(a) Parallel

$$
\begin{aligned}
& \langle\mathrm{f}\rangle_{t-\Delta t}^{t}= \\
& \left\langle\mathrm{f}\left(\mathcal{A},\langle\mathcal{O}\rangle_{t-2 \Delta t}^{t-\Delta t}\right)\right\rangle_{t-\Delta t}^{t}
\end{aligned}
$$

$$
\frac{d \mathcal{O}}{d t}=\mathbf{F}_{\mathcal{O}}\left(\mathcal{O},\langle\mathrm{f}\rangle_{t-\Delta t}^{t}\right)
$$

$t-\Delta t$
t
$t+\Delta t$

(b) Sequential atmosphere-first

$\langle\mathcal{O}\rangle_{t-\Delta t}^{t}=$

$$
\frac{d \mathcal{A}}{d t}=\mathrm{F}_{\mathcal{A}}\left(\mathcal{A},\langle\mathcal{O}\rangle_{t-\Delta t}^{t}\right)
$$

$\left\langle\mathcal{O}\left(\mathcal{O},\langle\mathrm{f}\rangle_{t-\Delta t}^{t}\right)\right\rangle_{t-\Delta t}^{t}$

$$
\begin{aligned}
& \langle\mathrm{f}\rangle_{t}^{t+\Delta t}= \\
& \left\langle\mathrm{f}\left(\mathcal{A},\langle\mathcal{O}\rangle_{t-\Delta t}^{t}\right)\right\rangle_{t}^{t-\Delta t}
\end{aligned}
$$

$$
\frac{d \mathcal{O}}{d t}=\mathbb{F}_{\mathcal{O}}\left(\mathcal{O},\langle\mathrm{f}\rangle_{t}^{t+\Delta t}\right)
$$

$t-\Delta t$

