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Abstract. An evaluation of a model’s overall performance
in simulating multiple fields is fundamental to model in-
tercomparison and development. A multivariable integrated
evaluation (MVIE) method was proposed previously based
on a vector field evaluation (VFE) diagram, which can pro-
vide quantitative and comprehensive evaluation on multiple
fields. In this study, we make further improvements to this
method from the following aspects. (1) We take area weight-
ing into account in the definition of statistics in the VFE di-
agram and MVIE method, which is particularly important
for a global evaluation. (2) We consider the combination of
multiple scalar fields and vector fields against multiple scalar
fields alone in the previous MVIE method. (3) A multivari-
able integrated skill score (MISS) is proposed as a flexi-
ble index to measure a model’s ability to simulate multiple
fields. Compared with the multivariable integrated evalua-
tion index (MIEI) proposed in the previous study, MISS is
a normalized index that can adjust the relative importance of
different aspects of model performance. (4) A simple-to-use
and straightforward tool, the Multivariable Integrated Eval-
uation Tool (MVIETool version 1.0), is developed to facili-
tate an intercomparison of the performance of various mod-
els. Users can use the tool coded either with the open-source
NCAR Command Language (NCL) or Python3 to calculate
the MVIE statistics and plotting. With the support of this
tool, one can easily evaluate model performance in terms of
each individual variable and/or multiple variables.

1 Introduction

An increasing number of model intercomparison projects
(MIPs) have been carried out over the past decade (Eyring
et al., 2016; Simpkins, 2017). The Coupled Model Inter-
comparison Project phase 6 (CMIP6) includes more than 20
MIPs: e.g., the Radiative Forcing MIP (RFMIP), the Geo-
engineering MIP (GeoMIP), and the Global Monsoons MIP
(GMMIP) (Kravitz et al., 2011; Pincus et al., 2016; Zhou
et al., 2016). Quantitative evaluation and intercomparison of
climate models have become increasingly important (Knutti
et al., 2013) and have escalated the need for innovative and
comprehensive approaches to model evaluation (Meehl et al.,
2014; Stouffer et al., 2016; Eyring et al., 2019).

Climate models are commonly evaluated in terms of their
ability to simulate historical climate compared to observed
or reanalyzed data, using performance metrics (Pincus et al.,
2008; Flato et al., 2013). A set of useful metrics and diagrams
has been developed for model evaluation. The widely used
Taylor diagram summarizes model performance in simulat-
ing a scalar field using correlation coefficient (CORR), stan-
dard deviation (SD), and root-mean-square difference (Tay-
lor, 2001). Objective performance metrics (e.g., relative error
and portrait diagrams) have been proposed for the evaluation
of various variables (Gleckler et al., 2008). Xu et al. (2016)
devised a vector field evaluation (VFE) diagram which can be
regarded as a generalized Taylor diagram. The VFE method
allows an evaluation of a model’s ability to simulate a vec-
tor field (Huang et al., 2019, 2020). Based on the VFE dia-
gram, Xu et al. (2017) further developed a multivariable in-
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tegrated evaluation (MVIE) method to evaluate model per-
formance in terms of multiple fields by grouping various
normalized scalar fields into an integrated vector field. The
MVIE method also defined a multivariable integrated eval-
uation index (MIEI) to summarize the model’s overall per-
formance in simulating multiple fields. The MIEI, the VFE
diagram, and the performance metrics of individual scalar
variables constitute a hierarchical model evaluation frame-
work, which can provide a quantitative and comprehensive
evaluation of model performance.

However, the MVIE method proposed by Xu et al. (2017)
considered only the integrated evaluation of various scalar
fields. Under certain circumstances, both scalar variables and
vector variables (e.g., air temperature and vector wind fields)
warrant evaluation together. Moreover, the vector field statis-
tics employed in Xu et al. (2016, 2017) did not consider area
weighting, which is a limitation especially for an evalua-
tion of the global field. Although area weighting was con-
sidered in many previous statistical metrics, e.g., correlation
coefficient and standard deviation, they were used to eval-
uate scalar fields rather than vector fields (e.g., Watterson,
1996; Boer and Lambert, 2001; Masson and Knutti, 2011).
The consideration of area weighting in the definition of vec-
tor field statistics is one of the novelty of our study relative
to previous studies (Taylor, 2001; Boer and Lambert, 2001;
Gleckler et al., 2008; Xu et al., 2016, 2017). In addition, we
also improve the MVIE method to allow a mixed evalua-
tion of scalar and vector fields. Furthermore, based on MIEI,
a multivariable integrated skill score (MISS) for a climate
model is proposed, which allows us to adjust the relative
importance of different aspects of model performance. Fi-
nally, we develop a Multivariable Integrated Evaluation Tool
(MVIETool version 1.0) to facilitate multimodel intercom-
parison. These efforts are expected to improve the accuracy
and flexibility of the VFE and MVIE methods.

The paper is organized as follows. Section 2 defines statis-
tical metrics that take area weighting into account. Section 3
introduces the improved MVIE method with a combination
of scalar and vector fields, and interprets the performance
metrics. Section 4 gives an overview of the MVIETool and
describes the technical process of the MVIETool, including
the setting of the arguments in scripts. In Sect. 5, the applica-
tions of the tool are demonstrated by showing three examples
with 10 CMIP phase 5 (CMIP5) models. Finally, a summary
is given in Sect. 6.

2 Statistical metrics

The MVIE method primarily consists of three statistical
quantities – root-mean-square length (RMSL), vector simi-
larity coefficient (VSC), and root-mean-square vector differ-
ence (RMSVD) – that measure model performance in simu-
lating a vector field from various aspects (Xu et al., 2017).
RMSL measures the magnitude of a vector field, VSC mea-

sures the similarity of two vector fields, and RMSVD mea-
sures the overall difference between two vector fields. MIEI
was defined by using root-mean-square (rms) values of all
variables and VSC, and is a concise metric to rank models
in terms of their performance in simulating multiple fields.
However, the definition of these statistical quantities did not
consider area weighting, which could to a certain extent mis-
represent the relative contribution of different latitudes to the
statistics. Here, we redefine these statistical quantities by tak-
ing area weighting into account.

Assume that there are M variables derived from model A
and observationO. We need to normalize each modeled vari-
able using the rms value of the corresponding observed vari-
able. The normalized M variables are dimensionless and can
be grouped into M-dimensional vector fields for model A

and observation O:

Aj =
(
a1j ,a2j , . . .,aMj

)
; j = 1,2, . . .,N

Oj =
(
o1j ,o2j , . . .,oMj

)
; j = 1,2, . . .,N.

Each field is composed ofN vectors in time and/or space and
M is the dimension of the integrated vector field.

2.1 Uncentered statistics

Similar to the weighted statistics defined by Watter-
son (1996), we define the weighted RMSL (LA, LO ), VSC
(Rv), and RMSVD as follows:

LA =

√√√√ M∑
i=1

N∑
j=1

wja
2
ij ,

LO =

√√√√ M∑
i=1

N∑
j=1

wjo
2
ij (1)

Rv =

∑M
i=1
∑N
j=1wjaijoij

LA ·LO
(2)

RMSVD=

√√√√ M∑
i=1

N∑
j=1

wj (aij − oij )2, (3)

where wj is the area weighting factor and the sum of wj
is equal to 1. In terms of equal weight, wj is equal to 1/N
for all j . These uncentered metrics focus mainly on different
aspects of the vector field. With the aid of Eq. (3), the square

Geosci. Model Dev., 14, 3079–3094, 2021 https://doi.org/10.5194/gmd-14-3079-2021



M.-Z. Zhang et al.: MVIETool version 1.0 3081

of RMSVD can be written as

RMSVD2
=

M∑
i=1

N∑
j=1

wj
(
aij − oij

)2
=

M∑
i=1

N∑
j=1

wj

(
a2
ij + o

2
ij − 2 · aij · oij

)

=

M∑
i=1

N∑
j=1

wja
2
ij

+

M∑
i=1

N∑
j=1

wjo
2
ij − 2 ·

M∑
i=1

N∑
j=1

wjaijoij . (4)

With the aid of Eqs. (1)–(3), Eq. (4) can be written as

RMSVD2
= L2

A+L
2
O − 2 ·LA ·LO ·Rv. (5)

Note that RMSVD, LA, LO , and Rv with area weighting still
satisfy the cosine law (Eq. 5). Thus, the VFE diagram is still
valid with these weighted statistics (Eq. 5). We define the
standard deviation of rms values (rms_std) to quantify the
dispersion of the rms values of M variables:

σrms =

√√√√ 1
M

M∑
m=1

(
L∗Am −

1
M

M∑
m=1

L∗Am

)2

, (6)

where L∗Am =
LAm
LOm

is the ratio of the modeled rms value of
the mth component (variable) to the observed rms value.

Note that RMSVD does not decrease monotonically with
an improvement in model performance. To measure model
performance more accurately, Xu et al. (2017) devised a mul-
tivariable integrated evaluation index, termed MIEI, of cli-
mate model performance:

MIEI2
=

1
M

M∑
m=1

(L∗Am − 1)2+ 2 · (1−Rv). (7a)

Note that the first and second terms on the right-hand side
of Eq. (7a) can vary from 0 to +∞ and from 0 to 4, respec-
tively. Thus, the MIEI may be too sensitive to rms bias and
insensitive to pattern bias. To fix this problem, we redefine
MIEI as follows:

MIEI2
=

1
M

M∑
m=1

(R∗m− 1)2+ 2 · (1−Rv), (7b)

where R∗m is defined as

R∗m =

{
L∗Am , L∗Am ≤ 1

1
L∗Am

, L∗Am > 1. (8)

R∗m varies from 0 to 1. Here, we assume that L∗Am and 1
L∗Am

represent the same model performance except that one over-
estimates rms and the other underestimates rms. MIEI takes
the rms values and VSC into consideration at the same time.

The relative importance of a model’s ability to simulate the
pattern similarity and amplitude of variables depends on the
application. Hence, a weight factor F is added to the MIEI
to adjust the relative importance of rms and VSC:

MIEI2
=

1
M

M∑
m=1

(
R∗m− 1

)2
+F · (1−Rv) . (9)

We can further define a multivariable integrated skill score
(MISS) of a climate model:

MISS= (F + 1−MIEI2)
/
(F + 1). (10)

MISS varies from −F/(F + 1) to 1. MISS reaches its min-
imum value of −F/(F + 1) when Rv equals −1 and R∗m
equals 0. Note that Rv is usually greater than 0 in terms of
model evaluation. Thus, we find that MISS usually varies
from 0 to 1. It is very unlikely that MISS will be less than 0,
unless Rv is less than 0. MISS varies monotonically with re-
spect to model performance and reaches its maximum value
of 1 when the model performs best. With an increase in F ,
MISS is less (more) sensitive to the model’s ability to simu-
late amplitudes (patterns).

In terms of climate model evaluation, the pattern similarity
is usually more important than the amplitude, because with-
out pattern similarity, the accuracy of amplitude simulation
is often less meaningful. Thus, one can set F to be a value
greater than 1 in Eq. (10) for a general model evaluation pur-
pose. In this case, MISS/MIEI is more sensitive to the change
in the pattern similarity than the amplitude. Considering that
MIEI has a geometric meaning when F is 2, which represents
the length of a line segment (referring to the hypotenuse of a
right triangle from point C to G in Fig. 3 in Xu et al., 2017).
Thus, 2 appears to be a reasonable value of F for general
model evaluation purpose. Users can also change F based on
the application. For example, one may use a smaller F , say
F = 0.5, to give more weight to the amplitude if one wants
to evaluate model ability to simulate the long-term trend of
the multiple variables, e.g., the surface air temperature and
specific humidity. In this case, one may have more concern
about the values of the trends than their spatial patterns.

2.2 Centered statistics

As well as uncentered statistics, centered statistics are also
important when the anomaly field is the main concern of
model evaluation. For the centered mode, centered RMSL
(cRMSL), centered VSC (cVSC), and centered RMSVD
(cRMSVD) with area weighting are defined to evaluate the
model performance in terms of anomaly fields. The centered
statistics are the same as the uncentered statistics, except that
the original field is replaced by the anomaly field. These
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statistics are written as follows:

cLA =

√√√√ M∑
i=1

N∑
j=1

wj (aij − ai)2,

cLO =

√√√√ M∑
i=1

N∑
j=1

wj (oij − oi)2 (11)

cRv =

∑M
i=1
∑N
j=1wj (aij − ai)(oij − oi)

cLA · cLo
(12)

cRMSVD=

√√√√ M∑
i=1

N∑
j=1

wj [(aij − ai)− (oij − oi)]2. (13)

One can use the vector mean error (VME) to additionally
measure the difference between two mean vector fields since
the mean difference was removed from the centered statistics
mentioned above. The VME can also be written as the root-
mean-square error of two mean fields:

VME=

√√√√ M∑
i=1
(ai − oi)2,

ai =

N∑
j=1

wjaij ,

oi =

N∑
j=1

wjoij . (14)

As the uncentered statistics (Eqs. 1–3) can be transformed
into centered statistics (Eqs. 11–13), by replacing the original
field with the anomaly field, cRMSL, cVSC, and cRMSVD
also satisfy the cosine law:

cRMSVD2
= cL2

A+ cL2
O − 2 · cLA · cLO · cRv. (15)

Furthermore, with the aid of Eq. (3), we can decompose the
square of RMSVD as follows:

RMSVD2
=

M∑
i=1

N∑
j=1

wj

{[(
aij − ai

)
−
(
oij − oi

)]
+ (ai − oi)

}2

=

M∑
i=1

N∑
j=1

wj
[(
aij − ai

)
−
(
oij − oi

)]2
+

M∑
i=1

N∑
j=1

wj (ai − oi)
2

+ 2 ·
M∑
i=1

{
(ai − oi)

N∑
j=1

wj
[(
aij − ai

)
−
(
oij − oi

)]}
. (16)

With the aid of Eqs. (13)–(14), RMSVD, cRMSVD, and
VME satisfy the Pythagorean theorem:

RMSVD2
= VME2

+ cRMSVD2

= VME2
+ cL2

A+ cL2
O − 2 · cLA · cLO · cRv.

(17)

Clearly, these statistics for vector variable evaluation satisfy
the cosine law and Pythagorean theorem. Similarly, such re-
lationships are also valid for scalar variables (Taylor, 2001;
Xu and Han, 2019).

Similar to rms_std (Eq. 6), the standard deviation of SD
(SD_std) is also defined to describe the dispersion of SD over
all variables:

σSD =

√√√√ 1
M

M∑
m=1

(
cL∗Am −

1
M

M∑
m=1

cL∗Am

)2

, (18)

where cL∗Am is the same as L∗Am , except that it is the ratio of
SDs.

3 MVIE with a combination of multiple scalar and
vector fields

The MVIE method proposed by Xu et al. (2017) considers
only multiple scalar fields. Under some circumstances, one
may want to simultaneously evaluate both scalar and vector
fields. Here, the MVIE method is improved to meet this need.
Assume there are M individual variables to be evaluated,
which are either scalar or vector fields (the upper left part
of Fig. 1). Variable dm is the dimension of the mth variable,
where dm is equal to 1 for a scalar field (e.g., temperature),
while dm is 2 for a two-dimensional vector field (e.g., a vector
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Figure 1. General idea and performance metrics of the improved
MVIE. The left-hand column illustrates the general idea of the
MVIE. Two modes of statistics are provided for evaluation: uncen-
tered statistics (middle column) and centered statistics (right-hand
column). In each mode, the statistics are sorted into three grades:
statistics for individual variables, statistics for the multiple field,
and a summary index. The right-hand side of the statistics box is
its formula.

wind) and so on. Hereafter, the vector field for an individual
variable (e.g., a 850 hPa wind field) is termed the individual
vector field to separate it from vector fields grouped from
multiple fields. Following the idea of MVIE, these variables
are normalized with respective rms values of the reference.
Note that an individual scalar field is normalized by divid-
ing by its rms value. An individual vector field is normal-
ized as a whole by dividing by its RMSL. These normalized
scalar and/or vector fields can be grouped into a multivari-
able field with the dimension D×N , where D is the sum of
dm. The multivariable field derived from the model can be
evaluated against that derived from observation by using the
various performance metrics in the uncentered or centered
mode (Fig. 1).

The uncentered mode focuses on the whole original field,
while the centered mode separately evaluates the anomaly
field and the mean field. Each mode of statistics con-
sists of three levels of statistics: statistics for individual
variables (yellow boxes), multivariable integrated statistics
(green boxes), and an index summarizing the overall model
performance (orange boxes). The definitions of centered
and uncentered statistics are the same as those defined by
Xu et al. (2017), except that the area weighting is consid-
ered here. To calculate the statistics for individual variables,
e.g., root-mean-square difference (RMSD), centered RMSD
(cRMSD), or uncentered CORR (uCORR), we can also use
the formulas of multivariable integrated statistics (Eqs. 1–3,

11–14) by settingM equal to dm, which is summarized in the
right-hand part of the boxes in Fig. 1.

Note that the mean error (ME) is additionally computed
for the centered statistics, as the centered statistics exclude
mean error. For a scalar variable, ME is calculated with
Eq. (14) by settingM to 1, but it is signed. Because VME is a
function of the difference in the vector magnitude and direc-
tion, we provide two additional statistical metrics – the mean
error of vector magnitude (MEVM) and the mean error of
vector direction (MEVD) – to separate the magnitude error
from the directional error. MEVM (MEVD) is the mean of
the magnitude error (direction difference) between the mod-
eled vector and the observed vector for all grids evaluated.
Note that the MEVD is only valid for 2-D vector fields. The
direction difference ranges from −180 to 180, and the pos-
itive (negative) value represents a counterclockwise (clock-
wise) directional error of the model mean vector.

To summarize the overall model skill score in terms of
the simulation of multiple variables, the uncentered MISS
(uMISS) and centered MISS (cMISS) are provided for the
uncentered and centered modes, respectively. uMISS is cal-
culated with Eqs. (9) and (10) using the original fields.
cMISS can also be calculated with Eqs. (9) and (10) but by
replacing the rms and VSC with SD and cVSC, respectively.
With the support of these statistics, the improved MVIE
method can provide a more comprehensive and precise eval-
uation of model performance. All statistics defined in this pa-
per together with their acronyms are summarized in Table A1
in the Appendix.

4 The Multivariable Integrated Evaluation Tool

4.1 Brief overview

The MVIETool consists of two main scripts and some func-
tion scripts. All these scripts are written in NCAR Com-
mand Language (NCL), which can be easily used in Linux
and Mac operating systems. The two main scripts are Cal-
culate_MVIE.ncl and Plot_MVIE.ncl. The execution of the
MVIETool can be simplified to two runs, which work inde-
pendently but in sequence (Fig. 2). Users can modify argu-
ments written in a module at the beginning of the main scripts
according to the application. The script assumes that the
model data and observation data are saved in Network Com-
mon Data Form (NetCDF) format. The Calculate_MVIE.ncl
script calculates the statistical metrics defined in this paper.
The output of this script is saved in a NetCDF file, which
is used as the input to Plot_MVIE.ncl for plotting the VFE
diagram and the metrics table.

4.2 Preparing the input data

The MVIETool requires two groups of datasets as inputs –
the model data and observations – saved in NetCDF for-
mat. Each model or observational data file includes all the
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Figure 2. The structure of the MVIETool. The primary input of the
workflow is model data and observation (gray) with fixed formats.
Inside the dotted blue boxes are two independent runs for calcula-
tion and plotting, respectively. Two main scripts (yellow) need to be
invoked in sequence. The outputs (green) are the NetCDF file stor-
ing performance metrics, the VFE diagram, and the metrics table.

variables to be evaluated. If the variables are saved sepa-
rately as CMIP data, one can easily merge these variables
into one data file by using third-party software: e.g., the Cli-
mate Data Operators (CDO) or NetCDF operators (NCO).
The main script also assumes that all model and observation
data files are stored in the same directory. Therefore, users
need to move or link various data into the same directory.
Variables stored in the data file need to be on the same grid.
Examples are given in the user guide of the MVIETool pack-
age to show how to regrid data on regular or irregular grids
into the same regular grid with NCL, CDO, and Python3, re-
spectively. In terms of vector variables, each component of
the vector variable should be stored independently. If users
want to consider area weighting in the statistics, the variables
should be saved with the dimension names and the coordinate
information (e.g., time, latitude, and longitude), because the
coordinate information is needed for the calculation of area
weighting. Currently, the tool can only deal with area weight-
ing for regular grids and area weighting is calculated by the
formula as

wj = sin(latj + dlat)− sin(latj − dlat), (19)

where latj is the latitude in j th grid and dlat is the differ-
ence in latitude between two adjacent zonal grids. The tool
can only identify the time and geographical coordinates of
regular grid: i.e., time, latitude, longitude, and level.

Figure 3 illustrates an example that consists of 10 mod-
els (M1–M10) to be evaluated and two sets of reanalysis
(REA1, REA2) data as reference in the same directory. Each
data file includes eight variables: 600 hPa specific humidity
(Q600), sea level pressure (SLP), sea surface temperature
(SST), 850 hPa air temperature (T850), u850, v850, u200,
and v200. Among these, u850 (u200) and v850 (v200) are the
zonal and meridional components of vector winds in 850 hPa

Figure 3. Example of data preparation for the MVIETool. There are
eight variables stored in each data file: Q600, SLP, SST, T850, u200,
u850, v200, v850. Variables u850 (u200) and v850 (v200) compose
an individual 2-D vector variable – uv850 (uv200), and the other
four variables are regarded as scalar variables. REA1 and REA2 are
two sets of reanalysis data used in the evaluation.

(200 hPa), respectively. The MVIETool allows treating u850
(u200) and v850 (v200) as an individual vector field rather
than two scalar fields. To declare a vector field, users can
simply put the components of a vector in parenthesis sepa-
rated by comma, e.g., (u850, v850) and (u200, v200) in the
argument Varname of the tool (Table 1). Thus, the evaluation
actually includes six individual variables. One can also save
various surface variables (e.g., SST) and multi-level variables
(e.g., air temperature) in the same file. The MVIETool can
only evaluate part of the multi-level variables specified by
user.

4.3 Usage and workflow of the MVIETool

Once datasets have been prepared, one can use the MVI-
ETool to evaluate model performance. Users should set some
arguments at the beginning of Calculate_MVIE.ncl based on
the application. The arguments are summarized in Table 1
and discussed in this section. The rightmost column of Ta-
ble 1 gives an example of argument setting. Arguments 1–5
define the data file information as in the example of Fig. 3.
Note that, in the argument Varname in Table 1, the vector
variable is identified by enclosing its components in paren-
theses: e.g., (u200, v200). Notably, if users want to add area
weighting to the statistics, the data should have the latitude
coordinate, by setting arguments 9–11. Some arguments are
mandatory, e.g., arguments 1–5 in Table 1, while some argu-
ments are optional. We provide a default value for most of the
arguments and the default value will be used if users do not
specify the argument, except for Range_time, Coords_geo,
Range_geo, and VarLev. These four arguments must be set
when input variables have corresponding coordinates.

After reading the data, the reference data are calculated
with observation and/or reanalysis data. As shown in Fig. 4,
if users provide only one observational dataset, it is directly
used as the reference data. Otherwise, the mean of multiple
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Table 1. Input arguments to Calculate_MVIE.ncl in the MVIETool. An argument with ∗ is optional. The rightmost column provides examples
of these arguments.

Argument Description Example

1 Varname Names of independent variables stored in data file. For individual
vector variables, names of its components need to be enclosed in
parentheses separated by a comma.

“Q600, SLP, SST, T850, (u200, v200),
(u850, v850)”

2 Model_filenames Names of model data files for evaluation. “example.”+(/“M1”, “M2”, “M3”,
“M4’, “M5”, “M6”, “M7”, “M8”,
“M9”, “M10”/)+“.nc”

3 Obs_filenames Names of observation and/or reanalysis data files for evaluation. “example.”+(/“REA1”,“REA2”/)+“.nc”

4 Inputdatadir Model and observation data input directory. “/Users/zhangmengzhuo/data/”

5 Var_Coords Whether to read data by the range of coordinates. True

6 ∗isCoords_time Whether evaluated variables have time dimension and coordinate
under Var_Coords is True.

True

7 ∗Coords_time Name of time dimension for evaluated variables under isCo-
ords_time is True.

“time”

8 ∗Range_time Range of time in time coordinate of evaluated variables under isCo-
ords_time is True.

(/“19710101”, “19991201”/)

9 ∗isCoords_geo Whether evaluated variables have latitude and/or longitude dimen-
sions and coordinates under Var_Coords is True.

True

10 ∗Coords_geo Names of latitude and/or longitude dimensions for evaluated vari-
ables under isCoords_geo is True.

(/“lat”, “lon”/)

11 ∗Range_geo Ranges of latitude and/or longitude in their coordinates of eval-
uated variables under isCoords_geo is True. It has the format of
(/“lat|0:45”, “lon|0:180”/).

(/“lat|0:45”, “lon|0:180”/)

12 ∗hasLevel Whether evaluated variables have level dimension. If so, set it to the
level dimension name; otherwise, set False. The level coordinate is
required to read data at specific level.

False

13 ∗VarLev Specify the level for each evaluated variable. If a variable does not
have the level dimension, users can provide an arbitrary value in the
corresponding position to match the variable in Varname.

–

14 ∗Isarea_wgt If no area weighting in statistics, set False; otherwise, set to the
name of the latitude dimension in Coords_geo.

“lat”

15 ∗Type_stats Data type of calculated statistics. “float”

16 ∗Stats_mode Calculate uncentered/centered statistics, and it is 1 or 0, represent-
ing the uncentered or the centered mode.

0

17 ∗Wgt_var Add weights of variables. If not adding, set to 1; otherwise, set 1-D
numeric array that should match variables in Varname.

(/1, 1, 2, 3, 1, 1, 2, 2/)

18 ∗ComMask_On Create a common mask for all model data and reference (True) or
unify the missing points between each model–reference pair (False).

True

19 ∗Unif_VarMiss Whether to unify missing points across all variables of one model. True

20 ∗Cal_VME Calculate VME/MEVM in centered mode. Set it to 1 (0), represent-
ing calculating VME (MEVM).

1

21 ∗MISS_F Parameter F in the calculation of MISS. 2

22 ∗Print_stats_r Whether to print range of performance metrics on the screen. True

23 ∗MVIE_filename Output NetCDF file name. “example.centered.nc”
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Figure 4. Flow chart of the MVIETool procedure. The dotted blue and green rectangles outline the procedures of single variable evaluation
and multivariable integrated evaluation, respectively.

observational datasets is used as the reference and each ob-
servational piece of data will also be evaluated against the en-
semble mean to measure the observational uncertainty. Con-
sidering that some variables may contain missing values and
some may not, to make the evaluation comparable between
different models, a common mask for all models and the ref-
erence data is generated to deal with the datasets as the de-
fault option. In addition, the tool can also unify the missing
points for each model–reference pair separately by modify-
ing the argument ComMask_On. Further, whether to unify
missing points across all variables of one model can also be
chosen with the help of the argument Unify_VarMiss.

The script can calculate the statistics either for a single
variable or for multiple variables (Fig. 4). The left dotted blue
box in Fig. 4 shows the calculation process for single vari-
able evaluation (SVE). The centered and uncentered modes
calculate the centered and uncentered statistics, respectively.

Note that the calculated statistical metrics rely on the type
of input variable. If it is a scalar field, uCORR (CORR), rms
(SD), and RMSD (cRMSD) are calculated in the uncentered
(centered) mode. With regard to a vector field, VSC (cVSC),
RMSL (cRMSL), and RMSVD (cRMSVD) are calculated in
the uncentered (centered) mode. In addition, two skill scores
defined by Taylor (2001), S1 and S2, are computed in both
the centered and uncentered modes for a scalar variable. Sim-
ilarly, Sv1 and Sv2 are calculated for a vector variable (Xu et
al., 2016). After the calculation, these statistics are saved in
a file that can be used to generate a Taylor diagram or VFE
diagram.

In terms of the MVIE (dotted green box in Fig. 4), the
statistics of individual variables (i.e., scalar variables and
vector variables) are calculated first. After the evaluation for
each individual variable, all variables are normalized by the
respective rms values of the reference and are grouped into
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a multivariable integrated field for the calculation of mul-
tivariable statistics. To consider the relative importance of
various variables, weights can be added to each variable af-
ter normalization through the argument Wgt_var (Table 1).
In the centered mode, either VME or MEVM is computed
for a vector variable and the multivariable field based on the
argument Cal_VME (Table 1). When MEVM is chosen, if
the individual 2-D vector variable exists, the MEVD is also
calculated for it. Finally, both the centered and uncentered
MISSs are calculated. If more than one observational dataset
is available, the statistics between each observation and the
reference are calculated to take the observational uncertainty
into account.

After the calculation, the statistics calculated above
are written to a new NetCDF file specified by the
MVIE_filename argument. Meanwhile, the ranges of these
statistics can be printed on the screen if the Print_stats_r is
set to True, helping users to set the color levels in the metrics
table (Figs. 5, 6).

Similarly, users can modify parameters in Plot_MVIE.ncl
to control the display of a figure or table. Users can also
modify the attribute parameters for the VFE diagram and the
metrics table. A detailed explanation and default values can
be found in the Plot_MVIE.ncl script. Users can choose to
create the VFE diagram, the metrics table, or both. Inter-
pretations of plots are discussed in detail with examples in
Sect. 5. In addition, all arguments in the MVIETool and their
descriptions are summarized in readme.namelist for users’
reference. More detailed explanations of the arguments can
be found in the user guide of MVIETool.

5 Application of the tool

To illustrate the application of the tool, monthly mean
datasets of 10 CMIP5 models (Table A2 in the Appendix)
derived from the first ensemble run of historical experiments
during the period from 1961 to 2000 are used. The variables
used include climatological mean 600 hPa specific humid-
ity (Q600), SLP, SST, 850 hPa temperature (T850), 850 hPa
2-D vector wind (uv850), and 200 hPa 2-D vector wind
(uv200) in spring (March–April–May), summer (June–July–
August), autumn (September–October–November), and win-
ter (December–January–February). We assessed the model’s
ability to simulate these variables in the Northern Hemi-
sphere. The mean of two sets of reanalysis data is used as a
reference: the Japan Meteorological Agency and the Central
Research Institute of Electric Power Industry Reanalysis-55
(JRA55) and the National Centers for Environmental Predic-
tion/National Center for Atmospheric Research Reanalysis
Project (NNRP). All datasets are regridded to a common res-
olution of 2.5◦× 2.5◦ using a bilinear interpolation method
before the evaluation. A common mask of missing value is
used for all model and reanalysis datasets in each season.

Figure 5. Metrics table of centered statistics. The table evaluates
the performance of 10 CMIP5 models in simulating climatologi-
cal mean (1961–2000) 600 hPa specific humidity (Q600), sea level
pressure (SLP), sea surface temperature (SST), 850 hPa temperature
(T850), 850 hPa winds (uv850) and 200 hPa winds (uv200) in the
Northern Hemisphere in autumn (September–October–November).
ME (VME) is the error of the mean scalar or vector (multivariable)
fields. cRMSD (cRMSVD) is the overall difference in scalar or vec-
tor (multivariable) anomaly fields between model and observation.
CORR (cVSC) and SD (cRMSL) are the pattern similarity and am-
plitude of the anomaly fields for the individual variable (multivari-
able field). SD_std is the standard deviation of SD values. cMISS
(uMISS) is the multivariable integrated skill score of the anomaly
(original) fields, which is calculated with SD (rms) values and cVSC
(VSC). cMIEI is the centered multivariable integrated index. The
factor F in cMISS and uMISS is 2. The colors represent the val-
ues of statistical metrics. The lighter colors indicate better model
performance.
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Figure 6. Metrics table of centered statistics. These models are used to simulate climatological means of 600 hPa specific humidity (Q600),
SLP, SST, 850 hPa temperature (T850), 850 hPa winds (uv850) and 200 hPa winds (uv200), of the Northern Hemisphere in four sea-
sons, spring (March–April–May), summer (June–July–August), autumn (September–October–November), and winter (December–January–
February). Each square is divided into four triangles, representing model performance in different seasons, as shown in the bottom-left
legend. The colored bars for different statistical metrics are shown below the table.

5.1 Metrics table

The metrics table can show various model performance met-
rics in terms of individual variables and multivariable inte-
grated field, as well as the overall model skill scores in ei-
ther centered or uncentered mode. Figure 5 shows the met-
rics table of various statistical metrics, which evaluates six
climatological mean fields – SLP, SST, Q600, T850, uv850,
and uv200 – with centered statistical metrics. The filled color
of each grid cell represents the value of statistical metric.
Lighter colors indicate the model statistics are closer to ob-
servation, and vice versa. The corresponding color bars can
be shown below the metric table such as those in Fig. 6.
Different types of statistics are separated from each other
by a thick black line. To facilitate the comparison of the
metrics from different variables, in the centered mode, the
SD (cRMSL), cRMSD (cRMSVD), and ME (VME) of the
models are normalized by dividing by the corresponding
SD (cRMSL) of the reference. In the uncentered mode, rms
(RMSL) and RMSD (RMSVD) are normalized using rms
(RMSL).

The metrics table of the centered statistics decomposes
the original field into mean and anomaly fields for evalua-
tion. The anomaly fields are further evaluated from the per-

spective of pattern similarity, variance, and overall difference
between the model and observation. The metrics table can
clearly explain how much of the overall error comes from the
mean error (ME, VME), the amplitude error of the anomaly
field (SD, cRMSL), or the error in pattern similarity of the
anomaly field (CORR, cVSC). For example, the ME and
cRMSD of M1 in simulating SLP are 0.106 and 0.563, re-
spectively, indicating that the overall error is caused mainly
by the error in the anomaly field (Fig. 5). The cRMSD can
be further attributed to the poor amplitude (1.275) and pat-
tern similarity (0.906), which can be shown more clearly in
a Taylor diagram or VFE diagram. Similarly, one can also
decompose model errors into mean error (VME) and overall
error of the anomaly field (cRMSVD) in terms of the simu-
lation of multiple variables.

To summarize and rank the overall performance of a model
in simulating multiple fields, the MISSs in both centered and
uncentered modes are provided in the metrics table and are
expected to provide a more accurate evaluation compared
with MIEI. Figure 5 shows that M2 ranks eighth out of 10
models when referring to the values of the centered MIEI
(cMIEI), while it ranks fifth based on the cMISS. The main
reason is that cMIEI is sensitive to the error in SDs, par-
ticularly for an SD greater than 1. For example, the SD of
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SLP in M2 is 1.4 and it contributes about 0.027 to the first
term on the right-hand side of Eq. (7a). The cVSC of M2
is 0.954, which contributes about 0.092 to the second term
on the right-hand side of Eq. (7a). Referring to the definition
of L∗Am (Eq. 8), 1.4 is equivalent to its reciprocal, 0.714, in
the sense of model performance. However, the SD of 0.714
contributes only about 0.014 to the first term on the right-
hand side of Eq. (9). Thus, the MISS is equally sensitive to
the model’s abilities to simulate pattern similarity and am-
plitude. In addition, cMISS (uMISS) also allows us to adjust
the relative importance of SD (rms) values and cVSC (VSC)
based on the application (Eq. 10).

The MVIETool can be used in a very flexible way by mod-
ifying the arguments in the main scripts. A comparison of
Fig. 5 with Fig. 6 helps to explain the flexibility. For exam-
ple, users can choose the statistics to be displayed. In Fig. 6,
only a few statistical metrics are displayed in comparison
with Fig. 5. Unlike Fig. 5, Fig. 6 divides each grid cell into
four triangles, representing model performance in each of the
four seasons. Currently, the grid cell can be divided into two
or four triangles. If no value of metrics is displayed in the grid
cell, colored bars and a box legend are provided for refer-
ence. Moreover, considering that the relative number of mod-
els compared to the variables and statistical metrics may vary
with the application, the MVIETool allows users to transpose
the metrics table into a portrait or landscape orientation. For
example, the model labels (statistical metrics and variables)
can be arranged on the top or the left of the metrics table. A
more detailed technical introduction for plotting is provided
in the user guide.

5.2 VFE diagram

The VFE diagram is used to measure the model’s ability
to simulate the original (anomaly) vector or multiple fields
in terms of three statistics: RMSL (cRMSL), VSC (cVSC),
and RMSVD (cRMSVD). Figure 7 is the VFE diagram for
a vector variable generated by the MVIETool. It assesses the
climatological mean 850 hPa vector winds of the Northern
Hemisphere in autumn derived from 10 CMIP5 models (M1–
M10) during the period 1961–2000. Since the anomaly field
of 850 hPa vector wind is considered, cRMSL, cVSC, and
cRMSVD are shown in the diagram. The construction of the
VFE diagram is based on the geometric relationship (Eq. 15)
between the three statistics. Thus, in this diagram, the az-
imuthal position gives VSC (cVSC), the radial distance from
the origin indicates RMSL (cRMSL), and the distance be-
tween the model and the reference points provides RMSVD
(cRMSVD). Similar to the metrics table, RMSL (cRMSL)
and RMSVD (cRMSVD) were normalized by the RMSL
(cRMSL) of the reference to facilitate an intercomparison be-
tween different variables. The VFE diagram can clearly show
how much of the overall difference between model and ob-
servation is caused by poor pattern similarity and how much

is due to the difference in the field amplitude (Xu et al.,
2017).

Besides, a horizontal red line is shown in Fig. 7 centered
at the “REF” point on x axis, the length of which can rep-
resent the observational uncertainty. Here, we use the area-
weighted mean of standard deviations (MSD) derived from
multiple observations as the estimation of the observational
uncertainty:

MSD =

∑M
i=1
∑N
j=1wj ·SD∗ij
M ·N

, SD∗ij =
SDobs

ij

SDtij
, (20)

where j (i) represents the grid (variable) index and wj is the
area weighting. SDobs

ij is the standard deviation of multiple
observations, which is calculated using the climatologies of
REA1 and REA2 (Fig. 7). Clearly, more observational data
are desirable to derive a statistically meaningful standard de-
viation. Here, we only aim to illustrate how to show obser-
vational uncertainty in the VFE diagram. SDtij represents the
interannual standard deviation of the reference, which is de-
rived from the 40-year time series in autumn from 1961 to
2000. MSD is illustrated with the red line in Fig. 7 and it
summarizes the mean dispersion of multiple observations in
all grids for M variables, which can roughly represent the
overall uncertainty of observations.

Figure 7a is the same as Fig. 7b except that Fig. 7a applies
area weighting to the statistics, but Fig. 7b does not. Note
that for some models (e.g., M2, M4, and M5), there is a rela-
tively large difference between the statistics without and with
area weighting, including MSD. We recommend taking area
weighting into account in model evaluation of a spatial field,
especially for regions covering a broad span of latitudes. Fur-
thermore, the tool can also generate a VFE diagram with SD
(rms), CORR (uCORR), and cRMSD (RMSD), and in this
situation it is the same as the Taylor diagram (Taylor, 2001;
Xu et al., 2016).

6 Summary

In this paper, we have improved the MVIE method and devel-
oped the MVIETool to support the evaluation of model per-
formance using this method. The improved MVIE method
can evaluate overall model performance in simulating mul-
tiple scalar variables and vector variables. In addition, we
consider area weighting in the definition of statistics, which
is important for the evaluation of spatial fields on a longitude
and latitude mesh grid. Based on MIEI, we further define
a more accurate multivariable integrated skill score, termed
MISS, to evaluate and rank the overall model performance
in simulating multiple variables. Similar to MIEI, MISS also
takes both amplitude and the pattern similarity into account,
but it is a normalized index with the maximum value of 1 rep-
resenting a perfect model. MISS is also flexible and able to
adjust the relative importance between the pattern similarity
and amplitude.

https://doi.org/10.5194/gmd-14-3079-2021 Geosci. Model Dev., 14, 3079–3094, 2021



3090 M.-Z. Zhang et al.: MVIETool version 1.0

Figure 7. VFE diagram. This describes the climatological mean autumn (September–October–November) 850 hPa wind fields derived from
the different CMIP5 models (M1–M10) in the Northern Hemisphere. The azimuthal position gives cVSC, the radial distance from the
origin indicates cRMSL, and the distance between the model and the reference points provides cRMSVD. The cRMSL and the cRMSVD
are normalized by the cRMSL derived from the mean of two reanalysis datasets (REA1, REA2). The area weighting is considered in the
statistical metrics in panel (a) but not in (b). The observational uncertainty is indicated by the horizontal red line centered at the REF point.
Here, we use MSD value derived from REA1 and REA2 to estimate observational uncertainty.

A Multivariable Integrated Evaluation Tool, MVIETool
(version 1.0), was developed in NCL code to facilitate the
evaluation and intercomparison of model performance. The
tool provides two modes of statistics, the uncentered mode
and the centered mode, for different requirements of evalu-
ation. The uncentered statistics, such as RMSL, VSC, and
RMSVD, evaluate the model performance in terms of the
original field. In contrast, the centered statistics evaluate
model performance in simulating anomaly fields. In practice,
some variables are dependent on each other to a certain ex-
tent, such as the 850 and 700 hPa temperatures, and thus con-
tain redundant information. To adjust the relative importance
of various variables, we also take into consideration variable
weighting in the statistics of the multivariable fields.

The MVIETool primarily consists of two main scripts with
one for statistical metrics calculation and the other one for
plotting. The tool is programmed to handle NetCDF data
as input with a fixed format. Users can control the evalua-
tion by setting arguments at the beginning of the main script.
The statistics are shown in the VFE diagram and/or the met-
rics table, which provide a valuable visual overall evaluation
of model performance. We demonstrated the utility of the
MVIETool through three examples of 10 CMIP5 models in
Sect. 5. The improved MVIE method, together with the MVI-
ETool, is expected to assist researchers to efficiently evaluate
model performance in terms of multiple fields.

To make the evaluation methods available to more users,
we also develop the MVIETool with Python3. Currently,
MVIETool 1.0 only provides some basic function to calculate
statistics and generate figures for MVIE. We will continue to
develop the tool to support more comprehensive evaluation.

For example, the area weighting is only valid for the reg-
ular grid in MVIETool 1.0. In terms of irregular grids, the
area weighting can be derived from an additional data file
that contains the grid area of each grid. To address obser-
vation uncertainty, the tool compares each individual obser-
vation against the average of multiple observations, and the
spread across various observations is taken as a measure of
observational uncertainty. Another approach is to calculate
the standard deviation of multiple observations as uncertainty
estimation at present, which is also very basic. It warrants
further investigation to develop a more sophisticated method
that can estimate the impacts of observational uncertainty on
model evaluation. In addition, no significance test is avail-
able yet for difference between two vector fields as well as
the multivariable statistics, which also warrants for develop-
ment in the future.

Furthermore, the Earth System Model Evaluation Tool
(ESMValTool; Eyring et al., 2016; Weigel et al., 2020) is
a systematic and efficient tool for model evaluation, which
has been widely used in related studies (e.g., Valdes et al.,
2017; Righi et al., 2020; Waliser et al., 2020). It has many
distinct advantages, such as providing the well-documented
analysis and no need for preprocessing of evaluated datasets,
compared with our tool. In the follow-up work, we would
not only devote our efforts to making advances in the func-
tionality of MVIETool but also intend to collaborate with the
ESMValTool to include our package into it. In this way, users
can benefit from the MVIETool with more convenience.
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Appendix A

Table A1. Table of statistics in the improved multivariable integrated method with their acronyms and descriptions.

Acronyms Description

Statistics for individual variables

SD Standard deviation
CORR Correlation coefficient
cRMSD Centered root-mean-square difference
rms Root mean square
uCORR Uncentered correlation coefficient
RMSD Root-mean-square difference
ME Mean error

Statistics for multivariable integrated field

cRMSL Centered root-mean-square length (Eq. 11)
cVSC Centered vector similarity coefficient (Eq. 12)
cRMSVD Centered root-mean-square vector difference (Eq. 13)
SD_std Standard deviation of SD values (Eq. 18)
RMSL Root-mean-square length (Eq. 1)
VSC Vector similarity coefficient (Eq. 2)
RMSVD Root-mean-square vector difference (Eq. 3)
rms_std Standard deviation of rms values (Eq. 6)
VME Vector mean error (Eq. 14)
MEVM Mean error of vector magnitude
MEVD Mean error of vector direction

Index for summarizing overall performance

MIEI Multivariable integrated evaluation index (Eq. 7a)
cMIEI Centered multivariable integrated evaluation index
MISS Multivariable integrated skill score
cMISS Centered multivariable integrated skill score
uMISS Uncentered multivariable integrated skill score (Eqs. 8–10)

Observational uncertainty

MSD Mean of standard deviation derived from multiple observations (Eq. 20)
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Table A2. Model names, institution, and horizontal resolution for 10 CMIP5 models (M1–M10) used in the paper.

Model Institution Horizontal resolution

M1 BNU-ESM College of Global Change and Earth System Science, Beijing
Normal University (China)

2.81◦× 2.81◦

M2 CCSM4 NCAR (National Center for Atmospheric Research), Boulder
(USA)

1.25◦× 0.94◦

M3 CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Eu-
ropeen de Recherche et Formation Avancees en Calcul Scien-
tifique (France)

1.41◦× 1.41◦

M4 BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration
(China)

2.81◦× 2.81◦

M5 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of
Sciences; and CESS, Tsinghua University (China)

2.81◦× 3.05◦

M6 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory (USA) 2.5◦× 2.0◦

M7 GISS-E2-H NASA Goddard Institute for Space Studies (USA) 2.5◦× 2.0◦

M8 MIROC4h Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology (Japan)

0.56◦× 0.56◦

M9 MIROC-ESM-CHEM Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology (Japan)

2.81◦× 2.79◦

M10 inmcm4 Institute for Numerical Mathematics (Russia) 2.0◦× 1.5◦
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Code and data availability. MVIETool 1.0 (coded with NCL or
Python3) is written in open-source scripts and is uploaded as a
supplement as a frozen version of MVIETool 1.0. The codes and
relevant data to generate figures in this paper are also provided in
the Supplement. Additionally, the MVIETool 1.0 code and relevant
data are also available on the GitHub repository: https://github.com/
Mengzhuo-Zhang/MVIETool (last access: 24 May 2021, Zhang,
2021). Here, we will update the codes with minor improvements
and to fix bugs in future.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-3079-2021-supplement.
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