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Abstract. In this study, a four-dimensional variational (4D-
Var) data assimilation system was developed based on
the GRAPES–CUACE (Global/Regional Assimilation and
PrEdiction System – CMA Unified Atmospheric Chem-
istry Environmental Forecasting System) atmospheric chem-
istry model, GRAPES–CUACE adjoint model and L-BFGS-
B (extended limited-memory Broyden–Fletcher–Goldfarb–
Shanno) algorithm (GRAPES–CUACE-4D-Var) and was ap-
plied to optimize black carbon (BC) daily emissions in
northern China on 4 July 2016, when a pollution event oc-
curred in Beijing. The results show that the newly con-
structed GRAPES–CUACE-4D-Var assimilation system is
feasible and can be applied to perform BC emission inver-
sion in northern China. The BC concentrations simulated
with optimized emissions show improved agreement with
the observations over northern China with lower root-mean-
square errors and higher correlation coefficients. The model
biases are reduced by 20 %–46 %. The validation with ob-
servations that were not utilized in the assimilation shows
that assimilation makes notable improvements, with values
of the model biases reduced by 1 %–36 %. Compared with
the prior BC emissions, which are based on statistical data
of anthropogenic emissions for 2007, the optimized emis-
sions are considerably reduced. Especially for Beijing, Tian-
jin, Hebei, Shandong, Shanxi and Henan, the ratios of the op-
timized emissions to prior emissions are 0.4–0.8, indicating
that the BC emissions in these highly industrialized regions

have greatly reduced from 2007 to 2016. In the future, fur-
ther studies on improving the performance of the GRAPES–
CUACE-4D-Var assimilation system are still needed and are
important for air pollution research in China.

1 Introduction

Three-dimensional (3-D) atmospheric chemical transport
models (CTMs) are important tools for air quality research,
which are used not only for predicting spatial and temporal
distributions of air pollutants but also for providing sensi-
tivities of air pollutant concentrations with respect to various
parameters (Hakami et al., 2007). Among several methods of
sensitivity analysis, the adjoint method is known to be an effi-
cient means of calculating the sensitivities of a cost function
with respect to a large number of input parameters (Sandu
et al., 2005; Hakami et al., 2007; Henze et al., 2007; Zhai
et al., 2018). The sensitivity information provided by the ad-
joint approach can be applied to a variety of optimization
problems, such as formulating optimized pollution-control
strategies, inverse modelling and variational data assimila-
tion (Liu, 2005; Hakami et al., 2007).

Four-dimensional variational (4D-Var) data assimilation,
which is an important application of adjoint models, pro-
vides insight into various model inputs, such as initial condi-
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tions and emissions (Liu, 2005; Yumimoto and Uno, 2006).
In the past decades, many scholars have successively devel-
oped adjoint models of various 3-D CTMs and the 4D-Var
data assimilation systems to optimize model parameters. El-
bern and Schmidt (1999, 2001), Elbern et al. (2000, 2007)
constructed the adjoint of the EURAD CTM and performed
inverse modelling of emissions and chemical data assimila-
tion. Sandu et al. (2005) built the adjoint of the comprehen-
sive chemical transport model STEM-III and conducted the
data assimilation in a twin-experiment framework as well
as the assimilation of a real data set, with the control vari-
ables being O3 or NO2. Hakami et al. (2005) applied the ad-
joint model of the STEM-2k1 model for assimilating black
carbon (BC) concentrations and the recovery of its emis-
sions. Liu (2005) and Huang et al. (2018) developed the ad-
joint of the CAMx model and further expanded it into an
air quality forecasting and pollution-control decision sup-
port system. Müller and Stavrakou (2005) constructed an in-
verse modelling framework based on the adjoint of the global
model IMAGES and used it to optimize the global annual
CO and NOx emissions for the year 1997. More recently, the
CMAQ (Community Multiscale Air Quality Modeling Sys-
tem) team (Hakami et al., 2007) built the adjoint of CMAQ
model and its 4D-Var assimilation scheme, which were used
to optimize NOx emissions (Kurokawa et al., 2009; Resler
et al., 2010) and ozone initial state (Park et al., 2016). The
adjoints of the GEOS-Chem model and its 4D-Var assimi-
lation system first developed by Henze et al. (2007, 2009)
have been applied in a number of studies to improve aerosol
(Wang et al., 2012; Mao et al., 2015; Jeong and Park, 2018),
CO (Jiang et al., 2015) and NMVOC (non-methane volatile
organic compound) (Cao et al., 2018) emission estimates.
Zhang et al. (2016) applied the 4D-Var assimilation sys-
tem using the adjoint model of GEOS-Chem with the fine
1/4◦× 5/16◦ horizontal resolution to optimize daily aerosol
primary and precursor emissions over northern China. This
research has laid good foundations for developing adjoint
models of CTMs and optimizing model parameters. How-
ever, only a few of these adjoint models and their 4D-Var
assimilation systems have been widely applied to regional
air pollution in China. The development and applications of
adjoint models of 3-D CTMs and their 4D-Var data assimila-
tion systems are still limited in China. Further research and
more attention are required.

Nowadays, several mega urban agglomerations in China,
such as the Beijing–Tianjin–Hebei region, the Yangtze River
Delta region and the Fenwei Plain, are still suffering from
severe air pollution (Zhang et al., 2019; Xiang et al., 2020;
Haque et al., 2020; Zhao et al., 2020). Previous studies have
shown that emission-reduction strategies, which are mainly
based on the results of atmospheric chemistry simulations,
play an important role in reducing pollutant concentrations
and improving air quality (Zhang et al., 2016; Zhai et al.,
2016). The emission inventory represents important basic
data for atmospheric chemistry simulation, and its uncer-

tainty will affect the accuracy of air pollution simulation,
which in turn will affect the accuracy of pollution-control
measures based on the model results (Huang et al., 2018).
In order to improve the accuracy of atmospheric chemistry
simulation and the feasibility of the pollution-control strate-
gies, the emission data obtained by the “bottom–up” method
needs to be optimized, which can be done through the atmo-
spheric chemical variational assimilation system, to reduce
the impact of emission uncertainty.

GRAPES–CUACE is an atmospheric chemistry model
system developed by the Chinese Academy of Meteoro-
logical Sciences (CAMS) (Gong and Zhang, 2008; Zhou
et al., 2008, 2012; Wang et al., 2010, 2015). GRAPES
(Global/Regional Assimilation and PrEdiction System) is a
numerical weather prediction system built by China Mete-
orological Administration (CMA), and it can be used as a
global model (GRAPES-GFS) or as a regional mesoscale
model (GRAPES-Meso) (Chen et al., 2008; Zhang and Shen,
2008). CUACE (CMA Unified Atmospheric Chemistry En-
vironmental Forecasting System) is a unified atmospheric
chemistry model constructed by CAMS to study both air
quality forecasting and climate change (Gong and Zhang,
2008; Zhou et al., 2008, 2012). Using the meteorological
fields provided by GRAPES-Meso, the GRAPES–CUACE
model has realized the online coupling of meteorology and
chemistry (Gong and Zhang, 2008; Zhou et al., 2008, 2012;
Wang et al., 2010, 2015). The GRAPES–CUACE model not
only plays an important role in the scientific research on air
pollution in China (Gong and Zhang, 2008; Zhou et al., 2008,
2012; Wang et al., 2010, 2015) but has also been officially in
operation since 2014 at the National Meteorological Center
of CMA for providing guidance for air quality forecasting
over China (Ke, 2019).

Recently, An et al. (2016) constructed the aerosol adjoint
module of the GRAPES–CUACE model, which was subse-
quently applied in tracking influential BC and PM2.5 source
areas in northern China (Zhai et al., 2018; Wang et al., 2018a,
2018b, 2019). However, these applications of GRAPES–
CUACE aerosol adjoint model are still limited to sensitiv-
ity analysis, and the sensitivity information is not fully used
to solve various optimization problems mentioned above. At
the same time, considering the current severe pollution situ-
ation in mega urban agglomerations in China, more accurate
emission data are urgently required to formulate reasonable
and effective pollution-control strategies. In this study, we
developed a new 4D-Var data assimilation system on the ba-
sis of the GRAPES–CUACE adjoint model, which was ap-
plied for assimilating surface BC concentrations and opti-
mizing its daily emissions in northern China on 4 July 2016,
when a pollution event occurred in Beijing. The following
part is divided into four sections. Section 2 introduces the
data and methods, Sect. 3 describes the GRAPES–CUACE-
4D-Var assimilation system, Sect. 4 presents the results and
discussions, and the conclusions are found in Sect. 5.
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2 Methodology

2.1 Forward model description

2.1.1 GRAPES-Meso

GRAPES-Meso is a real-time operational weather forecast-
ing model used by China Meteorological Administration
(Chen et al., 2008; Zhang and Shen, 2008). The GRAPES-
Meso model uses fully compressible non-hydrostatic equa-
tions as its model core. The vertical coordinates adopt the
height-based, terrain-following coordinates, and the hori-
zontal coordinates use the spherical coordinates of equal
longitude–latitude grid points. The horizontal discretization
adopts an Arakawa-C staggered grid arrangement and a
central finite-difference scheme with second-order accuracy,
while the vertical discretization adopts the vertically stag-
gered variable arrangement proposed by Charney-Phillips
(Charney and Phillips, 1953). The time integration dis-
cretization uses a semi-implicit and semi-Lagrangian tem-
poral advection scheme. The large-scale transport processes
(both horizontal and vertical) for all gases and aerosols in
GRAPES–CUACE are calculated by the dynamic framework
of GRAPES-Meso, which implements the quasi-monotone
semi-Lagrangian (QMSL) semi-implicit scheme on each grid
(Wang et al., 2010). The physical processes principally in-
volve microphysical precipitation, cumulus convection, ra-
diative transfer, land surface and boundary layer processes.
Each physical process incorporates several schemes and can
also be tailored by the user (Xu et al., 2008). The major phys-
ical options that we selected include the WSM6 cloud mi-
crophysics scheme (Hong and Lim, 2006), the Betts–Miller–
Janjic cumulus convection scheme (Betts and Miller, 1986;
Janjić, 1994), the RRTM (Rapid Radiative Transfer Model;
Mlawer et al., 1997) long-wave radiation scheme, the short-
wave scheme based on Dudhia (1989), the Monin–Obukhov
surface layer scheme (Monin and Obukhov, 1954), the MRF
(medium-range forecast) planetary boundary layer scheme
(Hong and Pan, 1996) and the Noah land surface scheme
(Chen et al., 1996).

2.1.2 CUACE

The atmospheric chemistry model CUACE mainly includes
three modules: the aerosol module (module_ae_cam), the
gaseous chemistry module (module_gas_radm) and the ther-
modynamic equilibrium module (module_isopia) (Gong and
Zhang, 2008; Zhou et al., 2008, 2012; Wang et al., 2010,
2015). The interface program that connects CUACE and
GRAPES-Meso is called aerosol_driver.F. This program
transmits the meteorological fields calculated in GRAPES-
Meso and the emission data processed as needed to each
module of CUACE. The physical and chemical processes
of 66 gas species and 7 aerosol species (sulfate, nitrate, sea
salt, black carbon, organic carbon, soil dust and ammonium)

in the atmosphere are comprehensively considered in the
CUACE model (Wang et al., 2015).

CUACE adopts CAM (Canadian Aerosol Module; Gong
et al., 2003) and RADM II (the second-generation Re-
gional Acid Deposition Model; Stockwell et al., 1990) as
its aerosol module and gaseous chemistry module, respec-
tively. CAM involves six types of aerosols: sulfate (SF), ni-
trate (NI), sea salt (SS), BC, organic carbon (OC) and soil
dust (SD), which are segregated into 12 size bins with di-
ameter ranging from 0.01 to 40.96 µm according to the mul-
tiphase multicomponent aerosol particle size separation al-
gorithm (Gong et al., 2003; Zhou et al., 2008, 2012; Wang
et al., 2010, 2015). CAM also calculates the vertical diffu-
sion trend of aerosol particles by solving the vertical dif-
fusion equation. The core of CAM is the aerosol physical
and chemical processes, including hygroscopic growth, co-
agulation, nucleation, condensation, dry deposition or sedi-
mentation, below-cloud scavenging, and aerosol activation,
which is coherently integrated with the gaseous chemistry in
CUACE (Gong et al., 2003; Zhou et al., 2008, 2012; Wang
et al., 2010, 2015). The gas chemistry provides the produc-
tion rates of sulfate aerosols and secondary organic aerosols
(SOAs) and meanwhile generates an oxidation background
for aqueous-phase aerosol chemistry, in which sulfate trans-
formation changes the distributions of SO2 in clouds (Zhou
et al., 2012). Both nucleation and condensation are consid-
ered for sulfate aerosol formation depending on the atmo-
spheric state after gaseous H2SO4 formed from the oxidation
of sulfurous gases such as SO2, H2S and DMS (dimethyl
sulfide) (Zhou et al., 2012). Secondary organic aerosols as
generated from gaseous precursors are partitioned into dif-
ferent bins through condensation using the same approach
as the gaseous H2SO4 condensation to sulfate (Zhou et al.,
2012). Given that the NIs and ammonium (AM) formed
through the gaseous oxidation are unstable and prone to fur-
ther decomposition back to their precursors, CUACE adopts
ISORROPIA to calculate the thermodynamic equilibrium be-
tween them and their gas precursors (West et al., 1998; Nenes
et al., 1998a, b; Zhou et al., 2012). ISORROPIA contains
15 equilibrium reactions, and the main species include the
gas phase (NH3, HNO3, HCL, H2O), liquid phase (NH+4 ,
Na+, H+, Cl−, NO−3 , SO2−

4 , HSO−4 , OH−, H2O) and solid
phase ((NH4)2SO4, NH4HSO4, (NH4)3H(SO4)2, NH4NO3,
NH4Cl, NaCl, NaNO3, NaHSO4, Na2SO4) (Nenes et al.,
1998a).

The emissions used in this study are based on statisti-
cal data of anthropogenic emissions reported from govern-
ment agencies for 2007 (Cao et al., 2011). Emission source
types included residences, industry, power plants, transporta-
tion, biomass combustion, livestock and poultry breeding,
fertilizer use, waste disposal, solvent use, and light indus-
trial product manufacturing (Cao et al., 2011; Zhai et al.,
2018). These emission data were transformed through the
Sparse Matrix Operator Kernel Emissions (SMOKE) mod-
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ule into hourly gridded off-line data for 32 species, includ-
ing BC, OC, SF, NI, fugitive dust particles and 19 non-
methane volatile organic compounds (VOCs), CH4, NH3,
CO, CO2, SOx and NOx , at three vertical levels (non-point
source on the ground, middle-elevation point source at 50 m
and high-elevation point source at 120 m), as required by the
GRAPES–CUACE model. Furthermore, natural sea salt and
natural sand or dust emissions were also calculated online in
the model (Zhou et al., 2012; Zhai et al., 2018).

2.2 Adjoint model

2.2.1 Adjoint theory

Assuming that L is a linear operator defined in the Hilbert
space H, if there is another linear operator L∗ satisfying

∀x,y ∈H, (Lx,y)= (x,L∗y). (1)

Then L∗ is called the adjoint operator of L (Ye and Shen,
2006). Where (., .) denotes the inner product in H. If x,y

are continuous functions on a domain �, the inner product
is defined as (x,y)=

∫
�
x ·yd�; if x,y are discrete vectors,

x = [x1x2, . . .,xN ],y = [y1y2, . . .,yN ], then the inner prod-

uct is (x,y)=
N∑
i=1
xi ·yi . When x and y denote vectors and L

is a matrix (independent of x and y), we can obtain

(Lx,y)= yTLx = xTLT y = (x,LT y). (2)

In other words, for a matrix-type linear operator, the adjoint
operator is its transpose: L∗ = LT (Liu, 2005).

An atmospheric chemistry model can be viewed as a nu-
merical operator F : Rn→ Rm, which can be expressed as

Y = F(X), (3)

where X ∈ Rn and Y ∈ Rm are vectors representing the input
and output variables in the atmospheric chemistry model, re-
spectively. If F is differentiable, then the differential of Y

(δY ) can be denoted by the differential of X (δX), and the
tangent linear model (TLM) of the atmospheric chemistry
model can be expressed as

δY =∇XF · δX, (4)

where δX ∈ Rn and δY ∗ ∈ Rm are input and output variables
in the TLM, respectively, and ∇XF is the Jacobian matrix.

According to Eqs. (1) and (2), the adjoint model of the
TLM can be expressed as

δX∗ =∇
T
XF · δY ∗, (5)

where δY ∗ ∈ Rm and δX∗ ∈ Rn are input and output vari-
ables in the adjoint model, respectively. Comparing Eqs. (4)
and (5), it can be seen that the dimensions of input and out-
put are exchanged between the TLM and the adjoint model,

and the operator in Eq. (5) is the transpose of the opera-
tor in Eq. (4) (Liu, 2005). It is easy to see that the gradi-
ent (sensitivity) of the objective function with respect to in-
put variables can be obtained through n times TLM simu-
lations or m times adjoint simulations. When n�m (such
as n-dimensional emission sources andm-dimensional pollu-
tant concentrations), the calculation efficiency of the adjoint
model is much higher than that of the TLM (Liu, 2005).

2.2.2 GRAPES–CUACE aerosol adjoint

The GRAPES–CUACE aerosol adjoint model was con-
structed by An et al. (2016) based on the adjoint theory (Ye
and Shen, 2006; Liu, 2005) and the CUACE aerosol mod-
ule, which mainly includes the adjoint of physical and chem-
ical processes and flux calculation processes of six types of
aerosols (SF, NI, SS, BC, OC and SD) in the CAM mod-
ule, the adjoint of interface programs that connect GRAPES-
Meso and CUACE, and the adjoint of aerosol transport pro-
cesses.

As described in An et al. (2016), after the construction of
the adjoint model is completed, its accuracy must be verified
to confirm its reliability. Since the adjoint model is built on
the basis of the TLM, the validity of the TLM must be en-
sured before the accuracy of the adjoint model is tested. The
verification formula of tangent linear codes can be expressed
as

Index=
F(X+ δX)−F(X)

δXF′(X)
= 1.0, (6)

where the denominator is the TLM output, and the numera-
tor is the difference between the output value of the original
model with input X+ δX and input X. It is necessary to de-
crease the value of δX by an equal ratio and repeat the cal-
culation of the above formula. If the result approaches 1.0,
the tangent linear codes are correct. It was verified that all
input variables in the model, such as the concentration value
of pollutants (xrow) and the particle’s wet radius (rhop), have
passed the TLM test.

The adjoint codes can be validated on the basis of the cor-
rect tangent linear codes. The adjoint codes and the tangent
linear codes need to satisfy Eq. (2) for all possible combina-
tions of X and Y . In Eq. (2), L and L∗ represent the tangent
linear process and the adjoint process, respectively. To sim-
plify the testing process, the adjoint input is the tangent linear
output: Y = L(X). Thus, Eq. (5) can be expressed as

(∇F · dX,∇F · dX)= (dX,∇T F(∇F · dX)). (7)

By substituting dX into the tangent linear codes, the output
value ∇F · dX can be obtained and the left part of the equa-
tion can be computed. Then, taking ∇F · dX as the input of
the adjoint codes, the adjoint output ∇T F(∇F · dX) can be
obtained and the right part of the equation can be calculated.
On condition that the left and right sides of Eq. (7) are equal
within the range of machine errors, the constructed adjoint
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model is validated. It was verified that all input variables in
the model have passed the adjoint test. Taking the pollutant
concentration variable (xrow) as an example, both sides of
Eq. (7) produce values with 14 identical significant digits or
more. This result is within the range of machine errors, so
the values of the left and the right sides are considered equal.
Thus, the pollutant concentration variable (xrow) has passed
the adjoint test.

After the TLM and the adjoint model were verified, the
GRAPES–CUACE aerosol adjoint model was constructed.
The operation flowchart of the adjoint model is shown in
Fig. 1. J is the objective function, which can be defined ac-
cording to the problems concerned. c and s represent state
variables (such as BC concentration) and control variables
(such as emission sources, mainly including VOCs, NOx ,
NH3, SO2 and PPM2.5) in the model, respectively. First of all,
the GRAPES–CUACE atmospheric chemistry model should
be integrated to store the basic-state values of the unequi-
librated variables in checkpoint files. The intermediate val-
ues are recalculated or saved in stack using the PUSH&POP
method, which pushes the intermediate values into a contin-
uous memory space and pops them out where needed, during
the adjoint operating process. Subsequently, the gradient of J
with respect to c (∇cJ ) as well as the saved basic-state values
are taken as input data for the adjoint backward integration.
Finally, the sensitivity of J with respect to s (∇sJ ) can be
obtained. A full description of the construction, framework
and operational flowchart of the GRAPES–CUACE aerosol
adjoint model can be found in An et al. (2016).

2.3 L-BFGS-B method

The limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (L-BFGS) is an optimization algorithm in the fam-
ily of quasi-Newton methods that approximates the BFGS
using a limited amount of computer memory (Liu and No-
cedal, 1989). The L-BFGS-B algorithm extends L-BFGS to
solve large nonlinear optimization problems subject to sim-
ple bounds on the variables (Byrd et al., 1995; Zhu et al.,
1997), which can be expressed as

minf (x) , x ∈ Rn, (8a)
subject to l ≤ x ≤ u, (8b)

where f is a nonlinear function, the vectors l and u represent
lower and upper bounds on the variables, and the number of
variables n is assumed to be large. The algorithm is also ap-
propriate and efficient for solving unconstrained problems in
which the variables have no bounds. With the supply of the
objective function f and its gradient g, but with no require-
ment of knowledge about the Hessian matrix of the objec-
tive function f , the algorithm can be useful for solving large
problems where the Hessian matrix is difficult to compute or
is dense.

The brief procedure of the L-BFGS-B algorithm is as fol-
lows. At each iteration, a limited memory BFGS approxima-

tion to the Hessian is updated. The limited memory BFGS
matrix is used to define a quadratic model of the objective
function f . A search direction dk is computed by a two-stage
approach. First, use the gradient projection method to iden-
tify a set of active variables, such as variables that will be
held at their bounds. Then, the quadratic model is approx-
imately minimized with respect to the free variables. The
search direction is defined to be the vector leading from the
current iterate to this approximate minimizer. Finally, a line
search is performed along the search direction dk to com-
pute a step length λk , and the variables are updated through
xk+1 = xk + λkdk . The L-BFGS-B algorithm has three ter-
mination criteria: the number of iterations reaches the set
maximum value; the change of the objective function in con-
secutive iterations is relatively small; and the modulus of the
projected gradient is small enough.

3 Description of GRAPES–CUACE-4D-Var

The new 4D-Var data assimilation system, GRAPES–
CUACE-4D-Var, was constructed on the basis of the
GRAPES–CUACE atmospheric chemistry model, the
GRAPES–CUACE aerosol adjoint model and the L-BFGS-B
method. A schematic diagram of GRAPES–CUACE-4D-Var
is shown in Fig. 2. The main parts of GRAPES–CUACE-
4D-Var include GRAPES–CUACE atmospheric chemistry
simulation, during which the basic-state values of the unequi-
librated variables in checkpoint files are saved, observations
and adjoint forcing term processing, GRAPES–CUACE
aerosol adjoint model simulation, gradient extraction,
cost function calculation, and optimization. The details of
cost function, observations and optimization of emission
inversion are as follows.

3.1 Cost function

Based on Bayesian theory and the assumption of Gaussian
error distributions (Rodgers, 2000) the cost function of the
emission inversion is generally defined as follows:

J (x)=
1
2
γ (x− xb)

TB−1 (x− xb)

+
1
2

p∑
i=0

(
Fi (x)− yi

)TR−1 (Fi (x)− yi
)
, (9)

where x, which we sought to optimize, generally represents
the state vector of emissions or their scaling factors, xb is the
prior estimate of x, B is the error covariance estimate of xb,
F is the forward model, y is the vector of measurements that
are distributed during the time interval [t0, tp], R is the ob-
servation error covariance matrix, and γ is the regularization
parameter.

In this study, we followed the method in Henze et
al. (2009), and defined x as the state vector of scaling fac-
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Figure 1. Running process of GRAPES–CUACE atmospheric chemistry model and its adjoint model.

Figure 2. GRAPES–CUACE-4D-Var assimilation system.

tors of BC emissions:

x = ln
(

s

sb

)
, (10)

where s is the state vector of the daily gridded emissions of
BC at three vertical levels (non-point source on the ground,
middle-elevation point source at 50 m and high-elevation
point source at 120 m) and sb is the prior estimate of s. Thus,
the prior estimate of x(xb) is equal to 0. According to Cao
et al. (2011), the uncertainty of prior BC emissions used in
this study is 76.2 %. Therefore, we assigned the prior error
covariance matrix (B) to be diagonal and the uncertainty to
be 76.2 % for BC emissions. Due to the lack of informa-
tion to completely construct a physically representative B,
the regularization parameter γ is introduced to balance the
background and observation terms in the cost function. As
described in Henze et al. (2009), an optimal value of γ can
be found with the L-curve method (Hansen, 1998). Here, we
followed this method and obtained γ = 0.0001 through sev-
eral emission inversions with a range of γ (10, 1, 0.1, 0.01,
0.001, 0.0001, 0.00001, 0.000001, 0.0000001).

3.2 Observations

The surface measurements of BC were collected from
the China Atmosphere Watch Network (CAWNET). The
CAWNET was established by the China Meteorological Ad-
ministration to monitor the BC surface mass concentration

over China in 2004 and had 54 monitoring stations in the
summer of 2016. The monitoring of BC was conducted
by an aethalometer (Model AE 31, Magee Scientific Co.,
USA), which uses a continuous optical greyscale measure-
ment method to produce real-time BC data (Gong et al.,
2019). In this study, we used the recommended mass ab-
sorption coefficient for the instrument at an 880 nm wave-
length with 24 h mean values of BC during 1–31 July 2016
at five representative stations of CAWNET in northern China
(Fig. S1 in the Supplement).

The surface PM2.5 concentrations were obtained from
the public website of the China Ministry of Ecology and
Environment (MEE) (http://www.mee.gov.cn/, last access:
14 January 2021). The network started to release real-time
hourly concentrations of SO2, NO2, CO, ozone (O3), PM2.5
and PM10 in 74 major Chinese cities in January 2013, which
further increased to 338 cities in 2016. The PM2.5 data were
collected by the TEOM1405-F monitor, which draws ambi-
ent air through a sample filter at constant flow rate, contin-
uously weighing the filter and calculates the near real-time
mass concentration of the collected particulate matter. We
used hourly surface PM2.5 concentrations for 1–31 July 2016
at 48 cities in northern China, including 12 cities in the
Beijing–Tianjin–Hebei region (Fig. S1). Here, we have av-
eraged PM2.5 concentrations at several monitoring sites in
each city to represent a regional condition.
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To improve the performance of emission inversion, ade-
quate observations are needed for constraining the model.
Due to the limited BC monitoring sites in northern China, we
used the surface PM2.5 concentrations at 48 cities described
above and the BC/PM2.5 ratio to obtain the hourly BC con-
centrations for 1–31 July 2016 at 48 cities in northern China.
The detailed calculation process can be found in the Supple-
ment.

The observation error covariance matrix (R), which is dif-
ficult to quantify, generally includes contributions from the
measurement error, the representation error and the forward
model error (Henze et al., 2009; Zhang et al., 2016; Cao et
al., 2018). And there is also a certain error in calculating the
BC concentration based on the BC/PM2.5 ratio. To reflect the
possibly large uncertainties of the observation, we assumed
R to be diagonal and with error of 100 %.

3.3 Optimization

Minimization of the cost function Eq. (9) is performed
through optimization. Starting from an initial guess (x equal
to 0), the forward model simulates BC concentrations at each
integration step during the time interval [t0, tp], and the ad-
joint model, which is driven by the discrepancy between sim-
ulated and observed BC concentrations, calculates the gra-
dients of the cost function with respect to the scaling fac-
tors of BC emission (Fig. 2). Subsequently, the gradients are
supplied to the L-BFGS-B optimization routine (Byrd et al.,
1995; Zhu et al., 1997) to minimize the cost function itera-
tively (Fig. 2). At each iteration, the improved estimates of
the scaling factors are implemented and the forward and ad-
joint models are integrated.

3.4 Setup of emission inversion experiment

The simulation domain in this study is northern China (105–
125◦ E, 32.25–43.25◦ N; Fig. S1), covering 41× 23 horizon-
tal grids with a resolution of 0.5◦×0.5◦ and vertically divided
into 31 layers with an integration time step of 300 s. The
National Centers for Environmental Prediction Final (FNL)
Analysis dataset at a 6 h interval is used as meteorologi-
cal input. The prior emission used here is the daily grid-
ded BC emission at three vertical levels (non-point source
on the ground, middle-elevation point source at 50 m and
high-elevation point source at 120 m) mentioned above. The
results calculated by the BC/PM2.5 ratio show that the BC
concentration in Beijing was high on 4 July 2016. So the as-
similation window is from 20:00 CST, 3 July, to 19:00 CST,
4 July 2016. The hourly BC concentrations at 36 cities dur-
ing this time interval are used for the emission inversion, and
the BC concentrations of the remaining 12 cities are used
for validation of the inversion effect (Fig. S1). The simula-
tion is initialized at 20:00 CST, 30 June; the first 3 d are set
as the spin-up time. The convergence criterion used in the
optimization is that the objective function decreases by less

Figure 3. Cost function reduction.

than 1 % in consecutive iterations. According to the maxi-
mum estimation range of the prior emissions, here the upper
and lower bounds of the scaling factors of BC emissions are
ln(1.6) and ln(0.4), respectively.

4 Results and discussion

4.1 Comparisons between the simulated and observed
concentrations

The progression of the cost function at iteration k (Jk/J0)
during the optimization procedure is shown in Fig. 3. The
cost function quickly reduces and reaches the convergence
criterion after eight iterations, with values of the converged
cost function reduced by 37 %.

Figure 4 shows the spatial distribution of observed and
simulated daily BC concentrations on 4 July 2016. In gen-
eral, the results simulated with the prior emission reflect the
distribution characteristics of BC concentration in northern
China to a certain extent, with high values mainly located
in Beijing and central and southern Hebei and low values
mainly located in Inner Mongolia and eastern Shandong.
However, the differences between the simulated and the ob-
served BC concentrations are considerable, and almost all are
over-predictions. The optimized (posterior) emissions com-
pensate for the over-predictions and largely reduce the model
biases. For instance, the model biases for BC in Beijing,
Tianjin, Shijiazhuang, Jinan, Taiyuan and Zhengzhou are re-
duced by 46 % (from 5.4 to 2.9 µg/m3), 26 % (from 6.6 to
4.9 µg/m3), 29 % (from 18.4 to 13.1 µg/m3), 20 % (from 6.6
to 5.3 µg/m3), 34 % (from 4.1 to 2.7 µg/m3) and 20 % (from
6.9 to 5.5 µg/m3), respectively (Fig. 4a, b). The results simu-
lated with the optimized emission also show improved agree-
ment with the observations over northern China with lower
root-mean-square errors and higher correlation coefficients
(Fig. 4a, b).
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Figure 4. The spatial distribution of observed and simulated daily BC concentrations on 4 July 2016. The observations (circles) are over-
plotted over model simulations with the (a, c) prior and (b, d) optimized emissions. The observations at 36 cities in (a) and (b) were used in
the assimilation, and the observations at 12 cities in (c) and (d) were not used in the assimilation. The root-mean-square error (RMSE) and
correlation coefficient (R) between observation and simulation are shown as insets. The observed BC concentrations were calculated by the
BC/PM2.5 ratio method.

It is crucial to validate the assimilation results by observa-
tions that were not utilized in the assimilation. The BC con-
centrations at 12 cities were used for validation (Fig. 4c, d).
Assimilation compensates for over-predictions, reduces the
root-mean-square errors (from 5.2 to 4.4) and improves the
correlation coefficients (from 8.6 to 8.7). The model biases
for BC in Hengshui and Yizhou are reduced by 28 % (from
7.2 to 5.2 µg/m3) and 36 % (from 3.9 to 2.5 µg/m3), respec-
tively. The improvements of the remaining 10 cities are also
notable, with values of the model biases reduced by 1 %–
20 %.

4.2 Comparisons between the prior and optimized BC
emissions

Figure 5 shows the spatial distributions of the prior and op-
timized daily BC emissions, which are at three vertical lev-
els (non-point source on the ground, middle-elevation point
source at 50 m and high-elevation point source at 120 m)
as required by the GRAPES–CUACE model. The BC emis-
sions on the ground are mostly non-point sources and at 50 m
are concentrated middle-elevation sources; therefore they are
distributed in a large area (Fig. 5a, c), while the BC emissions
at 120 m are mainly from a few high-elevation point sources,
so they are scattered in the area (Fig. 5e). It can be seen that
the distributions of optimized BC emissions at three vertical
levels are relatively consistent with those of prior emissions

(Fig. 5b, d, f). However, the optimized emissions are con-
siderably reduced (Fig. 5b, d, f). Especially for the regions
where observation sites are located, such as southern Beijing,
Tianjin, central and southern Hebei, northwest Shandong,
central Shanxi, and northern Henan, BC emissions decrease
significantly. As for the regions where observation sites are
not located, such as Liaoning and Jiangsu, BC emissions are
almost unchanged. The reason for this phenomenon is dis-
cussed in Sect. 4.3.

In order to analyse the differences between the prior and
optimized BC emissions in Beijing–Tianjin–Hebei–Shanxi–
Shandong–Henan region in more depth and detail, we calcu-
lated the ratio of the optimized emissions to prior emissions
(optimized emissions divide by prior emissions), as shown
in Fig. 6. In general, assimilation has the largest reduction
in the non-point source on the ground (Fig. 6a), followed by
the middle-elevation point source at 50 m (Fig. 6b), and the
smallest reduction in the high-elevation point source at 120 m
(Fig. 6c). This is related to the intensity of BC emissions at
three vertical levels. The intensity of BC emissions on the
ground (Fig. 5a) is about 1–2 orders of magnitude higher than
that of the middle-elevation point source at 50 m (Fig. 5c) and
the high-elevation point source at 120 m (Fig. 5e). In other
words, the BC emissions on the ground have the most signif-
icant effect on the overall cost function and therefore reduced
most during the progression of assimilation.
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Figure 5. Spatial distributions of the (a, c, e) prior and (b, d, f) optimized daily BC emissions. The emissions are at three vertical levels: (a,
b) non-point source on the ground, (c, d) middle-elevation point source at 50 m and (e, f) high-elevation point source at 120 m, as required
by the GRAPES–CUACE model.

Figure 6. The ratio of optimized emissions to prior emissions (optimized emissions divide by prior emissions). (a) Non-point source on the
ground, (b) middle-elevation point source at 50 m and (c) high-elevation point source at 120 m.
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Table 1. Anthropogenic BC emissions in China by province in
2006a and 2016b (units: Gg/year).

Province 2006 2016

Beijing 19.00 7.70 (0.41)
Tianjin 15.00 10.81 (0.72)
Hebei 137.00 97.99 (0.72)
Shanxi 139.00 69.26 (0.50)
Shandong 132.00 108.82 (0.82)
Henan 133.00 82.42 (0.62)

Total China 1811.00 1315.28 (0.73)

Note: numbers in parentheses represent emission ratios
relative to 2006. a Source: Zhang et al. (2009). b Source:
MEIC (Multi-resolution Emission Inventory for China),
http://meicmodel.org/ (last access: 14 January 2021).

The prior BC emissions used in this study are based on
statistical data of anthropogenic emissions for 2007 (Cao et
al., 2011), and the BC observations used for assimilation are
from 2016, so the ratios of the optimized emissions to prior
emissions can reflect the changes in BC emissions from 2007
to 2016 to a certain extent. From the perspective of each
province, we can see that the ratios of the optimized emis-
sions to prior emissions in Beijing, Tianjin, Hebei, Shanxi,
Shandong and Henan are 0.4–0.8, 0.4–0.7, 0.4–0.8, 0.6–0.8,
0.4–0.8 and 0.5–0.8, respectively. This indicates that the BC
emissions in these highly industrialized regions have greatly
reduced from 2007 to 2016, which is consistent with previous
studies (Zheng et al., 2018). Table 1 lists the anthropogenic
BC emissions in China by province in 2006 and 2016 and the
emission ratios of 2016 relative to 2006. According to pre-
vious research, the emission ratios of 2016 relative to 2006
are 0.41–0.82 in Beijing–Tianjin–Hebei–Shanxi–Shandong–
Henan region and 0.73 over China. It can be seen that the ra-
tios of the optimized emissions to prior emissions calculated
in this study are within a reasonable range, which also shows
that the newly constructed GRAPES–CUACE-4D-Var as-
similation system can obtain reasonable BC emissions based
on the observations.

4.3 Discussion

Although Sect. 4.1 shows that assimilation reduces the model
biases and improves all statistical values at each site, there
are still over-predictions to a certain degree. In addition to
the emission, the initial concentration is also an important
factor that affects the BC simulation. Here, we take Beijing
as an example to analyse the influence of the initial con-
centration on the BC simulation. Figure 7 shows the com-
parison of observed and simulated (with the prior and opti-
mized BC emissions, respectively) BC concentrations in Bei-
jing from 20:00, 3 July, to 19:00, 4 July 2016. At the initial
moment (20:00, 3 July 2016), the initial concentration for
simulation (11.5 µg/m3) was about 2 times higher than the

Figure 7. Comparison of observed and simulated (with the prior
and optimized BC emissions, respectively) BC concentrations in
Beijing from 20:00, 3 July, to 19:00, 4 July 2016. The observed
BC concentrations were calculated by the BC/PM2.5 ratio method.

observations (5.7 µg/m3). With such a high initial concentra-
tion, the simulated BC concentrations with prior emissions
were significantly higher than the observed concentrations
at all times. The simulations with optimized emissions com-
pensated for the over-predictions, but the BC concentrations
were still higher than the observations in the first few hours
(from 20:00, 3 July, to 02:00, 4 July 2016). And the model
bias during this time period was 5.2 µg/m3. As the influence
of the initial concentration on the simulation gradually weak-
ened, the simulated BC concentrations with optimized emis-
sions were largely reduced and much closer to the observa-
tions from 03:00 to 19:00, 4 July 2016, and the model bi-
ases during this time period also decreased, with the value of
1.9 µg/m3. This indicates that for short-term simulation, the
influence of initial concentration on the simulation is not neg-
ligible. In further work, it is also of great significance to use
the GRAPES–CUACE-4D-Var assimilation system to opti-
mize the initial concentration to improve the simulation ef-
fect.

As described in Sect. 4.2, after assimilation, the BC emis-
sions in the regions where observation sites are located de-
crease significantly, while in the regions where observation
sites are not located, such as Liaoning and Jiangsu, BC emis-
sions are almost unchanged. This may be due to the short
period of the observation data used for assimilation. In this
study, since the GRAPES–CUACE-4D-Var assimilation sys-
tem has not yet implemented parallel computing, the assim-
ilation window was set for 24 h. In such a short period of
time, the pollutants emitted from Liaoning and Jiangsu may
not have been transported to the regions where observation
sites are located, thus having little impact on the BC concen-
trations in these regions. In other words, the emissions from
Liaoning and Jiangsu have little effect on the overall cost
function, so there is little change during the progression of
assimilation. Therefore, implementing parallel computing of
the GRAPES–CUACE-4D-Var assimilation system and per-
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forming emission inversion for a longer period (i.e. 1 month)
is another important task in the future.

5 Conclusions

In this study, we developed a new 4D-Var data assimila-
tion system for the GRAPES–CUACE atmospheric chem-
istry model (GRAPES–CUACE-4D-Var) and applied it for
assimilating surface BC concentrations and optimizing its
daily emissions in northern China on 4 July 2016, when a
pollution event occurred in Beijing. The main conclusions
are as follows.

– The newly constructed GRAPES–CUACE-4D-Var as-
similation system is feasible and can be applied to per-
form BC emission inversion in northern China.

– The BC concentrations simulated with optimized emis-
sions show improved agreement with the observations
over northern China with lower root-mean-square errors
and higher correlation coefficients. The model biases
are reduced by 20 %–46 %. The validation of assimi-
lation results with observations that were not utilized
in the assimilation shows that assimilation compensates
for over-predictions, reduces the root-mean-square er-
rors and improves the correlation coefficients. The im-
provements are also notable, with values of the model
biases reduced by 1 %–36 %.

– Compared with the prior BC emissions, the optimized
emissions are considerably reduced. Especially for Bei-
jing, Tianjin, Hebei, Shandong, Shanxi and Henan, the
ratios of the optimized emissions to prior emissions are
0.4–0.8, indicating that the BC emissions in these highly
industrialized regions have greatly reduced from 2007
to 2016, which is consistent with previous studies.

In the following work, implementing parallel computing of
the GRAPES–CUACE-4D-Var assimilation system and per-
forming emission inversion for a longer period is an impor-
tant task. Apart from the emissions, the initial concentration
is also an important factor for short-term simulation. It is of
great significance to use the GRAPES–CUACE-4D-Var as-
similation system to optimize the initial concentration to im-
prove the simulation effect.

Meanwhile, several mega urban agglomerations in China
are facing atmospheric compound pollution with high PM2.5
and O3 concentrations (Li et al., 2019; Zhang et al., 2019; Xi-
ang et al., 2020; Haque et al., 2020; Zhao et al., 2020). To im-
prove air quality, it is urgent to formulate reasonable and ef-
fective emission-reduction measures. Therefore, further stud-
ies on expanding the function of the GRAPES–CUACE-4D-
Var assimilation system and taking into account factors such
as air quality standards, the proportion of emissions that can
be reduced, the economic cost and residents’ health benefits

of emission reduction are crucial for formulating optimized
pollution-control strategies for PM2.5 and O3 in China.

Code and data availability. The GRAPES–CUACE atmospheric
chemistry model used in this study was distributed by the Na-
tional Meteorological Center of the Chinese Meteorology Ad-
ministration (2021, http://www.nmc.cn) together with the Insti-
tute of Atmospheric Composition and Environmental Meteorol-
ogy of the Chinese Academy of Meteorological Sciences (2021,
http://www.camscma.cn). The model was run on an IBM Pure-
Flex System (AIX) with an XL Fortran Compiler. The code of
the GRAPES–CUACE aerosol adjoint model is available online
at https://doi.org/10.5194/gmd-9-2153-2016-supplement (An et al.,
2016). The code of GRAPES_CUACE_4D_Var_driver.F can be
downloaded as a Supplement to this article. The observations are
available online at http://www.mee.gov.cn/ (Ministry of Ecology
and Environment of the People’s Republic of China, 2021).
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