1.1; Key et al., 2004) and modelled vertical profiles of DIC (a; mmolCm−3), alkalinity (b; meqm−3),
anthropogenic CO2 (c; mmolCm−3) and CFC-11 (d; nmolm−3). GLODAPv1.1 is used here, as the time period used (the 1990s) overlaps
that of observational CFC-11. Model profiles from the ensemble used in this analysis are presented individually and are geographically
masked according to GLODAPv1.1.

4 Discussion

For ESMs to deliver reliable estimates of future global
change, including quantification of key feedbacks, it is im-
portant that the states of their component submodels are re-
alistic, in particular for climate-relevant time mean distribu-
tions and temporal trends of material (carbon) and energy
(heat). Here we have examined the state of the ocean compo-
nent of the UKESM1 model, a new state-of-the-art ESM and
participant in CMIP6. We have evaluated the performance of
both physical and biogeochemical aspects of the ocean sub-
model in the context of diverse observational datasets. As
well as the model’s “present-day” state, we have additionally
examined trends in key model properties across the historical
period (1850–2014). Kuhlbrodt et al. (2021) presents a com-
plementary analysis of ocean heat uptake. Separate ensem-
ble members have been used to understand the consistency
of these temporal trends, but where comparing with observa-
tional fields, we have used model output averaged across the
historical ensemble (per Table S1).

In terms of the physical performance of UKESM1’s ocean,
its state is broadly realistic but with a number of biases. At
the ocean’s surface, temperature is well reproduced globally,
but with biases including a warm Southern Ocean driven by

receipt of too much shortwave radiation (Sellar et al., 2019),
and a marked North Atlantic “cold spot” associated with poor
Gulf Stream separation and the North Atlantic Current path-
way. Model upper-ocean mixing also reproduces the geo-
graphical and seasonal patterns observed, with a bias towards
exaggeration of extreme low and high mixing. UKESM1’s
sea ice distribution captures much of the seasonal cycle in
both hemispheres, although is biased positive (and thicker)
throughout the year in the north (driven primarily by ex-
cessively cooling aerosol forcing), while falling short of its
maximum extent in the south (in part owing to the Southern
Ocean warm bias). The excess in Arctic sea ice is driven by
a general cool bias in surface temperature in the Northern
Hemisphere in UKESM1, a product of aerosol or land-use
forcing (Sellar et al., 2019). In the ocean interior, compen-
sating biases in temperature and salinity are found, related
to the deficiencies in the overturning circulation mentioned
in Sect. 3.1 (Figs. 6–8), as well as a cumulative warming
bias produced during forced ocean-only spin-up (Yool et al.,
2020).

Biogeochemical performance of UKESM1 largely traces
to previous applications of the model (e.g. Yool et al., 2013)
despite a significantly longer-duration spin-up as part of
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UKESM1 (Yool et al., 2020). Regarding the ocean’s nutri-
ent cycles and biological activity, the model displays a pat-
tern of general agreement but with biases that are some-
times large. In the surface ocean, while retaining major nu-
trient boundaries, the model also exhibits excessive nitrogen
and silicon in the Southern Ocean, excess nitrogen in the
Equatorial Pacific, and depletion of silicon in the North Pa-
cific. Upper-ocean productivity in the model also follows ma-
jor observed patterns, though with biases including a exces-
sively productive Southern Ocean (both geographically and
temporally), and insufficiently productive oligotrophic gyres.
These biases are also mirrored in other important biological
fields such as zooplankton and in the surface concentration
of dimethyl sulfide. Meanwhile, in the ocean interior, biases
in mesopelagic nitrogen and oxygen indicate that reminer-
alization of sinking biogenic material in the model occurs
at depths that are too shallow, with compensating opposite-
sense biases below. In the deep Atlantic, the model’s slug-
gish AABW cell accumulates more nutrients than observed,
for both nitrogen and silicon, while losing more oxygen.

Regarding the ocean’s carbon cycle, the model represents
patterns of surface carbon properties well, although with gen-
eral negative biases in both DIC and alkalinity concentra-
tions. Spatial and temporal patterns of air–sea CO2 exchange
are broadly in agreement with those estimated from observa-
tions, though the model does not represent Southern Ocean
outgassing well and simulates excessively strong North At-
lantic ingassing. Despite these discrepancies, the model falls
within the uncertainty in the observationally estimated tem-
poral patterns of net ocean CO2 uptake over the historical pe-
riod. Storage of anthropogenic CO2 in the model ocean gen-
erally matches that estimated from observations, with high
amounts in the Southern and North Atlantic oceans. How-
ever, the model exhibits a spatial discrepancy in storage in the
North Atlantic, with southward transport down the western
side of the basin in NADW noticeably lower than observed.
Within the ocean interior because of the role of the biolog-
ical pump, the spatial pattern in DIC biases tracks those of
nitrogen. However, the surface bias towards lower DIC also
imposes a general negative bias throughout the ocean inte-
rior, with the model ocean storing less carbon than observed
in the Earth system.

On the spatial and temporal scales analysed here (i.e.
global and centennial), the main fields and time series anal-
ysed show good consistency across the UKESM1 ensem-
ble. For higher time frequencies (e.g. decadal in the South-
ern Ocean or interannual for the El Niño–Southern Oscilla-
tion) or for smaller regions with significant dynamics (e.g.
the Arctic), cross-ensemble variability will be more impor-
tant and will be considered for detailed future studies.

4.1 Biogeochemistry biases

As already described in Sect. 3.1 and 3.2, UKESM1 has a
number of physical biases. Examining these biases within

UKESM1 forms a component of a number of parallel studies,
including circulation and Gulf Stream separation (Kuhlbrodt
et al., 2018), sea ice thickness (SIMIP Community, 2020),
ocean heat uptake (Kuhlbrodt et al., 2021) and AMOC trends
(Menary et al., 2020). Consequently, in the following, we fo-
cus on explaining the biogeochemical biases found within
UKESM1.

As described above, although UKESM1 reproduces the
broad patterns observed in marine biogeochemistry, it also
includes a number of significant biases in properties. In the
following, we consider the likely underlying causes as well
as potential actions to address them in future versions of
UKESM1.

Vertical profiles of nitrogen, oxygen and carbon display
matching patterns driven by the action of the biological
pump. Nitrogen and carbon consumed by phytoplankton
growth in the upper ocean are transported as organic material
by this pump into the ocean interior where they are released
back to dissolved inorganic forms in parallel with the con-
sumption of oxygen. In UKESM1, the profile of this process
is skewed, with remineralization of organic matter occurring
too shallow in the water column, resulting in excess nitro-
gen and carbon in the mesopelagic, a corresponding deficit of
oxygen, and reversal of these biases in deeper waters that less
sinking material reaches. In MEDUSA, the organic material
reaching the deep interior does so primarily as “fast-sinking”
particles, coupled to a ballast model in which biominerals
(opal and calcite) “protect” this organic flux. Extending the
remineralization length scale of these sinking particles or af-
fording them greater biomineral protection are both means of
addressing this bias to first order.

Significantly for ocean productivity, UKESM1’s ocean
displays strong positive biases in the surface concentration
of nitrogen nutrient in a number of ocean regions, including
the Southern Ocean, the Equatorial Pacific and the Peruvian
Upwelling. Such biases can indicate oversupply of nutrients
or insufficient consumption by phytoplankton. For the for-
mer, as all three regions experience significant upwelling of
interior waters, any biases in the nitrogen supply from these
water masses will play a role. For instance, shallow reminer-
alization bias noted above will contribute toward the posi-
tive biases in surface waters in these regions. For the lat-
ter, an additional issue lies with the availability of the mi-
cronutrient iron in these regions. Although this is also sup-
plied by upwelling water masses, its availability is also de-
pendent on deposition of iron from aeolian dust, and this
deposition is biased negative in these regions in UKESM1.
While atmosphere–land aspects of the deposition flux may
ultimately be important here (e.g. location of desert source
regions, patterns of wind dispersal), within the ocean model
itself, parameter changes to reduce iron stress (more iron
from dust, lower iron quotients in phytoplankton) could as-
sist here. However, by relieving iron stress in this uniform
way, there may be consequences elsewhere in the model.
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Leaving aside the interior biases described above, carbon
in UKESM1 is more generally negatively biased throughout
the ocean, with implications for the ocean’s role as the largest
reservoir of carbon in the Earth system. As noted previously,
surface alkalinity plays a role in interior carbon by buffer-
ing the surface carbonate system and regulating the surface
DIC concentrations that ultimately ventilate the ocean inte-
rior. Modelled surface alkalinity has a general negative bias
and a different relationship with surface salinity than that ob-
served (cf. Lee et al., 2006). In the model, aside from hy-
drological cycle processes, only net calcium carbonate pro-
duction (and its subsequent dissolution at depth) affects al-
kalinity, and this acts to decrease its upper concentration and
increase its interior concentration below the calcite compen-
sation depth (CCD). As such, this bias could be addressed
in MEDUSA simply by decreasing calcium carbonate pro-
duction (and its export) to increase the retention of alkalinity
in the surface ocean. However, while alkalinity is generally
lower across the upper ocean, calcite production is not uni-
form, with a latitudinal gradient in which most net calcifica-
tion occurs in the tropics. A broader point is that calcium car-
bonate production in MEDUSA is highly simplified and only
concerns the fraction export to the ocean interior, whereas
other models treat it in more complex ways (e.g. Kvale et al.,
2015; Butenschön et al., 2016; Buitenhuis et al., 2019) that
potentially offer more realistic solutions than simple param-
eter scaling.

Another clear surface bias in UKESM1, and one which
is easy to discern because of the ready availability of syn-
optic, high-quality observational data, is its field of surface
chlorophyll. In the Southern Ocean in particular, the sea-
sonal spring–summer bloom has higher chlorophyll concen-
trations that persist longer and extend further polewards.
Even in winter, anomalously high chlorophyll concentrations
(> 0.1 mgm−3) extend southward to the tip of the Antarc-
tic Peninsula. This bias is strongly associated with a corre-
sponding productivity bias, although at the highest latitudes
(in both hemispheres) there is a degree of decoupling. This
bias is particularly significant in UKESM1 because simu-
lated chlorophyll is used in its empirical submodels of DMS
and PMOA, both of which are climatically active compounds
(cf. Quinn and Bates, 2011). Noticeably, the high concentra-
tions of chlorophyll simulated at high latitudes also persist
beyond the peak of productivity. In part these biases are re-
lated to negative sea ice biases that allow more light to pene-
trate into the high-latitude ocean, but their excess extent and
persistence also suggest that the chlorophyll submodel may
be too responsive under low-light conditions. At lower lat-
itudes, where light is less limiting and nutrient stress more
important, sensitivity to the chlorophyll model is less pro-
nounced.

Separate from these biogeochemical biases, the model ex-
hibits several physical biases, including a general warm bias
throughout the ocean, warm and cool biases regionally, some
hemisphere-specific ice biases, and issues with interior circu-

lation. These all affect the realism of the physical regime in
which MEDUSA’s biogeochemistry is embedded and intro-
duce biases independently of those arising from its deficien-
cies. For instance, the weak deep overturning AABW cell
north of the ACC (Fig. 8) reduces the ventilation rate of the
abyssal Atlantic and contributes to the build-up of nutrients
and the corresponding depletion of oxygen.

Finally, the corrective measures outlined above are pro-
posed independently without any consideration of their full
impacts. For instance, decreased calcium carbonate produc-
tion is proposed as a countermeasure to decrease the negative
bias in surface alkalinity. However, this change will also de-
crease the quantity of sinking organic material “protected”
by this mineral, allowing it to be remineralized more rapidly,
shoaling the remineralization horizon of the biological pump
and worsening the biases in nitrogen, carbon and oxygen
profiles. This interdependency of model biogeochemical pro-
cesses and states – and their dependency on the ocean phys-
ical state – significantly complicates model tuning, partic-
ularly given the long timescales of ventilation and three-
dimensional connectivity in the ocean. Optimization tech-
niques such as the Transport Matrix Method (TMM; Khati-
wala et al., 2005) are increasingly being used to address this
(e.g. Kriest, 2017), although the resulting solutions are also
found to be sensitive to the physical framework (Kriest et al.,
2020).

4.2 CMIP intercomparison

Figures 23 and S21–S26 in the Supplement illustrate the per-
formance of UKESM1 alongside a series of CMIP6 mod-
els for the same suite of key surface biogeochemical prop-
erties already shown. Annual mean fields for each property
for each model are shown, together with the corresponding
observational field (data missing from the CMIP6 archive
are denoted by a blank field). Fields are also shown from
UKESM1’s CMIP5 predecessor, HadGEM2-ES (Totterdell,
2019), to illustrate improvement between CMIP generations,
together with those from MEDUSA-2.0 (Yool et al., 2013)
to demonstrate the traceability of UKESM1’s MEDUSA-2.1
to prior work (note that this latter work is ocean only rather
than fully coupled).

The CMIP6 models included in this analysis are as fol-
lows: CESM2-FV2 (Danabasoglu et al., 2020), CNRM-
ESM2-1 (Séférian et al., 2019), CanESM5 (Swart et al.,
2019), IPSL-CM6A-LR (Boucher et al., 2020), MIROC-
ES2L (Hajima et al., 2020), MPI-ESM1-2-LR (Mauritsen
et al., 2020), MRI-ESM2-0 (Yukimoto et al., 2019), and
NorESM2-LM (Tjiputra et al., 2020). While the full con-
figurations of these models are diverse, the CNRM-ESM2-
1, CanESM5 and IPSL-CM6A-LR models share a common
NEMO physical ocean with UKESM1, though they diverge
on other components, including marine biogeochemistry. Ta-
ble S2 in the Supplement provides details and links for the
models and ensemble members used.
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Figure 23. Intercomparison of annual mean vertically integrated primary production (CMOR variable intpp) between observed (top row,
left), UKESM1-simulated (top row, centre) and a range of comparable CMIP6 models (rows 2–4). Results from CMIP5’s precursor to
UKESM1, HadGEM2-ES (Jones et al., 2011, row 2, left) and MEDUSA–2 (Yool et al., 2013, top row, right), are shown for comparison. This
field was not available for the CESM2-FV2 model and thus has been left blank. Production is given in gCm−2 d−1.

Figures S21 and S22 show patterns of surface nitrogen
and silicon nutrients. Reassuringly, most of the models cap-
ture the main geographical features of availability, includ-
ing high abundance in the Southern Ocean and the subpo-
lar north, low availability throughout the subtropics, and ele-
vated concentrations in upwelling regions (less prominently
in the case of silicon). All of the models do display biases,
however, differing in overestimation or underestimation of
Southern Ocean concentrations (UKESM1 consistently over-
estimates) and in how low subtropical concentrations are
drawn down to. Figure S10 shows corresponding surface
DIN in the Arctic region and finds that a number of models,
including UKESM1, exhibit a positive bias that will likely af-
fect productivity (at least temporarily) under the seasonally
ice-free conditions projected for the future.

The patterns in surface chlorophyll shown in Fig. S23,
however, are more diverse. As already noted, UKESM1 ex-
hibits both excess concentrations in regions, such as the
Southern Ocean and Equatorial Pacific, and negative biases
in its oligotrophic gyre regions. Other CMIP6 models exhibit
both similar and different biases. For instance, several mod-
els share UKESM1’s positive biases in major productive re-
gions (MPI, MRI), while others reverse its pattern in olig-
otrophic regions and instead have excessive chlorophyll con-
centrations (MIROC, NorESM). In general, while patterns of
surface nutrients are broadly shared by models, chlorophyll
patterns are instead somewhat divergent.

Figure 23 shows a similarly diverse pattern for ocean
productivity, with models estimating both much higher and
much lower global totals. While all of the models show bi-
ases, they agree on the focusing of productivity in key biomes
such as the temperate high latitudes and upwelling regimes,
although the biases found are not always aligned with those
in chlorophyll. Excessive productivity in the Southern Ocean
is significant problem in UKESM1, although it is noticeable
that models using PISCES marine biogeochemistry (IPSL,
CNRM) do much better in this regard.

Figures S24 and S25 respectively show surface DIC and
alkalinity across the suite of models. As already suggested
from the results of UKESM1, biases in surface alkalinity are
important in setting biases in DIC, with several models show-
ing matching positive biases in both (CanESM, MRI). In-
terestingly, while UKESM1’s institutional precursor model,
HadGEM2-ES, shares neither its ocean physics nor its ma-
rine biology (Totterdell, 2019), the models share biases, par-
ticularly in alkalinity, a field strongly governed by atmo-
spheric freshwater interactions, and a component where the
models do share submodels. This underscores the role that
other Earth system components may play in shaping model
marine biogeochemistry.

Similarly, there is generally strong agreement in patterns
of air–sea CO2 flux shown in Fig. S26. The models broadly
reproduce the latitudinal patterns of flux observed, out-
gassing in the tropics and (generally) ingassing at high lat-
itudes. The models differ in detail, with variation in the mag-
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nitude of CO2 uptake in regions such as the North Atlantic,
its release along the Equatorial Pacific, and in the magnitude
and geographical extent of outgassing regions in the South-
ern Ocean. Interestingly, a marked bias in UKESM1, strong
outgassing along the west coast of South America, is repro-
duced in several models (CanESM, MRI), while being absent
in others (MIROC, CESM).

Figure 24 summarizes the performances of this suite of
models using Taylor diagrams Taylor (2001). In each case,
the panels indicate spatial variability normalized to that of
observations (radial axis) and model–observation correlation
(circular axis), both at the global, annual-mean scale used in
the preceding figures. In such diagrams, proximity to the red
and black circle on the x axis indicates agreement with the
observational field. Overall, UKESM1 performs comparably
with other ESMs, i.e. particularly well for DIC and alkalin-
ity and less well for DIN. The panels also show that no one
model is superior in all properties, with the “best” model dif-
fering between properties, and that the various models tend
to perform similarly across properties. Chlorophyll, in par-
ticular, is a property that all of the models perform badly at,
while DIN is something they all perform relatively well at.

Note that this cross-CMIP6 analysis overlooks the role
played by the duration of spin-up prior to historical simula-
tions in the magnitude of model biases. The analysis Séférian
et al. (2016) found that spin-up duration of CMIP5 mod-
els ranged widely from 200 years up to almost 12 000 years
and that this duration could explain the magnitude of biases.
Essentially, the longer that a model is spun up, the greater
its drift from the observationally derived initial conditions
that also typically serve as performance targets (as they do
here). In the specific case of UKESM1, its ocean compo-
nent was spun up for approximately 5300 years to equili-
brate its net air–sea CO2 flux below a target of 0.1 PgCyr−1

(Yool et al., 2020). This duration was also sufficient for other
physical and biogeochemical properties to approach quasi-
equilibrium, and UKESM1’s performance is unlikely to be
significantly affected by drift.

In terms of performance between CMIP generations,
UKESM1 shows improved representation across almost all
properties relative to HadGEM2-ES, with the exception of
surface DIN (where excess concentrations in the Equatorial
Pacific impact UKESM1’s global realism). UKESM1 im-
proves on the marked biases in silicic acid and chlorophyll in
particular, and it also has a generally better representation of
the ocean’s role in CO2 exchange. Séférian et al. (2020) pro-
vides a more complete view of the improvements achieved in
marine biogeochemistry modelling from CMIP5 to CMIP6,
including between HadGEM2-ES and UKESM1.

Finally, the preceding figures show good traceability in the
marine biogeochemistry performance of UKESM1 with pre-
vious instances of its use (e.g. Yool et al., 2013). For better
and for worse, UKESM1 and MEDUSA-2 perform similarly
across all of the properties examined. With the exception of
DIN, where UKESM1’s geographical biases are similar but

clearly larger than those of MEDUSA-2, UKESM1’s perfor-
mance in Fig. 24 is marginally better (and despite a much
longer spin-up period: 5300 vs. 120 years).

4.3 Future projection

As described above, when compared to observational met-
rics, UKESM1 performs well over a large number of diverse
physical and biogeochemical properties. However, the model
displays a number of biases in the present-day state that have
implications for its future behaviour under different climate
scenarios.

UKESM1’s Arctic sea ice is biased positive in both sea-
sonal extent and, in particular, thickness. In the absence of bi-
ases in the other direction, these aspects will enable it to per-
sist longer under climate change, with a range of likely con-
sequences for the Arctic environment (Thackeray and Hall,
2019).

Decreased productivity is a common ecosystem response
under climate change, as ocean warming enhances ocean
stratification, reduces nutrient resupply from mixing and de-
pletes surface concentrations (Kwiatkowski et al., 2020). The
positive nitrogen nutrient biases across UKESM1’s ocean
may (at least temporarily) stave off this depletion, dampen-
ing the response of its marine ecosystem. In particular, the
excess nutrient bias in the Arctic may result in unrealistic fu-
ture responses as the Arctic continues to thaw (cf. Popova
et al., 2012; Vancoppenolle et al., 2013).

In terms of surface DIC and alkalinity, UKESM1 performs
best in the CMIP6 ensemble examined here (Fig. 24). How-
ever, as already noted, UKESM1 exhibits a negative bias
in surface alkalinity, which drives a corresponding bias in
surface DIC (and within the ocean interior more generally;
Fig. 21). This bias reduces the buffering capacity of the sur-
face ocean (Egleston et al., 2010) and impacts the long-term
capacity of the model ocean to act as a reservoir for carbon
(cf. Archer, 2005).

Staying with the carbon cycle, although the simulated up-
take of anthropogenic CO2 by the ocean is comparable to
that estimated at the global scale (Fig. 17, its spatial pat-
tern within the ocean interior exhibits circulation-driven bi-
ases (Fig. 22). Invasion of anthropogenic CO2 into shallow
or rapidly ventilated water masses will lead to its more rapid
return to the surface ocean and atmosphere, potentially re-
ducing future uptake by the ocean.

5 Conclusions

– Physical and biogeochemical properties of the ocean
component of the UKESM1 model have been evaluated
against observations for the historical period.

– Examined properties indicate that the model generally
reproduces the main geographical and temporal features
of the ocean but with a number of marked biases.
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Figure 24. Taylor diagrams illustrating the skill of UKESM1 (and its precursors, HadGEM2-ES and MEDUSA-2) and a series of CMIP6
models over a set of standard surface ocean of biogeochemical properties: dissolved inorganic nitrogen (top left), silicic acid (top centre),
chlorophyll (top right), primary production (middle left), dissolved inorganic carbon (middle centre), alkalinity (middle right) and air–sea
CO2 flux (bottom centre). The diagrams show model–observation comparisons based on annual average spatial fields, all regridded to the
same standard grid. The diagrams share a common model key (bottom centre). Black symbols denote skill scores that lie outside of the plot
range.

– Physically, model biases include a global warm bias,
resolution-dependent surface biases, excessive northern
sea ice, sluggish AABW circulation and weak DWBC
flow.

– Biogeochemically, model biases include nutrients
skewed by remineralization and iron availability, cor-

responding productivity biases, and surface chemistry
causing reduced carbon storage.

– Temporally, the ocean shows a number of secular trends
including aerosol-driven strengthening Atlantic MOC
transport, associated sea ice and productivity changes,
and realistic carbon uptake.
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– The UKESM1 ensemble shows consistent behaviour
across ocean properties, performs well in key metrics
compared to CMIP6 peers and improves on that of its
CMIP5 predecessor, HadGEM2-ES.

– Though overall performance is good, UKESM1’s biases
have implications for its response to climate change, in-
cluding the sea ice loss rate, future productivity changes
and ocean carbon uptake.
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Appendix A: MEDUSA-2.1

MEDUSA’s dual size structure resolves small (nanophy-
toplankton and microzooplankton) and large (microphyto-
plankton and mesozooplankton) components. Similar to its
living components, MEDUSA’s detrital components are also
split into two size classes, with small, slow-sinking detrital
particles represented explicitly as separate nitrogen and car-
bon tracers and large, fast-sinking particles represented im-
plicitly. At the seafloor, MEDUSA resolves four reservoirs
to temporarily store organic (nitrogen and carbon) and in-
organic (opal and CaCO3) material reaching the sediment
via both slow- and fast-sinking particles (iron is slaved to
nitrogen in these reservoirs). Figure S2 in the Supplement
presents a schematic outline of MEDUSA’s components and
the process connections between them.

The model’s nitrogen, silicon and alkalinity cycles are
closed and conservative (e.g. no riverine inputs), while the
cycles of iron, carbon and oxygen are open. The ocean’s iron
cycle includes additions from aeolian and benthic sources
and is depleted by scavenging based on local iron availabil-
ity (and an assumed fixed binding ligand concentration). The
ocean’s carbon cycle exchanges CO2 with the atmosphere
based on local carbonate chemistry, atmospheric xCO2 and
ambient winds. The ocean’s oxygen cycle exchanges with the
atmosphere (which has an assumed fixed oxygen concentra-
tion), and dissolved oxygen is additionally created by pri-
mary production and depleted by remineralization through-
out the ocean. The various elemental cycles include both
fixed and variable stoichiometry. Iron is slaved to nitrogen
throughout, while nitrogen and carbon have fixed (but dif-
ferent) ratios in phytoplankton and zooplankton and variable
ratios in detritus. Diatom silicon has a variable ratio with ni-
trogen, dependent on nutrient availability and growth rate.
Calcium carbonate is produced at a geographically variable
rate relative to organic carbon according to the ambient cal-
cite saturation state and consumes both dissolved inorganic
carbon (DIC) and alkalinity in a ratio of 1 : 2 respectively.
Oxygen production and consumption reflects the C : N ratio
of organic matter produced and consumed.

Yool et al. (2013) extensively describes the structure, dif-
ferential equations, functional forms and parameterization of
the MEDUSA-2.0 model in an earlier ocean-only configura-
tion. As part of the development cycle of UKESM1, a num-
ber of changes were made to the model, and the resulting ver-
sion used here is denoted as MEDUSA-2.1 for clarity. These
specific developments are listed below.

– The carbonate chemistry submodel used in MEDUSA-2
of Blackford et al. (2007) (also Artoli et al., 2012) has
been replaced by the MOCSY-2.0 scheme of Orr and
Epitalon (2015). See Appendix B for more details.

– Since UKESM1 represents atmospheric chemistry, in-
cluding elements of the sulfur cycle, MEDUSA now in-
cludes several empirical submodels of surface dimethyl

sulfide (DMS) concentration to permit this Earth system
feedback. See Appendix C for more details.

– In addition to DMS, the atmospheric chemistry sub-
model of UKESM1 includes the emission of pri-
mary marine organic aerosol (PMOA). This utilizes
MEDUSA’s simulated surface chlorophyll coupled to
the PMOA parameterization of Gantt et al. (2011) and
Gantt et al. (2012).

– During development and testing, a small number of
changes have been made to MEDUSA parameter val-
ues.

– MEDUSA’s underlying model code has been exten-
sively reorganized into small subroutines with discrete
functionality to facilitate better code management and
to adopt newer Fortran conventions. Its code has also
been reorganized to reflect changes within the host
NEMO code, for example around model restarting.

– Throughout MEDUSA, processes involving the model’s
representation of vertical space, including the explicit
sinking of slow detritus and the time-stepping of mate-
rial fluxes into and out of the benthic reservoirs, have
been revised to reflect the adoption of variable volume
(VVL) by the host NEMO model.

– Diagnostic output in MEDUSA has been upgraded to
utilize the XML Input–Output Server (XIOS) adopted
by NEMO. Available output from MEDUSA has been
extended to include additional diagnostics, including
those requested by CMIP6.

Appendix B: MOCSY-2

As indicated above, MEDUSA-2.1 replaces an existing car-
bonate chemistry submodel with that of MOCSY-2.0 Orr and
Epitalon (2015). This includes an improved iterative solver,
applicability over a wider range of ambient conditions and
revised parameterizations that avoid several approximations
in the earlier scheme. MOCSY-2.0 is primarily used to cal-
culate surface ocean carbonate chemistry and air–sea CO2
exchange, but it is additionally used on a periodic basis
(monthly) to calculate ocean interior carbon chemistry. In
MEDUSA-2.1, the latter is used to determine the dissolution
depth of sinking biogenic calcite (via its normalized satu-
ration state, �calcite). MEDUSA-2.1 principally passes bulk
ocean temperature, salinity and concentrations of dissolved
inorganic carbon and alkalinity, together with atmospheric
pressure, gas transfer velocity (calculated from wind speed),
and xCO2 (i.e. mole fraction; ppm) to MOCSY-2.0. Ocean
concentrations of ambient silicic acid and estimated phos-
phate (= DIN/16) are additionally passed to MOCSY-2.0
for use in secondary coefficients and for interior carbonate
chemistry, depth and latitude are used to calculate pressure.
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MOCSY-2.0 has been implemented within MEDUSA in a
“plug-and-play” manner to permit easy replacement with fu-
ture revisions.

Per the guidance of Orr et al. (2017), the updated gas ex-
change scheme of Wanninkhof (2014) is used to calculate gas
transfer velocity.

Appendix C: DMS concentration

As already mentioned, one addition to MEDUSA-2.1 is
a representation of surface dimethyl sulfide concentration.
This concentration is passed to the atmospheric chemistry
component, UKCA, where it is used in UKESM1’s sulfur
cycle.

MEDUSA-2.1 includes four empirical calculations for
surface DMS: Anderson et al. (2001), Simo and Dachs
(2002), Aranami and Tsunogai (2004), and Halloran et al.
(2010). After evaluation (Sellar et al., 2019), the formula-
tion of Anderson et al. (2001) selected for use in UKESM1
simulations. This calculates DMS from three fields provided
by MEDUSA-2: surface chlorophyll, C (mgchlm−3), sur-
face daily average shortwave radiation, J (Wm−2), and sur-
face nutrient limitation, Q (–). Surface chlorophyll, C, is the
sum of contributions of the two phytoplankton types, while
J is provided by UKESM1’s atmospheric component. The
Q term is a conventional hyperbolic function of nitrogen nu-
trient concentration and uptake half-saturation concentration,
here using the lower half-saturation concentration of the non-
diatom phytoplankton, kN,Pn (which has the same numerical
value as that originally used in Anderson et al., 2001). An-
derson et al. (2001) used these terms in a “broken stick” re-
gression:

if log10(C · J ·Q)≤ s

DMS= a,
else

DMS= b · [log10(C · J ·Q)− s] + a.

Parameters a, b and s were originally fitted using an ob-
servational dataset (Kettle et al., 1999), and were tuned dur-
ing the development of UKESM1 to balance the top-of-
atmosphere (TOA) radiation (Sellar et al., 2019). Parameter a
was lowered to 1.0 (from 2.29), in line with Anderson et al.’s
(2001) own assessment of likely high-biased observations;
parameter b was left unchanged (at 8.24), while parameter s
was linearly extended to 1.56 (from 1.72) to align with the
reduced a.

Appendix D: Observational data sources

The following web links are to sources of the observational
data used in the evaluation of UKESM1:

– World Ocean Atlas 2013: temperature, salinity, nutri-
ents, oxygen

https://www.nodc.noaa.gov/OC5/woa13/ (last access: 4
May 2021);

– Hadley Centre Sea Ice and Sea Surface Temperature
(HadISST.2.2): SST, sea ice
https://www.metoffice.gov.uk/hadobs/hadisst2/ (last ac-
cess: 4 May 2021);

– National Sea Ice Data Centre: sea ice thickness and in-
dex
https://nsidc.org/data/G10006/versions/1 (last access: 4
May 2021),
https://nsidc.org/data/G02135/versions/3 (last access: 4
May 2021);

– Estimating the Circulation and Climate of the Ocean
(ECCO) V4r4: ocean circulation
https://ecco-group.org/products-ECCO-V4r4.htm (last
access: 4 May 2021);

– RAPID-MOCHA array: AMOC strength
https://www.rapid.ac.uk/data.php (last access: 4 May
2021);

– Oregon State University Ocean Productivity group:
chlorophyll and productivity
http://orca.science.oregonstate.edu/1080.by.2160.
monthly.hdf.chl.seawifs.php (last access: 4 May 2021),
http://orca.science.oregonstate.edu/1080.by.2160.
monthly.hdf.vgpm.m.chl.m.sst.php (last access: 4 May
2021),
http://orca.science.oregonstate.edu/1080.by.2160.
monthly.hdf.eppley.s.chl.a.sst.php (last access: 4 May
2021),
http://orca.science.oregonstate.edu/1080.by.2160.
monthly.hdf.cbpm2.s.php (last access: 4 May 2021);

– Rödenbeck et al. (2013): ocean pCO2 and air–sea CO2
flux
https://www.bgc-jena.mpg.de/CarboScope/?ID=oc
(last access: 4 May 2021);

– Lana et al. (2011): surface DMS
https://www.bodc.ac.uk/solas_integration/
implementation_products/group1/dms/documents/
dms-1degrex1degree.zip (last access: 4 May 2021);

– Global Ocean Data Analysis Project: carbon chemistry
and CFC-11
https://www.ncei.noaa.gov/access/
ocean-carbon-data-system/oceans/glodap/ (last ac-
cess: 4 May 2021);
https://www.glodap.info/index.php/
mapped-data-product/ (last access: 4 May 2021);

– Moriarty and O’Brien (2013): zooplankton biomass
https://dx.doi.org/10.1594/PANGAEA.777398.
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Code and data availability. All simulations used in this work were
performed using version 10.9 of the Unified Model (UM), version
5.0 of JULES, NEMO version 3.6, CICE version 5.1.2 and OASIS3-
MCT version 3.0. Model output from the NEMO ocean model was
handled using the XML Input–Output Server (XIOS) library (Meur-
desoif, 2013).

Guidance concerning the availability and use of UKESM1 is
available from a dedicated website: http://cms.ncas.ac.uk/wiki/UM/
Configurations/UKESM (last access: 4 May 2021).

Due to intellectual property rights restrictions, neither the source
code nor documentation papers for the UM or JULES can be pro-
vided. However, the Met Office UM is available for use under
licence, and further information on how to apply for a licence
is available here: https://www.metoffice.gov.uk/research/approach/
modelling-systems/unified-model/ (last access: 4 May 2021).

JULES is also available under licence, free of charge, with fur-
ther information on obtaining access for research purposes here:
http://jules-lsm.github.io/access_req/JULES_access.html (UK Me-
teorological Office, 21).

The simulation data used in this study are archived on the Earth
System Grid Federation (ESGF) node: https://esgf-index1.ceda.
ac.uk/projects/cmip6-ceda/ (World Climate Research Programme,
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