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Abstract. Process-based models are powerful tools for sim-
ulating the economic impacts of climate change, but they
are computationally expensive. In order to project climate-
change impacts under various scenarios, produce probabilis-
tic ensembles, conduct online coupled simulations, or ex-
plore pathways by numerical optimization, the computa-
tional and implementation cost of economic impact calcula-
tions should be reduced. To do so, in this study, we developed
various emulators that mimic the behaviours of simulation
models, namely economic models coupled with bio/physical-
process-based impact models, by statistical regression tech-
niques. Their performance was evaluated for multiple sec-
tors and regions. Among the tested emulators, those com-
posed of artificial neural networks, which can incorporate
non-linearities and interactions between variables, performed
better particularly when finer input variables were available.
Although simple functional forms were effective for approxi-
mating general tendencies, complex emulators are necessary
if the focus is regional or sectoral heterogeneity. Since the
computational cost of the developed emulators is sufficiently
small, they could be used to explore future scenarios related
to climate-change policies. The findings of this study could
also help researchers design their own emulators in different
situations.

1 Introduction

Climate change has diverse impacts on society and a wide
range of sectors (IPCC, 2014), and these impacts should be
quantitatively evaluated to manage overall risks. If we can
monetize these impacts, a variety of risks across different
sectors and regions can be considered on a unified scale.
This information helps us to design climate-change-related
policies. It also contributes to estimating the social cost of
carbon.

There are a variety of ways to estimate the economic im-
pacts of climate change (Tol, 2002; Stern, 2006; Ciscar et al.,
2011; Burke et al., 2015; Takakura et al., 2019). Among the
existing approaches, process-based bio/physical impact mod-
els coupled with an economic model are widely used, and
they tend to be elaborate and complex (Weyant, 2017; Diaz
and Moore, 2017). Since these process-based simulations
can represent underlying bio/physical or economic processes
explicitly based on the governing equations, their applica-
tions are not limited to prediction of the outcome variables.
Process-based simulations can also contribute to deeper un-
derstanding of the focal phenomena, and they can simulate
outcomes under purely counterfactual conditions that never
occurred in the past. This cannot be achieved by simpler
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macroscopic methods (e.g. Burke et al., 2015). Despite these
advantages, it is not always easy for researchers to handle
these elaborate process-based models (particularly for model
users, rather than model developers) because of the model-
specific knowledge, skills, and input data that are required.
This is especially the case when multiple sectors are targeted
because completely different impact models are developed
for each sector.

The high computational cost of process-based impact sim-
ulations is another problem, and this also makes online cou-
pling with other models difficult. Online coupling of impact
models is required, for example, to represent feedback ef-
fects of climate-change impacts on climate-change mitiga-
tion (Matsumoto, 2019) and many other synergies and trade-
offs among sectors (Yokohata et al., 2020). The possibility of
simulation under various scenarios or probabilistic ensemble
simulation of impacts also depends on the computational cost
of the impact simulations. Mainly due to their high compu-
tational cost, typically, process-based simulations of the im-
pacts can be conducted under a limited number of scenar-
ios, such as representative concentration pathways (RCPs)
(van Vuuren et al., 2011). While these scenarios reasonably
cover the plausible range of the radiative forcing levels at the
end of the 21st century, there are an infinite number of emis-
sion pathways which are not included in the discrete RCP
scenarios (e.g. intermediate pathway between RCP2.6 and
RCP4.5). Recently, particularly after the Paris Agreement,
more attention has been paid to the effect of subtler differ-
ences in emission pathways (Keywan et al., 2021). When we
try to find the optimal pathway by numerical optimization,
repetitive calculations of the objective function which we
want to minimize or maximize are needed, and if the impacts
of climate change are included in the objective function, they
also need to be calculated many times until the value of the
objective function converges. Ensemble simulation of the im-
pacts is also important to manage the risk because of the
probabilistic characteristics of the climate (Mitchell et al.,
2017; Mizuta et al., 2017), but this also requires a large num-
ber of simulation runs.

Therefore, reducing the implementation and computa-
tional costs of impact calculations is useful for many pur-
poses even if representation of the underlying processes is
omitted when the focus is on the outcome variable, not on
these underlying processes.

One possible way to solve these issues is statistically mim-
icking the behaviours of the process-based impact simula-
tions. Such approaches are called emulations (Castelletti et
al., 2012). In emulations, emulators try to reproduce the rela-
tionships between the inputs and outputs of the impact mod-
els regarding the underlying processes as a black box. A sim-
ple but widely used way involves expressing the impact by a
simple damage function. Such simplification is adopted in
several integrated assessment modelling frameworks (Wald-
hoff et al., 2014; Nordhaus, 2017). The most typical form
of such a damage function is a quadratic function (Howard

and Sterner, 2017). In this case, the impact of climate change
is expressed by a quadratic function of the mean tempera-
ture rise (such simple damage functions are not called emu-
lators in general, but they act in the same way as the so-called
emulators). It is also possible for simple damage functions
to incorporate socioeconomic conditions. Compared to the
simple damage functions, typical climate-change impact em-
ulators adopt relatively complex functional forms. These in-
clude multivariate regression or statistical machine learning
techniques such as an artificial neural network (ANN; Harri-
son et al., 2013; Oyebamiji et al., 2015; Schnorbus and Can-
non, 2014). By using these techniques, emulators can repre-
sent more complex input–output relationships, but existing
studies using these techniques mainly focus on bio/physical
impacts rather than economic impacts of climate change. In
our previous work, it has been demonstrated that the simu-
lated economic impacts of climate change are affected by so-
cioeconomic conditions as well as the climate conditions and
that there are complex, non-linear interactions (Takakura et
al., 2019). Therefore, using such advanced techniques can be
beneficial to emulations of the economic impacts of climate
change, too.

Besides the choice of functional form, there are multiple
options in the selection of the input variables. By leveraging
all the information used in the simulation and using suffi-
ciently complex models, it is theoretically possible to per-
fectly reproduce the results of the simulation by the em-
ulation (Cybenko, 1989). On the other hand, in practical
terms, the number of parameters used in the emulation model
will increase, and it is impossible to identify the parameters
based on the limited simulation results. Therefore, we use
some representative variables as the input to the emulators
by summarizing the original input data. These input variables
should contain information on climate conditions and socioe-
conomic conditions, and those jointly determine the magni-
tude of the economic impacts of climate change. What kind
of information is important may depend on what kind of im-
pacts we focus on. For example, some impacts can be accu-
rately predicted by changes in temperature, but others may
depend more on changes in precipitation or socioeconomic
conditions.

To better design emulators, we need to identify impor-
tant factors which affect performance, i.e. those that deter-
mine how well the emulators can reproduce the results of
simulations. However, there have been no systematic com-
parisons of the attained performance of the emulators con-
sidering the above-mentioned factors. The purpose of this
study was to develop and evaluate emulators for the projec-
tion of the economic impacts of climate change and identify
the relationship between the attained performance of emula-
tors and functional forms or input variables. For this purpose,
we used the results of economic impact simulations covering
many sectors (Takakura et al., 2019). In this study, the re-
sults of the original simulation results were regarded as the
“ground truth”, and emulators tried to reproduce the ground
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truth statistically when corresponding input was given. Var-
ious emulators (different functional forms and input vari-
ables) were developed, and their performance, how well they
can reproduce the results of simulations, was systematically
compared.

We expect there are two main groups of readers of this
article. The first group is those who wish to use the emula-
tors developed herein. The second group is the readers who
wish to develop their own emulators using their simulation
results. We provide specific information on our development
process. This information could be particularly useful for the
second group. For the first group, the emulators we have de-
veloped can be freely downloaded from a repository (details
below) and explored in conjunction with this article to avoid
any potential issues in terms of misuse or misinterpretation.

2 Materials and methods

2.1 Simulation of the economic impacts of climate
change

We used previously published results of simulations, in
which up to nine different sectoral economic impacts of cli-
mate change were simulated by bio/physical impact models
coupled with economic models (Takakura et al., 2019). Here,
“economic models” refers to the methodologies by which
bio/physical impacts are monetized regardless of their ways
of monetization. We used the simulated economic impacts
caused by changes in agricultural productivity (Iizumi et al.,
2017; Fujimori et al., 2018), undernourishment (Hasegawa
et al., 2016a), heat-related excess mortality (Honda et al.,
2014), cooling/heating demand (Hasegawa et al., 2016b;
Park et al., 2018), occupational-health cost (Takakura et al.,
2017), hydropower generation capacity (Zhou et al., 2018b),
thermal power generation capacity (Zhou et al., 2018a, c),
fluvial flooding (Kinoshita et al., 2018), and coastal inunda-
tion (Tamura et al., 2019) due to climate change. In each sec-
tor, bio/physical impacts were modelled by specific process-
based impact models, and then the impacts were monetized
either by multiplying values of statistical life (VSL) (OECD,
2012) by the damage functions which translate bio/physical
impacts into economic damages (Kinoshita et al., 2018;
Tamura et al., 2019) or by a computational general equi-
librium (CGE) model (Fujimori et al., 2012, 2017). Here,
the CGE model is the AIM/Hub model (formerly known
as the AIM/CGE model) (Table 1). While the simulations
were conducted under a unified climatic and socioeconomic
scenario framework and target years, they differ conceptu-
ally depending on characteristics of the impacts and the ca-
pability of the models. For example, some simulations in-
tend to capture year-by-year fluctuations in impacts, while
others focus only on longer-term impacts. Further, some-
times pure process-based models were not used, and statisti-
cal regression-based methods were also used in hybrid ways.

Table 1. List of modelled sectors. In principle, the results of simu-
lations obtained in Takakura et al. (2019) were used.

Simulated economic impact Way of monetization

Agricultural productivitya CGE model
Undernourishment CGE model+VSL
Heat-related excess mortality VSL
Cooling/heating demand CGE model
Occupational-health cost CGE model
Hydropower generation capacity CGE model
Thermal power generation capacity CGE model
Fluvial flooding Economic damage function
Coastal inundationb Economic damage function

a Definition of the baseline (no-climate-change condition) was changed slightly
compared to that of the original study. b Original results imputed by emulation-like
technique due to data unavailability.

The simulations were conducted sector by sector, and inter-
actions among sectors were not considered. More details on
the original process-based economic impact simulations are
described in Takakura et al. (2019) and in Sect. S1 in the
Supplement.

The simulations were conducted under the shared socioe-
conomic pathways–representative concentration pathways
(SSP–RCP) scenario matrix (van Vuuren et al., 2013). We
used five SSPs (SSP1, SSP2, SSP3, SSP4, and SSP5) and
four RCPs (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). More-
over, in order to incorporate the uncertainty in climate projec-
tions, we used five different global climate models (GCMs),
namely, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-
CHEM, GFDL-ESM2M, and NorESM1-M (Hempel et al.,
2013). Therefore, there are 100 (5× 4× 5) scenario runs in
total. The computational general equilibrium model covers
17 regions (AIM’s 17 regions shown in Table S1 in the Sup-
plement), and thus we have economic impacts for these 17
regions (for sectors whose economic impacts can be simu-
lated for each country, the results were aggregated for the 17
regions).

While it is impossible to evaluate how accurate these sim-
ulation results are because of inherent uncertainty in the sim-
ulations, we regard these simulation results as the ground
truth. We used the results of these simulations to construct
and evaluate the emulators.

2.2 Overall framework of the emulations

Figure 1 shows the framework of the simulation and the em-
ulation of the economic impacts of climate change. By using
the emulators, we want to get results as similar as possible
to the results of process-based simulations when the input
data or scenario is given. While emulators do not explicitly
model the underlying phenomena, they do have parameters,
and by tuning these parameters, they can statistically mimic
the behaviours (input–output relationship) of simulations.

Here, ys,r,t |sc denotes the simulated economic impact (in
percentage of GDP) in sector s, in region r , in year t , and un-
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Figure 1. Overall framework of simulation and emulation of economic impacts of climate change. Simulated and emulated economic impacts
in sector s, region r , and year t under a scenario sc are denoted as ys,r,t |sc and ŷs,r,t |sc, respectively. The parameters of the emulator are
determined based on the simulated economic impact (represented by the green dash–dot–dash arrow).

der a given scenario sc, and ŷs,r,t |sc is the corresponding em-
ulated economic impact. A scenario sc comprises the com-
bination of SSP, RCP, and GCM. The emulated economic
impact ŷs,r,t |sc is calculated by the function fs,r(·) receiving
the input xr,t |sc as expressed in Eq. (1).

ŷs,r,t |sc = fs,r

(
xr,t |sc

)
(1)

The emulator (function fs,r(·)) is constructed for each sec-
tor and region. The input xr,t |sc is the (vector of) variable(s)
which is used to emulate the economic impact in region r in
year t under a given scenario sc. One important characteristic
of the input xr,t |sc is that there is no suffix s. This means that
the input variable is not sector-specific and common input
data can be used across sectors.

2.3 Tested emulators

2.3.1 Functional forms

We tested a variety of emulators (different functional forms
and input variables) ranging from very parsimonious to com-
plex alternatives. For the functional forms, we used ordinary
least squares regression (OLS1), ordinary least squares re-
gression with square terms (OLS2), ordinary least squares re-
gression with square and product terms (OLS2i), multi-layer

perceptron (MLP), and a recurrent neural network composed
of long short-term memory units (LSTM). For the sake of
simplicity, we omit the suffixes s, r , and sc in this section,
and the ith variable in vector xt is denoted as xt,i .

OLS1 is the simplest form of the emulator, expressed as
Eq. (2).

ŷt = a0+
∑

i

aixt,i (2)

OLS2 includes squared terms and thus can express some cur-
vature in the response.

ŷt = a0+
∑

i

a1ixt,i +

∑
i

a2ix
2
t,i (3)

OLS2i has product terms as well as squared terms, and it can
represent some types of interactions among variables.

ŷt = a0+
∑

i

a1ixt,i +

∑
i

a2ix
2
t,i +

∑
i 6=j

aijxt,ixt,j (4)

Simple regressions such as these are widely used, but their
capability to express complex phenomena is limited. Cur-
rently, more elaborate methods based on statistical machine
learning techniques such as ANNs are available. Thus, to rep-
resent more complex non-linearities and interactions among
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variables, we also applied ANN-based techniques to the em-
ulations. MLP is a traditional, but effective and widely used,
ANN-based technique that can be applied to the purpose of
regression and thus to the emulation. LSTM is also an ANN-
based technique designed to handle time-series data and can
represent time-dependent characteristics of the data (e.g. cu-
mulative effects in the economic impacts) as well as non-
linearities and interactions among variables. Thus, it may
better act as the emulator if time-series data are available as
the input. While their strict mathematical formulations are
lengthy, MLP can be expressed as

ŷt = f (xt ,W ) , (5)

where W is the weights (parameters) of the model. LSTM
has time-dependent internal state st , and the output and the
internal state at time t can be expressed as

ŷt = f (st−1,xt ,W ) , (6)
st = g (st−1,xt ,W ) . (7)

See, for example, Goodfellow et al. (2016) for details on
MLP and LSTM. Hyperparameters in the ANN-based mod-
els were determined based on preliminary examinations. The
number of hidden layers and the number of units in each
layer were set to 2 and 32, respectively, and the early-
stopping technique was used to avoid overfitting of the mod-
els.

2.3.2 Input variables

When inputting climate conditions into the emulators, the
dimension of the data should be reduced. One typical way
to do this is to spatially and temporally aggregate the high-
resolution original data. For climate data, the most parsimo-
nious choice involves using the global mean temperature, but
this method cannot represent regional and seasonal charac-
teristics of climate conditions. Precipitation also plays an im-
portant role for some specific sectors (e.g. hydropower gener-
ation capacity, fluvial flooding). We prepared several kinds of
input data with different spatial and temporal resolutions by
aggregating daily gridded near surface temperature and pre-
cipitation data generated by GCMs in CMIP5 (Taylor et al.,
2011). First, the spatial resolution of the gridded GCM output
data was downscaled to 0.5× 0.5◦ by bilinear interpolation.
We denote this downscaled gridded temperature as tt |sc(g,d)

and precipitation as pt |sc(g,d), where g denotes grid and d

denotes day of the year. We calculate annual global mean
temperature, annual regional mean temperature and precipi-
tation, and quarterly regional mean temperature and precipi-

tation as follows.

agtt |sc =

∑
g,dwgtt |sc (g,d)

|Dt |
∑

gwg

(8)

artrs,t |sc =

∑
g∈rs,dwgtt |sc (g,d)

|Dt |
∑

g∈rswg

(9)

arprs,t |sc =

∑
g∈rs,dwgpt |sc (g,d)

|Dt |
∑

g∈rswg

(10)

qrtq,rs,t |sc =

∑
g∈rs,d∈qwgtt |sc (g,d)∣∣Dq,t

∣∣∑
g∈rswg

(11)

qrpq,rs,t |sc =

∑
g∈rs,d∈qwgpt |sc (g,d)∣∣Dq,t

∣∣∑
g∈rswg

(12)

Here, |Dt | is the number of days in year t , and |Dq,t |

is the number of days belonging to quarter of a year q.
Quarters are grouped following the calendar year, namely,
January–February–March, April–May–June, July–August–
September, and October–November–December. Coefficient
wg is a weight which is proportional to the area of the grid
g. Regions are indicated by the subscript rs. Note that rs is
based on the classification of SREX’s 26 regions defined in
IPCC (2012) and different from r (Table S2 in the Supple-
ment). While our interest is estimating the economic impacts
in each of AIM’s 17 regions represented by r , each such re-
gion contains different climate zones because r is classified
from the viewpoint of economic modelling rather than cli-
matic and geographic conditions. Thus, to incorporate het-
erogeneity in climate conditions within an AIM region, we
use rs instead of r to define climate variables.

For socioeconomic variables, values are based on the SSP
scenarios (Kc and Lutz, 2017; Dellink et al., 2017). Based on
the population (popt |sc(c)) and GDP (gdpt |sc(c)) in country
c in year t under a given scenario sc, regional population,
GDP, and GDP per capita are calculated as follows. GDP is
measured in USD (2005) based on the market exchange rate.

popr,t |sc =
∑
c∈r

popt |sc (c) (13)

gdpr,t |sc =
∑
c∈r

gdpt |sc (c) (14)

gpcr,t |sc = gdpr,t |sc/popr,t |sc (15)

When inputting variables to the emulators, it is desirable that
their values be within a limited range to ensure the stabil-
ity of numerical computation. Effects of biases in GCMs
should also be alleviated. For this purpose, we used the rela-
tive changes of these variables as inputs to the emulators. For
temperature, changes were defined by the difference from
the base-period (1991–2010) values. For the other variables,
changes were defined by a log ratio to the base-period or
base-year (2005) values (Table 2).
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Table 2. Candidate input variables. Socioeconomic variables are defined for AIM’s 17 regions, while climatic variables are defined for
SREX’s 26 regions.

Variable name Variable Spatial resolution Temporal resolution

1agtt |sc Temperature Global Annual
1artrs,t |sc Temperature SREX 26 regions Annual
1arprs,t |sc Precipitation SREX 26 regions Annual
1qrtq,rs,t |sc Temperature SREX 26 regions Quarterly
1qrpq,rs,t |sc Precipitation SREX 26 regions Quarterly
1popr,t |sc Population AIM 17 regions Annual
1gdpr,t |sc GDP AIM 17 regions Annual
1gpcr,t |sc GDP per capita AIM 17 regions Annual

2.4 Comparison

As explained in Sect. 2.3, we have various types of emulators
(functional forms) and candidate input variables. We con-
ducted comparisons under selected practically relevant con-
ditions among the possible combinations.

2.4.1 Comparison 1

We quantified the performance of the very simple damage
functions (OLS1 and OLS2), which only consider the global
mean temperature, and compared the performance when re-
gional climate conditions were considered (Table 3). Here,
rs(r) represents a set of SREX regions corresponding to an
AIM region r (Table S3 in the Supplement).

2.4.2 Comparison 2

We investigated the effects of considering socioeconomic
conditions. It is also expected that there are interactions be-
tween climate conditions and socioeconomic conditions. To
identify whether such interactions can be expressed by a sim-
ple method, we included product terms in OLS2i (Table 4).

2.4.3 Comparison 3

In comparisons 1 and 2, relatively simple functional forms
and temporally coarsely aggregated (annual) climate vari-
ables are used. Such an aggregation possibly causes loss of
information. For example, crop models consider crop calen-
dars, and thus the temperature changes in growing and non-
growing seasons have different effects on their original simu-
lation results. Regarding the economic impacts, climatic and
socioeconomic conditions of the non-target regions can also
affect the target region through, for example, trade in the
international market, which is simulated by the AIM/Hub
model. To investigate these possibilities, seasonal climate
variables, climate variables of non-target regions, and socioe-
conomic variables of non-target regions were included as in-
put variables. Moreover, when the number of input variables
becomes large, more complex functional forms may be more

suitable. Thus, we tested OLS2 and MLP using these vari-
ables (Table 5).

2.4.4 Comparison 4

In the previous comparisons, only simultaneous data were
used; that is, when emulating the economic impacts in year
t , climate and socioeconomic conditions in year t are used.
Cumulative or carry-over effects can also exist in the sim-
ulated impacts. Therefore, including climate and socioeco-
nomic conditions in past years as the input to the emulator
can also contribute to better reproduce the results of the eco-
nomic simulation. To evaluate the effects of inclusion of in-
formation in past years, we tested the performance of arti-
ficial neural networks which can consider time-series infor-
mation (LSTM) with time-series data of different length (10-
year data to capture relatively short-period effects and 95-
year data which can capture the entire simulation period as
shown in Table 6).

2.5 Evaluation

2.5.1 Evaluation procedure metrics

Parameters in the emulators are optimized based on the sim-
ulation results. If, however, we simply optimized these pa-
rameters based on the existing data (simulation results) and
evaluated them by the same data, the performance of the em-
ulators might be overestimated compared to the situation in
which new data are input to the emulators. This phenomenon
is known as overfitting or overlearning. To avoid the ef-
fects of overfitting, we use the cross-validation strategy. We
have simulation results for 100 scenarios (5SSPs×4RCPs×
5GCMs), and each scenario has 95 (2006–2100) data points.
We divide the 100 scenario results into 4 groups randomly.
Three-quarters of the data were used to optimize parameters
in the emulators (training), and prediction values were ob-
tained for the remaining one-quarter of the data (test). This
procedure was repeated four times by changing the training
and test data, and then we got the results of emulation for all
scenarios. That is, 4-fold cross-validation was performed.

Geosci. Model Dev., 14, 3121–3140, 2021 https://doi.org/10.5194/gmd-14-3121-2021



J. Takakura et al.: Reproducing complex simulations of economic impacts of climate change 3127

Table 3. Models and input variables in comparison 1. Input variables are used to emulate the economic impact in year t1 in region r1 for
each sector.

Emulator Input variables

OLS1/OLS2 xr,t |sc = agtt |sc t = t1

OLS1/OLS2 xr,t |sc =
({

artrs,t |sc
}
,
{

arprs,t |sc

})
t = t1, rs ∈ rs(r1)

Table 4. Models and input variables in comparison 2. Input variables are variables used to emulate the economic impact in year t1 in region
r1 for each sector.

Emulator Input variables

OLS2/OLS2i xr1,t1|sc =
({

artrs,t |sc
}
,
{

arprs,t |sc

})
t = t1, rs ∈ rs(r1)

OLS2/OLS2i xr1,t1|sc =
({

artrs,t |sc
}
,
{

arprs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, rs ∈ rs(r1), r = r1

Table 5. Models and input variables in comparison 3. Input variables are variables used to emulate the economic impact in year t1 in region
r1 for each sector.

Emulator Input variables

OLS2/MLP xr1,t1|sc =
({

artrs,t |sc
}
,
{

arprs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, rs ∈ rs(r1), r = r1

OLS2/MLP xr1,t1|sc =
({

artrs,t |sc
}
,
{

arprs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, rs ∈ rs(r1), ∀r

OLS2/MLP xr1,t1|sc =
({

qrtq,rs,t |sc

}
,
{

qrpq,rs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, rs ∈ rs(r1), r = r1, ∀q

OLS2/MLP xr1,t1|sc =
({

qrtq,rs,t |sc

}
,
{

qrpq,rs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, rs ∈ rs(r1), ∀r, ∀q

OLS2/MLP xr1,t1|sc =
({

artrs,t |sc
}
,
{

arprs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, ∀rs, r = r1

OLS2/MLP xr1,t1|sc =
({

artrs,t |sc
}
,
{

arprs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, ∀rs, ∀r

OLS2/MLP xr1,t1|sc =
({

qrtq,rs,t |sc

}
,
{

qrpq,rs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, ∀rs, r = r1, ∀q

OLS2/MLP xr1,t1|sc =
({

qrtq,rs,t |sc

}
,
{

qrpq,rs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, ∀rs, ∀r, ∀q

Table 6. Models and input variables in comparison 4. Input variables are used to emulate the economic impact in year t1 in region r1 for
each sector.

Emulator Input variables

MLP xr1,t1|sc =
({

qrtq,rs,t |sc

}
,
{

qrpq,rs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, ∀rs, ∀r, ∀q

LSTM xr1,t1|sc =
({

qrtq,rs,t |sc

}
,
{

qrpq,rs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, . . ., t1− 9, ∀rs, ∀r, ∀q

LSTM xr1,t1|sc =
({

qrtq,rs,t |sc

}
,
{

qrpq,rs,t |sc

}
,
{

popr,t |sc

}
,
{

gdpr,t |sc

}
,
{

gpcr,t |sc

})
t = t1, . . ., t1− 94, ∀rs, ∀r, ∀q

In some situations, we want to emulate impacts under
scenarios which are drastically different from the scenar-
ios which are used to develop (or train) the emulators. In
order to evaluate the performance of the emulators under
such situations, we also conducted cross-validation by GCM
and RCP. Cross-validation by GCM means that the emu-
lators are trained by the simulation results of four GCMs
(5SSPs× 4RCPs× 4GCMs) and tested by the results of the
remaining one GCM (5SSPs× 4RCPs× 1GCMs). Cross-
validation by RCP mean that the emulators are trained by the

simulation results of three RCPs (5SSPs×3RCPs×5GCMs)
and tested by the results of the remaining one RCP (5SSPs×
1RCPs× 5GCMs).

Optimization of the parameters (training) and prediction
(test) of OLS-based emulators were conducted using the lm
function in R 3.4.3 (R Core Team, 2017). ANN-based emula-
tors were trained and tested using the Keras library (Chollet,
2015) in Python 3.7.3. The Windows operating system (OS)
was used in all cases.
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2.5.2 Evaluation metrics

The performance of the emulators was evaluated based on
the agreement between the results of the simulations and the
emulations. By a chosen emulator, we obtain the values of
emulated economic impacts ŷs,r,t |sc. We also have the val-
ues of the corresponding original simulated economic im-
pact ys,r,t |sc. We measured the agreement between ŷs,r,t |sc
and ys,r,t |sc by correlation coefficient (r), root mean squared
error (RMSE), ratio of RMSE to standard deviation (RSR),
and systematic error (bias). These metrics were calculated
for each sector and region.

The computational cost of the emulators was assessed by
the number of required input data, the number of parame-
ters in a model, model object size (memory size required to
load a model), prediction time, and training time. This was
measured on a PC (CPU: Intel Core i7–8700K (3.70 GHz,
6 cores/12 threads); RAM: 32 GB; OS: Windows 10 Pro).
While the lm function in R was used for OLS-based emu-
lators in the development, they were transplanted to Python
for the assessment of computational cost. Thus, both OLS-
based emulators and ANN-based emulators were assessed
under equal conditions.

3 Results

We report results for r in the main text since the three metrics
(r , RMSE, and RSR) varied almost parallelly, and systematic
errors (biases) were nearly negligible for all conditions. Sum-
marized results beyond r (RMSE, RSR, and bias) are avail-
able in Tables S4 to S13 in the Supplement, and individual
values for all sectors and regions are available as electronic
supplementary material. A higher value of r (i.e. r closer to
1) indicates that results of the emulation are similar to those
of the simulation when the biases are negligible. The value
of r also indicates how well the variation in the simulation
results is reproduced by the emulation (square of r is equal
to the coefficient of determination or the proportion of ex-
plained variance).

Figure 2 is the results of comparison 1. While there is
a large variation in the performance of the emulations for
individual sectors, the performance for the aggregated eco-
nomic impacts is relatively good on average even if they
only consider global mean temperature rise. This implies that
using simple damage functions can be useful to grasp the
rough picture of economic impacts of climate change. On
the other hand, when we focus on more minute components,
a more elaborate method is required. The effects of includ-
ing regional climate conditions are distinct in the economic
impacts of thermal power generation and fluvial flooding,
whose impacts are strongly affected by local precipitation
and river flows.

By incorporating socioeconomic variables as inputs to the
emulators, there were significant improvements in the per-

Figure 2. Performance of emulations in comparison 1. Correlation
coefficients between simulation results and emulation results are
shown. Bars and edges of boxes represent medians and first/third-
quantile values among 17 regional results. The ends of the whiskers
show the minimum and maximum values, while outliers are denoted
by dots if they exist.

formance of the emulations (Fig. 3). The impacts of climate
change are determined not only by hazards (climate condi-
tions) but also by exposure and vulnerability (socioeconomic
conditions) (IPCC, 2014). Most current-generation simula-
tions of economic impacts, including the simulations used in
this study, take socioeconomic aspects into account. Thus, it
is not surprising that emulators could better reproduce the re-
sults of simulations by taking socioeconomic variables into
account. Note that there is very little improvement in the re-
sults with respect to river flooding impacts. This is mainly be-
cause the same proportion of the population and GDP distri-
bution data were used in the simulation of the impacts of flu-
vial flooding across SSPs due to data availability (Takakura
et al., 2019), and the simulated economic impacts (percent-
age of GDP) were very similar regardless of the socioeco-
nomic conditions.

Inputting more detailed information improves the perfor-
mance of the emulations. These improvements were more
pronounced when more complex functional forms (MLP)
were used. The performance of MLP was comparable to
or worse than that of OLS2 when courser input variables
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Figure 3. Performance of emulations in comparison 2. Correlation
coefficients between simulation results and emulation results are
shown.

were used (leftmost plots in each panel in Fig. 4), whereas
MLP performed better when finer input variables were used
(rightmost plots) in most cases. The relative importance of
variables differs depending on the modelled sectors. For ex-
ample, for the agricultural productivity and undernourish-
ment sectors, the inclusion of socioeconomic variables in
non-target regions contributed to the improvement in per-
formance. The performance for the fluvial flooding sector
jumps when seasonal climate variables and climate variables
in non-target regions are used with MLPs. This is probably
due to the result of “leakage” (discussed later).

Consideration of time-series input variables had positive
effects for almost all sectors (Fig. 5), but it had greatest ef-
fects in the hydropower generation sector (the median r im-
proves from 0.48 to 0.78). This was mainly because LSTM
could reproduce the pre-processing of bio/physical impact
simulations before inputting to the economic models. For ex-
ample, in the simulation of the hydropower generation sec-
tor, calculated physical impacts (theoretical hydropower po-
tential) were averaged for every 20 years, and then tempo-
ral linear interpolation was applied because this study fo-
cused on long-term potential changes due to climate change

rather than year-by-year variations (Zhou et al., 2018b). Tem-
poral moving averaging of biological impacts (yields) was
also used in the simulations of agricultural productivity and
undernourishment. When the original simulations are con-
ducted using these temporally rounded input data, year-by-
year input data do not reproduce the original simulation re-
sults well. These effects are more obvious when compar-
ing the time-series results of emulation (for example, see
Fig. 10), and the results played out just like a low-pass fil-
ter had been in place.

In general, the more explanatory variables and the more
complex functional forms we use, the better the emulators
reproduce the results of the simulations. While this tendency
is common for all sectors, there are substantial differences
in performance between sectors (Fig. 6). This means some
sectors’ economic impacts are relatively easy to emulate, but
others are more difficult even if the complex techniques are
used. There were correlations between impact magnitudes
and the performance of the emulators (Fig. 7). That means
larger impacts tend to be easier to emulate, and consequently
aggregated impacts are also relatively easy to emulate.

As illustrative examples, we explore simulated and em-
ulated results for chosen sectors in “Brazil” (Figs. 8, 9, and
10). The top row in each figure shows the time series of simu-
lated economic impacts for each scenario, and the remaining
rows show corresponding emulated economic impacts by dif-
ferent emulators. For aggregated economic impacts, general
tendencies could be reproduced even by simple emulators,
while complex emulators considering socioeconomic condi-
tions could better represent subtle differences among SSPs
(Fig. 8). For occupational-health cost sector and hydropower
generation sector impacts, obvious differences among SSPs
in the simulation results could not be reproduced by simple
emulators, but ANN-based complex emulators could repro-
duce the general tendencies (Figs. 9 and 10). For the hy-
dropower generation sector, even the most complex emulator
failed to reproduce some characteristics of the simulation re-
sults; that is, the emulator erroneously predicted discernible
economic impacts under SSP1 and SSP4.

The performance of emulation can vary depending on how
the training and test data are chosen. The results shown above
are based on cross-validation with randomly selected scenar-
ios for training and testing. Figure 11 shows the compar-
ison of the performance between different cross-validation
procedures for the aggregated impacts as an example. Here,
the performance is shown by the RMSE normalized by the
pooled standard deviation (RSR), not by the correlation co-
efficient, because the standard deviation of each test data
formulation, which affects the value of the correlation co-
efficient, differs across the selected GCMs or RCPs. Sum-
marized results for each sector and indices beyond RSR (r ,
RMSE, and bias) are available in Tables S14 to S33 in the
Supplement. When the emulators were trained excluding the
results of RCP8.5 (the highest emission pathway) and then
tested by the results of RCP8.5 (RCP8.5 left condition), the
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Figure 4. Performance of emulations in comparison 3. Correlation coefficients between simulation results and emulation results are shown.
CA(1) denotes that climate variables for all regions (including non-target region) are used. CS(1) denotes that seasonal climate variables are
used. SA(1) denotes that socioeconomic variables for all regions (including non-target region) are used.

performance was apparently worse compared to the other
conditions. Except for RCP8.5 left condition, the perfor-
mance was reasonably similar across conditions when sim-
pler models and input data were used. When complex mod-
els and finer input variables were used, the performance was
worse when cross-validated by GCM or cross-validated by
RCP compared to the random cross-validation.

The computational cost of the developed emulators was
sufficiently small in the prediction phase, while training re-
quires some time for ANN-based emulators. Table 7 shows
the computational cost for selected conditions. Even if the
most complex emulators are used, they require only 723 (679
to 1347) ms for the calculation of the economic impact for
a century. From the viewpoint of computation time required
for the prediction, both the OLS-based and ANN-based mod-
els can meet the requirement of the emulators. However, it
should be noted that the time required to prepare the input
variables is not included in this assessment, and it depends
on the situations.

4 Discussion

In this study, we developed various kinds of emulators and
systematically evaluated their performance. We explored dif-
ferences in emulator performance among sectors and the re-
lationship between model complexity and performance. The
aggregated economic impact was relatively easily emulated
even by simple emulators with limited input variables. The
dominant contributors of aggregated impact were the heat-
related excess mortality and occupational-health cost sectors
(Takakura et al., 2019) as also shown in Sect. S2 in the Sup-
plement, and the economic impacts of these two sectors were
also relatively easily emulated. There were clear relation-
ships between temperature rise and the simulated impacts in
these two sectors (Honda et al., 2014; Takakura et al., 2017),
and almost all regions were impacted in the same direc-
tion. Moreover, where impacts were large, emulator perfor-
mance tended to be better as shown in Fig. 7. Temperature-
dependent impacts tend to be large and easy to emulate, while
precipitation-dependent impacts tend to be small and difficult
to emulate. Although it is not clear whether this correlation
reflects a causal relationship or is just a coincidence, these
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Table 7. Computational cost of the developed emulators. Medians (minimum, maximum) of 17 regional, 9 sectoral, and aggregated impact
results are shown. OLS-based models and ANN-based models were implemented by the statsmodels library and Keras library in Python,
respectively. OLS2 (RMT+P+S): OLS2 with regional mean temperature precipitation and socioeconomic variables. MLP (RMT+P+S):
MLP with regional mean temperature precipitation and socioeconomic variables. MLP (All variables): MLP with all the input variables.
LSTM (All variables, 95): LSTM with all the input variables for 95 years.

Model Number of Number of Model object size Prediction time Training time
(input) input variables parameters (MB) (second/scenario) (second)

OLS2 1 3 1.470 0.002 0.010
(GMT) (1, 1) (3, 3) (1.470, 1.470) (0.002, 0.004) (0.008, 0.018)
OLS2 6 13 5.291 0.003 0.018
(RMT+P) (2, 10) (5, 21) (2.234, 8.348) (0.002, 0.015) (0.010, 0.029)
OLS2 9 19 7.583 0.004 0.022
(RMT+P+S) (5, 13) (11, 27) (4.527, 10.642) (0.003, 0.006) (0.014, 0.034)
MLP 9 1409 7.711 0.054 3.601
(RMT+P+S) (5, 13) (1281, 1537) (7.710, 7.711) (0.050, 0.133) (1.024, 13.349)
MLP 259 9409 7.711 0.134 6.552
(All variables) (259, 259) (9409, 9409) (7.711, 7.711) (0.129, 0.224) (1.375, 15.350)
LSTM 24 605 45 729 96.461 0.723 689.066
(All variables, 95) (24 605, 24 605) (45 729, 45 729) (96.454, 96.461) (0.679, 1.347) (153.160, 1761.409)

characteristics contributed to the higher performance of emu-
lations of aggregated impacts particularly when simple func-
tional forms were used. If we only focus on the aggregated
economic impacts of climate change, a simple damage func-
tion which only leverages global mean temperature is worth
using provided that we regard the original simulation results
as valid. On the other hand, some sectors’ and regions’ im-
pacts were difficult to emulate by simple emulators, and con-
sideration of more input variables and more complex func-
tional forms could improve the performance. Therefore, if we
focus on sectoral or regional issues (e.g. inequality among re-
gions or sectors), conventional simple damage functions may
not be adequate tools and ANN-based or other complex tech-
niques may be necessary.

For the agricultural productivity and undernourishment
sectors, the performance of the emulations was low unless
socioeconomic conditions of non-target regions were incor-
porated. Since comparative advantages (or disadvantages)
in the international food market and global food demands
play important roles in simulations of the impacts in these
sectors, it is reasonable that non-target regional information
contributed to improve the performance of the emulations.
Such beyond-the-border effects have not been considered in
previous studies using damage functions or emulators, but
our results shed light on the importance of this factor. It
is also noteworthy that these improvements were more dis-
tinct when MLPs, which can represent complex interactions
among variables, were used as the emulators.

In terms of the results for the fluvial flooding sector, inclu-
sion of non-target regions’ quarterly climate variables with
MLP caused a drastic jump in the performance of the em-
ulators. This is puzzling because in the simulation of the
impacts of fluvial flooding, effects of international trading

are not considered explicitly (Kinoshita et al., 2018). We
suspect this is caused by the leakage because of the char-
acteristics of the simulation data used in this study. In the
field of statistical machine learning, the word leakage means
that models have access to some information on the char-
acteristics of the test dataset even if the test and training
datasets are separated (Kaufman et al., 2011). In this study,
we separated the dataset into training and test datasets de-
pending on the scenarios. When a certain scenario (for exam-
ple, SSP1-RCP2.6-HadGEM2-ES) is used in the test dataset,
it is not included in the training dataset. By doing this, we
can evaluate how the trained emulators will work when a
new unknown scenario is given. However, in the case of
fluvial flooding, the simulated impacts expressed by per-
centage of GDP are very similar among SSPs (Takakura
et al., 2019). For example, the simulated impacts (percent-
age of GDP) in SSP1-RCP2.6-HadGEM2-ES are almost
identical to those in SSP2-RCP2.6-HadGEM2-ES, SSP3-
RCP2.6-HadGEM2-ES, SSP4-RCP2.6-HadGEM2-ES, and
SSP5-RCP2.6-HadGEM2-ES, and some of these datasets are
included in the training dataset. In such a situation, overfit-
ting can result in apparently high performance in the cross-
validation even if its actual ability for a new input dataset
is low. Therefore, apparently high performance in the fluvial
flood sector should be interpreted with caution.

In the sectors of hydropower generation and thermal power
generation, even using the complex emulators with finer in-
put variables, the attained performance remained relatively
low. This implies that information required to reproduce the
simulation results is missing from the input data. In the
AIM/Hub model, there are SSP-dependent assumptions other
than population and GDP, particularly related to energy poli-
cies (Fujimori et al., 2017). These policies depend on the nar-
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Figure 5. Performance of emulations in comparison 4. Correlation
coefficients between simulation results and emulation results are
shown. MLP(1) denotes that MLPs are used as the emulators and
that only climatic and socioeconomic variables for the target year
are used. LSTM(10) and LSTM(95) denote that LSTMs are used as
the emulators and that the climatic and socioeconomic variables for
10 and 95 years are used, respectively.

ratives of the SSP storylines, not just quantitative socioeco-
nomic information such as population or GDP. In addition,
in the AIM/Hub model, adoption of power generation tech-
nology is decided by a discrete-choice model (Fujimori et
al., 2014). Thus, the degree of reliance on a certain kind of
power generation can also be discrete or non-continuous de-
pending on the SSP-dependent assumptions in the AIM/Hub
model. For example, a certain region does not rely on the hy-
dropower generation at all in some situations, but once the
hydropower generation technology becomes economically
competitive compared to other power generation technolo-
gies, hydropower generation plants will be installed in the
model. In the former situation, changes in the hydropower
generation capacity do not affect the economy at all, but they
do in the latter situation. This difference cannot be predicted
by the emulators, since they cannot be represented only by
climate conditions, GDP, and population.

Figure 6. Relationship between number of input variables and per-
formance of emulators. Medians of 17 regional results are plotted
as points. Fitted curves are produced for the frontiers (Pareto opti-
mal corresponding to each number of input variables) by beta re-
gression. When time-series input data are used, the number of input
variables is multiplied by the length of the time series.

To improve the performance of the economic impact em-
ulations, should we construct more complex emulators and
consider more information? For example, in power gener-
ation sectors, model-specific assumptions regarding the en-
ergy system could be used as additional input variables and
this might improve the emulation performance. If a sufficient
number of simulation results are available, this strategy may
work. An alternative approach is refraining from reproduc-
ing the complex behaviour of the energy system in the sim-
ulation model by an emulator and partly using the original
simulation model. For example, in simulations of the im-
pacts of hydropower generation and thermal power gener-
ation, bio/physical impacts (theoretical hydropower poten-
tial and river flow) are simulated by a global hydrological
model, whose computational cost is high (around 15 to 20 h
for one scenario), while the economic impacts are simulated
by an economic model, whose computational cost is rela-
tively low (around 1.5 h for one scenario) compared to that
of the hydrological model. Therefore, if we can only emulate

Geosci. Model Dev., 14, 3121–3140, 2021 https://doi.org/10.5194/gmd-14-3121-2021



J. Takakura et al.: Reproducing complex simulations of economic impacts of climate change 3133

Figure 7. Relationship between range of economic impacts (global)
and performance of emulators. Each point represents a sector, and
the median of 17 regional results is plotted as the y axis value. Fitted
curves are produced by beta regression. OLS2 uses only the global
mean temperature as the input variable, and LSTM uses all the pre-
pared input variables for 95 years.

bio/physical impacts, the computational cost of economic
impact estimation can be reduced even if we use the origi-
nal simulation model for the economic part. Such model sep-
arations will become important particularly if we focus, for
example, on interactions among different sectors (Harrison
et al., 2016). Another possibility is constructing SSP-specific
emulators. In this study, since we aimed to explore new so-
cioeconomic pathways (e.g. intermediate pathway between
SSP1 and SSP2), one common emulator was constructed for
different socioeconomic pathways. On the other hand, if we
fix the socioeconomic pathways to consider, it is possible to
incorporate SSP-specific assumptions into the emulators by
separating the models by SSPs. This option could be pursued
depending on the purpose of the studies.

Even without introducing overly complex models or con-
sidering excessively specific information, there are several
techniques which may improve the performance of emu-
lation. For example, variable selection is a widely used
technique pursuant of developing parsimonious models and
avoiding overfitting. We tested the simple step-wise variable
selection based on Akaike’s information criterion, which can
easily be applied to an OLS-based technique, and the results
are shown in Sect. S3 in the Supplement. Optimization of
the hyperparameters – e.g. the number of units, the number

of hidden layers, and the batch size for training in ANN –
can also be effective. In addition to optimizing or modifying
the models used in this study, other kind of models – such
as support vector regression, random forest regression, and
k-nearest neighbours regression – may also be effective. If
we adopt techniques like Gaussian process regression, un-
certainty of the predicted value can also be assessed. While
we did not investigate these techniques in this study, this rep-
resents an important direction for future research.

While there is substantial room for improvement, the em-
ulators developed in this study can be used as tools to ex-
plore various other future scenarios with limited computa-
tional and implementation cost. Technically, applying ANN-
based techniques to economic impact emulation is one of the
novelties of this study, and we have demonstrated that these
techniques can improve the performance of the emulations.
However, we do not claim researchers should always use
ANN-based (or similar statistically complex) techniques in
economic impact emulations. There is a non-negligible trade-
off between model complexity and performance. While com-
putational cost of emulation is small in the calculation (pre-
diction) phase as shown in Table 7, even by the most complex
emulator used in this study, the availability of input variables
is context-specific. For example, the cost of preparing or gen-
erating sub-yearly regional climate variables should also be
considered. We disclose the source code for the OLS-based
and ANN-based emulators developed herein. Sector-specific
skills and knowledge are not necessarily needed to use this
code, and thus the implementation cost is much smaller than
that of the original simulation models, particularly if the
pre-trained models are used. Nevertheless, transplanting the
ANN-based emulators to other modelling languages, if nec-
essary, is not always a trivial task, because of the required
software libraries. On the other hand, it is much easier to
transplant OLS-based emulators in any modelling language
because they only require arithmetic multiplication and addi-
tion.

While sector-specific skills and knowledge are not always
necessary to use the developed emulators, users should be
aware of the statistical context of the emulators and eval-
uation results. Firstly, cross-validation is a powerful tool
for evaluating the emulators’ performance without the influ-
ence of overfitting, and we can rely on the results of cross-
validation to choose adequate models in most cases. How-
ever, leakage can pass the cross-validation test unlike simple
overfitting. While there is no perfect solution to detect the ex-
istence of leakage, it can be effective to think about the actual
situation in which the developed emulators will be used. For
example, if the emulators will be used to estimate economic
impacts under different RCPs or substantially different emis-
sion pathways, which are not included in the training data,
cross-validation by RCPs can be effective to estimate the ac-
tual performance of the emulators in that situation. Suspected
leakage shown in Fig. 4 can be detected by this strategy
(Sect. S4 in the Supplement). Secondly, regression models
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Figure 8. Time-series results of the simulation and emulations for aggregated economic impacts in the Brazil region. OLS2 (GMT): OLS2
with global mean temperature. OLS2 (RMT and P): OLS2 with regional mean temperature and precipitation. OLS2 (RMT and P+S): OLS2
with regional mean temperature precipitation and socioeconomic variables. MLP (All variables): MLP with all the input variables. LSTM
(All variables, 95): LSTM with all the input variables for 95 years. Thin lines represent individual GCM results, and bold lines represent
average of five GCMs.
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Figure 9. Time-series results of the simulation and emulations for the occupational-health cost sector in the Brazil region. OLS2 (GMT):
OLS2 with global mean temperature. OLS2 (RMT and P): OLS2 with regional mean temperature and precipitation. OLS2 (RMT and P+S):
OLS2 with regional mean temperature precipitation and socioeconomic variables. MLP (All variables): MLP with all the input variables.
LSTM (All variables, 95): LSTM with all the input variables for 95 years. Thin lines represent individual GCM results, and bold lines
represent average of five GCMs.
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Figure 10. Time-series results of the simulation and emulations for the hydropower generation sector in the Brazil region. OLS2 (GMT):
OLS2 with global mean temperature. OLS2 (RMT and P): OLS2 with regional mean temperature and precipitation. OLS2 (RMT and P+S):
OLS2 with regional mean temperature precipitation and socioeconomic variables. MLP (All variables): MLP with all the input variables.
LSTM (All variables, 95): LSTM with all the input variables for 95 years. Thin lines represent individual GCM results, and bold lines
represent average of five GCMs.
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Figure 11. Performance of emulations of the aggregated impacts under different cross-validation procedures. Root mean squared errors
(normalized by pooled standard deviation) between simulation results and emulation results are shown. Unlike the correlation coefficient,
a higher value means a larger error. Random means training and test scenarios are selected randomly. For example, “GFDL-ESM2M left”
denotes that the emulators are trained by the results of HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M and then
tested by the results of GFDL-ESM2M. Similarly, for example, “RCP2.6 left” denotes that the emulators are trained by the results of RCP4.5,
RCP6.0, and RCP8.5 and then tested by the results of RCP2.6. OLS2 (GMT): OLS2 with global mean temperature. OLS2 (RMT+P):
OLS2 with regional mean temperature and precipitation. OLS2 (RMT+P+S): OLS2 with regional mean temperature precipitation and
socioeconomic variables. MLP (RMT+P+S): MLP with regional mean temperature precipitation and socioeconomic variables. MLP (All
variables): MLP with all the input variables. LSTM (All variables, 95): LSTM with all the input variables for 95 years.

are not good at extrapolation, as shown in RCP8.5 left con-
dition in Fig. 11. Fortunately, RCP8.5 left condition is a hy-
pothetical situation only for the purpose of the evaluation. In
the actual situations in which the emulators will be used, the
simulation results under RCP8.5 are included in the training
data, and emission pathways higher than RCP8.5 are nearly
impossible considering the current world situation (Hausfa-
ther and Peters, 2020). Therefore, as for the emission path-
way, the problem of extrapolation will not be a serious issue
in practical terms, but we should be aware of whether an em-
ulated scenario is inside or outside the range of the original
simulations. Thirdly, overfitting should be avoided as a gen-
eral rule, but some sort of overfitting can be allowed depend-
ing on the purpose of the studies. For example, constructing
SSP-specific emulators is possible as discussed above. These
emulators overfit to the corresponding SSPs (socioeconomic
pathways) and thus will not work well under different socioe-
conomic pathways. On the other hand, as long as the purpose
of the emulation is to explore future scenarios other than so-
cioeconomic pathways, overfitting to the SSPs will not be a
problem. Such judgements may be difficult. In general, how-
ever, unwanted and unexpected characteristics of statistical

models tend to emerge when more complex models are used.
Therefore, it is conservative, but can be safer, to choose a
simpler model if it meets the requirement of the studies when
the users are not confident about the model characteristics.

Both simple and complex emulators have advantages and
disadvantages. We cannot conclude which emulator is the
“best” one, because it depends on the purpose and situation,
but we can give a general guideline to choose a suitable em-
ulator based on the results of this study. This is the fact that
simple emulators are effective for approximating global gen-
eral tendencies, but complex emulators are necessary if the
focus is regional or sectoral heterogeneity. Through a sys-
tematic comparison of different emulators, ranging from very
parsimonious through to complex alternatives, the findings
of this study can help researchers choose and implement the
most suitable emulators for their purposes and situations.

5 Limitations and future study

We used the results of simulations as the ground truth, and
the emulators were optimized to reproduce the results of the
simulations. While we used state-of-the-art simulation re-
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sults (Takakura et al., 2019), the simulations themselves con-
tain uncertainties and inaccuracies. Thus, even if the emula-
tors could reproduce the results of the simulations, this would
not necessarily mean the economic impacts estimated by the
emulators are accurate.

In this study, we assumed that climate data from GCMs
were given and representative climate variables could be cal-
culated by aggregating (or upscaling) them. On the other
hand, particularly when the emulator is used as a component
of a typical integrated assessment model, climate data are
calculated by a simple climate model, and only the global
mean temperature is available. In such a situation, downscal-
ing is necessary if the emulator requires regional or seasonal
climate variables. This is possible using, for example, a pat-
tern scaling technique (Herger et al., 2015; Osborn et al.,
2016). In this case, the overall performance of the emulation
should be evaluated including this pre-processing.

We should also consider the division of roles between
models. In this study, the emulators played the roles of both
bio/physical impact models and economic models. As dis-
cussed above, it can be difficult to incorporate the assump-
tions used in the economic models into the emulators. To
avoid such difficulties, it may be better for emulators to fo-
cus on bio/physical impacts, with the economic impacts be-
ing calculated by an appropriate economic model. In gen-
eral, the computational costs of economic models are lower
compared to those of bio/physical impact models, and thus
it is prudent to consider this option. It may also be desirable
from the viewpoint of representing interactions among sec-
tors, but more investigations, model developments, and val-
idations are needed to model complex interactions. The op-
timal configuration of the model cascade should be decided
considering prediction accuracy, computational cost, and the
purpose of studies.

Code and data availability. Code and data to re-
produce the results in this paper are available at
https://doi.org/10.5281/zenodo.4692496 (Takakura, 2021).
There are two directories in the repository. The directory named
RTU contains ready-to-use code and sample data for users of the
developed emulators. The directory named REPRODUCTION
contains code and data that are required to reproduce the results
reported in this paper.
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