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Abstract. Large-eddy simulation (LES) provides a phys-
ically sound approach to study complex turbulent pro-
cesses within the atmospheric boundary layer including ur-
ban boundary layer flows. However, such flow problems of-
ten involve a large separation of turbulent scales, requiring
a large computational domain and very high grid resolution
near the surface features, leading to prohibitive computa-
tional costs. To overcome this problem, an online LES–LES
nesting scheme is implemented into the PALM model system
6.0. The hereby documented and evaluated nesting method is
capable of supporting multiple child domains, which can be
nested within their parent domain either in a parallel or recur-
sively cascading configuration. The nesting system is evalu-
ated by first simulating a purely convective boundary layer
flow system and then three different neutrally stratified flow
scenarios with increasing order of topographic complexity.
The results of the nested runs are compared with correspond-
ing non-nested high- and low-resolution results. The results
reveal that the solution accuracy within the high-resolution
nest domain is clearly improved as the solutions approach
the non-nested high-resolution reference results. In obstacle-
resolving LES, the two-way coupling becomes problematic
as anterpolation introduces a regional discrepancy within the
obstacle canopy of the parent domain. This is remedied by
introducing canopy-restricted anterpolation where the oper-
ation is only performed above the obstacle canopy. The test
simulations make evident that this approach is the most suit-

able coupling strategy for obstacle-resolving LES. The per-
formed simulations testify that nesting can reduce the CPU
time up to 80 % compared to the fine-resolution reference
runs, while the computational overhead from the nesting op-
erations remained below 16 % for the two-way coupling ap-
proach and significantly less for the one-way alternative.

1 Introduction

Large-eddy simulation (LES) has been used for basic re-
search of atmospheric boundary layer (ABL) phenomena us-
ing idealized model setups for decades. At present it is be-
coming an important method in applied research on realis-
tic, very detailed, and complicated flow systems such as ur-
ban ABL problems (Britter and Hanna, 2003; Tseng et al.,
2006; Bou-Zeid et al., 2009; Tominaga and Stathopoulos,
2013; Giometto et al., 2016; Buccolieri and Hang, 2019; Au-
vinen et al., 2020a). Until recent years, there were no ABL
LES models capable of modeling detailed surface structures,
such as buildings or steep complex terrain shapes in the ABL.
Nowadays, it is possible to carry out LES for complex built
areas (e.g., Letzel et al., 2008), but this is still limited to rel-
atively small areas because of the high spatial resolution re-
quirement. Concerning urban LES, Xie and Castro (2006)
have shown that at least 15 to 20 grid nodes are needed
across street canyons to satisfactorily resolve the most im-
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portant turbulent structures within the canyons. This require-
ment typically leads to grid spacings on the order of 1m.
However, the vertical extent of the LES domain should scale
with the ABL height, and the horizontal size should span over
several ABL heights in order to capture the ABL-scale turbu-
lent structures (de Roode et al., 2004; Fishpool et al., 2009;
Chung and McKeon, 2010; Auvinen et al., 2020a). To ade-
quately capture processes on the street scale and to simul-
taneously capture large ABL-scale turbulence, sufficiently
large model domains at small grid sizes are required, pos-
ing high demands on the computational resources in terms
of CPU time and memory. Moreover, the uncertainty related
to the lateral boundary conditions usually decreases as the
domain is made larger.

Many conventional continuum-based numerical solution
methods (e.g., finite-element and finite-volume methods) al-
low variable resolution so that the resolution can be con-
centrated to the area of principal interest and relaxed else-
where. However, only unstructured grid systems allow full
advantage to be taken of spatially variable resolution. Many
general-purpose computational fluid dynamics packages of-
fer unstructured grid systems, but according to our expe-
rience such solvers are usually computationally decidedly
less efficient than ABL-tailored LES models, such as PALM
(Raasch and Schröter, 2001; Maronga et al., 2015, 2020),
the Weather Research and Forecasting Model (WRF) (Ska-
marock et al., 2008) with its LES option, and the Dutch
Atmospheric Large-Eddy Simulation (DALES) (Heus et al.,
2010) that are based on structured orthogonal grid system
with constant horizontal resolution. The model nesting ap-
proach can be exploited to further speed up ABL LES mod-
els or to allow larger domain sizes without compromising
the resolution in the area of primary interest. The authors ac-
knowledge that alternative solution approaches, such as lat-
tice Boltzmann method (e.g., Aidun and Clausen, 2010; Ah-
mad et al., 2017), also offer strategies for computational effi-
ciency improvements. The presented nesting approach is pri-
marily relevant for the family of structured, finite-difference
Navier-Stokes solvers.

The idea of grid nesting is to simultaneously run a series
of two or more LES model domains with different spatial
extents and grid resolutions. In this implementation the out-
ermost and coarsest-resolution LES domain (termed “root”
domain henceforth), which acts as a “parent” to its “child”
domains, obtains its boundary conditions in a conventional
manner, whereas the nested LES domain (child) always ob-
tains its boundary condition from its respective parent do-
main through interpolation. In one-way coupled nesting only
the children obtain information from their parents. In such
a coupling strategy, the instantaneous child and parent solu-
tions can deviate within the volume of the nest. If a stronger
binding between the solutions is desired, the child solution
needs to be incorporated into the parent solution. This is
achieved in two-way coupled nesting, where the parent solu-
tions are influenced by their children through so-called “an-

terpolation” (Clark and Farley, 1984; Clark and Hall, 1991;
Sullivan et al., 1996). The term anterpolation was coined by
Sullivan et al. (1996), although the concept is older.

The child-to-parent anterpolation can be implemented us-
ing, for instance, the post insertion (PI) approach (Clark
and Hall, 1991), where the parent solution is replaced by
the child solution within the volume occupied by both do-
mains. In practice, some buffer zones where anterpolation
is omitted are necessary near the child boundaries to avoid
growth of unphysical perturbations near the child bound-
aries (Moeng et al., 2007). An example of a two-way cou-
pled nesting implemented in the WRF-LES model is given
by Moeng et al. (2007), and later successfully applied to a
stratocumulus study by Zhu et al. (2010). The WRF-LES
nesting system can also be used in one-way coupled mode
(Mirocha et al., 2013), and it has been applied in this way,
e.g., to a complex terrain study (e.g., Nunalee et al., 2014;
Muñoz-Esparza et al., 2017) and to an offshore convective
boundary layer study (Muñoz-Esparza et al., 2014). Subse-
quently, Daniels et al. (2016) introduced a vertical interpola-
tion into the WRF model, but this method is restricted to one-
way coupled nesting. Recent implementation of an immersed
boundary method has made WRF-LES with a one-way cou-
pled nesting approach applicable to obstacle-resolving LES
(Wiersema et al., 2020). In addition to WRF-LES, the numer-
ical weather prediction model ICON (Zängl et al., 2015) fea-
tures an LES mode and includes an online nesting capability
(Heinze et al., 2017). However, due to its terrain-following
coordinate system, ICON-LES cannot resolve sharp obstacle
structures.

Recently, Huq et al. (2019) implemented a purely verti-
cal nesting system into PALM in which the child and par-
ent domains are required to have the same horizontal extent.
Although this approach is useful, e.g., when the grid resolu-
tion near the surface needs to be refined to better capture the
atmosphere–surface exchange, the requirement of equal hor-
izontal domain extensions poses high demands on the com-
putational resources, limiting this approach to only academic
studies. This implementation is also limited to have a single
child domain only. For these reasons, we decided to develop
the present, more general, fully three-dimensional nesting
system in PALM. It can also be run in a pure vertical nesting
mode.

One-way coupled obstacle-resolving LES has been ap-
plied to a built environment by Nakayama et al. (2016) and
by Vonlanthen et al. (2016, 2017). The present PALM imple-
mentation has also already been demonstrated by Maronga
et al. (2019, 2020) and applied to obstacle-resolving urban
studies (Kurppa et al., 2019, 2020; Auvinen et al., 2020a;
Karttunen et al., 2020) using one-way coupling. At present
we are not aware of any research on obstacle-resolving LES
in the ABL context employing a two-way coupled nesting
approach. Through our studies, we have observed that the
application of two-way coupling in obstacle-resolving LES
can become problematic. Therefore, in addition to document-
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ing and evaluating the newly implemented nesting method in
the PALM model, this paper addresses the applicability of
the two-way coupled nesting approach in obstacle-resolving
LES.

The paper is organized as follows. Section 2 gives a brief
description of the LES mode of the PALM model system 6.0.
Section 3 presents the technical, algorithmic, and numerical
aspects of the implemented nesting. In Sect. 4 the imple-
mented nesting is evaluated for a series of test cases featuring
different kinds of boundary layer flow. Finally, Sect. 5 sum-
marizes the results and gives and outlook of future develop-
ments.

2 The PALM model system 6.0 (LES mode)

The PALM model system (Raasch and Schröter, 2001;
Maronga et al., 2015, 2020) is based on the non-hydrostatic,
filtered, Navier–Stokes equations in a Boussinesq-
approximated or anelastic form. It solves the prognostic
equations for the conservation of momentum, mass, energy,
and moisture on a staggered Cartesian Arakawa-C grid.
Subgrid-scale turbulence is parameterized using a 1.5-order
closure following Deardorff (1980) in the formulation of
Saiki et al. (2000). In its standard configuration, PALM thus
has seven prognostic quantities: the velocity components ui
(where u1 = u,u2 = v,u3 = w), the potential temperature θ ,
specific humidity qv, a passive scalar s, and the subgrid-scale
(SGS) turbulent kinetic energy e. By default, discretization
in time and space is achieved using a third-order Runge–
Kutta scheme following Williamson (1980) and a fifth-order
advection scheme following Wicker and Skamarock (2002).
The horizontal grid spacing is always equidistant, whereas
it is possible to use variable grid spacing in the vertical
direction. Often, the vertical grid spacing is set equidistant
within the boundary layer, and stretching is applied above
the boundary layer to save computational time in the non-
turbulent free atmosphere. At the lateral boundaries cyclic
conditions or more advanced in- and outflow conditions can
be employed.

Both the Boussinesq and the anelastic approximation re-
quire incompressibility of the flow. To provide this feature
a predictor–corrector method is used where an equation is
solved for the modified perturbation pressure after every
Runge–Kutta sub-time step (e.g., Patrinos and Kistler, 1977).
The method involves the calculation of a preliminary prog-
nostic velocity. Divergences in the flow field are then at-
tributed solely to the pressure term, leading to a Poisson
equation for the perturbation pressure. In the case of cyclic
lateral boundaries, the Poisson equation is solved by using a
direct fast Fourier transform (FFT) method. However, in the
case of non-cyclic boundary conditions, an iterative multi-
grid scheme is used (e.g., Hackbusch, 1985).

Parallelization of PALM is achieved by using the message
passing interface (MPI, e.g., Gropp et al., 1999) and a two-
dimensional (horizontal) domain decomposition.

PALM offers several embedded models to simulate physi-
cal processes within the urban environment. Namely, with-
out the intention of providing an exhaustive list, this em-
braces a land surface (Gehrke et al., 2020) and a building
surface model (Resler et al., 2017) to consider the surface–
atmosphere exchange of heat and moisture, a radiative-
transfer model (Krč et al., 2020) to include complex three-
dimensional mutual radiative interactions between surfaces
and plants, an indoor and building energy demand model,
an aerosol (Kurppa et al., 2019) and an air chemistry model
(Khan et al., 2020), and an embedded Lagrangian particle
model for dispersion. For a complete overview we refer to
Maronga et al. (2020).

3 Nesting system

3.1 General concept

The nesting system we have developed is based on the con-
cept of parent and child domains. Each parent domain can
enfold multiple child domains, but a child domain can, nat-
urally, only have one parent domain. The top-level domain,
also called the root domain, acts as a parent domain to child
domains at the first nesting level. The child domains at first
nesting level might have subsequent child domains for which
they then act as parent domains (cascading arrangement); see
Fig. 1. Our nesting system allows for up to 63 nested domains
plus the root domain. The implementation requires that all
child domains are always completely located inside their re-
spective parent domain. In addition, the grid spacings of a
child domain naturally have to be smaller than the grid spac-
ings of its parent domain. The grid-spacing ratios 1Xi/1xi
must always be integer-valued, although different ratios may
be used in different directions. Therefore, in nested runs the
grid stretching is only allowed in the root domain and only
above the top boundary of the highest nested domain. There
may be multiple child domains at the same nesting levels, but
overlapping child domains at the same nesting level are not
permitted. Finally, all the nest domains have to be surface-
bound, meaning that elevated child domains are not allowed.
Time synchronization is taken care of by simply selecting
the minimum of the time steps determined by each model
independently and broadcasting this time step value for all
models. Each model inputs and outputs in the same way.

In general, the system is designed as two-way coupled
nesting, in which a child domain can affect its parent domain
and vice versa. It is possible, however, to run the system in
a one-way coupled mode where no feedback from the child
domain is incorporated in its parent domain. Moreover, it is
possible to use the system as a pure vertical one-dimensional
nesting, where the lowest part of the model (e.g., the atmo-
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Figure 1. A schematic example of a nested configuration involving both cascading and parallel child domains is shown on x–y plane on the
left-hand side. On the right-hand side, a three-dimensional view of a nested child domain inside its parent domain is shown.

spheric surface layer where the dominant turbulent eddies are
usually very small) can be run as a child domain with finer
grid spacing than its parent domain that compasses the entire
boundary layer. In the case of pure vertical nesting, cyclic
boundary conditions must be set on all the lateral boundaries.
Unlike the method proposed by Huq et al. (2019), the present
method also allows a cascade of more than one child domain
in the pure vertical nesting cases.

The present nesting approach is a variant of the PI method,
in which the communication between each parent–child cou-
ple is realized via interpolations (from parent to child) and
anterpolations (from child to parent) after each Runge–Kutta
sub-step and just before the pressure solver. The latter then
ensures that mass conservation is enforced in the anterpo-
lated solution in the parent domain.

3.2 Restrictions

The current implementation poses a few restrictions for the
nested setups. Moreover, the interpolation and anterpolation
methods, which are discussed in the following sections, are
based on certain assumptions, e.g., on the grid line match-
ing between parent and child domains leading to a few more
restrictions. Altogether these restrictions are as follows:

– the child domain must always be completely inside its
parent domain, and there must be a margin of four par-
ent grid cells between the boundaries of child and parent
domains;

– parallel child domains must not overlap each other, and
there must be a margin of at least four child grid cells
between two parallel child domains;

– the domain decomposition of all child domains must be
such that the sub-domain size is never smaller than the
parent grid-spacing in the respective direction;

– buildings or any other topography or geometry must not
reach the child domain top;

– all the grid-spacing ratios must be integer-valued;

– the outer boundaries of child domains must match with
grid planes in its parent domain;

– no grid stretching is allowed in the child domains, and
in root domain it is allowed only above the top boundary
of the highest child domain.

3.3 Structure of the nesting algorithm

Ideally, the coupling actions, i.e., data transfers between
the domains, anterpolation, and interpolation, would be per-
formed after the pressure-correction step using the final
divergence-free velocity field on both parent and child. To
achieve this in the context of the pressure-correction method
employed in PALM requires a staged arrangement of the cou-
pling actions such that a child first sends data to its parent and
after receiving the data the parent anterpolates and performs
the pressure correction step. After the pressure-correction
step the parent sends data to the child, which interpolates new
boundary conditions from the received data and performs the
pressure-correction step. The purely vertical nesting method
implemented in PALM by Huq et al. (2019) features this kind
of staged structure. However, Huq et al.’s method may lead
to excessive waiting times as the child has to wait until the
parent performs the pressure-correction step and vice versa.
Moreover, the staged coupling approach becomes more com-
plicated and more inefficient when a cascade of several
nested domains is used. Therefore, Huq’s implementation al-
lows for only one child domain. The possibility to employ
cascades of child domains was an initial requirement for the
present system design, and therefore the staged coupling ar-
rangement had to be abandoned. In principle, it would be
possible to perform the pressure-correction step twice,: the
first time before the coupling actions for all domains, and the
second time for all parent domains after the coupling to make
the anterpolated fields divergence free. However, this would
be computationally very expensive, severely compromising
the benefits from the nesting. This is because the pressure
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solution is typically the most time-consuming part of the so-
lution process. To avoid this extra penalty, the coupling is
based on the preliminary prognostic velocity fields upre in
the present implementation. The sequence of the coupling ac-
tions is illustrated in Fig. 2. This choice has the consequence
that the interpolated velocity boundary conditions for a child
domain may violate the global mass balance over the child
domain such that∫
S

ρũpre ·ndS 6= 0, (1)

where the tilde symbol is the interpolation operator and
n is the unit inner surface normal vector of the child do-
main boundary S excluding the bottom boundary. This mass-
conservation error, though typically small, is eliminated in an
integral sense by adding a constant velocity correction1u

(l)
pre

on each boundary l ∈ {left, right, south, north, top}

1u(l)pre =−n(l)

∫
S
ρũpre ·ndS∫
S
ρ dS

, (2)

to the interpolated child boundary values to exactly elimi-
nate the global mass-balance error in Eq. (1). In the case of
a purely vertical nesting mode, the correction is applied only
on the top boundary and S only spans over it. This correc-
tion is made for all child domains right before the pressure-
correction step. According to our tests, 1upre is typically 3
or 4 orders of magnitude smaller than the dominant velocity
scales of the flow.

Huq et al. (2019) showed results for a zero mean-wind
convective boundary layer (CBL) case. In this case, espe-
cially if the nest-top boundary is set on a relatively low level,
unphysical overestimation of horizontal velocity component
variances easily develop if the coupling is based on upre. Huq
et al. (2019) showed that using the staged sequence of cou-
pling actions, allowing the coupling based on the final veloc-
ity field u, mostly removes the overestimation of the horizon-
tal velocity variances. We have confirmed this by temporar-
ily modifying the current implementation to adhere to Huq
et al.’s staged arrangement and simulating a vertically nested
zero mean wind CBL case similar to Huq et al.’s test case.

In the present method, the overestimation of the horizontal
velocity component variances can be mostly avoided by us-
ing the integral mass-balance forcing (Eq. 2) and further by
setting a narrow buffer zone below the top boundary in which
the anterpolation is not performed. This is described in more
detail in Sect. 3.5.

In addition to the velocity field, all other prognostic vari-
ables are also coupled, except for the SGS turbulent ki-
netic energy (e), as it depends on the resolution by def-
inition and therefore is not straightforward to couple be-
tween parent and child domains that have different resolu-
tions. The anterpolated values should be increased by some
unknown resolution-dependent factor, and the interpolated
values should be reduced accordingly. e strongly follows the

velocity gradient field, and therefore it tends to adapt to the
anterpolated velocity field on the parent side during the next
Runge–Kutta step without being anterpolated itself. Rely-
ing on this reasoning, we omit the anterpolation of e. More-
over, we assume that the local generation of e often domi-
nates its advection, implying that replacing the interpolation
of its child boundary values with simple zero-gradient condi-
tions may be acceptable. In our numerical tests we compared
the zero-gradient conditions with interpolated boundary val-
ues reduced by an estimated resolution-difference-dependent
factor. The comparisons revealed only negligible differences
in the results.

Further technical implementation issues are discussed in
Appendix A.

3.4 Interpolation (parent to child)

3.4.1 Emphasis on conservation properties

Conservation of fluxes through the nest boundaries is an es-
sential condition for a nesting algorithm. By flux conser-
vation we mean that the total flux through a nest–domain
boundary is equal to the total flux through the corresponding
plane in the parent domain. This must not be confused with
the mass-conservation error discussed in Sect. 3.3 Eq. (1),
which results from the fact that the nest boundary conditions
are interpolated from the preliminary velocity field instead of
the final divergence-free velocity field.

Earlier studies by Kurihara et al. (1979) and Clark and
Farley (1984) focused mostly on conservation of prognostic
variables but not on conservation of their advection fluxes.
Later, Sullivan et al. (1996) and Zhou et al. (2018) also
paid attention to conservation of fluxes, which according to
our observations is very important. For example, if no at-
tempt is made to minimize the flux-conservation errors of
the velocity components on the nested boundaries, the mean
flow angle across the whole system of domains may become
significantly deflected. We observed this unacceptable phe-
nomenon in an early phase of this work while experimenting
with an interpolation scheme that produces non-negligible
flux-conservation errors. Therefore, we construct the inter-
polation method such that the flux conservation errors on
the nested boundaries are minimized. In our view, the con-
servation properties are far more important than local accu-
racy at the nest boundaries. It will be shown in Sect. 3.4.2
that zeroth-order interpolations are favorable in terms of con-
servation properties, although their local accuracy is obvi-
ously lower than those of higher-order interpolations. Here,
it should be noted that increasing the order of interpolation
accuracy on the child boundary planes is irrelevant because
in all cases the solution requires a development zone (i.e., a
border margin) as it adapts to the increased resolution. There-
fore, a low-order interpolation method with acceptable con-
servation properties should be preferred.
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Figure 2. Flow chart illustrating the nesting actions in the case of three domains in cascading order. In the case of more than three domain
levels, more branches similar to the current middle branch would be added. Blue boxes represent baseline PALM actions, while the other
colors indicate nesting-specific actions. In one-way coupling only the actions indicated by pink color are invoked.

In principle, the most straightforward way to satisfy
flux conservation is to directly use the flux on the parent
grid cell face on the nested boundary and to distribute it
onto the underlying child grid cell faces akin to the finite-
volume method. However, PALM is based on the finite-
difference method, and thus its architecture does not sup-
port this method. Therefore, it is necessary to construct an
interpolation procedure that is at least approximately flux-
conservative.

3.4.2 General conservation considerations

Before laying out the new interpolation procedure in
Sect. 3.4.3, the earlier developments are reviewed, and their
merits and weaknesses are discussed in this section.

We first consider the work by Kurihara et al. (1979), who
required conservation of prognostic variables in the form

8I1SI =
∑

(φi1si) for all i within the parent grid cell I,
(3)

where1SI and1si are the face areas of the parent and child
grid cells on the nested boundary and

∑
1si =1SI . Here

the child variables and indices are denoted by lowercase let-
ters and the parent variables and indices are indicated by
uppercase letters. Clark and Farley (1984) later applied this
condition to both interpolation and anterpolation and called
it the reversibility condition. The reversibility condition can
also be written as

̂̃φ(8)=8, (4)

where the tilde is the interpolation operator and the hat is
the anterpolation operator. Based on this condition, Clark
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and Farley (1984) derived a quadratic interpolation scheme
that forms a reversible pair with their anterpolation scheme.
This reversibility guarantees the mass-flux conservation (in
incompressible flows). However, it does not guarantee con-
servation of other fluxes, consisting of products of the ad-
vected variable and advective velocity component. As re-
cently noted by Zhou et al. (2018), the conservation of other
fluxes is violated if both advective velocity component and
advected variable are interpolated using the Clark and Farley
scheme. Although not mentioned by Zhou et al. (2018), this
actually applies to any interpolation scheme higher than the
zeroth order due to the nonlinearity of the advection terms.
Instead of applying the reversibility requirement, Zhou et al.
(2018) require global conservation of both prognostic vari-
able φ and its resolved-scale turbulent flux 〈u(N)′φ′〉 through
the boundary as

〈φ〉b = 〈8〉b, (5)

〈u(N)′φ′〉b = 〈U
(N)′8′〉b, (6)

where the superscript (N) refers to a boundary-normal ve-
locity component and 〈·〉b denotes spatial averaging over the
child domain boundary. It is straightforward to show that if
Eq. (5) holds, the flux conservation condition Eq. (6) can be
also be written for the total flux as

〈u(N)φ〉b = 〈U
(N)8〉b. (7)

We shall study the flux conservation using this condition in-
stead of Eqs. (5) and (6).

In order to ensure flux conservation for all prognostic vari-
ables, Zhou et al. (2018) chose to only use the Clark and Far-
ley method for the advective velocity component, and for all
advected variables they used the simple zeroth-order method:

φi =8I for all i within the parent grid cell I. (8)

Obviously this zeroth-order interpolation also satisfies the
reversibility condition Eq. (4) in addition to Eq. (5). This
choice readily satisfies the flux-conservation condition for all
variables. However, in cases with even-valued grid-spacing
ratios, Eq. (8) cannot be applied to the velocity components
that are in staggered positions relative to u(N) and U (N) on
the boundary plane. These velocity components are denoted
by u(S) and U (S). Equation (8) is not applicable in this case
because the odd number of child grid u(S) nodes cannot be
evenly associated to the surrounding U (S) nodes; see Fig. 3.
The method by Zhou et al. (2018) is indeed strictly limited to
odd-valued grid-spacing ratios.

3.4.3 Construction of an approximately
flux-conservative method

In our view, the limitations of the method by Zhou et al.
(2018) are too restrictive. However, we were not able to find
any alternative zeroth-order interpolation that would exactly

Figure 3. Staggered velocity component nodes in cases of odd (3)
(a) and even (4) (b) grid-spacing ratios. The staggered velocity com-
ponent nodes are shown as arrows: thick arrows are for the par-
ent grid, and thin arrows are for the child grid. The parent scalar
grid cell faces are drawn with solid lines, and the corresponding
child grid cells are drawn with dotted lines. Locations of the corre-
sponding parent grid scalar nodes are shown as black dots. The blue
color indicates the left-hand parent grid node, and red indicates the
right-hand node. In (a) the child grid values could be obtained from
Eq. (8), which cannot be applied to (b). The violet-colored child
grid nodes in (b) receive the averaged values according to Eq. (9).

satisfy the condition Eq. (7) for u(S) and also be applicable to
even-valued grid-spacing ratios. Instead, we found a zeroth-
order interpolation that approximately satisfies the condition
Eq. (7) for u(S), as will be shown below. This interpolation
reads as follows:

u
(S)
i =



U
(S)
I for grid nodes i co-located with

a parent grid node I in the
direction of the interpolation;

1
2

(
U

(S)
I−1+U

(S)
I

)
for all grid nodes i between

parent grid nodes I − 1 and I.

(9)

This interpolation is also applicable for u(S) in cases of even-
valued grid-spacing ratios since the child grid nodes between
the parent grid nodes need not to be associated with the sur-
rounding parent grid nodes, see Fig. 3.

In another deviation from the Zhou et al. (2018) method,
we do not employ the quadratic scheme of Clark and Far-
ley (1984) at all. The reason is that in PALM the interpola-
tion algorithm has to cope with complex geometries, and the
application of such a complicated wide stencil interpolation
scheme might become excessively cumbersome. Instead, we
use Eq. (8) for the advective velocity component u(N), Eq. (9)
for the advected components u(S), and Eq. (8) for all other ad-
vected variables. Equation (9) is also used for the staggered
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velocity components in cases of odd-valued grid-spacing ra-
tios even though Eq. (8) would also be applicable in such
cases.

As stated above, the flux conservation condition is satis-
fied approximately for u(S) for both odd- and even-valued
grid-spacing ratios by using Eq. (9) for u(S) and Eq. (8) for
u(N). As an example and for the sake of clarity (but without
any loss of generality), we demonstrate the spatially averaged
fluxes of v and V components for a nested domain boundary
and assume that the boundary-normal direction is x. The ve-
locity components in the x direction are u and U . Within the
advection scheme, the advective u velocity for the flux is in-
terpolated linearly to the flux point of v as (uj−1+ uj )/2.
This becomes simply UJ−1 for those child flux points of v
that are located between VJ−1 and VJ and (UJ−1+UJ )/2
for those v flux points coinciding with VJ . Let us begin by
applying the chosen interpolation technique to an extremely
simplified example with only two U grid cells along the left
nest boundary. Then the y-averaged flux 〈uv〉y (we omit the
z averaging at this stage) consists of only one V node J in the
parent grid. Let the integer-valued grid-spacing ratio in the
y direction be Ry = 4. We also omit the SGS fluxes, which
are assumed to be small, as in the entire discussion above.
With these choices, 〈uv〉y consists of seven child grid nodes
as follows:

〈uv〉y =
1
7

(
3UJ−1

VJ−1+VJ

2

+
UJ−1+UJ

2
VJ + 3UJ

VJ +VJ+1

2

)
. (10)

The first term represents fluxes from those child flux points
lying between VJ−1 and VJ , the second term is the flux at
the child flux point coinciding with VJ , and the last term is
a similar contribution as the first term but from the child flux
points lying between VJ and VJ+1. Equation (10) can be re-
arranged as follows:

〈uv〉y =
1
7

[
4
UJ−1+UJ

2
VJ ]

+ 3
(
UJ−1

2
VJ−1+

UJ

2
VJ+1

)]
, (11)

where we can identify the factor 4 in the inner term as Ry
and the factor 3 in the edge terms as Ry−1. This can be gen-
eralized to an arbitrary integer Ry and to an arbitrary number
of parent grid nodes across the boundary Ny = Jn− Js + 1.
By doing so, and by also incorporating the z averaging, we
obtain

〈uv〉b =
1

[Ry(Ny + 1)− 1]Nz

·

[
Ry

Jn∑
J=Js

Kt∑
K=Kb

UJ−1,K +UJ,K

2
VJ,K + (Ry − 1)

·

Kt∑
K=Kb

(
UJs−1,K

2
VJs−1,K +

UJn,K

2
VJn+1,K

)]
.

(12)

On the parent grid, the correspondingly averaged advection
flux of V is (as expanded by Ry for easier comparison)

〈UV 〉b =
1

RyNyNz
Ry

Jn∑
J=Js

Kt∑
K=Kb

UJ−1,K +UJ,K

2
VJ,K .

(13)

Here, Nz =Kt −Kb+1 and (Kb, . . .,Kt ) is the vertical par-
ent grid index range covering the nest boundary. Clearly
Eqs. (12) and (13) are not exactly equal because of the addi-
tional edge terms in Eq. (12) containing VJs and VJn+1, and
because the denominator of Eq. (12) deviates from RyNyNz.
It is important to note, however, that 〈uv〉b−〈UV 〉b tends to-
wards zero as Ny becomes large. In typical applications, the
order of magnitude of Ny is hundreds, making the flux con-
servation error negligibly small. Moreover, if we can assume
that

1
Nz

Kt∑
K=Kb

(
UJs−1,K

2
VJs−1,K +

UJn,K

2
VJn+1,K

)

≈
1
Ny

Jn∑
J=Js

1
Nz

Kt∑
K=Kb

UJ−1,K +UJ,K

2
VJ,K , (14)

which is a reasonable assumption in many cases, then
〈uv〉b−〈UV 〉b ≈ 0, even with small values of Ny .

3.4.4 Effects of the advection scheme on flux
conservation

Above, the flux conservation was discussed generally with-
out taking into account the effects of the actual discretization
scheme employed in the advection algorithm. In this subsec-
tion, a mismatch of the advection term approximations on
the child and parent sides in PALM is first identified and
discussed, and subsequently a method to reduce the flux-
conservation error resulting from this mismatch is proposed.

In Sect. 3.4.3 it was assumed that the advected parent grid
variable values on the child boundary (VJ,K in Eqs. 12 and
13) are equal to the values used for the fluxes in the advec-
tion term computation. This is not the case in PALM, as they
are interpolated onto their flux points using the fifth-order
scheme by Wicker and Skamarock (2002). Here, it is impor-
tant to understand that the interpolation onto the flux point
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in the advection scheme is a separate procedure from the
parent-to-child interpolation, and it is performed in a differ-
ent phase of the time step cycle (Fig. 2) in the prognostic
equation step. In PALM, the fifth-order interpolation is not
employed at the boundaries (except at the cyclic boundaries),
instead a so-called advection scheme degradation procedure
is utilized. The degradation procedure entails degrading the
flux-point interpolation within the advection scheme on first
two layers of nodes. The first-order upwind scheme is applied
on the first layer, and the third-order Wicker and Skamarock
(2002) scheme is applied for the second layer. This way, only
one layer of boundary ghost points is needed at the bound-
ary. Technically, three grid layers are allocated in PALM for
boundary ghost points, but using all of them at child bound-
aries would lead to no gain in accuracy as the second and
third layers would be just copies of the first layer due to the
zeroth-order parent-to-child interpolation.

The first-order upwind scheme makes the advected values
on child-boundary flux points independent of the child solu-
tion itself if the local flow direction is into the child domain.
This is important from a flux-conservation point of view as
the flux into the child domain should be entirely controlled by
the parent solution. On the other hand, the first-order upwind
scheme leads to values on the child boundary flux points that
may differ from those on the corresponding grid plane on
the parent side as those are interpolated with the fifth-order
scheme. Therefore, additional flux-conservation errors may
be generated.

We have not found any way to totally eliminate the result-
ing additional flux-conservation error, but we can reduce it in
the following way. Instead of using the original parent grid
values in the parent-to-child interpolation, we replace them
with values pre-interpolated (Fig. 4, phase 1) onto the parent
flux points using a scheme that is higher than the first or-
der and use these values in the parent-to-child interpolation.
From here on, we refer to this pre-interpolation as transfer to
boundary plane (TBP). As a result, the formally first-order
upwind advection scheme becomes the selected higher-order
scheme if the local flow direction is into the child domain.

The TBP must not employ more than one parent grid layer
behind a child domain boundary because the child has no
information about the parent domain geometry outside the
first parent grid layer. An interpolation stencil reaching fur-
ther away could penetrate a vertical wall leading to erroneous
interpolation. Therefore, the best available choice is to sim-
ply use the average of the parent grid values on both sides
of the child domain boundary, i.e., a second-order interpo-
lation. Obviously it is different from the fifth-order scheme,
but we argue that the difference between values interpolated
onto the boundary plane using the fifth-order and second-
order schemes can be expected to be smaller than the dif-
ference between those interpolated using the fifth-order and
first-order schemes. Our numerical tests support this argu-
ment.

On the top boundary there is no geometry, and hence
we can use a wider TBP stencil there. We ended up us-
ing the third-order Wicker and Skamarock (2002) scheme
there for the TBP because in our numerical tests it yielded
almost indistinguishable results from the more complicated
and more communication-intensive fifth-order scheme. Note
that the TBP reduces the flux-conservation error only on
those boundary regions where the flux is into the child do-
main.

The sequence of interpolation operations is illustrated in
Fig. 4 using the left child boundary as an example. Phase 1
operations belong to the TBP, and phase 2 operations belong
to the actual parent-to-child interpolation using Eqs. (8) and
(9). Note that TBP is not applied to the boundary-normal ve-
locity component u(N).

We evaluated the flux-conservation error in a simple test
run modeling a horizontally homogeneous slightly convec-
tive boundary layer over flat terrain with capping inversion
at z= 450m. The constant kinematic surface heat flux is
0.025Kms−1, and the wind is driven by the geostrophic
balance with a geostrophic mean wind angle of 11◦ rel-
ative to the x axis. Within the boundary layer the mean
wind angle is close to 40◦, making the u and v compo-
nents roughly equal to each other on average. The root
grid dimensions are 256× 256× 48 in the x, y, and z di-
rections, respectively, with isotropic grid spacing of 12m.
The nest domain is placed in the middle of the root do-
main, and its grid dimensions are 256× 256× 64. The nest
grid spacing is isotropic 6m, thus Rx = Ry = Rz = 2. Pe-
riodic boundary conditions are given on the lateral root
boundaries. The u and v flux-conservation errors are eval-
uated for the left nest boundary for which Ny = 128 and
Nz = 32. The relative errors (〈uu〉b−〈UU〉b)/〈UU〉b and
(〈uv〉b−〈UV 〉b)/〈UV 〉b fluctuate in time within ±3%,
with an average of 0.04% and root-mean-square value of
1.7% for (〈uu〉b−〈UU〉b)/〈UU〉b, and 0.02% and 0.6%
for (〈uv〉b−〈UV 〉b)/〈UV 〉b, respectively. It is expected that
with larger grid dimensions these errors will become even
smaller.

According to our numerical tests presented in the Sect. 4,
the proposed zeroth-order interpolation method, i.e., Eqs. (8)
and (9) together with TBP, has proven to be fully sufficient
and remains the only nesting interpolation method imple-
mented in PALM. We have also considered an alternative
interpolation approach for the advected variable based on tri-
linear interpolation with a specific reversibility correction.
Although it is not implemented, a short discussion is pro-
vided in Appendix B.

3.5 Anterpolation (child to parent)

Anterpolation is used to feed the child domain solution back
to its parent domain. Generally, anterpolation consists of fil-
tering the fine-grid child solution φi,j,k and mapping it to the
parent domain grid. We choose to employ the anterpolation
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Figure 4. A schematic illustration of the interpolation operations on the left child boundary as an example. The child grid nodes on the left
side are boundary ghost nodes. Phase 1 operations belong to the TBP, and phase 2 operations belong to the actual parent-to-child interpolation
using Eqs. (8) and (9). Filled blue symbols denote intermediate values on the boundary plane (flux plane) resulting from the TBP. Filled red
symbols denote the final boundary condition values for the child boundary. In this example, u is u(N), while v and w are u(S).

scheme proposed by Clark and Farley (1984), which con-
sists of simple averaging over one parent domain grid vol-
ume around the parent grid node of the variable in question
corresponding to top-hat filtering, viz.

φ̂I,J,K =
1

NI,J,K

i2(I )∑
i1(I )

j2(J )∑
j1(J )

k2(K)∑
k1(K)

φi,j,k. (15)

The original parent solution 8I,J,K is replaced by the anter-
polated solution in the domain of overlap. Here, i,j,k and
I,J,K are the child and parent grid indices, respectively,
and the hat is the anterpolation operator. The summation in-
dex limits, i.e., the span of the anterpolation cell i1(I ), i2(I ),
j1(J ), j2(J ), k1(K), and k2(K), are pre-computed during
the initialization, and they depend on the grid configuration
and the variable in question; i.e., the staggered velocity com-
ponents have different index limits to the grid-cell-centered
scalars. Note that for the velocity components, the anterpola-
tion volume is reduced to the grid-cell face on which the ve-
locity component is defined. This means that the upper index
limit in the direction of the velocity component is reduced to
the lower one, for instance i2 = i1 for u, because the coor-
dinates of the velocity component node in the respective di-
rection in the parent and the child readily coincide, and thus

there is no need for anterpolation in this direction. NI,J,K is
the number of child domain values used for anterpolation at
a given parent grid location and is pre-computed during the
initialization as

NI,J,K = [i2(I )− i1(I )+ 1] ·
[
j2(J )− j1(J )+ 1

]
· [k2(K)− k1(K)+ 1] . (16)

Note that due to the staggered grid, four sets of the index
limits and NI,J,K are pre-computed and stored: one for each
velocity component and one for all scalars. Generally, the
anterpolation cells can be spanned in more than one way.
We define the anterpolation cells similarly to Clark and Far-
ley (1984) in order to ensure the reversibility discussed in
Sect. 3.4.2. For scalar variables (non-staggered variables) the
anterpolation cell spans Xi ±1Xi/2, where Xi (i = 1,2,3)
are the coordinates of the scalar node in the parent grid.
For the velocity components (staggered variables), for exam-
ple for u, the anterpolation cell spans X1, X2±1X2/2, and
X3±1X3/2, where Xi are the coordinates of the staggered
u node in the parent grid.

Buffer zones where the anterpolation is omitted are ap-
plied next to the child domain boundaries (except the bot-
tom boundary). The main purpose of the buffer zones is to
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avoid an unstable feedback loop between the anterpolation
and interpolation. The default width of these buffer zones is
two prognostic grid nodes. The user may choose a different
value for the buffer width, but the minimum allowed width
is one parent grid spacing. This is because the layer of nodes
nearest to the child boundary is directly used in the interpo-
lation and using an anterpolated value for interpolation leads
to a strongly unstable behavior. The buffer zones are com-
parable to the relaxation zones applied in the nesting system
of the WRF-LES model (Moeng et al., 2007). In the WRF-
LES nesting system the anterpolation is under-relaxed within
these zones such that the under-relaxation coefficient varies
linearly across the relaxation zones, which are five grid spac-
ings wide. As mentioned in Sect. 3.3, the buffer zone below
the top boundary also reduces the overestimation of the hor-
izontal velocity variances observed in zero mean wind CBL
tests in a purely vertical nesting mode. According to these
tests in a purely vertical nesting mode, simulation results are
not particularly sensitive to the extent of the vertical down-
ward shift of the upper edge of the anterpolation domain.

Canopy-restricted anterpolation

The anterpolation algorithm is implemented in the PALM
model with a feature that enables its application in a spatially
selective manner such that the operation is only performed
within the computational domain that is above a user-defined
vertical threshold. This practice is discovered to resolve com-
plications that arise when two-way coupled nesting is applied
in obstacle-resolved LES simulations where the anterpolated
solution within the obstacle canopy introduces discrepancies
in the coarser parent solution. Thus, we label this approach
canopy-restricted (CR) anterpolation, and the coupling is re-
ferred to as two-way CR. The necessity of this anterpolation
strategy is motivated and its effectiveness demonstrated in
Sect. 4.2.3 where nesting is applied to obstacle-resolved LES
test case.

4 Numerical experiments

In order to evaluate the nesting strategy, show its benefits,
and point out its limits, we performed a series of nested
model simulations for different grid-spacing ratios and re-
spective non-nested reference simulations for different at-
mospheric situations. The idea is not to mainly validate
the PALM model against experimental data but instead to
systematically compare the nested-domain results to corre-
sponding non-nested fine- and coarse-grid reference results
and to show that the nested-domain solutions are closer to
the fine-grid reference solutions than the coarse-grid refer-
ence solutions. PALM has been already evaluated for various
ABL flows against measurement data (Letzel et al., 2008).
Nevertheless, we show one comparison against wind tunnel
data in Sect. 4.2.2. Furthermore, the idea is not to present grid

convergence studies since the grid convergence of the PALM
model has been demonstrated previously, e.g., for the con-
vective boundary layer by Hellsten and Zilitinkevich (2013).

We simulated a homogeneously heated flat-terrain con-
vective boundary layer and a purely shear-driven flat-terrain
boundary layer. Further, to investigate the performance of the
grid nesting in more complex situations where non-flat to-
pography is present, we performed two-staged nested sim-
ulations for a neutrally stratified flow over a smooth three-
dimensional hill and will compare the results against wind
tunnel data. These three test cases were simulated only
employing the two-way coupling. Second, we simulated a
neutrally-stratified urban boundary layer flow over a regular
staggered arrangement of building cubes using one- and two-
staged nesting, and will compare the nested simulation re-
sults to corresponding non-nested fine- and coarse-grid sim-
ulation results. Details concerning the different simulation
setups are given in their respective sections. Note that for
the sake of simplicity velocity components will hereafter be
addressed by lower case variable names only, regardless of
whether they refer to the flow in the parent or the child do-
main.

4.1 Convective boundary layer

The nesting method is first evaluated for a pure convective
boundary layer (CBL) with zero mean wind. We set up one
child domain that is centered within the parent domain. For
the root domain, cyclic lateral boundary conditions were set.
A homogeneous and time-constant surface sensible heat flux
of 0.1Kms−1 was prescribed. The simulation was initialized
with a potential temperature profile that increases linearly
with height at a lapse rate of 0.3K/100m. The root model do-
main size is 10.2km×10.2km×3.0km in the x, y, and z di-
rections, respectively, with an isotropic grid spacing of 20m.
The top of the child domain is set to be within the middle part
of the CBL, and the domain size is 2.5km×2.5km×0.48km
in the x, y, and z directions, respectively, with an isotropic
grid spacing of 10m, resulting in a grid-spacing ratio of 2. In
order to examine how turbulence statistics behave for differ-
ent grid-spacing ratios between parent and child in the CBL,
we additionally run nested simulations with grid-spacing ra-
tio of 3 and 4 by increasing the isotropic grid spacing in the
parent domain to 30m and 40m, respectively. Non-nested
coarse- and fine-grid reference simulations were carried out
corresponding to the nested simulations with different grid-
spacing ratios. The simulated time was 4 h for all convective
cases. Data analysis started after 2 h of simulated time when
model spin-up effects are not present any more and the sim-
ulations reached steady-state conditions. In order to perform
a spectral analysis of time series data, the time step was held
constant at 1.0s in all convective simulations during the data
analysis period.

Figure 5a shows an instantaneous horizontal cross sec-
tion of the w component at a height of 40m for the par-
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Figure 5. Instantaneous horizontal (a) and vertical (b) cross section
of w after 4h of simulated time for the grid-spacing ratio case 2.
The horizontal cross section is given at a height of 40m. The black
box indicates the lateral and top boundaries of the child domain.
The white line indicates the y position of the vertical cross section
of w shown in (b). The vertical axis in (b) is normalized with the
horizontal mean boundary layer depth zi. Note that only part of the
parent domain is shown for the sake of visibility.

ent and child (overlaid) domains for the grid-spacing ratio
2. A hexagonal pattern of convective cells with strong up-
drafts and weaker downdrafts is visible, as can be typically
observed in LES. The transition between parent and child ap-
pears smooth and the flow structures are continuous in terms
of shape and amplitude, while within the inner part of the
child domain more fine-scale structures can be observed with
slightly stronger updrafts and downdrafts, as also reported
by Moeng et al. (2007). Furthermore, Fig. 5b, showing an
instantaneous vertical cross section for the w component,
also depicts how the updrafts and downdrafts are consistently
maintained across the child boundary without any obvious
impact on the turbulent structures.

Figure 6 shows horizontally- and time-averaged vertical
profiles of potential temperature θ , vertical turbulent heat
flux

〈
w′θ ′

〉
, variances of horizontal and vertical velocity com-

ponents, and the skewness of the vertical velocity component
w, being one of the most grid-sensitive quantities (Sullivan
and Patton, 2011). The profiles of 〈θ〉 indicate a well-mixed
CBL. With increasing grid-spacing ratio the corresponding
parent and coarse-grid simulations deviate from the fine-grid
reference, particularly near the surface and within the inver-
sion layer, while the child results adhere well with the non-
nested fine-reference simulation, indicating that the profiles

of 〈θ〉 in the child domains are rather independent of the par-
ent grid for the employed grid spacings.

The heat flux profiles in the child and parent simulations
decrease linearly with height within the CBL and are in
good agreement with the fine-reference simulation. For the
parent simulation we note the near-surface kink in the heat
flux (see Fig. 6c for a close-up view). Moeng et al. (2007)
observed a similar kink in the heat flux and attributed it
to inaccuracies in the statistical evaluation of the heat flux,
more precisely, to errors that arise from interpolation from
a mass- to a height-coordinate system. However, to evalu-
ate fluxes PALM does not apply any interpolations but uses
directly the resolved- and subgrid-scale fluxes as calculated
in the advection scheme and the subgrid model, respectively,
and thus interpolation errors cannot explain the kink in this
case. Instead, we attribute the kink in the parent domain
to the anterpolation from the fine child solution. In simu-
lations with different vertical grid spacing, the vertical gra-
dients of 〈θ〉 within the unstable near-surface layer are dif-
ferently resolved, resulting in slightly different near-surface
temperatures, as it can, e.g., be observed between the fine-
and coarse-reference simulations in Fig. 6a. This indicates
that the parent simulation will yield slightly different 〈θ〉 pro-
files than the child simulation. After the anterpolation is per-
formed, the parent solution is replaced by the underlying
child solution, where the near-surface vertical gradients of
〈θ〉 in the parent domain partly deviate from the ones the
model would create without feedback from the child domain,
i.e., the near-surface 〈θ〉 profile in the parent is not in equilib-
rium with the applied surface boundary condition any more.
In the following time step the parent model tries to re-adjust
the post-inserted 〈θ〉 to the vertical gradients as being present
without feedback from the child, altering the heating rates
and thus the near surface vertical gradients of the heat flux,
which in turn becomes visible as near-surface kink. In fact,
we verified this hypothesis in a test case by using identical
vertical grid spacing in parent and child. In this case, no kink
in the vertical heat flux was visible any more (not shown).

The variances of the horizontal and vertical velocity com-
ponents, as well the skewness of the vertical component, de-
pend strongly on the grid spacing as the coarse- and fine-grid
reference simulations show, where the variances (skewness)
become smaller (larger) for increasing grid spacing. The par-
ent simulation agrees well with the coarse-resolution simu-
lation, indicating that the anterpolation changes the parent
flow field only marginally. The variances and skewness in
the child simulations agree with the fine-reference profiles,
except for the upper regions of the child domain where the
variances are slightly overestimated. The child profiles are
almost independent of grid-spacing ratio and are close to the
reference simulation profile. This indicates that the child so-
lutions are almost independent of the chosen grid-spacing ra-
tio in the studied cases.

Although there is no mean horizontal advection in the
zero-mean wind CBLs, spatially and temporally local hori-
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Figure 6. The 30 min time-averaged and horizontally averaged profiles of (a) 〈θ〉 and (b)
〈
w′θ ′

〉
. (c) A close-up view of 〈θ〉 and

〈
w′θ ′

〉
. (d)

Variance of the horizontal velocity component, (e) variance of the vertical velocity component, and (f) skewness of the vertical velocity
component after 4 h of simulated time. Note the second upper abscissa in (c). Profiles are shown for the grid-spacing ratio of 2, 3, and 4
for the respective child domains, indicated by the respective numbers. All of these child domains have the same resolution as the fine-grid
reference simulation. The corresponding profiles from the coarse-grid reference simulations for the 20m, 30m, and 40m grid spacing are
indicated the same. For the sake of clarity, the resulting profiles for the parent domain are only shown for the grid-spacing ratio of 2. Angle
brackets indicate a horizontal average over the domain.

zontal advection always takes place, and therefore flow struc-
tures are advected locally from parent to child (and vice
versa). Therefore, advected flow structures may need a cer-
tain fetch to adjust to the changed grid spacing. In order
to get an idea of how much distance from the lateral child
boundaries is required to observe similar turbulence proper-
ties as in a non-nested fine-resolution reference simulation,
we performed a spectral analysis. Therefore, we sampled
time series of turbulent kinetic energy (TKE) and θ at dif-
ferent locations inside the child domain and calculated fre-
quency spectra from the sampled time series. Subsequently,
we averaged spectra over all sampling locations with the
same distance from the lateral child boundaries. Overall, we
calculated spectra inside the child domain at locations 75,
100, 200, 300, and 500m away from the lateral boundary.
It should be noted that transforming frequency spectra into
wave number spectra using Taylor’s hypothesis in order to
directly link spectral information and grid spacing is not
strictly correct in this case where we have no background
wind; nevertheless, we will assume that frequency and wave
number space are connected, i.e., that large frequencies be-
long to small spatial scales and vice versa. Figure 7 shows the
resulting frequency spectra, as well as corresponding spec-

tra from fine- and coarse-grid reference simulations. As ex-
pected, the coarse-resolution spectra exhibit less spectral en-
ergy at larger frequencies compared to the child and fine-
resolution spectra. This is due to the larger filter length as-
sumed for the subgrid model removing more energy at larger
spatial scales and thus also affecting smaller frequencies. The
child spectra agree well with the fine-reference spectra, espe-
cially for the grid-spacing ratio case 2, where even locations
close to the lateral boundaries show good agreement with the
reference. We attribute this to the nature of the CBL, where
turbulence is mostly produced locally by buoyancy and hor-
izontal advection is almost negligible, and thus turbulence
is almost unaffected by any transport from the boundaries.
For the grid-spacing ratios of 3 and 4 the differences are also
generally small, but locations close to the lateral boundaries
show slightly smaller spectral densities at larger frequencies,
indicating that for larger grid-spacing ratios the flow needs
a fetch of a few tens of meters in a purely buoyancy-driven
boundary layer to adjust to the finer grid spacing.

Even though the child simulations yield turbulence pro-
files, spectra, and instantaneous flow patterns similar to the
fine-grid reference simulation for a pure buoyancy-driven
flow, the nested simulation nevertheless creates side effects
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Figure 7. Frequency spectra of the TKE (a, c, e) and θ variance (b, d, f) inside the child domain for the grid-spacing ratio of 2 (a, b), 3 (c,
d), and 4 (e, f). The colored curves represent spectra taken at different distances away from the lateral child boundaries. Furthermore, spectra
for fine-grid (and corresponding coarse-grid) reference simulations are displayed. TKE and θ were sampled at z= 120m.

on the flow which appear as a secondary circulation (SC).
This SC is not caused by a violation of mass conservation
that has been discussed in Sect. 3.4. Figure 8 shows the 5 h
time-averaged w component at the middle part of the CBL in
a homogeneously heated nested simulation. In order to com-
pute the 5 h time average, we continued the simulation with
grid-spacing ratio of 2 for a further 3 h. Within the region
of the nested child domain, a mean updraft can be observed,
which is in the range of 0.4–0.9 ms−1 and extends through-
out the entire depth of the CBL (not shown). At the child
domain boundaries and outside the child domain region the
flow subsides on average and horizontally directed branches
at the upper and lower parts of the CBL occur, giving the
overall picture of a SC. The strength of this SC, indicated

by the amplitude of the mean updraft, is on the order of the
strength of SCs observed in previous simulations over ideal-
ized stripe-like surface heterogeneities (Sühring et al., 2014)
and even exceeds the strength of SCs observed in simulations
over realistic surface forms (Maronga and Raasch, 2013).

SCs develop above surface heterogeneities mainly due
to differential surface heating of the air, resulting in mean
updrafts and downdrafts over the stronger and less-heated
patches, respectively. However, since we prescribe the same
surface sensible heat flux in the parent and the child simula-
tions, differential surface heating cannot be the reason for the
SC in the nested simulation. Moeng et al. (2007) observed a
temperature bias in their child domain that led to mean ver-
tical motion to compensate the temperature bias. They ob-
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Figure 8. Horizontal cross section of 5 h time-averaged vertical ve-
locity at z= 400m in a nested simulation with a grid-spacing ratio
of 2. The black box indicates the location of the child domain.

served temperature biases that go either way, i.e., a too cold
or a too warm child domain, which they attributed to a nested
child domain of too small horizontal extent. If only a few up-
drafts or downdrafts are resolved in the child domain, the
vertical transport is dominated by these updrafts or down-
drafts, and thus a warmer or cooler CBL can be quickly pro-
duced in the child domain, respectively. They showed that
for larger horizontal child domain size the temperature bias
and thus the associated vertical motion vanished. However,
they only considered instantaneous differences between par-
ent and child, meaning that the temperature bias is a result
of insufficient sampling of the large updrafts and downdrafts
rather than an inherent feature of the nesting which can only
be observed after time-averaging. In our case the SC becomes
visible only after considerable time-averaging. The updraft
branch of the secondary circulations is always located within
the child domain for larger child domain extensions as well.
We hypothesize that this SC is triggered by a slightly differ-
ent divergence of the vertical heat flux between the region oc-
cupied by the child domain and the remaining parent domain
due to different grid spacing. It might be impossible to elim-
inate because a higher resolution better represents the turbu-
lent mixing, and thus differences between the parent and the
child solutions are to be expected in general.

Even though this inherent artificially induced SC only ap-
pears when the flow is averaged over a longer time under
quasi-stationary conditions (no diurnal cycle, no change in
the mean wind, etc.), nested simulation results should be in-
terpreted carefully in terms of SCs. In particular, since the
strength of the artificial SC is on the order of “real-world”
circulations over heterogeneous terrain, these two may be-
come superimposed, altering the pattern of the vertical trans-
port of sensible and latent heat. Although we did not succeed

in proving our hypothesis, we encourage other researchers to
look for the existence of such SCs in any nested models by
analyzing the time-averaged results.

4.2 Neutrally stratified boundary layer tests

Initialization and inflow conditions

As further test cases, we set up a series of boundary layer
flow simulations with increasing order of complexity. First,
to evaluate the performance of grid nesting in shear-driven
boundary layer flows, we simulated a flow over a homoge-
neous flat surface in order to compare first- and second-order
moments from a nested simulation against reference simula-
tions. In a second step, we simulated a flow over a smooth
three-dimensional hill for comparison of nested simulation
results against wind tunnel data. Finally, in order to illustrate
the advantages of the grid nesting in more complex setups,
we simulated a flow over a staggered arrangement of cubes
mounted on a flat surface.

The parent domain size for all neutrally stratified simula-
tions was Lx ×Ly ×Lz = 5.1× 1.5× 0.32km3 in the x, y,
and z directions, respectively. In all neutral simulations we
prescribed a homogeneous roughness length of z0 = 0.01m.
At the top boundary we applied a free-slip condition for the
horizontal wind components and zero vertical motion. At
the spanwise lateral boundaries (north and south boundary),
we applied cyclic conditions. At the left lateral boundary
(hereafter referred to as the inflow boundary), we prescribed
mean inflow profiles for the u and v component obtained
from a cyclic precursor run. Two different precursor simu-
lations were employed for the subsequent test cases. The one
used for the flat surface and for the smooth hill featured a
geostrophic wind of ug = 4.8ms−1 and vg =−1.3ms−1 at
a latitude of 55◦, adjusted such that the surface layer mean
flow became parallel with the x axis. This precursor simula-
tion ran for 36 h to reach a stationary state. The second pre-
cursor simulation, used for the cuboid case, was driven by
a fixed pressure gradient angled to result in a mean flow of
u= 10ms−1 at z= Lz with a 3◦ angle from the x axis.

In order to obtain a turbulent inflow, we applied a turbu-
lence recycling method according to Kataoka and Mizuno
(2002), where the inflow mean vertical profiles of u and v
are superimposed by turbulent fluctuations sampled at a re-
cycling plane, which is placed at xrc = 1.5km downstream
from the inflow boundary. The recycling plane is placed suffi-
ciently far apart from the inflow boundary to allow for statis-
tically independent turbulence but also sufficiently far apart
from the location of the child domain to avoid any feedback
between the grid nesting and the inflow conditions. For fur-
ther details on the implementation of the turbulence recycling
method, see Maronga et al. (2015).

Further, in order to avoid persistent streaks in the u compo-
nent, which may develop in neutrally-stratified flows and will
be recurrently recycled in case of vanishing v component, we
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Figure 9. Instantaneous horizontal cross section of the u component
in ms−1 at z= 40m. The black box indicates the location of the
child domain. The solid white lines indicate the x locations where
the profiles shown in Fig. 11 are averaged over the y direction.

shifted the recycled turbulent signals along the y direction at
the inflow boundary, following Munters et al. (2016). At the
eastern outflow boundary we set a radiation boundary condi-
tion (Miller and Thorpe, 1981). The root domain was initial-
ized with three-dimensional data recursively copied from the
precursor run, while the child domain was initialized with
data obtained from the parent. We used an isotropic grid
spacing of 4 and 2 m within the root and the nested child do-
main, respectively. The cuboid and the smooth hill case also
encompass a third domain with 1m resolution (two-stage
nesting).

In order to evaluate the effect of the nesting, we performed
additional non-nested reference simulations with 4 and 2 m
grid spacing. However, due to its high computational de-
mands, a 1m non-nested reference simulation was not per-
formed. The simulated time of the neutrally stratified simu-
lations ranged from 4 to 7 h. Data analysis started after 2 h of
simulated time. When spectral analysis was performed (ho-
mogeneous flat case), the time step was held constant at 1.0s
for that simulation.

4.2.1 Neutrally stratified boundary layer flow over flat
terrain

Figure 9 shows an instantaneous horizontal cross section of
the u component for the nested simulation. As is typical for
a neutrally stratified boundary layer, elongated streak-like
structures can be observed (Hutchins and Marusic, 2007;
Hutchins et al., 2012). These elongated structures preserve
their size and amplitude when entering the child domain from
the left and exiting to the right.

Figure 10 shows horizontal profiles of the time-averaged
and y-averaged friction velocity u∗ within the child domain
and the corresponding coarse- and fine-grid reference cases.
In the coarse and fine-reference cases u∗ is constant along the
x axis, indicating that the flow is in equilibrium with the sur-
face friction. In the coarse-grid simulations u∗ shows slightly
higher values compared to the fine-grid reference simulation,
even though the prescribed surface roughness is identical in
all simulations. This suggests that the flow in the coarse-

Figure 10. The 2 h time-averaged and y-averaged horizontal pro-
files of the friction velocity for the grid-spacing ratio of 2, 3, and 4,
as well as the corresponding coarse and fine-grid reference simula-
tions.

grid simulations sees a slightly rougher surface, which we at-
tribute to the less accurate representation of the vertical near-
surface gradients of the wind profile compared to the fine-
grid simulation. When the flow enters the child domain, the
coarse-grid inflow wind profile is not in equilibrium with the
surface friction any more and the near-surface flow deceler-
ates, indicated by the higher values of u∗ near the child inflow
boundaries. With increasing distance to the inflow boundary,
u∗ rapidly decreases and reaches a minimum with lower val-
ues compared to the reference cases, until it increases again,
reaching a secondary maximum, and then asymptotically ap-
proaches a constant value, which is similar to the value of
the fine-grid reference case in the grid-spacing ratio cases 2
and 3. However, at least for the given model domain size,
u∗ does not approach the fine-grid solution in grid-spacing
ratio case 4 but still exhibits higher values. This kind of spa-
tial oscillation of u∗, which indicates an alternating decelera-
tion and acceleration of the near-surface flow along the x di-
rection, shows that the surface-momentum exchange in the
child domain needs a sufficiently large development length.
For grid-spacing ratio case 2 the required fetch length is at
least 1km to adjust to the fine-grid resolution. With increas-
ing grid-spacing ratio the amplitude of the spatial oscillation
increases and the fetch length becomes longer and even ex-
ceeds the model domain size (as in grid-spacing ratio case
4).

Figure 10 shows that u∗ gradually adjusts to the fine-
reference value, at least for grid-spacing ratio cases 2 and 3.
This is in contrast to Moeng et al. (2007), who revealed a fric-
tion velocity bias between parent and child in their neutrally
stratified simulation when employing a grid-size-dependent
SGS model, which is also the case in this study.

Figure 11 shows time-averaged and y-averaged profiles of
the horizontal wind speed within the child domain for differ-
ent grid ratios, taken at different distances downstream of the
inflow boundary, indicated by the solid white lines in Fig. 9.
At a distance of 100 m, the profiles in the child domains agree
well with the fine-reference profile within the lowest 10 m.
Even though the surface momentum exchange is still not in
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Figure 11. The 2 h time-averaged and y-averaged profiles of the horizontal wind speed for the grid-spacing ratio of 2, 3, and 4, taken at
different distances downstream of the inflow boundary, indicated by the solid white lines in Fig. 9. In addition, corresponding time-averaged
and y-averaged profiles from the fine- and coarse-reference simulations taken at the same locations are shown.

equilibrium at that position (see Fig. 10), one could already
conclude from the near-surface wind profiles that the flow
has already been adapted to the finer grid resolution. How-
ever, further above this point, the wind profiles of the child
model still deviate from the fine-reference solution and are
closer to the coarse-reference profiles. This is especially ob-
vious for the grid-spacing ratio case 4, where the wind profile
shows a discontinuity at a height of z= 20m. With increas-
ing distance from the child inflow boundary, the child pro-
files gradually adjust to the fine-reference simulation, while
at a distance of 2000m the child profiles agree with the fine-
reference solution, except for the grid-spacing ratio case 4,
which still deviates from the fine-reference solution.

In order to further analyze the flow adjustment within the
child domain, we computed resolved-scale TKE spectra at
different distances from the child inflow boundary. The spec-
tra were calculated from time series of the three velocity
components that were sampled at different locations within
the domain. The final spectra were then obtain by averaging
individual spectra over all locations with identical distance to
the inflow boundary, assuming that the flow is parallel to the
x axis. Figure 12 shows TKE spectra obtained from the child
domain and for the corresponding reference simulations. At
low frequencies (large wave numbers), the spectra look quite
similar and no obvious differences with the fine- and coarse-
reference spectra can be observed, indicating the grid nesting
does not induce any larger-scale oscillations that propagate
through the model domain. At higher frequencies, however,
especially at the near-inflow boundary, the child spectra dif-
fer from the fine-reference spectra and more resemble the
corresponding coarse-reference spectra. With increasing dis-
tance from the inflow boundary, the spectral properties grad-
ually adjust to those of the fine-reference case, while at a
fetch of 500–1000 m almost no differences can be observed
at that height level.

In contrast to a buoyancy-driven boundary layer, the flow
in a purely shear-driven boundary layer requires a suffi-
ciently large development distance to adjust to the finer
grid resolution. However, a purely shear-driven flow over
a flat homogeneous surface can certainly be considered as

an extreme case in terms of flow adjustment, as the verti-
cal turbulent exchange, which is primarily driven by surface-
roughness-induced shear, is rather low compared to less ide-
alized flows over non-flat terrain or with obstacles included.
Hence, we expect that the required fetch length may decrease
for rougher surfaces and more complex surface geometries.

4.2.2 Neutrally stratified boundary layer flow over a
smooth three-dimensional hill

The hill case is studied to compare flow statistics against the
wind tunnel observations conducted by Ishihara et al. (1999),
who sampled data at different upstream and downstream lo-
cations along the center hill axis. This flow is simulated us-
ing a two-stage nesting configuration in which a second child
domain with 1m resolution is placed within the first child do-
main with 2m resolution.

The terrain height of the smooth three-dimensional hill is
given by

z(x,y)=Hcos2

(
π
√
(x− x0)2+ (y− y0)2

2l

)
, (17)

with the hill height H = 40m and a hill radius l = 100m,
while x and y indicate the location on the discrete grid,
and x0 = 2024m and y0 = 384m indicate the location of
the hill top with respect to the parent domain dimensions.
Note that we upscaled the hill dimension by a factor of 1000
with respect to the wind tunnel model. Again, the parent do-
main size is Lx ×Ly ×Lz = 5.1× 1.5× 0.32km3 in the x,
y, and z directions, respectively. The child domain sizes are
Lx×Ly×Lz = 0.768×0.384×0.16km3 andLx×Ly×Lz =
0.576× 0.288× 0.12km3 for the first and second child do-
mains, respectively. The upstream boundaries of the first and
second child domains are placed about 9.7H and 6.3H up-
stream of the hill top, respectively. The smooth hill geometry
is approximated with the grid-following stair step geometry
in PALM due to its orthogonal grid arrangement and its to-
pography description system; see (Maronga et al., 2015).

Figure 13 shows the mean flow field along the centerline
of the three-dimensional hill for the nested child simulations
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Figure 12. Frequency spectra of the resolved-scale TKE taken at different sampling locations downstream of the inflow boundary for
the neutrally stratified boundary layer at z= 40m for grid-spacing ratio (a) 2, (b) 3, and (c) 4. TKE spectra for the fine-grid (and the
corresponding coarse-grid) reference simulations are also shown.

Figure 13. The 2 h time-averaged vertical cross section of the u component field (colored contours) and the u–w mean flow field (vector
arrows) displayed along the centerline of the three-dimensional hill for (a) the 4m reference simulation, (b) the 2m reference simulation,
(c) the 2m nested child simulation, and (d) the 1m nested child simulation. Vector arrows and the u component are normalized, with the
reference wind speed taken at z=H upwind of the hill. The ordinate and the abscissa are scaled with the hill heightH . Note that the abscissa
is centered at the hill top. The vertical black lines indicate the positions of the profiles displayed in Figs. 14 and 15. Note that the ordinate
in (d) is constrained by the vertical dimension of the 1m child domain. Moreover, note that the x dimension in (c) and (d) do not show the
entire child domain extents but instead cut out minor parts at the left and right.

and the fine- and coarse-grid reference simulations. Upwind
of the hill, the mean flow in the nested simulations agrees
with the one in the fine- and coarse-reference simulations.
In the coarse-grid reference simulation the recirculation ex-
tends further downstream up to about 4.1H on the lee side of
the hill compared to the 2m nested and fine-reference sim-
ulation, which both show a recirculation that extends up to
about 3.75H downstream of the hill top. When further in-
creasing the grid resolution to 1m, the recirculation zone
further shortens to about 3H . Figures 14 and 15 show the
corresponding standard deviations of the u and w compo-
nents sampled at different locations along the centerline of
the hill. Upwind of the hill the standard deviations of the u
and w components agree with the observations and show no
significant difference between the simulations. However, lee-
ward of the hill at 1.25H , the LES underestimates the stan-
dard deviations of the u and w components in the 2 and 4m
simulations, which is most pronounced in the coarse-grid ref-
erence simulation, while the profiles in the 1m child domain

of the nested simulation agree fairly well with the measure-
ments. Further downstream, the coarse-grid reference run
still slightly underestimates the observed standard deviations,
while the 2m child domain result and fine-grid reference re-
sult slightly overestimate the standard deviations, which is in
agreement with results from the EPFL-LES model presented
in Diebold et al. (2013), who employed a similar fine-grid
resolution for this hill flow. With 1m grid spacing the stan-
dard deviations further downstream are still slightly overesti-
mated, though their vertical shape and amplitude is captured
quite well. In order to provide a more quantitative measure,
Table 1 provides the root-mean-square deviation (RMSD) of
the profiles shown in Figs. 14 and 15. RMSD is defined as
follows:

RMSD(ψ)=

√〈(
ψ −ψRef

)2〉
, (18)

where ψ is any prognostic variable from the considered so-
lution and ψRef refers to the corresponding measurement
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Figure 14. The 2 h time-averaged vertical profiles of the standard deviation of the u component for the LES and the observed wind tunnel
flow for (a) the 4m reference simulation, (b) the 2m reference simulation, (c) the 2m nested child simulation, and (d) the 1m nested child
simulation. The ordinate is scaled with the hill height H . The standard deviation is normalized with the reference wind speed taken at z=H
upwind of the hill. The horizontal dashed black lines indicate the discrete height of the surface at the sampling location. Note that the vertical
dimension of the 1m nested child domain does not cover the entire vertical range of the measurements, and thus some data points from the
LES are missing on the normalized height coordinate in (d).

Figure 15. The 2 h time-averaged vertical profiles of the standard deviation of the w component for the LES and the observed wind tunnel
flow for (a) the 4m reference simulation, (b) the 2m reference simulation, (c) the 2m nested child simulation, and (d) the 1m nested child
simulation. The ordinate is scaled with the hill height H . The standard deviation is normalized with the reference wind speed taken at z=H
upwind of the hill. The horizontal dashed black lines indicate the discrete height of the surface at the sampling location. Note that the vertical
dimension of the 1m nested child domain does not cover the entire vertical range of the measurements, and thus some data points from the
LES are missing on the normalized height coordinate in (d).

value. The RMSD values indicate that the profiles converge
towards the observations with increasing grid resolutions.
Furthermore, the standard deviations from the 2m child do-
main and from the fine-grid reference simulation show only

marginal differences among each other, indicating that the
nesting method and the fine-grid reference simulations lead
to almost identical results. Considering that the hilltop is
placed only about 390 and 250m downstream of the child
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Table 1. Root-mean-square deviation (RMSD) of the simulated u
andw standard deviations evaluated against the corresponding wind
tunnel measurements at the positions shown in Figs. 14 and 15. The
RMSD is evaluated at all respective heights of the observations and
is averaged over all heights and profile locations.

Simulation RMSD (σu) RMSD (σw)

Ref 4m 0.043 0.078
Ref 2m 0.022 0.054
Child 2m 0.026 0.055
Child 1m 0.015 0.039

domain inflow boundary, this indicates that in more complex
setups where topography is present, the adjustment fetch can
become significantly smaller compared to purely flat terrain,
as discussed in Sect. 4.2.1.

4.2.3 Neutrally stratified boundary layer over a regular
array of cubes

The final test case features a neutral atmospheric boundary
layer flow over flat terrain, which becomes incident with a
staggered pattern of cubical obstacles. The resulting flow
scheme resembles urban canopy turbulence where the in-
teraction between roughness elements and ABL turbulence
is primarily resolved. Here, the cubical obstacle height is
H = 40m. The distance between the obstacles is 3H in the
x direction and 1H in the y direction.

To demonstrate the flexibility of the nesting implementa-
tion, we carried out simulations with two different nested
configurations illustrated in Fig. 16. The first (v1) case fea-
tures a single child domain, while the second (v2) case con-
tains a two-stage nesting system where a second child do-
main is nested within the first. In the latter configuration,
the first child acts as a parent for the second child domain.
The isotropic grid spacing is 4m in the root domain, 2m in
the second-level nest (first child), and 1m in the third-level
nest (second child). Note that the implementation does allow
child locations to be selected such that their domain bound-
aries intersect with the obstacles. The two example configu-
rations represent nesting applications designed to meet dif-
ferent levels of accuracy demands. The v2 configuration is
set to resolve the transition effect at the leading edge of the
cube canopy and to capture the blunt-body–wake interac-
tions in sufficient detail within the center region of the cuboid
canopy.

First, in the context of obstacle-resolved LES, we motivate
the employment of an optional canopy-restricted (CR) anter-
polation strategy introduced in Sect. 3.5. For this purpose,
consider Fig. 17, which shows an instantaneous horizon-
tal cross section of vorticity vector magnitude at z= 0.9H
height for configuration v2. The image focuses on a region
where all domains with different resolutions are visible.

The visualization indicates the strength and spatial struc-
ture of the resolved turbulent eddies and how they are af-
fected by grid resolution. The differences are significant. In
such an obstacle-resolving LES, the increased grid resolu-
tion has the ability to alter the flow solution to such a degree
that the anterpolation introduces details to the coarser parent
that are inconsistent with the rest of the parent’s flow solu-
tion. Particularly with blunt-body obstacle canopy flows, this
discrepancy is clearly manifested as a locally changing re-
sultant pressure drag (caused by the obstacles) within the an-
terpolated domain. To inspect this, we compute the resultant
pressure drag coefficient

CFp =
2

ρU2
refSref

(
F 2

p,x +F
2
p,y

)1/2
, (19)

for the differently coupled simulations. In Eq. (19), uref =

〈u〉 |z=1.25H is the reference wind speed, Fp is the resultant
pressure force exerted on the cubes obtained by integrating
the pressure over vertical walls, ρ is the density of air, and
Sref is the accumulated frontal area of the cubes. The re-
sults are listed in Table 2, which makes evident the drastic
difference between the values for the coarse reference and
the two-way coupled parent (CFp [coarse] vs. CFp [root]: two-
way). This large difference arises as the anterpolated solution
within the obstacle canopy introduces a large-scale distur-
bance to the parent solution, giving rise to unphysical sec-
ondary effects. These effects, in turn, lead to complicated
feedback systems in the two-way coupled solutions, whose
realizations become dependent on the chosen nesting config-
uration.

This problematic behavior is significantly abated by adopt-
ing the CR anterpolation strategy setting and by setting the
vertical threshold at 1.25H via experimenting. This CR an-
terpolation allows the parent and child flow fields to be-
come strongly coupled while minimizing global inconsisten-
cies in the parent solution. While all the child domain solu-
tions overpredict the pressure drag, the two-way CR solution
yields CFp [child 2] values that are closest to the fine refer-
ence.

To further evaluate the nesting performance, we ex-
ploit root-(normalized)-mean-square difference (RNMSD or
RMSD) and fractional bias (FB) as comparison metrics (see,
Britter and Hanna, 2003) evaluated over successive x–y
planes to assess the effectiveness of the nesting approach in
obstacle-resolving LES cases. RNMSD and RMSD provide
a measure of mean difference that is composed of random
scatter and systematic bias, whereas the fractional bias (FB)
yields a specific measure for the systematic bias between
the two solutions. The RMSD metric is defined by Eq. (18),
while RNMSD and FB are defined as follows:
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Figure 16. An overview of the cubical obstacle case layout. The obstacles are cubes with 40 m sides. The figure displays two nested arrange-
ments: version 1 (v1), featuring a root domain and a secondary nest domain, and version 2 (v2), which also includes a tertiary nest domain
embedded within a larger secondary nest. The root and nested domains are indicated with (?), (??), and (? ? ?) in the upper left-hand corner
of each domain, respectively. The first child domain is displayed with a white background for better visualization.

Figure 17. Instantaneous close-up view of vorticity magnitude (s−1) on an x–y plane at elevation z= 0.9H for the v2 case with two nested
domains. Black lines indicate the bounds of the first and the second nest. Note that only parts of the domains’ extent are displayed.
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Table 2. Resultant pressure force coefficients CFp evaluated over the child 1 (??) domain shown in Fig. 16 (v1). Results for parent and child
solutions are reported for one-way, two-way, and two-way canopy-restricted (CR) methods, where the latter is a modified two-way coupling
approach where the anterpolation is restricted (i.e., not allowed) within the obstacle canopy.

Version 1 Version 2

One-way Two-way Two-way CR One-way Two-way Two-way CR

CFp [root] 0.592 0.735 0.549 0.790 1.017 0.785
CFp [child 1] 0.602 0.599 0.594 0.828 0.859 0.826

CFp [fine] 0.583 0.808
CFp [coarse] 0.592 0.790

RNMSD(ψ)=

√√√√〈(
ψ −ψRef

)2〉〈
ψ
〉 〈
ψRef

〉 , (20)

FB(ψ)=

〈
ψ
〉
−
〈
ψRef

〉
0.5

(〈
ψ
〉
+
〈
ψRef

〉) , (21)

where ψ is a generic prognostic variable from the consid-
ered case, while here ψRef refers to the value from the refer-
ence simulation with 2m resolution. RMSD is used instead
of RNMSD in cases where the product of double-averaged
quantities used for normalization approaches zero. Similarly,
FB is only evaluated for the streamwise velocity component
because other components yield a near-zero denominator that
contaminates the metric. The evaluations are performed for
15 x–y planes within the child domain (zone (??) in Fig. 16)
that are equally spaced over the range 0≤ z/H ≤ 1.5. We
have excluded 128 and 64m wide development zones at the
boundaries in the x and y directions, respectively. When the
coarse-reference (4 m resolution) solution is compared to the
fine-reference (2m resolution) solution, the coarse solution is
interpolated onto the fine grid before the comparison metrics
are evaluated.

Both model variants (v1 and v2) are included in the anal-
ysis to demonstrate how the size and placement of the child
domains affect the metrics and to illustrate the possibility of
employing a cascade of nested domains. Although no com-
parison metrics are presented for the second child solution
featuring 1 m resolution, its influence is embedded in the so-
lution of the first child.

The RNMSD and RMSD profiles for the velocity com-
ponents and their variances depicted in Figs. 18 and 19 lay
bare the effectiveness of the presented nesting system and
reveal the added benefit of the CR anterpolation. While all
the coupling approaches succeed in significantly reducing the
discrepancy compared to the fine reference, the conventional
two-way coupling exhibits the most pronounced level of de-
viation. The FB results in Fig. 20 indicate that the two-way
coupled solution also contains the most systematic deviation,
which conforms with the pressure drag results.

The one-way coupling approach consistently performs
better than the unmodified two-way coupled approach in all
metrics, but it is also associated with a systematic bias that
is larger than the value by coarse reference. However, if the
modest systematic shift in streamwise velocity can be ac-
cepted, the one-way coupling offers a cost-effective nesting
coupling approach (see Sect. 4.3 for performance measures).
Nonetheless, the results conclude that the introduced CR an-
terpolation approach presents the most recommended cou-
pling strategy for obstacle-resolving LES as it provided the
best metrics in every category.

4.3 Performance issues

Table 3 gives an overview of the consumed CPU time TCPU,
wall-clock time Twall, and some performance measures in the
nested and fine- and coarse-grid reference simulations for
the hill and the cube case simulations. TCPU is defined here
simply as NprocsTwall, and Nprocs is the number of parallel
processes. As a rule of thumb, doubling the resolution leads
to an increase in CPU time by approximately a factor of 16
(when the numerical time step is determined according to the
Courant–Friedrichs–Lewy (CFL) criterion). This can be ob-
served comparing the coarse- and fine-grid reference simu-
lations. Compared to the fine-grid reference simulations, the
nested simulations consumed significantly less CPU time (up
to 80 % reduction), while increasing the computational cost
by factors of 3.8 and 3.4 in the hill and cube canopy cases
compared to the coarse-grid reference. The direct overhead
due to the nesting, i.e., the fraction of the CPU time used by
all the nesting-related operations during the time-stepping is
reasonably small in these tests, i.e., only from 2 % to 16 %.
Also the CPU time per grid point per time step increases only
moderately due to the nesting. These figures surprisingly dif-
fer a lot between the hill and the cube array cases. This is
most likely due to the fact that these cases were run on differ-
ent computer systems. Although these factors depend on the
child domain size, these tests make evident that the nesting
technique can significantly reduce the computational cost,
while yielding results that closely adhere to the non-nested
fine-resolution simulation.
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Figure 18. Vertical distributions of root-(normalized)-mean-square difference (RNMSD or RMSD) of velocity components for configuration
v1 (a–c) and configuration v2 (d–f). The metrics are evaluated for 15 horizontal planes in the range 0≤ z/H ≤ 1.5.

Figure 19. Vertical distribution of RNMSD of the velocity variances for configuration v1 (a–c) and configuration v2 (d–f). The metrics are
evaluated for 15 horizontal planes in the range 0≤ z/H ≤ 1.5.

Due to the interpolation and anterpolation and the accom-
panied inter-model data transfer, the nesting itself consumes
CPU time. In our tests the workload with respect to the num-
ber of grid points treated by a processor element was equal
among the parent and the child simulations. With this optimal
configuration, the two-way nesting consumed about 10 %–
16 % of the CPU time in our tests, while it consumes only
about 2 % in the one-way nesting. This suggests that most of
the CPU time taken by two-way nesting is consumed in the
anterpolation and the associated child to parent data transfer.

It is important to bear in mind that if the workload between
child and parent processes is not well balanced, the faster
processes need to wait before the data transfer can start until
the slower processes reach that point, reducing the computa-
tional efficiency of the nesting.

5 Conclusions and future outlook

This article documents and evaluates an online LES–LES
nesting scheme implemented into the PALM model sys-
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Figure 20. Fractional bias (FB) values evaluated over 15 x–y planes in the range 0≤ z/H ≤ 1.5, for (a) v1 and (b) v2.

Table 3. Total number of grid points Ngp, number of parallel processes Nprocs, required CPU and wall-clock times, and other performance
measures for the hill and the cube array v1 test cases. Here N1t is the number of time steps taken during the run.

Case Ngp Nprocs TCPU, h Nesting overhead Twall, h TCPU/(N1tNgp), µs

Hill coarse 39 321 600 512 220 – 0.4297 0.658
Hill fine 314 572 800 2048 3910 – 1.909 0.692
Hill nest 45 219 840 768 831 16 % 1.082 1.085

Cubes coarse 39 321 600 120 855 – 7.130 1.290
Cubes fine 314 572 800 480 12 900 – 26.88 1.166
Cubes v1 nest one-way 56 098 816 184 2580 2.1 % 14.02 1.427
Cubes v1 nest two-way 56 098 816 184 2910 12 % 15.82 1.636

tem 6.0. The nesting system relies on the post-insertion ap-
proach and features both one-way and two-way coupling ap-
proaches. We give a detailed description of the model’s rel-
evant technical, algorithmic, and numerical aspects and pro-
vide evidence for the accuracy gains the method introduces
with a dramatically reduced computational cost compared to
globally refined grid resolution. The nesting approach has
proven particularly essential in urban boundary layer studies
requiring obstacle-resolving LES.

The implementation of this three-dimensional nesting sys-
tem is based on two-level parallelism involving inter-model
and intra-model parallelization using the MPI. This enables
our nesting implementation to flexibly support multiple child
domains, which can be nested within their parent domain ei-
ther in a parallel or recursively cascading configuration. All
solutions involved within the nested simulation are advanced
using a globally synchronized time step, whereas the cou-
pling between each parent–child pair is performed with inter-
polation (parent to child) and anterpolation (child to parent)
operations.

The nesting method is evaluated by performing a series
of numerical experiments with an objective to demonstrate
that the refined child solution (nested within a coarser par-
ent) approaches the non-nested reference solution obtained
by employing fine resolution globally.

The first test case features horizontally homogeneous con-
vective boundary layer (CBL) with no mean wind. In this
case, first- and second-order boundary layer statistics are

well captured in the child domain and are closely compa-
rable to non-nested high-resolution reference statistics. Fur-
ther, due to the local nature of turbulence production and the
weak advection from parent into the child, the flow statis-
tics show almost no dependence on the distance to the child
boundaries. However, in the case of averaging times that are
several hours long, we found that a nonphysical secondary
circulation develops despite the surface heating being homo-
geneous. We hypothesize that this secondary circulation is an
inherent consequence of the spatially changing description of
flow physics in the parent and child solutions. Even though
we demonstrated this issue with a rather idealized setup using
an unrealistically long averaging time and these nonphysical
circulations are probably minimized in less idealized sim-
ulations, e.g., those with wind, a diurnal cycle, or realistic
terrain surfaces, we believe that this should be kept in mind
when applying the nesting system to CBL problems.

The second test case simulated neutrally stratified bound-
ary layer flow over flat terrain. The nested simulations reveal
that the flow solution within the child domain must undergo a
development phase, as the flow solution adjusts to the higher
resolution before reaching equilibrium state again. The re-
quired development length depends on the grid-spacing ra-
tio between parent and child. However, a purely shear-driven
flow over a homogeneous flat terrain can be considered an
extreme scenario with respect to the development length of
turbulence, while in cases with more complex surface geom-
etry the flow adapts within shorter development distances.
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Beyond the development distance, the child solution for grid-
spacing ratios of 2 and 3 agree well with the non-nested fine-
reference solution, but in cases with a grid-spacing ratio of 4
the results clearly deviate from the fine-reference solution.

The third numerical experiment featured boundary layer
flow (similar to second test case) over a smooth three-
dimensional hill. This test case also exploits wind tunnel
measurements to strengthen the nesting model evaluation. In
this case, the flow statistics in the windward and the leeward
part of the hill are almost the same as in a fine-reference sim-
ulation and agree well with wind tunnel observations pre-
sented in Ishihara et al. (1999).

The final test case examines a flow system where a
fully developed boundary layer flow becomes incident with
a staggered arrangement of cube-shaped obstacles. This
flow scenario closely resembles an obstacle-resolving ur-
ban boundary layer flow situation. The case revealed that
in two-way coupled simulations, the anterpolated child so-
lution introduces discrepancies within the parent domain,
which manifest as elevated pressure drag within the anter-
polated zone. This complication is remedied by introduc-
ing a canopy-restricted anterpolation approach where anter-
polation is omitted within the obstacle canopy. By comput-
ing comparison metrics, root-normalized-mean-square dif-
ference, and fractional bias to quantify the difference be-
tween the fine-reference and nested solutions, the canopy-
restricted two-way coupling is shown to be the best coupling
strategy for obstacle-resolving LES studies.

Future outlook

Future development is planned to include the following tasks.
Incorporation of PALM’s Lagrangian particle model in the
nesting system in order to enable Lagrangian dispersion stud-
ies in urban environments in such a way that particles can be
transferred between parent and child domains depending on
their position. Thus, the long-distance transport of, e.g., pol-
lutants, can be simulated in a coarse-resolution parent grid,
while dispersion on the street scale for specific locations can
be simulated in a fine-resolution child domain. We note that
this has been already implemented into PALM and is avail-
able to users, but further sensitivity tests with respect to the
treatment of stochastic subgrid-scale particle speeds (Weil
et al., 2004) are still pending. A thorough description and ver-
ification of the particle nesting will be published in a follow-
up article.

Further, we note that the PALM model system 6.0 also
includes a RANS (Reynolds-averaged Navier–Stokes) mode
offering two different turbulence closures to calculate the
eddy diffusivity, which are a TKE-l and a TKE-ε closure
according to Mellor and Yamada (1974, 1982). Besides the
LES–LES nesting, the nesting system is being extended to
handle RANS–LES and RANS–RANS nesting, which re-
quire coupling of additional RANS variables. Moreover, in a
companion paper in this special issue we present a pure one-
way offline mesoscale nesting method in which the PALM
model system 6.0 is nested into mesoscale models such as
COSMO or WRF. This will allow for modeling of mesoscale
processes on a much larger coarse-grid domain as shown
by, e.g., Muñoz-Esparza et al. (2017), while concurrently fo-
cusing on fine-scale processes within certain areas using the
present LES nesting approach.

Furthermore, to date the time step in all parent and child
models has been synchronized and restricted to the minimum
of the time steps determined by each model independently
using the CFL criterion. In our experience, the global time
step is often restricted by the flow around building edges
where high wind speeds occur within the fine-grid child do-
mains. Hence, we plan to implement a time-splitting into
PALM where the parent and child models will be coupled
only at the end of the parent time steps. This would al-
low us to run coarser-scale parent domains with larger time
steps. Thus, computational time could be saved in the time-
integration of the parent simulation as well as in the inter-
model communication between parent and child.
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Appendix A: Technical realization

A1 General

The nested model system is implemented using two levels of
MPI communicators. The inter-model communication (com-
munication between model domains) is handled by a global
communicator using the one-sided communication pattern
(remote memory access, RMA). The intra-model commu-
nication (communication between subdomains within each
model domain) is two-sided and it is handled using a 2-
D communicator that has a different color for each model.
The intra-model communication system is the baseline par-
allelization of PALM (Maronga et al., 2015).

Data transferred from parent to child and from child to
parent is always stored in the coarser parent model grid in or-
der to minimize the amount of data transfer. This means that
the interpolations and anterpolations are always performed
by the child. For this purpose, children contain auxiliary ar-
rays that follow the parent grid spacings and indexing for
each prognostic variable to be coupled, covering the overlap
domain plus the necessary number of ghost node layers.

A2 Initialization

Mapping between each parent and child model domain de-
compositions and all the necessary index mappings are de-
termined in the initialization phase and stored so that the
coupling actions during the time-stepping are straightforward
and efficient.

Initial conditions for the root are set similarly to non-
nested runs. The root then sends initial field data to its chil-
dren, which interpolate their own initial conditions from the
data received from the root. Next the first-level children send
their data to their children, if any, and so on. The basic inter-
polation subroutines for child boundary conditions operate
only on the ghost nodes behind the child model boundaries.
Therefore a separate three-dimensional interpolation subrou-
tine is implemented to generate initial fields for all the nest
domains from their parent model fields. The same interpola-
tion algorithm is used here as in the interpolations for child
boundary conditions.

A3 Modularization

The data transfer between parents and children is conducted
by code contained by five specific Fortran modules forming
a module set called PALM model coupler (PMC). Calls to
the PMC subroutines are mostly made in the PMC interface
module (pmc_interface_mod.f90), such that only a small
number of calls to the PMC interface subroutines are needed
within the baseline PALM code. In this way, the changes
to the baseline code were kept minimal. The PMC interface
module also contains subroutines for the nesting-related ini-
tialization actions, interpolation, anterpolation, child mass-
balance forcing, etc.

A4 MPI implementation

While reading the input namelists, the PALM root process
checks if a namelist called “&nesting_parameters” is given
in the parameter input file PARIN. If not, subroutine called
pmc_init_model resets all nesting-related parameters (cou-
pling_layout etc.) and sets MPI_COMM_WORLD as the
base global MPI-communicator comm_palm. The run then
continues in standard way without nesting. If the namelist
“&nesting_parameters” is found and correctly input, the root
process of the root model distributes this information to all
other processes via MPI_COMM_WORLD. Following this,
all the necessary nesting-related parameters are determined,
and the base communicator is split into different colors for
each model based on the model identification number. The
term color here means that the communicator has the same
name for all models (process groups), but they are, how-
ever, individual communicators, guaranteeing that commu-
nication of one model is not interfered with by the others.
The splitting is performed by calling MPI_COMM_SPLIT.
Now each model has its own process group and associated
individual base communicator color, such that each model’s
internal communication is not visible to other models. Af-
ter this the mappings between models are determined. Each
model, except the root model, identifies its parent model and
creates an inter-communicator between the process groups
of itself and its parent model. This is realized by call-
ing MPI_INTERCOMM_CREATE. In the same way, each
model identifies all of its children, if any, and creates inter-
communicators between the process groups of itself and all
of its children. These inter-communicators are only used to
transfer setup data between the root processes of the parent
and child models. For 3D model data transfers between par-
ent and child, a specific intra-communicator is created by
merging inter-communicators of each process within the re-
mote process groups. This is made after pmc_init_model sep-
arately for child and parent models (note that a model may
be both parent and child) in subroutines pmc_childinit and
pmc_parentinit by calling MPI_INTERCOMM_MERGE.
After the PMC initialization, the run of each model goes as
usual. A Cartesian topology-based communicator comm_2d
is created by each model from the color of the base commu-
nicator comm_palm using MPI_CART_CREATE.

The internal model communication is done in the usual
way, i.e., by calling the boundary exchange routines. All
data transfer between parent and child models is done
within the PMC interface. For this communication MPI one-
sided communication (RMA) is used. An RMA window
is opened on the parent side. To transfer data from par-
ent to child, the parent fills the RMA window via a lo-
cal copy. After synchronization via MPI_WIN_FENCE, the
child processes can fetch the data across the network with
MPI_GET. While transferring data in the opposite direction,
the child first transfers the data via MPI_PUT. After another
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MPI_WIN_FENCE call, the parent copies the data out of the
RMA window into the local model data area.

Appendix B: Thoughts on an alternative interpolation
method

Should higher interpolation accuracy across the boundaries
be sought, the following considerations are relevant. As
stated by Zhou et al. (2018), to satisfy the global flux-
conservation requirement, one of the flux factors, either the
advective velocity component or the advected variable, must
be constant within the anterpolation cell. This implies zeroth-
order interpolation. The other factor must be interpolated us-
ing any reversible interpolation scheme.

As stated above, the quadratic Clark and Farley (1984)
scheme should not be used because it employs a stencil wider
than the parent grid cell, which leads to problems with com-
plex geometries. On the other hand, trilinear interpolation
has a favorable stencil width, but it is not suitable for the
scheme as it is not reversible. However, linearly interpolated
values φ̃i,j,k can be made reversible by introducing an addi-
tional correction φi,j,k = φ̃i,j,k +1φi,j,k , which guarantees
the reversibility. The reversibility correction1φi,j,k depends
on the difference 18I,J,K between the original parent grid
value8I,J,K and the value obtained by anterpolating the lin-
early interpolated values to the parent grid node I,J,K as

18=8−̂̃φ. (B1)

18I,J,K is a constant value within the parent grid cell, and
hence a question arises: how to distribute the correction to the
child grid nodes i,j,k such that 1̂φI,J,K =18I,J,K? The
simplest choice is 1φi,j,k =18I,J,K , but this choice is not
recommendable in the cases of positive definite scalar vari-
ables as it could lead to negative values when 8 is close to
zero. In principle, this problem could be avoided by weight-
ing the local corrections in proportion to the local differences
8I,J,K − φ̃i,j,k , but this simply reduces the method back to
the zeroth-order baseline method. To make this approach use-
ful, a more advanced technique to distribute the correction
ought to be developed. However, this is beyond the scope of
the present work, as stated in Sect. 3.4.4.
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Code and data availability. The PALM model system is freely
available at http://palm-model.org (last access: 31 May 2021) and
distributed under the GNU General Public License v3 (http://www.
gnu.org/copyleft/gpl.html, last access: 31 May 2021). However,
the simulations presented in this document were performed using
a slightly modified code based on revision 4295. This modified
source code (4295M), as well as the input files for the test runs,
is available at https://doi.org/10.25835/0090593 (Hellsten et al.,
2020). Numerous pre- and post-processing scripts are available at
https://doi.org/10.5281/zenodo.4005687 (Auvinen et al., 2020b).
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