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Table 1. Sensitivity simulation overview. See detailed description in section 3.

Simulation Description Time step Number of bins

OASbins=8 Increase number of bins - 8
OASbins=3 Decrease number of bins - 3
OASbins=8,0.1×dt Increase number of bins, reduce time step 3 minutes 8
OAS0.1×dt Reduced time step 3 minutes -
OAS2×dt Not halved time step in condensation/nucleation. -
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Figure S1. Globally averaged sensitivity runs over 2008–01 to and including 2008–06. Values of Na and NNPF, are near surface averages,
that is pressure difference weighted averages up to 850hPa.

1 Sensitivities

To investigate how sensitive the results are to the structure of the scheme , we performed several sensitivity tests where we
varied the both the number of bins in the scheme and the timestep. As mentioned above, the quasi-stationary structure for
the sectional scheme was chosen over e.g. the moving-center structure because it required fewer tracers and computational
efficiency was a priority. However, it is known that the quasi-stationary structure is more prone to numerical diffusion than the5
moving-center structure.

These tests also indicate the strength of the numerical diffusion because it is known to decrease with increasing resolution
of the bins. When varying the timestep, this has been done only for the nucleation, coagulation and condensation. These runs
were performed for 1 year, where 6 months were discarded as spin up. They were all set up in the same way as the other runs in
the paper, i.e. they have nudged meteorology, except that they are initialized from a run with the default model from 2007–01 to10
2007–06. We show results from 2008–01 up to and including 2008–06. An overview of the sensitivity tests is shown in table 1.
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Figure S2. Globally averaged sensitivity runs over 2008–01 to and including 2008–06. Values of Na and NNPF, are near surface averages,
that is pressure difference weighted averages up to 850hPa.

Firstly we increase the number of bins from 5 to 8, OASbins=8, then we reduce the number of bins to 3, OASbins=3. Next, we
reduce the time step by a factor of 0.1, thus to 3 minutes, OAS0.1×dt. Note that by default, the timestep is already halved for
the condensation and nucleation code, so we also add a test for this, where the time step here is the same as for the rest of the
model, OAS2×dt. Finally, we also test the combination of increasing the time step and the number of bins, OASbins=8,0.1×dt.15

Figures S1 and S2 show the relative difference between the sensitivity runs and a corresponding control run. Note that the
difference between the figures is just that the first includes the default model for reference. The open circles show the monthly
mean relative differences. The first row shows the aerosol properties, while the second shows cloud properties. In terms of
aerosol differences, all the changes are below 5 % in terms of absolute aerosol number, Na. However, the change in NNPF and
column burden of NPF particles (c.b. SOANPF +SO4NPF), the change is as high as −12.7 % for reducing the number of bins20
(OASbins=3). On the other hand, increasing the number of bins to 8, gives a much smaller impact (∼7–8 %) and also increases
the computational cost by 15 %. Changing the time step makes a modest impact (OAS0.1×dt and OAS2×dt) results in a modest
change NPF particles of below 2 %. Figure S3 shows the NNPF concentrations globally averaged over latitude, longitude, and
over the 6-month period of the simulation for the sensitivity runs. The default model runs for the same period are added for
reference. These show that the changes between the sensitivity runs are homogeneous with height. On the other hand, the25
difference to the default model is larger near the surface, and reduced or even inversed with height.

In terms of impacts from cloud properties, the changes in the sensitivity runs are small (all below 2 %), and there is too
much noise in these short runs to draw clear conclusions. However, the changes in cloud properties are likely smaller for the
sensitivity tests than compared to the default model, especially cloud top cloud droplet number concentration (CDNC(CT)).

The changes are in general modest compared to the difference between the old and the new scheme (see Fig. S1). The30
changes due to time step are mostly minor, but the increase in particle number with increased number of bins (7–8 % for NPF
particles) indicate that numerical diffusion does play some role. As always when developing ESMs, a balance must be struck
between accuracy and keeping computational cost low.

2



102

NNPF [#/cm 3]

300

400

500

600

700

800
900

Pr
es

su
re

 [h
Pa

]
OASbins = 3
OASbins = 8
OASbins = 8, 0.1 × dt

OAS0.1 × dt

OAS2 × dt

OAS
OsloAerodef

OsloAeroimp

Figure S3. Globally averaged sensitivity runs over 2008–01 to and including 2008–06.
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Figure S4. Histogram of modelled N50−100 minus observed N50−100 for each season and EUSAAR station (Asmi et al., 2011). We use
hourly resolution and all available station data is is included. Zeppelin (ZEP), Mace Head (MHD), Aspvreten (ASP), SMEAR II (SMR),
Pallas (PAL), Kosetice (OBK), Vavihill (VHL), Melpitz (MPZ), Waldhof (WAL), Bösel (BOS), Hohenpeissenberg (HPB), K-Puszta (KPO),
JRC-Ispra (JRC), Finokalia (FKL), Jungfraujoch (JFJ), Schauinsland (SSL), Zugspitze (ZSF), Monte Cimone (CMN), BEO Moussala (BEO),
Puy de Dôme (PDD) Preila (PLA), Birkenes b (BIR), Harwell (HWL), Cabauw (CBW).
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Figure S5. Normalized root mean square error (NRMSE) for each season and each model version compared to the EUSAAR dataset (Asmi
et al., 2011). The root mean square error is normalized by the mean of the observed values.
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Figure S6. N50−100 monthly median (solid line) and percentiles (shaded, 16th to 84th) for stations with high concentrations. The plot is the
same as 3, but displaying the full range of values which were cropped in figure 3.
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Figure S7. Two dimensional density distribution plots for N50−100 between modelled values (y-axis) and EUSAAR observations (x-axis).
The left plot shows the relation for OsloAeroSec and the right for OsloAeroimp.
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Figure S8. NPF particle mass in sectional scheme from H2SO4 (SO4NPF). The plot to the left shows the average profiles over regions (global,
marine and continental). The plots to the right show the near–surface average difference between OsloAeroSec and OsloAerodef (top) and
OsloAeroSec and OsloAeroimp (bottom).
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Figure S9. NPF particle mass in sectional scheme from SOAGLV (SOANPF). The plot to the left shows the average profiles over regions
(global, marine and continental). The plots to the right show the near–surface average difference between OsloAeroSec and OsloAerodef
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Figure S10. Difference in cloud radiative effect (CRE) for OsloAeroSec − OsloAerodef (left) and OsloAeroSec − OsloAeroimp. Short
wave CRE (SWCRE, top), long wave CRE (LWCRE, middle) and net CRE (NCRE, bottom)
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Figure S11. Median (solid line) particle surface size distribution and shading from 16th to 84th percentiles for observations and models. All
data when and where observations are available is included.
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Figure S12. Spring: Median (solid line) and shading from 16th to 84th percentiles for observations and models for all valid datapoints.
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Figure S13. Summer: Median (solid line) and shading from 16th to 84th percentiles for observations and models for all valid datapoints.
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Figure S14. Autumn: Median (solid line) and shading from 16th to 84th percentiles for observations and models for all valid datapoints.
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Figure S15. Winter: Median (solid line) and shading from 16th to 84th percentiles for observations and models for all valid datapoints.
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Figure S16. Same as 8, but comparing to OsloAerodef , rather than OsloAeroimp. Two-dimentional histogram of the relation between
various factors in the original model run OsloAeroimp, and the change in number of particles from NPF, NNPF between OsloAeroSec and
OsloAerodef . The color shows the number of model grid cells which fall within the x,y-range using monthly mean files. Only grid cells
below 100 hPa are included. The y-scale is linear between ±5.
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Figure S17. Two-dimensional histogram of the relation between NNPF and various factors in the OsloAeroimp simulation. 8, The color shows
the number of model grid cells which fall within the x,y-range using monthly mean files. Only grid cells below 100 hPa are included.
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Figure S18. Two-dimensional histogram of the relation between NNPF and various factors in the OsloAeroSec simulation. 8, The color shows
the number of model grid cells which fall within the x,y-range using monthly mean files. Only grid cells below 100 hPa are included.
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