



#### Supplement of

# The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation

K. Wyat Appel et al.

Correspondence to: K. Wyat Appel (appel.wyat@epa.gov)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. New species introduced in AERO7 compared to AERO6. Species 1-21 are new to AERO7i. Other species in AERO7i (including species 22-24) previously existed in AERO6i. All gas-phase semi-volatiles use species-specific wet and dry deposition surrogates. Note that underscores are no longer used in species names in any aerosol or non-reactives namelist. For example, SV\_ISO1 is now SVISO1 in the non-reactives namelist (i.e. NR\*.nml) in CMAQ.

|   | Species | Phase    | Description                                                                                                                              | Scientific Basis                                                              | Model<br>Implementation        |
|---|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|
| 1 | AMT1J   | particle | low volatility particulate matter<br>from monoterpene photoxidation<br>(OH and O <sub>3</sub> reaction),<br>C*=0.01 µg m <sup>-3</sup>   | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |
| 2 | AMT2J   | particle | low volatility particulate matter<br>from monoterpene photoxidation<br>(OH and O <sub>3</sub> reaction),<br>$C^{*}=0.1 \ \mu g \ m^{-3}$ | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |
| 3 | AMT3J   | particle | semivolatile particulate matter<br>from monoterpene photoxidation<br>(OH and O <sub>3</sub> reaction),<br>$C^{*}=1 \ \mu g \ m^{-3}$     | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |
| 4 | AMT4J   | particle | semivolatile particulate matter<br>from monoterpene photoxidation<br>(OH and O <sub>3</sub> reaction),<br>$C^*=10 \ \mu g \ m^{-3}$      | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |
| 5 | AMT5J   | particle | semivolatile particulate matter<br>from monoterpene photoxidation<br>(OH and O <sub>3</sub> reaction),<br>$C^*=100 \ \mu g \ m^{-3}$     | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |
| 6 | AMT6J   | particle | semivolatile particulate matter<br>from monoterpene photoxidation<br>(OH and O <sub>3</sub> reaction),<br>$C^*=1000 \ \mu g \ m^{-3}$    | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |
| 7 | SVMT1   | gas      | low volatility gas from<br>monoterpene photoxidation (OH<br>and O <sub>3</sub> reaction), C*=0.01 $\mu$ g m <sup>-3</sup>                | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |
| 8 | SVMT2   | gas      | low volatility gas from<br>monoterpene photoxidation (OH<br>and O <sub>3</sub> reaction), C*=0.1 $\mu$ g m <sup>-3</sup>                 | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |
| 9 | SVMT3   | gas      | semivolatile gas from<br>monoterpene photoxidation (OH<br>and O <sub>3</sub> reaction), C*=1 $\mu$ g m <sup>-3</sup>                     | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> ) | Xu et al.,<br>2018, <i>ACP</i> |

|    | Species  | Phase    | Description                                                                                                                       | Scientific Basis                                                                                                                                                                                                                                                                                                                       | Model<br>Implementation         |
|----|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 10 | SVMT4    | gas      | semivolatile gas from<br>monoterpene photoxidation (OH<br>and O <sub>3</sub> reaction), C*=10 $\mu$ g m <sup>-3</sup>             | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> )                                                                                                                                                                                                                                                          | Xu et al.,<br>2018, <i>ACP</i>  |
| 11 | SVMT5    | gas      | semivolatile gas from<br>monoterpene photoxidation (OH<br>and O <sub>3</sub> reaction), C*=100 $\mu$ g m <sup>-3</sup>            | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> )                                                                                                                                                                                                                                                          | Xu et al.,<br>2018, <i>ACP</i>  |
| 12 | SVMT6    | gas      | semivolatile gas from<br>monoterpene photoxidation (OH<br>and O <sub>3</sub> reaction), C*=1000 $\mu$ g m <sup>-3</sup>           | dark α-pinene<br>ozonolysis (Saha and<br>Grieshop,<br>2016, <i>ES&amp;T</i> )                                                                                                                                                                                                                                                          | Xu et al.,<br>2018, <i>ACP</i>  |
| 13 | AORGH2OJ | particle | water associated with organic species of particulate matter                                                                       | hygroscopicity<br>parameters (Petters<br>and Kreidenweis,<br>2007, <i>ACP</i> ) as a<br>function of degree of<br>oxygenation (Lambe et<br>al., 2011, <i>ACP</i> )                                                                                                                                                                      | Pye et al.,<br>2017, <i>ACP</i> |
| 14 | AAVB1J   | particle | low volatility organic particulate<br>matter from oxidation of<br>anthropogenic VOCs (benzene,<br>toluene, xylene, PAHs, alkanes) | GEOS-Chem VBS<br>parameterization (Pye<br>et al., 2010, <i>ACP</i> ) for<br>aromatics and PAHs<br>with long-chain<br>alkanes following Pye<br>and Pouliot<br>(2012, <i>ES&amp;T</i> ) but with<br>Presto et al.<br>(2010, <i>ES&amp;T</i> ) VBS<br>fits; all underlying<br>experimental datasets<br>are the same as<br>in <i>aero6</i> | Qin et al., <i>in prep</i> .    |
| 15 | AAVB2J   | particle | semivolatile organic particulate<br>matter from oxidation of<br>anthropogenic VOCs (benzene,<br>toluene, xylene, PAHs, alkanes)   | see AAVB1J                                                                                                                                                                                                                                                                                                                             | Qin et al., <i>in prep</i> .    |
| 16 | AAVB3J   | particle | semivolatile organic particulate<br>matter from oxidation of<br>anthropogenic VOCs (benzene,<br>toluene, xylene, PAHs, alkanes)   | see AAVB1J                                                                                                                                                                                                                                                                                                                             | Qin et al., <i>in prep</i> .    |
| 17 | AAVB4J   | particle | semivolatile organic particulate<br>matter from oxidation of<br>anthropogenic VOCs (benzene,<br>toluene, xylene, PAHs, alkanes)   | see AAVB1J                                                                                                                                                                                                                                                                                                                             | Qin et al., <i>in prep</i> .    |

|    | Species | Phase    | Description                                                                                                        | Scientific Basis                                                                                                                                                         | Model<br>Implementation              |
|----|---------|----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 18 | SVAVB1  | gas      | low volatility organic gas from<br>oxidation of anthropogenic VOCs<br>(benzene, toluene, xylene, PAHs,<br>alkanes) | see AAVB1J                                                                                                                                                               | Qin et al., <i>in prep</i> .         |
| 19 | SVAVB2  | gas      | semivolatile organic gas from<br>oxidation of anthropogenic VOCs<br>(benzene, toluene, xylene, PAHs,<br>alkanes)   | see AAVB1J                                                                                                                                                               | Qin et al., <i>in prep</i> .         |
| 20 | SVAVB3  | gas      | semivolatile organic gas from<br>oxidation of anthropogenic VOCs<br>(benzene, toluene, xylene, PAHs,<br>alkanes)   | see AAVB1J                                                                                                                                                               | Qin et al., <i>in prep</i> .         |
| 21 | SVAVB4  | gas      | semivolatile organic gas from<br>oxidation of anthropogenic VOCs<br>(benzene, toluene, xylene, PAHs,<br>alkanes)   | see AAVB1J                                                                                                                                                               | Qin et al., <i>in prep</i> .         |
| 22 | MTNO3   | gas      | organic nitrates from<br>monoterpene oxidation                                                                     | gas-phase SAPRC<br>yields (should not be<br>counted as gas-phase<br>organic nitrate for<br>evaluation purposes in<br>CB6r3 mechanisms)                                   | Pye et al.,<br>2015, <i>ES&amp;T</i> |
| 23 | AMTNO3J | particle | semivolatile organic nitrates from monoterpene oxidation                                                           | Fry et al. (2009, <i>ACP</i> )<br>for vapor pressure of<br>monoterpene organic<br>nitrates                                                                               | Pye et al.,<br>2015, <i>ES&amp;T</i> |
| 24 | AMTHYDJ | particle | organic pseudo-hydrolysis<br>accretion product from<br>monoterpene organic nitrates<br>(AMTNO3J)                   | Boyd et al.<br>(2015, <i>ACP</i> ) for<br>hydrolysis timescale<br>for tertiary nitrates, but<br>applied to all MTNO3<br>following Pye et al.<br>(2015, <i>ES&amp;T</i> ) | Pye et al.,<br>2015, <i>ES&amp;T</i> |

\*Species in AERO6/6i that are deprecated in AERO7/7i (these species should NOT appear in an AERO7/7i namelist): ATRP1J, ATRP2J, SV\_TRP1, SV\_TRP2, ABNZ1J, ABNZ2J, ABNZ3J, SV\_BNZ1, SV\_BNZ2, AXYL1J, AXYL2J, AXYL3J, SV\_XYL1, SV\_XYL2, ATOL1J, ATOL2J, ATOL3J, SV\_TOL1, SV\_TOL2, APAH1J, APAH2J, APAH3J, SV\_PAH1, SV\_PAH2, AALK1J, AALK2J, SV\_ALK1, SV\_ALK2 Table S2. Namelist options used for WRF version 3.8 simulation.

| &time_control         |                                              |
|-----------------------|----------------------------------------------|
| start_year            | =2015,                                       |
| start month           | = 12,                                        |
| start day             | = 21,                                        |
| start hour            | = 00.                                        |
| start_nour            | = 00                                         |
| start_second          | = 00                                         |
| and year              | -2015                                        |
|                       | -2013, $-12$                                 |
| end_month             | - 12,                                        |
| end_day               | = 27,                                        |
| end_hour              | =00,                                         |
| end_minute            | = 01,                                        |
| end_second            | = 00,                                        |
| interval_seconds      | = 10800,                                     |
| input_from_file       | = .true.,                                    |
| history_interval      | = 60,                                        |
| frames per outfile    | = 24,                                        |
| restart               | =.FALSE.,                                    |
| restart interval      | = 1440.                                      |
| io form history       | =2                                           |
| io_form_restart       | $=2^{2}$                                     |
| io_form_input         | = 2                                          |
| io_form_houndary      | - <u>2</u><br>- <b>2</b>                     |
| lo_lolli_boundary     | - <u>2</u>                                   |
| debug_level           | = 0                                          |
| 10_form_auxinput2     | = 2                                          |
| 10_form_aux1nput4     | = 2                                          |
| auxinputl_inname      | = "metoa_em.d01. <date>"</date>              |
| auxinput4_inname      | = "wrflowinp_d01"                            |
| auxinput4_interval    | = 180                                        |
| auxinput4_end_h       | = 9025                                       |
| write hist at 0h rst  | = .true.,                                    |
| io form auxinput8     | = 2,                                         |
| auxinput8 inname      | = 'LTNG <year> <month>.nc',</month></year>   |
| frames per auxinput8  | = 1600.                                      |
| auxinput8 interval m  | = 30.                                        |
| auxinput8 end h       | = 9999                                       |
|                       | <i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 1                     |                                              |
| & domains             |                                              |
|                       | - (0                                         |
| time_step             | = 60,                                        |
| time_step_fract_num   | = 0,                                         |
| time_step_fract_den   | = 1,                                         |
| use_adaptive_time_ste | p = .false.                                  |
| max_dom               | = 1,                                         |
| s_we                  | = 1,                                         |
| e_we                  | = 472,                                       |
| s sn                  | = 1,                                         |
| e_sn                  | = 312,                                       |
| s vert                | = 1,                                         |
| e vert                | = 36.                                        |
| n ton requested       | = 5000.                                      |
| eta levels            | = 1,000,0,9975,0,995,0,990,0,985             |
|                       | 0.980, 0.970, 0.960, 0.950                   |
|                       | 0.940 $0.930$ $0.970$ $0.900$                |
|                       | 0.770, 0.750, 0.720, 0.710,                  |

| num_metgrid_levels<br>dx<br>dy<br>grid_id<br>parent_id<br>i_parent_start<br>j_parent_start<br>parent_grid_ratio<br>parent_time_step_ratio<br>feedback<br>smooth_option<br>/                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} 0.900, \ 0.880, \ 0.860, \ 0.840, \\ 0.820, \ 0.800, \ 0.770, \ 0.740, \\ 0.700, \ 0.650, \ 0.600, \ 0.550, \\ 0.500, \ 0.450, \ 0.400, \ 0.350, \\ 0.300, \ 0.250, \ 0.200, \ 0.150, \\ 0.100, \ 0.050, \ 0.000 \\ &= 40, \\ = 12000, \\ = 1, \\ = 0, \\ = 0, \\ = 0, \\ = 0, \\ = 1, \\ = 1, \\ = 1, \\ = 1, \\ = 0, \\ \end{array}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| &physics<br>mp_physics<br>ra_lw_physics<br>ra_sw_physics<br>radt<br>sf_sfclay_physics<br>sf_surface_physics<br>bl_pbl_physics<br>bldt<br>cu_physics<br>kfeta_trigger<br>cudt<br>ltg_assim<br>suppress_opt<br>isfflx<br>ifsnow<br>icloud<br>cu_rad_feedback<br>surface_input_source<br>num_soil_layers<br>sst_update<br>pxlsm_smois_init<br>slope_rad<br>topo_shading<br>shadlen<br>num_land_cat<br>prec_acc_dt<br>mp_zero_out<br>fractional_seaice<br>seaice_threshold<br>/ | = 10, = 4, = 4, = 20, = 7, = 7, = 7, = 7, = 7, = 7, = 1, = 1                                                                                                                                                                                                                                                                                             |
| &fdda<br>grid_fdda<br>grid_sfdda<br>pxlsm_soil_nudge<br>sgfdda_inname                                                                                                                                                                                                                                                                                                                                                                                                       | = 1,<br>= 1,<br>= 1,<br>= "wrfsfdda_d01",                                                                                                                                                                                                                                                                                                                |

| sgfdda_end_h                                                                                                                                                                                                                                                                                                                                                                                           | =9025,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sgfdda_interval_m                                                                                                                                                                                                                                                                                                                                                                                      | = 180,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| sgfdda interval                                                                                                                                                                                                                                                                                                                                                                                        | = 10800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| gfdda inname                                                                                                                                                                                                                                                                                                                                                                                           | = "wrffdda d <domain>",</domain>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| gfdda end h                                                                                                                                                                                                                                                                                                                                                                                            | = 9025,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| gfdda interval m                                                                                                                                                                                                                                                                                                                                                                                       | = 180,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| fgdt                                                                                                                                                                                                                                                                                                                                                                                                   | =0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| if no pbl nudging uv                                                                                                                                                                                                                                                                                                                                                                                   | = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| if no pbl nudging t                                                                                                                                                                                                                                                                                                                                                                                    | = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| if no pbl nudging a                                                                                                                                                                                                                                                                                                                                                                                    | = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| if zfac uv                                                                                                                                                                                                                                                                                                                                                                                             | = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k zfac uv                                                                                                                                                                                                                                                                                                                                                                                              | = 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| if zfac t                                                                                                                                                                                                                                                                                                                                                                                              | = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k zfac t                                                                                                                                                                                                                                                                                                                                                                                               | = 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| if zfac a                                                                                                                                                                                                                                                                                                                                                                                              | = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k zfac a                                                                                                                                                                                                                                                                                                                                                                                               | = 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| K_ZIAU_Y                                                                                                                                                                                                                                                                                                                                                                                               | -13,<br>-0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| guv                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0001,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| gi                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0001,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| gq<br>G                                                                                                                                                                                                                                                                                                                                                                                                | - 0.00001,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| guv_sic                                                                                                                                                                                                                                                                                                                                                                                                | = 0.0000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| gt_sic                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.0000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| gq_stc                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.0000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| if_ramping                                                                                                                                                                                                                                                                                                                                                                                             | =0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dtramp_min                                                                                                                                                                                                                                                                                                                                                                                             | = 60.0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10_form_gfdda                                                                                                                                                                                                                                                                                                                                                                                          | = 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| rınblw                                                                                                                                                                                                                                                                                                                                                                                                 | =250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| /                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| &dynamics                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| &dynamics<br>w_damping                                                                                                                                                                                                                                                                                                                                                                                 | = 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| &dynamics<br>w_damping<br>diff_opt                                                                                                                                                                                                                                                                                                                                                                     | = 1,<br>= 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt                                                                                                                                                                                                                                                                                                                                                           | = 1,<br>= 1,<br>= 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt                                                                                                                                                                                                                                                                                                                                           | = 1,<br>= 1,<br>= 4,<br>= 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor                                                                                                                                                                                                                                                                                                                        | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt                                                                                                                                                                                                                                                                                                            | = 1, = 1, = 4, = 2, = 0.12, = 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp                                                                                                                                                                                                                                                                                               | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp                                                                                                                                                                                                                                                                                      | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef                                                                                                                                                                                                                                                                          | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif                                                                                                                                                                                                                                                                 | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,<br>= 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif                                                                                                                                                                                                                                                        | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,<br>= 0,<br>= 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic                                                                                                                                                                                                                                     | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,<br>= 0,<br>= 0,<br>= .true.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt                                                                                                                                                                                                                    | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,<br>= 0,<br>= 0,<br>= .true.,<br>= 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke adv opt                                                                                                                                                                                                     | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,<br>= 0,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar adv opt                                                                                                                                                                                   | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,<br>= 0,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,<br>= 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/                                                                                                                                                                              | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,<br>= 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>scalar_adv_opt<br>/                                                                                                                                                                                             | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,<br>= 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control                                                                                                                                                                             | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control<br>dfi_opt                                                                                                                                                   | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control<br>dfi_opt<br>dfi_nfilter                                                                                                                                    | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control<br>dfi_opt<br>dfi_nfilter<br>dfi_write_filtered_inpu                                                                                                         | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,<br>= 0,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 1,<br>= 2,<br>= 2,<br>= 1,<br>= 2,<br>= 1,<br>= 1,<br>= 0,<br>= 1,<br>= 0,<br>= 0,<br>= 1,<br>= 0,<br>= 0,<br>= 0,<br>= 0,<br>= 0,<br>= 0,<br>= 0,<br>= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control<br>dfi_opt<br>dfi_nfilter<br>dfi_write_filtered_inpu<br>dfi_write_dfi_history                                                                                | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0.05,<br>= 0,<br>= 0,<br>= 0,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 1,<br>= 2,<br>= 2,<br>= 1,<br>= 2,<br>= 2,<br>= 2,<br>= 1,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2,<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control<br>dfi_opt<br>dfi_nfilter<br>dfi_write_filtered_inpu<br>dfi_write_dfi_history<br>dfi_cutoff seconds                                                          | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control<br>dfi_opt<br>dfi_nfilter<br>dfi_write_filtered_inpu<br>dfi_write_dfi_history<br>dfi_cutoff_seconds<br>dfi_time_dim                                          | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 1,<br>= 2,<br>= 1  false.<br>= 60<br>= 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control<br>dfi_opt<br>dfi_nfilter<br>dfi_write_filtered_inpu<br>dfi_uvrite_dfi_history<br>dfi_cutoff_seconds<br>dfi_time_dim<br>dfi_bckstop_year                     | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 2, |
| &dynamics<br>w_damping<br>diff_opt<br>km_opt<br>diff_6th_opt<br>diff_6th_factor<br>damp_opt<br>base_temp<br>zdamp<br>dampcoef<br>khdif<br>kvdif<br>non_hydrostatic<br>moist_adv_opt<br>tke_adv_opt<br>scalar_adv_opt<br>/<br>&dfi_control<br>dfi_opt<br>dfi_nfilter<br>dfi_write_filtered_inpu<br>dfi_write_dfi_history<br>dfi_cutoff_seconds<br>dfi_time_dim<br>dfi_bekstop_year<br>dfi_bekstop_month | = 1,<br>= 1,<br>= 4,<br>= 2,<br>= 0.12,<br>= 3,<br>= 290.<br>= 5000.,<br>= 0,05,<br>= 0,<br>= 0,<br>= 2,<br>= 60<br>= 1000<br>= 2006<br>= 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| dfi_bckstop_hour   | = 12   |
|--------------------|--------|
| dfi_bckstop_minute | = 00   |
| dfi_bckstop_second | = 00   |
| dfi_fwdstop_year   | = 2006 |
| dfi_fwdstop_month  | = 08   |
| dfi_fwdstop_day    | = 04   |
| dfi_fwdstop_hour   | = 13   |
| dfi_fwdstop_minute | = 00   |
| dfi fwdstop second | = 00   |
| /                  |        |

| &bdy control   |            |
|----------------|------------|
| spec_bdy_width | = 5,       |
| spec_zone      | = 1,       |
| relax_zone     | = 4,       |
| specified      | = .true.,  |
| nested         | = .false., |
| /              |            |

&grib2 /

&namelist\_quilt nio\_tasks\_per\_group = 0, nio\_groups = 1, / Table S3. Namelist options used in WRF version 4.1.1 simulation.

| &time_control          |                                       |
|------------------------|---------------------------------------|
| start year             | = \$YS                                |
| start_month            | =\$MS                                 |
| start_day              | = \$DS                                |
| start_hour             | =00                                   |
| start_minute           | = 00,                                 |
| start_second           | = 00,                                 |
| end_year               | = \$YE                                |
| end_month              | =\$ME                                 |
| end_day                | = <b>\$DE</b>                         |
| end_hour               | =00                                   |
| end_minute             | = 00,                                 |
| end_second             | = 00,                                 |
| interval_seconds       | = 10800                               |
| input_from_file        | = .true.,                             |
| history_interval       | = 60,                                 |
| frames_per_outfile     | = 24,                                 |
| restart                | = .true.                              |
| restart_interval       | = 1440,                               |
| write_hist_at_0h_rst   | = .true.,                             |
| io_form_history        | =2                                    |
| io_form_restart        | = 2                                   |
| io_form_input          | = 2                                   |
| 10_form_boundary       | = 2                                   |
| 10_form_auxinput2      | = 2                                   |
| 10_form_auxinput4      | = 2                                   |
| 10_form_auxinput8      | = 2,                                  |
| debug_level            | = 0                                   |
| auxinput1_inname       | $=$ "met_em.d01. <date>"</date>       |
| auxinput4_inname       | $=$ "wrflowinp_d01"                   |
| auxinput4_interval     | = 180                                 |
| auxinput4_end_n        | – 999999999<br>– "U IGHTNING"         |
| auxinput8_interval     | = LIGHTINING                          |
| auxinput8_interval     | - 50                                  |
| frames per enu_input?  | - 7244                                |
| reast simulation start | -7544,                                |
| iofields filonome      | - .1aisc.,                            |
| force use old data     | - output.var.txt                      |
|                        | – .uue.                               |
| 1                      |                                       |
| & domains              |                                       |
| time sten              | = 60                                  |
| time step fract num    | = 0.                                  |
| time step fract den    | = 1,                                  |
| max_dom                | = 1,                                  |
| s we                   | = 1,                                  |
| e_we                   | = 472,                                |
| s_sn                   | = 1,                                  |
| e_sn                   | = 312,                                |
| s_vert                 | = 1,                                  |
| e_vert                 | = 36,                                 |
| p_top_requested        | = 5000,                               |
| eta_levels             | = 1.000, 0.9975, 0.995, 0.990, 0.985, |
|                        |                                       |

|                        | 0.980, 0.970, 0.960, 0.950, |
|------------------------|-----------------------------|
|                        | 0 940 0 930 0 920 0 910     |
|                        | 0,900, 0,880, 0,860, 0,840  |
|                        | 0.200, 0.800, 0.800, 0.840, |
|                        | 0.820, 0.800, 0.770, 0.740, |
|                        | 0.700, 0.650, 0.600, 0.550, |
|                        | 0.500, 0.450, 0.400, 0.350, |
|                        | 0.300, 0.250, 0.200, 0.150, |
|                        | 0.100, 0.050, 0.000         |
| num metgrid levels     | =40,                        |
| dx                     | = 12000,                    |
| dv                     | = 12000.                    |
| orid id                | = 1                         |
| parent id              | = 0                         |
| i porent start         | -0                          |
| i_parent_start         | = 0,                        |
| j_parent_start         | -0,                         |
| parent_grid_ratio      | = 1,                        |
| parent_time_step_ratio | =1,                         |
| feedback               | = 1,                        |
| smooth_option          | =0,                         |
| /                      |                             |
|                        |                             |
| &physics               |                             |
| mp physics             | = 10                        |
| mp_physics             | = 2                         |
| mp_zero_out_thrash     | -2, $-1.02.8$               |
| inp_zero_out_intesi    | - 1.00-0,                   |
| ra_iw_physics          | = 4,                        |
| ra_sw_physics          | = 4,                        |
| radt                   | = 20,                       |
| co2tf                  | = 1,                        |
| sf_sfclay_physics      | = 7,                        |
| num soil layers        | = 2,                        |
| pxlsm smois init       | =0,                         |
| pxlsm modis veg        | = 1.                        |
| sf surface physics     | = 7.                        |
| sf urban physics       | = 0                         |
| bl phl physics         | = 7                         |
| bldt                   | -0                          |
|                        | -0,                         |
| cu_pnysics             | = 1,                        |
| kfeta_trigger          | = 1,                        |
| cudt                   | =0,                         |
| prec_acc_dt            | = 60,                       |
| isfflx                 | = 1,                        |
| ifsnow                 | = 1,                        |
| icloud                 | = 1,                        |
| cu rad feedback        | =.true.,                    |
| surface input source   | = 1.                        |
| num land cat           | $=40^{11}$                  |
| num_soil_cat           | = 16                        |
| ast undete             | - 1                         |
| ssi_upuale             | - I,<br>- 100               |
| searce_threshold       | = 100,                      |
| slope_rad              | = 1,                        |
| topo_shading           | = 1,                        |
| shadlen                | = 25000.,                   |
| do_radar_ref           | = 1,                        |
| grav_settling          | =0,                         |
| ltg assim              | = .true.,                   |
|                        | ,                           |

| suppress_opt           | = 2,                                  |
|------------------------|---------------------------------------|
| /                      |                                       |
|                        |                                       |
| & fdda                 |                                       |
|                        | 1                                     |
| grid_fdda              | = 1,                                  |
| grid_sfdda             | = 1,                                  |
| pxlsm soil nudge       | = 1,                                  |
| sofdda inname          | = "wrfsfdda_d01"                      |
| safda end h            | = 00000000                            |
| sgluda_end_n           | - 190                                 |
| sgldda_interval_m      | = 180,                                |
| gfdda_inname           | = "wrffdda_d <domain>",</domain>      |
| gfdda end h            | = 9999999999,                         |
| gfdda interval m       | = 180,                                |
| født                   | = 0                                   |
| if no phl nudging uv   | - 1                                   |
| II_IIO_pol_IIudging_uv | - <u>1</u> ,                          |
| if_no_pbl_nudging_t    | = 1,                                  |
| if_no_pbl_nudging_q    | = 1,                                  |
| if_zfac_uv             | = 0,                                  |
| k zfac uv              | = 13.                                 |
| if zfac t              | = 0                                   |
| $11_21ac_1$            | -0,<br>-12                            |
|                        | = 13,                                 |
| if_zfac_q              | =0,                                   |
| k_zfac_q               | = 13,                                 |
| guv                    | = 0.0001,                             |
| ot                     | = 0.0001                              |
|                        | - 0.00001                             |
| gy                     | - 0.00001,                            |
| guv_stc                | = 0.0000,                             |
| gt_sfc                 | = 0.0000,                             |
| gq sfc                 | = 0.0000,                             |
| if ramping             | = 1.                                  |
| dtramp min             | = 60.0                                |
| i. fame afte           | - 2                                   |
| 10_10rm_gidda          | = 2,                                  |
| rinblw                 | = 250.0                               |
| /                      |                                       |
|                        |                                       |
| &dynamics              |                                       |
| hybrid ont             | - 2                                   |
| nyonu_opt              | - 2,                                  |
| w_damping              | = 1,                                  |
| diff_opt               | = 1,                                  |
| km opt                 | =4,                                   |
| diff 6th opt           | = 2.                                  |
| diff_6th_factor        | = 0.12                                |
| damm ant               | - 2                                   |
| damp_opt               | = 3,                                  |
| base_temp              | = 290.                                |
| zdamp                  | = 5000.,                              |
| dampcoef               | = 0.05,                               |
| khdif                  | = 0                                   |
| kydif                  | = 0                                   |
| Kyull                  | · · · · · · · · · · · · · · · · · · · |
| non_nydrostatic        | = .true.,                             |
| moist_adv_opt          | = 2,                                  |
| tke_adv_opt            | = 2,                                  |
| scalar adv opt         | = 2,                                  |
| 1                      | <i>,</i>                              |
| 1                      |                                       |
| 0-1-1                  |                                       |
| &bdy_control           | _                                     |
| spec_bdy_width         | =5,                                   |

| spec_zone  | = 1,       |
|------------|------------|
| relax_zone | = 4,       |
| specified  | = .true.,  |
| spec_exp   | = 0.0,     |
| nested     | = .false., |
| /          |            |

#### &grib2 /

&namelist\_quilt nio\_tasks\_per\_group = 0, nio\_groups = 1,





Figure S1. Vegetation Fraction (VF) on June 1, 2016 from WRF38 (left) and WRF411 (right).

# **U.S. Climate Regions**



Figure S2. Map of the NOAA U.S. climate regions. Image source: https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php.



Figure S3. Time series of monthly averaged observed (black) and CMAQ simulated (red) MDA8 O<sub>3</sub> (left) and PM<sub>2.5</sub> (right) for rural (top), suburban (middle), and urban (bottom) AQS sites. Similar trends in observed and simulated monthly average values are seen for all three land-use classifications.



Figure S4. Comparison of ozonesonde data for the Sapporo, JP (upper left), Alert, GRL (upper right), Tateno, JP (lower left), and Edmonton, CA (lower right) WOUDC sites. Each panel consists of eight plots: observed O<sub>3</sub> (ppbv; top far left); HCMAQ52 modeled O<sub>3</sub> (ppbv; top middle left); HCMAQ53 modeled O<sub>3</sub> (ppbv; top middle right); HCMAQ52 bias (%; top far right); approximate site location (bottom far left); HCMAQ53 bias (%; bottom middle left); layer 27 monthly average O<sub>3</sub> time series (ppbv; bottom far right).



Figure S5. Comparison of ozonesonde data for the Resolute, CA (upper left), Lerwick, SCT (upper right), Boulder, US (lower left), and Wallops Island, US (lower right) WOUDC sites. Each panel consists of eight plots: observed O<sub>3</sub> (ppbv; top far left); HCMAQ52 modeled O<sub>3</sub> (ppbv; top middle left); HCMAQ53 modeled O<sub>3</sub> (ppbv; top middle right); HCMAQ52 bias (%; top far right); approximate site location (bottom far left); HCMAQ53 bias (%; bottom middle left); layer 27 monthly average O<sub>3</sub> time series (ppbv; bottom middle right); layer 27 daily average O<sub>3</sub> time series (ppbv; bottom far right).



Figure S6. Comparison of ozonesonde data for the Hilo, US (upper left), Payerne, CH (upper right), Naha, JP (lower left), and Legionwo, PL (lower right) WOUDC sites. Each panel consists of eight plots: observed  $O_3$  (ppbv; top far left); HCMAQ52 modeled  $O_3$  (ppbv; top middle left); HCMAQ53 modeled  $O_3$  (ppbv; top middle right); HCMAQ52 bias (%; top far right); approximate site location (bottom far left); HCMAQ53 bias (%; bottom middle left); layer 27 daily average  $O_3$  time series (ppbv; bottom far right).



Figure S7. Comparison of ozonesonde data for the Prague, CZ (upper left), Mardrid, SP (upper right), Valentia, SP (lower left), and Petaling, MY (lower right) WOUDC sites. Each panel consists of eight plots: observed O<sub>3</sub> (ppbv; top far left); HCMAQ52 modeled O<sub>3</sub> (ppbv; top middle left); HCMAQ53 modeled O<sub>3</sub> (ppbv; top middle right); HCMAQ52 bias (%; top far right); approximate site location (bottom far left); HCMAQ53 bias (%; bottom middle left); layer 27 monthly average O<sub>3</sub> time series (ppbv; bottom middle right); layer 27 daily average O<sub>3</sub> time series (ppbv; bottom far right).



Figure S8. Comparison of ozonesonde data for the Hanoi, VT (upper left), Hong Kong, SAR (upper right), (lower left), and San Pedro, CR (lower right) WOUDC sites. Each panel consists of eight plots: observed O<sub>3</sub> (ppbv; top far left); HCMAQ52 modeled O<sub>3</sub> (ppbv; top middle left); HCMAQ53 modeled O<sub>3</sub> (ppbv; top middle right); HCMAQ52 bias (%; top far right); approximate site location (bottom far left); HCMAQ53 bias (%; bottom middle left); layer 27 daily average O<sub>3</sub> time series (ppbv; bottom far right).



Figure S9. Time series of hourly average O<sub>3</sub> (ppbv; filled circles) and bias (open squares; ppbv) for all AQS sites for winter for the CMAQ521 (red) and CMAQ531\_WRF411\_M3Dry\_BiDi (blue) simulations.



Figure S10. Time series of hourly average O<sub>3</sub> (ppbv; filled circles) and bias (open squares; ppbv) for all AQS sites for spring for the CMAQ521 (red) and CMAQ531\_WRF411\_M3Dry\_BiDi (blue) simulations.



Figure S11. Time series of hourly average O<sub>3</sub> (ppbv; filled circles) and bias (open squares; ppbv) for all AQS sites for summer for the CMAQ521 (red) and CMAQ531\_WRF411\_M3Dry\_BiDi (blue) simulations.



Figure S12. Time series of hourly average O<sub>3</sub> (ppbv; filled circles) and bias (open squares; ppbv) for all AQS sites for fall for the CMAQ521 (red) and CMAQ531\_WRF411\_M3Dry\_BiDi (blue) simulations.





Figure S13. Time series of hourly average PM<sub>2.5</sub> (µg m<sup>-3</sup>; filled circles) and bias (µg m<sup>-3</sup>; open squares) for all AQS sites for winter for the CMAQ521 (red) and CMAQ531\_WRF411\_M3Dry\_BiDi (blue) simulations.



Figure S14. Time series of hourly average PM<sub>2.5</sub> (µg m<sup>-3</sup>; filled circles) and bias (µg m<sup>-3</sup>; open squares) for all AQS sites for spring for the CMAQ521 (red) and CMAQ531\_WRF411\_M3Dry\_BiDi (blue) simulations.



Figure S15. Time series of hourly average PM<sub>2.5</sub> (µg m<sup>-3</sup>; filled circles) and bias (µg m<sup>-3</sup>; open squares) for all AQS sites for summer for the CMAQ521 (red) and CMAQ531\_WRF411\_M3Dry\_BiDi (blue) simulations.



Figure S16. Time series of hourly average PM<sub>2.5</sub> (µg m<sup>-3</sup>; filled circles) and bias (µg m<sup>-3</sup>; open squares) for all AQS sites for fall for the CMAQ521 (red) and CMAQ531\_WRF411\_M3Dry\_BiDi (blue) simulations.



Figure S17. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for OC for all CSN sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S18. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for OC for all CSN sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S19. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for OC for all CSN sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S20. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for OC for all IMPROVE sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S21. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for OC for all AQS sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S22. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for OC for all AQS sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S23. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for EC for all CSN sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S24. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for EC for all CSN sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.


Figure S25. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for EC for all IMPROVE sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S26. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for EC for all IMPROVE sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S27. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for EC for all AQS sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S28. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for EC for all AQS sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S29. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for NO<sub>3</sub><sup>-</sup> for all CSN sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S30. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for NO<sub>3</sub><sup>-</sup> for all CSN sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S31. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for NO<sub>3</sub><sup>-</sup> for all IMPROVE sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S32. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for NO<sub>3</sub><sup>-</sup> for all IMPROVE sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S33. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for NO<sub>3</sub><sup>-</sup> for all AQS sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S34. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for NO<sub>3</sub><sup>-</sup> for all AQS sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S35. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for TNO<sub>3</sub><sup>-</sup> for all CASTNet sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S36. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for TNO<sub>3</sub><sup>-</sup> for all CASTNet sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S37. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for SO<sub>4</sub><sup>2-</sup> for all CSN sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S38. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for SO<sub>4</sub><sup>2-</sup> for all CSN sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S39. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for SO<sub>4</sub><sup>2-</sup> for all IMPROVE sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S40. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for SO<sub>4</sub><sup>2-</sup> for all IMPROVE sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S41. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for SO<sub>4</sub><sup>2-</sup> for all AQS sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S42. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for SO<sub>4</sub><sup>2-</sup> for all AQS sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S43. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for SO<sub>4</sub><sup>2-</sup> for all CASTNet sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S44. Categorical NMB (%), MB ( $\mu$ g m<sup>-3</sup>), RMSE ( $\mu$ g m<sup>-3</sup>), and Pearson correlation values for SO<sub>4</sub><sup>2-</sup> for all CASTNet sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S45. Categorical NMB (%), MB (ppbv), RMSE (ppbv), and Pearson correlation values for SO<sub>2</sub> (hourly) for all AQS sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S46. Categorical NMB (%), MB (ppbv), RMSE (ppbv), and Pearson correlation values for SO<sub>2</sub> (hourly) for all AQS sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S47. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for SO<sub>2</sub> (weekly) for all CASTNET sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S48. Categorical NMB (%), MB (µg m<sup>-3</sup>), RMSE (µg m<sup>-3</sup>), and Pearson correlation values for SO<sub>2</sub> (weekly) for all CASTNET sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S49. Categorical NMB (%), MB (ppbv), RMSE (ppbv), and Pearson correlation values for  $NO_X$  for all AQS sites based on season and NOAA climate region for the CMAQ521 simulation.



Figure S50. Categorical NMB (%), MB (ppbv), RMSE (ppbv), and Pearson correlation values for NO<sub>X</sub> for all AQS sites based on season and NOAA climate region for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S51. Time series of monthly average MDA8 O<sub>3</sub> mixing ratio (ppbv) for all AQS sites (black), CMAQ521 (red), CMAQ531\_WRF38\_M3Dry\_noBiDi\_RWC (blue), CMAQ531\_WRF38\_M3Dry\_noBiDi (green), CMAQ531\_WRF38\_M3Dry\_BiDi (purple), CMAQ531\_WRF411\_M3Dry\_BiDi (orange), and CMAQ531\_WRF411\_STAGE\_BiDi (yellow).



Figure S52. Time series of monthly average MDA8 O<sub>3</sub> RMSE (ppbv) for all AQS sites for CMAQ521 (red), CMAQ531\_WRF38\_M3Dry\_noBiDi\_RWC (blue), CMAQ531\_WRF38\_M3Dry\_noBiDi (green), CMAQ531\_WRF38\_M3Dry\_BiDi (purple), CMAQ531\_WRF411\_M3Dry\_BiDi (orange), and CMAQ531\_WRF411\_STAGE\_BiDi (yellow).



Figure S53. Time series of monthly average MDA8 O<sub>3</sub> Pearson correlation for all AQS sites for CMAQ521 (red), CMAQ531\_WRF38\_M3Dry\_noBiDi\_RWC (blue), CMAQ531\_WRF38\_M3Dry\_noBiDi (green), CMAQ531\_WRF38\_M3Dry\_BiDi (purple), CMAQ531\_WRF411\_M3Dry\_BiDi (orange), and CMAQ531\_WRF411\_STAGE\_BiDi (yellow).



Figure S54. Seasonal average MDA8 O<sub>3</sub> bias (ppbv) for AQS and NAPS sites for the CMAQ521 simulation.



Figure S55. Seasonal average MDA8 O<sub>3</sub> bias (ppbv) for AQS and NAPS sites for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation.



Figure S56. Time series of monthly average PM<sub>2.5</sub> (µg m<sup>-3</sup>) for all AQS sites (black), CMAQ521 (red), CMAQ531\_WRF38\_M3Dry\_noBiDi\_RWC (blue), CMAQ531\_WRF38\_M3Dry\_noBiDi (green), CMAQ531\_WRF38\_M3Dry\_BiDi (purple), CMAQ531\_WRF411\_M3Dry\_BiDi (orange), and CMAQ531\_WRF411\_STAGE\_BiDi (yellow).



Figure S57. Time series of monthly average PM<sub>2.5</sub> RMSE (µg m<sup>-3</sup>) for all AQS sites for CMAQ521 (red), CMAQ531\_WRF38\_M3Dry\_noBiDi\_RWC (blue), CMAQ531\_WRF38\_M3Dry\_noBiDi (green), CMAQ531\_WRF38\_M3Dry\_BiDi (purple), CMAQ531\_WRF411\_M3Dry\_BiDi (orange), and CMAQ531\_WRF411\_STAGE\_BiDi (yellow).



Figure S58. Time series of monthly average PM<sub>2.5</sub> Pearson correlation for all AQS sites for CMAQ521 (red), CMAQ531\_WRF38\_M3Dry\_noBiDi\_RWC (blue), CMAQ531\_WRF38\_M3Dry\_noBiDi (green), CMAQ531\_WRF38\_M3Dry\_BiDi (purple), CMAQ531\_WRF411\_M3Dry\_BiDi (orange), and CMAQ531\_WRF411\_STAGE\_BiDi (yellow).



Figure S59. Seasonal average  $PM_{2.5}$  bias (µg m<sup>-3</sup>) for AQS and NAPS sites for the CMAQ521 simulation. The symbol size is commensurate with the absolute value of the bias. Gray symbols indicate values outside the color scale (i.e. outliers).



Figure S60. Seasonal average  $PM_{2.5}$  bias (µg m<sup>-3</sup>) for AQS and NAPS sites for the CMAQ531\_WRF411\_M3Dry\_BiDi simulation. The symbol size is commensurate with the absolute value of the bias. Gray symbols indicate values outside the color scale (i.e. outliers).
2016 WRFv411CMAQv531 vs. WRFv38CMAQv531 Seasonal Mean, VD\_O 2016 WRFv411CMAQv531 vs. WRFv38CMAQv531 Seasonal Mean, O3





Figure S61. Seasonal  $O_3$  deposition velocity (VD\_O<sub>3</sub>; cm s<sup>-1</sup>; left) and  $O_3$  mixing ratio (ppbv; right) for the CMAQ531\_WRF38\_M3Dry\_BiDi simulation along with the difference in VD\_O<sub>3</sub> and mixing ratio between the CMAQ531\_WRF38\_M3Dry\_Bidi and CMAQ531\_WRF411\_M3Dry\_BiDi simulations (WRF411 – WRF38).

2016 WRFv411CMAQv531 vs. WRFv38CMAQv531 Seasonal Mean, VMASSJ 2016 WRFv411CMAQv531 vs. WRFv38CMAQv531 Seasonal Mean, ATOTIJ



Figure S62. Seasonal accumulation mode deposition velocity (VMASSJ; cm s<sup>-1</sup>; left) and PM<sub>2.5</sub> concentration ( $\mu$ g m<sup>-3</sup>) for the CMAQ531\_WRF38\_M3Dry\_BiDi simulation along with the difference in VMASSJ and PM<sub>2.5</sub> concentration between the CMAQ531\_WRF38\_M3Dry\_Bidi and CMAQ531\_WRF411\_M3Dry\_BiDi simulations (WRF411 – WRF38).





Figure S63. Observed and WRF simulated precipitation for winter 2006 in mm. Observed precipitation from PRISM (upper left), WRFv411 simulated precipitation (upper right), WRFv38 simulated precipitation (lower left), and the difference between WRFv411 and WRFv38 (WRFv411 – WRFv38) precipitation (lower right).





Figure S64. Observed and WRF simulated precipitation for spring 2006 in mm. Observed precipitation from PRISM (upper left), WRFv411 simulated precipitation (upper right), WRFv38 simulated precipitation (lower left), and the difference between WRFv411 and WRFv38 (WRFv411 – WRFv38) precipitation (lower right).



Figure S65. Observed and WRF simulated precipitation for summer 2006 in mm. Observed precipitation from PRISM (upper left), WRFv411 simulated precipitation (upper right), WRFv38 simulated precipitation (lower left), and the difference between WRFv411 and WRFv38 (WRFv411 – WRFv38) precipitation (lower right).



Figure S66. Observed and WRF simulated precipitation for fall 2006 in mm. Observed precipitation from PRISM (upper left), WRFv411 simulated precipitation (upper right), WRFv38 simulated precipitation (lower left), and the difference between WRFv411 and WRFv38 (WRFv411 – WRFv38) precipitation (lower right).