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Abstract. Using the Vector LInearized Discrete Ordinate Ra-
diative Transfer (VLIDORT) code as the main driver for for-
ward model simulations, a first-of-its-kind data assimilation
scheme has been developed for assimilating Ozone Monitor-
ing Instrument (OMI) aerosol index (AI) measurements into
the Naval Aerosol Analysis and Predictive System (NAAPS).
This study suggests that both root mean square error (RMSE)
and absolute errors can be significantly reduced in NAAPS
analyses with the use of OMI AI data assimilation when com-
pared to values from NAAPS natural runs. Improvements in
model simulations demonstrate the utility of OMI AI data
assimilation for aerosol model analysis over cloudy regions
and bright surfaces. However, the OMI AI data assimilation
alone does not outperform aerosol data assimilation that uses
passive-based aerosol optical depth (AOD) products over
cloud-free skies and dark surfaces. Further, as AI assimila-
tion requires the deployment of a fully multiple-scatter-aware
radiative transfer model in the forward simulations, compu-
tational burden is an issue. Nevertheless, the newly devel-
oped modeling system contains the necessary ingredients for
assimilation of radiances in the ultraviolet (UV) spectrum,
and our study shows the potential of direct radiance assim-
ilation at both UV and visible spectrums, possibly coupled
with AOD assimilation, for aerosol applications in the future.
Additional data streams can be added, including data from
the TROPOspheric Monitoring Instrument (TROPOMI), the

Ozone Mapping and Profiler Suite (OMPS), and eventually
the Plankton, Aerosol, Cloud and ocean Ecosystem (PACE)
mission.

1 Introduction

Operational chemical transport modeling (CTM) of atmo-
spheric aerosol particles, including simulation of sources
and sinks and long-range transport of aerosol events such
as biomass burning aerosols from fires and dust outbreaks,
is now commonplace at global meteorology centers for air
quality and visibility forecasts (e.g., Sessions et al., 2015;
Lynch et al., 2016). Variational and ensemble-based assim-
ilation of satellite-derived aerosol products such as aerosol
optical depth (AOD), lidar backscatter measurements, and
surface aerosol properties can substantially improve accura-
cies in CTM analyses and forecasts (Zhang et al., 2008, 2011,
2014; Yumimoto et al., 2008; Uno et al., 2008; Benedetti et
al., 2009; Schutgens et al., 2010; Sekiyama et al., 2010; Saide
et al. 2013; Schwartz et al., 2012; Li et al., 2013; Rubin et al.,
2017; Lynch et al., 2016).

Currently, the main satellite inputs for operational aerosol
modeling are AOD products derived from passive-based
polar-orbiting imagers, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS), the Visible Infrared
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Imaging Radiometer Suite (VIIRS), and the Advance Very
High Resolution Radiometer (AVHRR). Experimentation is
proceeding with the use of products from the multi-angle
imaging spectroradiometer (MISR) (e.g., Lynch et al., 2016;
Randles et al., 2017; Buchard et al., 2017) and from geosta-
tionary instruments such as Himawari and the Geostationary
Operational Environmental Satellite (GOES). A major ad-
vantage with such passive-based satellite sensors is that the
AOD is retrieved with high spatial and temporal resolution
over relatively broad fields of view (e.g., Zhang et al., 2014).
For example, MODIS and VIIRS provide near-global daily
daytime coverage (e.g., Levy et al., 2013; Hsu et al., 2019),
and GOES and Himawari are capable of retrieving AOD over
North American and East Asian regions at sub-hourly tem-
poral resolution (e.g., Bessho et al., 2016).

To date, these traditional passive-based satellite AOD re-
trievals have been limited to darker surfaces and relatively
cloud-free conditions. The widely used MODIS Dark Tar-
get aerosol data, for instance, are globally available only
over oceans and dark land surfaces (e.g., Levy et al., 2013).
The MISR and MODIS Deep Blue aerosol products are also
available over some arid environments but are not applica-
ble to snow- and ice-covered regions (e.g., Kahn et al., 2010;
Hsu et al., 2013). Also, none of the abovementioned aerosol
products are valid over cloudy regions.

In comparison to AOD, the semi-quantitative UV-based
aerosol index (AI) has long been used to monitor major
aerosol events such as smoke plumes and dust storms, start-
ing with the Total Ozone Mapping Spectrometer (TOMS)
from the late 1970s (Herman et al., 1997). AI is derived us-
ing the ratio of observed UV radiances to simulated ones
assuming only a clear Rayleigh sky (e.g., Torres et al.,
2007). AI retrievals are currently computed using observa-
tions from sensors with ozone-sensitive channels. For exam-
ple, the Ozone Monitoring Instrument (OMI), Ozone Map-
ping and Profiler Suite (OMPS), TROPOspheric Monitoring
Instrument (TROPOMI), and the future Plankton, Aerosol,
Cloud and ocean Ecosystem (PACE) mission include ozone-
sensitive channels that can detect UV-absorbing aerosol par-
ticles, such as black-carbon-laden smoke or iron-bearing
dust, over bright surfaces, such as desert, snow- and ice-
covered regions, and aerosol plumes above clouds (e.g., Tor-
res et al., 2012; Yu et al., 2012; Alfaro-Contreras et al., 2014,
2016).

To complement existing AOD assimilating systems, we
have developed an AI data assimilation (AI-DA) system that
is capable of assimilating OMI AI over bright surfaces and
cloudy regions for aerosol analyses and forecasts. This study
can be considered one of the first attempts at direct radiance
assimilation in the UV spectrum for aerosol applications, as
AI can be directly computed from UV radiances and the de-
veloped OMI AI-DA system has all the necessary compo-
nents for a typical radiance assimilation package. In time
we expect our assimilation model to merge with AOD or so-
lar radiance assimilation to influence aerosol loading, height,

and absorption (e.g., the VIIRS+OMPS product; Lee et al.,
2015). Details of the developed OMI AI assimilation system
are presented in the paper, which is organized as follows:
datasets used in the study are summarized in Sect. 2. Sec-
tion 3 discusses the components of the AI-DA system. Sec-
tion 4 provides an evaluation of the developed system, and
Sect. 5 contains a summary discussion.

2 Datasets and models

Three datasets are used in this study. These are (i) the OMI
level 2 UV aerosol product (OMAERUV; Torres et al., 2007),
(ii) the Aerosol Robotic Network (AERONET; Holben et al.,
1998) AOD product, and (iii) reanalysis data from the Naval
Aerosol Analysis and Prediction System (NAAPS; Lynch et
al., 2016), which was the first operational global aerosol mass
transport model available to the community. The assimilation
system is based on spatial and temporal variations of aerosol
particles from NAAPS (Zhang and Reid, 2006; Zhang et al.,
2008), and the Vector LInearized Discrete Ordinate Radiative
Transfer (VLIDORT; Spurr, 2006) code is used to construct
a forward model for the AI-DA system.

2.1 OMI aerosol product

UV aerosol index data from the OMI level 2 version 3 UV
aerosol products (OMAERUV) are used in this study. The
OMI is onboard the Aura satellite (launched in 2004) and it
observes the Earth’s atmosphere over the UV–visible spec-
trum with a pixel size of 13× 24 km at nadir for the global
scan mode and a swath of ∼ 2600 km (Levelt et al., 2018).
The daytime equatorial crossing for the Aura platform is
∼ 13:30. The dataset comprises the UV AI, viewing and solar
geometries, spectrally dependent surface albedos at the 354
and 388 nm spectral channels, terrain pressure, geolocations,
XTrack and algorithm quality flags, and other aerosol and
ancillary parameters. The UV AI is designed to detect UV-
absorbing aerosol particles and is based on radiance observa-
tions at 354 nm (Iobs354) and calculated radiance (Ical354) at
354 nm for a Rayleigh (no aerosol) atmosphere (e.g., Torres
et al., 2007) defined as

AI=−100log10
Iobs354

Ical354
. (1)

Unbiased, noise-reduced, quality-assured AI data are neces-
sary for AI data assimilation. This is especially important for
OMI observations due to this particular sensor suffering from
well-referenced “row anomaly” issues (Torres et al., 2018).
To remove pixels with row anomalies, only retrievals with
XTrack flag values of 0 are retained. Also, abnormal AI val-
ues were identified over mountain regions. Thus, retrievals
with terrain and surface pressure less than 850 hPa are ex-
cluded in the study. Finally, only retrievals with OMI AI val-
ues larger than −2 are used. Therefore, OMI observations
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over cloudy skies, which could have negative OMI AI val-
ues, are also included.

Both cloud-free and above-cloud AI data satisfying these
quality checks are aggregated and averaged in 1× 1◦

(latitude–longitude) bins. As a radiative transfer model run
is applied for each observation, the gridded data are used in
the assimilation process in order to reduce the computational
burden. Averaged parameters for the gridded data include the
solar and sensor zenith angles, the relative azimuth angles,
the spectrally dependent surface albedos at 354 and 388 nm,
the cloud fraction, and the AI values themselves. Additional
quality assurance steps are also applied during the spatial av-
eraging process. Isolated high AI values are removed as fol-
lows. First, for a 4× 4 pixel box, if the mean AI is less than
0.7 but an individual AI value is larger than 0.7, then that
one value is removed. Second, if the standard deviation of AI
values for a 3×3 pixel box surrounding a pixel is larger than
0.5, that individual AI value is likewise removed. Note that
both approaches are essentially homogeneity tests that are
used for identifying outliers. The thresholds are empirically
estimated through visual inspection.

2.2 AERONET data

Version 3 level 2 daytime, cloud-cleared, and quality-assured
AERONET data are used to evaluate the performance of the
OMI AI data assimilation in our study (Holben et al., 1998;
Giles et al., 2019). During daytime, AOD from AERONET
instruments are derived by measuring the attenuated solar ra-
diance typically at eight wavelengths ranging from 340 to
1640 nm. In this study, AERONET data are collocated with
NAAPS analyses with and without OMI AI assimilation.
In order to collocate AERONET and NAAPS AOD data,
AERONET AOD values within ±30 min of a given NAAPS
analysis time are averaged and used as ground-based AOD
values for the NAAPS 1×1◦ (latitude–longitude) collocated
bins. As AERONET data require a cloud-free line of sight to
the solar disk, the performance of OMI AI data assimilation
over overcast regions is not evaluated.

2.3 NAAPS and NAAPS reanalysis data

The NAAPS (http://www.nrlmry.navy.mil/aerosol/, last ac-
cess: 18 December 2020) model is a multispecies, three-
dimensional, Eulerian global transport model using the op-
erational Navy Global Environmental Model (NAVGEM) as
the meteorological driver (Hogan et al., 2014). NAAPS pro-
vides 6 d forecasts at a 3 h interval with a spatial resolution
of 1/3◦ (latitude–longitude) and 42 vertical levels on a global
scale. NAAPS predicts four aerosol particle classes: anthro-
pogenic and biogenic fine particles (ABF, such as primary
and secondary organic aerosols and sulfate aerosols), dust,
biomass burning smoke, and sea salt (Lynch et al, 2016).

The 2003–2018 NAAPS reanalysis version 1 (v1) (Lynch
et al., 2016) is a modified version of the operational NAAPS

model. In this version, quality-controlled retrievals of AOD
from MODIS and MISR (Zhang and Reid, 2006; Hyer et al.,
2011; Shi et al., 2014) are assimilated into NAAPS through
the Naval Research Laboratory Atmospheric Variation Data
Assimilation System–AOD System (NAVDAS-AOD; e.g.,
Zhang et al., 2008, 2011, 2014). Aerosol source functions,
including biomass burning, smoke, and dust emissions, are
regionally tuned based on the AERONET data. Other aerosol
processes, including dry deposition over water, are also tuned
based on AOD data assimilation correction fields. NOAA
Climate Prediction Center (CPC) MORPHing (CMORPH)
precipitation data are used to constrain the wet removal pro-
cess within the tropics (Joyce et al., 2004). The usage of
CMORPH avoids the ubiquitous precipitation bias that ex-
ists in all global atmospheric models (e.g., Dai, 2006) and is
proven to improve aerosol wet deposition, therefore yielding
better AOD (Xian et al., 2009). The reanalysis agrees rea-
sonably well with AERONET data on a global scale (Lynch
et al., 2016) and also reproduces AOD trends that are in
good agreement with satellite-based analyses (e.g., Zhang
and Reid, 2010; Hsu et al., 2012). In this study, we use a
free-running version of NAAPS reanalysis v1 without AOD
assimilation to provide aerosol fields every 6 h at 1◦× 1◦

(latitude–longitude) resolution.

2.4 VLIDORT radiative transfer code

VLIDORT is a linearized, multiple-scatter radiative transfer
model for the simultaneous generation of Stokes 4-vectors
and analytically derived Jacobians (weighting functions) of
these 4-vectors with respect to any atmospheric or surface
property (Spurr, 2006). The model uses discrete-ordinate
methods to solve the polarized plane-parallel RT equations
in a multilayer atmosphere, plus the solution of a bound-
ary value problem and subsequent source function integra-
tion to obtain radiation fields at any geometry and any at-
mospheric level. VLIDORT has a “pseudo-spherical” ansatz:
the treatment of solar-beam attenuation in a spherical-shell
atmosphere before scattering. Single scattering in VLIDORT
is accurate for both line-of-sight and solar-beam spheri-
cal geometry. The model has a full thermal emission ca-
pability. VLIDORT has two supplements, one dealing with
bidirectional (non-Lambertian) reflection at the surface and
the other with the inclusion of surface light sources (SIF
or water-leaving radiances). Full details on the VLIDORT
model may be found in a recent review paper (Spurr and
Christi, 2019, and references to VLIDORT therein).

VLIDORT is used to simulate the AI in this study. Simu-
lations at 354 and 388 nm are performed for both Rayleigh
atmospheres and scenarios with aerosol loadings (four mass-
mixing profiles for different aerosol types) taken from the
NAAPS model. In addition to the AI, Jacobian calculations
are needed with respect to these aerosol profiles. Firstly, ra-
diance Jacobians with respect to these four mass-mixing pro-
files are computed analytically using VLIDORT’s lineariza-
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Table 1. Mass extinction efficiencies (σ , m2 g−1) and single-
scattering albedos (ωo) used in this study.

ABF Dust Smoke Sea salt

σ (354 nm) 7.81 0.56 6.91 0.52
ωo (354 nm) 1.0 0.88 0.85 1.0
σ (388 nm) 6.96 0.58 6.07 0.52
ωo (388 nm) 1.0 0.91 0.86 1.0

tion facility; secondly, the associated Jacobians of AI are fur-
ther derived through a second VLIDORT linearization with
respect to the Lambertian-equivalent reflectivity. The details
of this process are given in the next section.

3 OMI AI assimilation system

The OMI assimilation system has three components: a for-
ward model, a 3-D variational assimilation system, and a
post-processing system. Based on the background NAAPS 3-
D aerosol concentrations for dust, smoke, ABF, and sea salt
aerosols, the forward model not only computes the associated
AI values, but also their Jacobians of AI with respect to the
four aerosol mass loading profiles. The 3-D variational as-
similation system is a modified 3-D NAVDAS-AOD system
(Zhang et al., 2008, 2011, 2014) that computes increments
for dust and smoke aerosol concentrations based on OMI AI
data. The post-processing system constructs a new NAAPS
analysis based on the background NAAPS aerosol concen-
trations and increments as derived from the 3-D variational
assimilation system. Details of the forward model and the
modified NAVDAS-AOD system are described in this sec-
tion.

3.1 Forward model for simulating OMI AI

To construct an AI-DA system, a forward model is needed
to simulate AI using aerosol concentrations from NAAPS.
In this study, the forward model is built around the VLI-
DORT model, following a similar method to that suggested
in Buchard et al. (2015). Here VLIDORT is configured to
compute OMI radiances and Jacobians as functions of the
observational conditions at 354 and 388 nm using geoloca-
tion information from OMI data such as satellite zenith, solar
zenith, and relative azimuth angles, as well as ancillary OMI
data (surface albedos at 354 and 388 nm).

To convert from NAAPS mass loading concentrations to
aerosol extinction and scattering profiles, we require aerosol
optical properties for the four species at 354 and 388 nm,
which are summarized in Table 1. The optical properties of
ABF (assumed to be sulfate in this study), sea salt, dust,
and smoke aerosols, including mass extinction efficiencies
and single-scattering albedos at 354 and 388 nm, are adapted
from NASA’s Goddard Earth Observing System version 5

(GEOS-5) model (e.g., Colarco et al., 2014; Buchard et al.,
2015). Note that the study period is July and August of 2007
over Africa, coinciding with the early biomass burning sea-
son associated with lower single-scattering albedo values
(Eck et al., 2013). With that in mind, we choose a quite
low value of 0.85 for the single-scattering albedo value at
354 nm (e.g., Eck et al., 2013; Cochrane et al., 2019). A
slightly higher single-scattering albedo of 0.86 is assumed
at 388 nm. The slight increase in single-scattering albedo
from 354 to 388 nm has also been observed from Solar Spec-
tral Flux Radiometer (SSFR) observations during the recent
NASA ObseRvations of CLouds above Aerosols and their
intEractionS (ORACLES) campaign (Pistone et al., 2019).
Scattering matrices for dust, smoke, sea salt, and sulfate (to
represent ABF) aerosols are based on associated expansion
coefficients (e.g., Colarco et al., 2014; Buchard et al., 2015)
taken from NASA’s GEOS-5 model. Also, to reduce com-
putational expenses, scalar radiative transfer calculations are
performed.

To simulate OMI AI, the Lambertian equivalent reflectiv-
ity (LER) at 388 nm (R388) is needed for estimating LER
at 354 nm. The R388 is calculated from VLIDORT based on
Eq. (2) below, adapted from Buchard et al. (2015), or as

R388 =
Iaer388(ρ388)− Iray388(0)

T + Sb(Iaer388(ρ388)− Iray388(0))
. (2)

Iray388(0) is the calculated path radiance at 388 nm assuming
a Rayleigh atmosphere with surface albedo 0. T and Sb are
the calculated transmittance and spherical albedo at 388 nm.
Iaer388(ρ388) is the computed radiance including 3-D aerosol
fields from NAAPS and the 388 nm surface albedo from OMI
data. In Buchard et al. (2015), an adjusting factor is applied
to R388 by adding the difference between climatological sur-
face albedos at 354 and 388 nm. A similar approach is also
adopted in this study, as shown in their Eq. (3).

R′388 = R388− (ρ388− ρ354). (3)

Here, R′388 is surface-albedo-adjusted Lambertian equiva-
lent reflectivity at 388 nm. ρ388 and ρ354 are surface albedo
values at 388 and 354 nm channels that are obtained from the
OMI OMAERUV data. Finally, the simulated AI (AInaaps) is
given by

AInaaps =−100log10
Iaer354(ρ354)

Iray354(R′388)
. (4)

Here, Iaer354(ρ354) is the calculated radiance at 354 nm using
NAAPS aerosol fields and the OMI-reported surface albedo
at 354 nm (ρ354). Iray354(R′388) is the calculated radiance as-
suming a Rayleigh atmosphere and the derived value ofR′388
as the surface albedo (Buchard et al., 2015).

The forward-model-simulated OMI AI values are inter-
compared with OMI AI values as shown in Fig. 1 for the
study region. A total of 1 month (1–31 July 2007) of NAAPS
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Figure 1. (a) Spatial distribution of NAAPS AODs using NAAPS
reanalysis data from the collocated OMI and NAAPS dataset for
July 2007. (b) Simulated AI using NAAPS reanalysis data as shown
in (a). (c) Spatial distribution of OMI AI using gridded OMI data
from the collocated OMI and NAAPS dataset for July 2007. Grey
highlights those 1×1◦ (latitude–longitude) bins that have fewer than
three collocated NAAPS and OMI AI data points for the study pe-
riod.

reanalysis data and OMI AI data were used. Note that OMI
AI data over both cloud-free and cloudy skies were used.
Since surface albedos included in the OMI data represent
reflectivities under clear-sky situations, the albedo under a
cloudy sky is then computed as

ρcld = ρclr× (1− fc)+ 0.8× fc. (5)

Here, ρclr and fc are the clear-sky surface albedo (e.g., ρ354
or ρ388) and the cloud fraction, both quantities obtained from
the OMI dataset. Clouds are assumed to be tropospheric
(close to the surface) with a UV albedo of 0.8 such that this
equation applies to both the 354 and 388 nm channels.

Figure 1a shows the spatial distribution of NAAPS AOD
over central and northern Africa using collocated NAAPS

and OMI AI datasets. OMI AI data are grid-averaged in
1◦× 1◦ (latitude–longitude) bins. Also, we focus on Africa
in this paper as this area includes dust plumes over deserts
and smoke plumes overlying stratus cloud decks. The Arctic
is not included as additional efforts may be needed to fully
understand the properties of sea ice reflectivity; we leave this
topic for a future paper. Only bins that have valid NAAPS
and OMI AI data are used to generate Fig. 1. Dust plumes
are visible over northern Africa and the Persian Gulf, and a
smoke plume from central Africa is also evident. These UV-
absorbing aerosol plumes are also captured by OMI AI, as
seen in Fig. 1c. Shown in Fig. 1b is the simulated OMI AI us-
ing the NAAPS aerosol fields and viewing geometries with
surface albedos from OMI. The simulated OMI AI shows
similar patterns to those derived from OMI, especially for
the dust plumes over northern Africa and smoke plumes over
central Africa. An overall correlation of 0.79 is found be-
tween simulated and satellite-retrieved OMI AI values, as
shown in Fig. 1, suggesting that the forward model is func-
tioning reasonably as designed.

3.2 Forward model for Jacobians of AI

Jacobians of OMI AI with respect to aerosol mass concen-
trations are needed for the OMI AI assimilation system. In
this study, AI Jacobians (K) are calculated from radiance Ja-
cobians with respect to aerosol mass concentrations for four
aerosol species (smoke, dust, ABF and sulfate, sea salt) at
354 nm (K354,nk =

∂Iaer354
∂Mnk

) and 388 nm (K388,nk =
∂Iaer388
∂Mnk

)
wavelengths. HereMnk is the mass concentration for aerosol
type, k, and for vertical layer, n. Iaer354 and Iaer388 are radi-
ances for the 354 and 388 nm channels, respectively. K354,nk
and K388,nk are the corresponding radiance Jacobians at 354
and 388 nm, respectively. AI Jacobians can then be calcu-
lated through analytic differentiation of the basic formula in
Eq. (1), and, after some algebra, we find the following result:

∂AI
∂Mnk

= A1K354,nk (ρ354)−A2K388,nk (ρ388) . (6)

Here, A1 and A2 are respectively given by Eqs. (7) and (8),
as

A1 =

(
−

100
Iaer354 (ρ354)× ln10

)
, (7)

A2 =

(
−

100
Iray354(R′388)× ln10

)
∂Iray354(R

′
388)

∂R[
(1− SbR388)

2

T

]
. (8)

Based on these equations, radiance Jacobians with respect
to aerosol particles, K354,nk and K388,nk , are computed at
354 and 388 nm, respectively, using OMI-reported surface
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Figure 2. (a) Vertical distributions of smoke, dust, anthropogenic,
and sea salt aerosols for the test case as shown in (b). (b) Scatter
plot of Jacobians of AI as a function of dust concentration: analytic
versus finite-difference solutions.

albedo values (ρ354 and ρ388), followed by a calculation of
the albedo Jacobian ∂Iray354(R

′
388)

∂R
at 354 nm.

To check this analytic Jacobian calculation in Eqs. (6)–
(8), we compute the aerosol AI Jacobians using a finite-
difference (FD) method. Here, the derivative of AI as a func-
tion of the aerosol concentration of a species, k, in layer n, is
computed using

∂AI
∂Mnk

=
(AI−AI′)
(Cnk −C′nk)

. (9)

Here Cnk and C′nk are the baseline and perturbed aerosol
concentrations, respectively, and AI and AI’ are computed
using Cnk and C′nk , respectively.

Figure 2b shows the comparison of Jacobians of dust
aerosols estimated from the analytic and the FD solutions.
Dust, smoke, ABF, and sea salt aerosol concentrations as a
function of altitude are shown in Fig. 2a. To compute FD Ja-
cobians with respect to dust aerosols, a 10 % perturbation is
introduced in the dust profiles. A very close match is found
between analytic and FD Jacobians. This validates the ana-
lytical solution used in the study. The analytic solution is of
course much faster, as a single call to VLIDORT will deliver
all necessary Jacobians at one wavelength compared to 97
separate calls to VLIDORT with the FD calculation (base-
line; four species perturbations in the 24-layer atmosphere).

3.3 The variational OMI AI assimilation system

The OMI AI assimilation system is based on AI simula-
tions (with Jacobians) from the forward model. Two prin-
ciples underlie the assimilation procedure. First, we assume
that OMI AI is sensitive to UV-absorbing aerosol parti-
cles, such as NAAPS smoke and dust, or that only smoke
and dust are injected high enough into the troposphere to
impact AI. Therefore, innovations are limited to modifi-
cations of dust and smoke aerosol properties. For classes
that do not strongly project onto AI, such as sea salt and
ABF aerosols, aerosol concentrations are not modified dur-
ing the process. Second, contributions of smoke and dust
aerosols to AI (AIsmoke /AIdust) prior to assimilation are es-
timated by multiplying smoke and dust aerosol concentra-
tions from NAAPS with Jacobians of AI for the respective
smoke and dust aerosols. The ratio of AI innovation from
smoke aerosols (1AIsmoke) to total AI innovation (1AI or
OMI AI−AInaaps) is assumed to be the ratio of AIsmoke
to AIsmoke+AIdust. The same assumption holds for dust
aerosols.

Given these two principles, the overall design concept for
the OMI AI assimilation can be expressed as

Ca
= Cb

+
PdustHT

dust

HdustPdustHT
dust+R

[y−H(Cb)]

×
HdustC

b
dust

HdustC
b
dust+HsmkC

b
smk

+
PsmkHT

smk

HsmkPsmkHT
smk+R

[y−H(Cb)]

×
HsmkC

b
smk

HdustC
b
dust+HsmkC

b
smk

, (10)

where Cb and Ca are NAAPS aerosol concentrations for the
analysis and background fields, respectively, Cb

dust and Cb
smk

are background NAAPS particle mass concentrations for dust
and smoke, H(C) is the NAAPS forward model that links
NAAPS particle mass concentrations to AI, and H is defined
as ∂H(C)/∂C, which is the Jacobian matrix of AI with re-
spect to aerosol concentrations. Y is the observed OMI AI,
and Y −H(Cb) is the innovation of AI representing the dif-
ference between observed and modeled AI values.

The HdustC
b
dust

HdustC
b
dust+HsmkC

b
smk

and HsmkC
b
smk

HdustC
b
dust+HsmkC

b
smk

terms are

the fractional contribution of innovation from dust and
smoke aerosol, respectively. These terms are estimated
using NAAPS aerosol concentrations for relatively high
aerosol loading cases (AOD> 0.15). For low aerosol load-
ing (AOD< 0.15) as reported from NAAPS, it is possi-
ble that NAAPS could underestimate aerosol concentra-
tions. Thus, the fractional contribution of innovations is as-
signed a value of 1 for the dominant aerosol type based on
a NAAPS aerosol climatology (Zhang et al., 2008). Note
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that the term [y−H(Cb)]×
HdustC

b
dust

HdustC
b
dust+HsmkC

b
smk

is in obser-

vational space. Pdust and Psmk are model error covariance
matrices for dust and smoke aerosols (e.g., Zhang et al.,
2008, 2011, 2014). R is the observation-based error covari-

ance. The PdustHT
dust

HdustPdustHT
dust+R

[y−H(Cb)]×
HdustC

b
dust

HdustC
b
dust+HsmkC

b
smk

and PsmkHT
smk

HsmkPsmkHT
smk+R

[y−H(Cb)]×
HsmkC

b
smk

HdustC
b
dust+HsmkC

b
smk

terms

represent the estimated increments in model space.
The background error covariance matrix is constructed

from modeled error variances and error correlations follow-
ing the methodology in previous studies (Zhang et al., 2008,
2011). The horizontal background error correlation is gener-
ated using the second-order regressive function (SOAR), as
shown in Eq. (11) (Zhang et al., 2008), or

C(x,y)= (1+Rxy/L)exp
(
−
Rxy

L

)
. (11)

Here, x and y are two given locations, and Rxy is the great
circle distance. L is the averaged error correlation length and
is set to 200 km based on Zhang et al. (2008). Similarly, the
vertical error correlation between two pressure levels p1 and
p2 is also based on the SOAR function, this time in pressure
space, based on Zhang et al. (2011):

C(p1,p2)=

1+

∣∣∣∣∣∣
p2∫
p1

dlnp
L

∣∣∣∣∣∣
e−∣∣∣∫ p2

p1
dlnp
L

∣∣∣
. (12)

Here, L is a unitless number representing vertical correlation
length and is set to 0.2.

The horizontal error variance is based on the root mean
square error (RMSE) of aerosol concentrations, which is
arbitrarily set to 100 µg m−3 for near-surface dust aerosols
(ground to 700 hPa). The RMSE of dust aerosol mass is as-
sumed to decrease as altitude increases and is set to 50 %,
25 %, and 1 % of the near-surface values for 500–700, 350–
500, and 70–350 hPa, respectively. Note that different aerosol
species have different mass extinction efficiency values. Here
we assume that the modeled error in aerosol extinction is the
same for different aerosol species, and thus the RMSE of the
smoke aerosol concentration is scaled by the mass extinction
efficiency ratio between smoke and dust aerosols. The obser-
vational errors are assumed to be non-correlated in this study
(e.g., Zhang et al., 2008). OMI AI values over cloud-free and
cloudy skies are used in the study, and therefore RMSEs of
AI are required for both these situations. Note that, as sug-
gested by Yu et al. (2012), for the same above-cloud CALIOP
AOD, variations in AI are found to be of the order of 1 for
cloud optical depth changing from 2 to 20. Thus, we assume
that the RMSE of OMI AI is 0.5 for cloud-free skies, in-
creasing linearly with the cloud fraction up to a value of 1
for 100 % overcast.

Lastly, we assume that detectable UV-absorbing aerosols
have AI values larger than 0.8 (e.g., Torres et al., 2013).

Therefore, for regions with OMI AI values larger than 0.8,
UV-absorbing aerosol particles can be added or removed
from air columns based on innovations, which are the differ-
ences between OMI-reported and simulated AI values. For
regions with OMI AI values less than 0.8, innovations are
only used to remove UV-absorbing aerosol particles from air
columns.

4 System evaluation and discussion

4.1 Evaluating the performance of the AI assimilation
system over Africa

Using 2 months of OMI data (July–August 2007), the per-
formance of OMI AI assimilation was evaluated around the
Africa region (20◦ S–40◦ N; 60◦W–50◦ E). The study region
was chosen to examine the performance of OMI AI data as-
similation over bright surfaces such as the deserts of northern
Africa and to study aerosol advection over clouds, in this case
smoke off the west coast of southern Africa. In this demon-
stration, two NAAPS runs were performed for the period of
1 July to 31 August 2007, one with and one without the use of
OMI AI assimilation (AI-DA run). Both runs were initialized
with the use of NAAPS reanalysis data at 00:00 UTC 1 July
and do not include any other form of aerosol assimilation.

Figure 3a shows the true-color composite from Aqua
MODIS for 28 July 2007 over the study region that is ob-
tained from the NASA Worldview site (https://worldview.
earthdata.nasa.gov/; last access: June 2020). Visible in the
image are the dust plumes from northern Africa transported
to the Atlantic Ocean and smoke plumes from central and
southern Africa transported to the west coast of South Africa.
As indicated by the aggregated OMI AI data for 12:00 UTC
on 28 July 2007 (Fig. 3b), dust plumes from northern Africa
are transported to the north corner of the west coast of north-
ern Africa. Smoke plumes are also visible in the OMI AI plot
in southern Africa and are transported to the west coast and
over the Atlantic. Comparing Fig. 3a and b, smoke plumes,
as identified from OMI, are also found over cloudy regions as
indicated from the MODIS visible imagery. Note that Fig. 3b
shows the OMI AI data used in the assimilation process, and
again AI retrievals over both cloud-free and cloudy condi-
tions are included as suggested by Fig. 3b.

Figure 3c is the 12:00 UTC, 28 July 2007 NAAPS AOD
product from the natural run. In comparison, Fig. 3d shows
the same situation, this time with the use of OMI AI data as-
similation. Comparing Fig. 3b and d, dust and smoke aerosol
patterns as shown from OMI AI more closely resemble the
NAAPS AOD fields after AI assimilation. Over the north-
east coast of Africa, heavy aerosol plumes, as hinted at in
NAAPS AOD from the natural run (Fig. 3c), cover larger
spatial areas than those inferred from OMI AI data. In com-
parison, NAAPS AOD patterns from the OMI AI data assim-
ilation cycle closely resemble aerosol patterns as suggested
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Figure 3. (a) Aqua MODIS true-color image over central and northern Africa for 28 July 2007. This composite was obtained from the
NASA Worldview site (https://worldview.earthdata.nasa.gov/, last access: 18 December 2020). (b) Spatial distribution of gridded OMI AI
for 12:00 UTC, 28 July 2007. (c) Spatial distribution of NAAPS AOD from the NAAPS natural run for 12:00 UTC, 28 July 2007. (d) Similar
to (c) but using NAAPS AOD from the AI-DA run. (e) Simulated AI using data from (c). (f) Simulated AI using data from (d).

from OMI AI data. Also shown in Fig. 3e and f are the simu-
lated AI using NAAPS data from the natural and OMI AI-DA
runs (data from Fig. 3c and d), respectively. Clearly, with the
use of NAAPS data from the natural run, simulated OMI AI
is overestimated in comparison with OMI AI data (Fig. 3b).
Simulated AI patterns with the use of NAAPS data from the
OMI AI-DA run rather closely resemble AI patterns from
the OMI data, again indicating that the OMI AI-DA system
is functioning reasonably as designed.

The performance of AI-DA is also evaluated using OMI
AI for the whole study period, as shown in Fig. 4. These
data are constructed using collocated OMI AI and NAAPS
data according to the conditions introduced in Sect. 3. Here,
Fig. 4a and e are spatial distributions of 2-monthly averaged
(July and August 2007) AODs for NAAPS AI-DA and nat-
ural runs, respectively. Figure 4b is the spatial distribution
of the simulated AI using NAAPS data from AI-DA runs,
and Fig. 4c is the spatial distribution of OMI AI for the 2-
month period. Figure 4f and g show similar plots to those in
Fig. 4b and c, but this time for NAAPS natural runs. While
simulated AI values from NAAPS natural runs (Fig. 4f) are
overestimated compared to OMI AI values (Fig. 4g) for the

study region, the patterns of simulated AI from NAAPS AI-
DA runs (Fig. 4b) are similar to patterns shown from OMI
AI (Fig. 4c). This is also seen in Fig. 4d, which is the dif-
ference between simulated AI from NAAPS AI-DA runs and
OMI AI. In contrast to the situation in Fig. 4d, Fig. 4h, which
is the difference between simulated AI from NAAPS natural
runs and OMI AI, shows much larger differences in AI val-
ues.

While it is not too difficult to make the model mimic the
AI product, proof of real skill lies in any improvements to
AOD calculations. To this end, the performance of OMI AI
assimilation was evaluated with the use of AERONET data.
Figure 5a shows the intercomparison of NAAPS AOD ver-
sus AERONET AOD at 0.55 µm. A total of 1443 collocated
pairs of NAAPS and AERONET data were compiled for the
study region over the 2-month test period. Comparing with
AERONET data, NAAPS AOD from the natural run had a
correlation of 0.68, a mean absolute error in AOD of 0.154,
and an RMSE of 0.220. In comparison, with AI assimilation,
NAAPS AOD correlations with AERONET increased to 0.74
(Fig. 5b), the absolute error was reduced to 0.104, and RMSE
was reduced to 0.156, both roughly a 30 % reduction. Note
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Figure 4. (a) Spatial distribution of NAAPS AOD using NAAPS data from the AI-DA runs for July and August 2007. Only NAAPS data that
have collocated OMI AI data are used. (b) Spatial distribution of simulated AI for July and August 2007 using NAAPS data from the AI-DA
runs. (c) Spatial distribution of gridded OMI AI for July and August 2007.(d) Differences between (b) and (c). (e)–(h) Similar to (a)–(d) but
using NAAPS natural runs. Grey highlights 1× 1◦ (latitude–longitude) bins that have fewer than three collocated NAAPS and OMI AI data
points for the study period.

that AERONET AOD values are only available for lines of
sight that are free of cloud presence for the sun-photometer
instruments. Also, the slope of AERONET versus NAAPS
AOD is 0.87 for the NAAPS natural runs, and a similar slope
of 0.84 is found for the NAAPS AI-DA runs.

4.2 Intercomparison with AOD data assimilation

Typically, NAAPS reanalyses are constructed through assim-
ilation of MISR and MODIS aerosol products (NAAPS AOD
assimilation). Thus, the performances of NAAPS AOD and
AI-DA assimilations are compared against AERONET data.

Figure 5c shows the comparison of AERONET AOD and
NAAPS AOD after AOD assimilation, while Fig. 5b shows
a similar plot but using NAAPS data from AI-DA. Note that
the same version of the NAAPS model with the same tempo-
ral and spatial resolutions driven by the same meteorological
data was used to construct Fig. 5, and thus the differences
in Fig. 5a, b, and c only result from different aerosol data
assimilation methods implemented (no data assimilation for
the natural run). A better correlation between AERONET and
NAAPS data of 0.79 is found using AOD data assimilation.
In comparison, the correlation is 0.74 for the AI-DA runs.
Slightly better RMSE (0.140 versus 0.156) and absolute er-
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Figure 5. (a) Scatter plot of AERONET and NAAPS AOD
(0.55 µm) using NAAPS data from the natural runs for July–
August 2007 over the study region. (b) Similar to (a) but using
NAAPS data from the AI-DA runs. (c) Similar to (a) but with AODs
taken from the NAAPS reanalysis.

ror (0.095 versus 0.104) values are also found for the AOD
data assimilation runs. This result is not surprising as OMI AI
provides only a proxy for aerosol properties, while passive-
based AOD retrievals are often considered a more reliable
parameter for representing column-integrated aerosol prop-
erties. But still, the evaluation efforts are over a cloud-free
line of sight as detected from AERONET, and AI-DA may
further assist traditional AOD data assimilation by providing
AI assimilation over cloudy regions.

5 Sensitivity test

As mentioned in Sect. 3, aerosol properties for non-smoke
aerosol types were obtained from the NASA GEOS-5 model
(e.g., Colarco et al., 2014; Buchard et al., 2015). Yet, dif-
ferent smoke aerosol single-scattering albedo (SSA) values
are used in this study, as values for central Africa have a
strong seasonal dependency (e.g., Eck et al., 2013). While
SSA values of 0.85 and 0.86 are used for the 354 and 388 nm
channels, respectively, in our study, we have also examined
the sensitivity of simulated OMI AI with respect to differ-
ing SSA values (Fig. 6). Figure 6a–c show the simulated
AI at 12:00 UTC on 28 July 2007 using NAAPS reanaly-
sis data (Lynch et al., 2016) for three scenarios: SSA values
at 354 and 388 nm of 0.84 and 0.84 (Fig. 6a), 0.85 and 0.85
(Fig. 6b), and 0.86 and 0.86 (Fig. 6c). Over the central Africa
area, where smoke plumes are expected, simulated OMI AI
patterns are similar for Fig. 6a and b, but reduced values of AI
are found when using higher SSA values of 0.86 at both 354
and 388 nm. This is further confirmed by the averaged AI for
the smoke region over central Africa (14.5 to 0.5◦ S latitude
and 10.5 to 30.5◦ E longitude; indicated using the black box
in Fig. 6f) of 0.96, 0.94, and 0.78 for Fig. 6a–c, respectively.

Figure 6d–f show the sensitivity for adjustments of the
SSA values at 388 nm while maintaining a fixed SSA value
of 0.85 at 354 nm. Here the SSA values at 388 nm are set
to 0.85, 0.855, and 0.86 for Fig. 6d–f, respectively. Interest-
ingly, the spectral dependence of SSA seems to affect the
simulated AI significantly, and this phenomenon has also
been reported by previous studies (e.g., Hammer et al., 2016).
The averaged AI values over central Africa (again indicated
by the black box in Fig. 6f) are 0.94, 1.11, and 1.32 for
388 nm SSAs of 0.85, 0.855, and 0.86, respectively. This ex-
ercise suggests that simulated AI is a strong function of SSA
so that both the spectral dependence of SSA values at 354
and 388 nm and reliable SSA values are needed on a regional
basis for future applications.

Interestingly, although simulated AI values are signifi-
cantly affected by perturbing SSA values as shown in Fig. 6,
less significant impacts are observed for NAAPS AOD. This
is found by running the OMI AI-DA for 12:00 UTC on
28 July 2007 for SSA values used to generate Fig. 6. For ex-
ample, for the region highlighted by the black box in Fig. 6f,
the averaged values for the simulated OMI AI are 0.96, 0.94,
and 0.78 using SSA values at 354 the 388 nm channels of
0.84 and 0.84, 0.85 and 0.85, and 0.86 and 0.86, respectively.
The corresponding NAAPS AODs are found to be 0.559,
0.560, and 0.585 after OMI AI-DA, which is a change of less
than 5 %. Similarly, by fixing the SSA value of the 354 nm
channel as 0.85 and perturbing SSA values at 388 nm from
0.85 to 0.86, a ∼ 30 % change is found in simulated OMI
AI (from 0.94 to 1.32), yet a ∼ 10 % change is found for the
NAAPS AOD (from 0.560 to 0.504) after OMI AI-DA.

It is also of interest to investigate the changes in aerosol
vertical distributions due to the OMI AI-DA. For this exer-
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Figure 6. Spatial distributions of simulated AI at 12:00 Z on 28 July 2007 using NAAPS reanalysis data, with single-scattering albedos of
smoke aerosol at 354 and 388 nm taken to be the following: (a) 0.84 and 0.84; (b) 0.85 and 0.85; (c) 0.86 and 0.86; (d) 0.85 and 0.85; (e) 0.85
and 0.855; (f) 0.85 and 0.86.

cise, we selected the case of 12:00 UTC on 28 July 2007 and
compared vertical distributions of smoke and dust aerosols
near the peak AI value of the smoke plume (9.5◦ S and
20.5◦ E) for the NAAPS natural and AI-DA runs (Fig. 7a).
Note that the differences between OMI DA and natural runs
as shown in Fig. 7 are essentially an integrated effect of OMI
AI-DA from 00:00 Z on 1 July to 12:00 Z on 28 July 2007. As
shown in Fig. 7a, the corrections to dust and smoke aerosol
concentrations from the AI-DA system seem to be system-
atic changes across the majority of vertical layers, instead
of moving dust or smoke aerosol plumes vertically. As dust
aerosol concentrations are reduced at all layers, a systematic
correction to smoke aerosol concentrations, although non-

linear, is also observed. AI assimilation helps reduce the
amount of upper troposphere dust (likely to be artifact) but
does change the layer centroid slightly upwards. We have
also evaluated NAAPS vertical distributions near a peak dust
plume region (25.5◦ N and 12.5◦W) for the case of 12:00 Z
28 on July 2007 as shown in Fig. 7b. Similar to Fig. 7a, a
nonlinear correction to dust aerosol concentrations is also ob-
served across the vertical domain.

5.1 Issues and discussion

The OMI AI data assimilation system is a proxy for all-sky,
all-band modeling system radiance assimilation. It contains
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Figure 7. (a) Vertical distributions of smoke and dust aerosol con-
centrations over 9.5◦ S and 20.5◦ E at 12:00 Z on 28 July 2007 for
both natural and AI-DA runs. (b) Similar to (a) but over 25.5◦ N
and 12.5◦W.

all the necessary components for such radiance assimilation,
including a forward model for simulating radiances and AI
values and their Jacobians, based on a full vector linearized
radiative transfer model called for every observation. There-
fore, the computational burden is a direct issue associated
with the deployment of calls to a radiative transfer model for
each observation. For the study area in this work, after bin-
ning OMI AI data into a 1◦× 1◦ (latitude–longitude) prod-
uct, it still takes about ∼ 1 CPU day for NAAPS to run for
1 month of model time. In comparison, the timescale for run-
ning AOD assimilation for 1 month is at the hourly level.
Clearly, there will be an unavoidable computational burden
of some sort for OMI AI assimilation and by extension for
future radiance assimilation in the UV–visible spectrum for
aerosol analyses. Performance enhancement methods, such
as parallel processing (the VLIDORT software is thread-safe
and can be used in parallel environments such as OpenMP)
or fast lookup table extraction based on neural networks and
trained datasets of forward simulation, must be explored in
order to enable such assimilation applications in near-real
time on a global scale.

In contrast to the assimilation of retrieved aerosol proper-
ties, both aerosol absorption and scattering need to be ac-

counted for when assimilating radiance or OMI AI in the
UV spectrum. This requires the inclusion of more dynamic
aerosol optical properties in the data assimilation process and
properties that vary with region and season. As noted already,
even for biomass burning aerosols over South Africa, lower
single-scattering albedo values were found at earlier stages
of burning seasons (e.g., Eck et al., 2013). A lookup table of
aerosol optical properties as functions of region and season
will be needed for global implications of OMI AI and future
radiance assimilation for aerosol modeling.

OMI AI is sensitive to above-cloud UV-absorbing aerosols
(e.g., Yu et al., 2012; Alfaro-Contreras et al., 2014), and
therefore OMI AI values over cloudy scenes were also used
in this study. However, OMI AI cannot be used to infer
aerosol properties for aerosol plumes beneath a cloud deck.
For regions with high clouds, the use of OMI AI data as-
similation will likely result in an underestimation of AOD
as below-cloud aerosol plumes are not accounted for. There-
fore, only OMI AI data over low cloud scenes are to be used
for aerosol assimilation efforts. In addition, although some
quality assurance steps were applied in this study for the
OMI AI data, lower AI values were observed over glint re-
gions near the west coast of Africa. Abnormally high OMI
AI values are also seen near the Arctic region – this may be
related to the presence of floating ice sheets. Thus, innova-
tive and detailed data screening and quality assurance steps
are needed to exclude potentially noisy OMI AI retrievals
and for further application of OMI AI data assimilation on a
global scale.

Even with these known issues, OMI AI assimilation as
presented in the study illustrates a new method for assim-
ilating non-conventional aerosol products. Bearing in mind
that OMI AI assimilation is essentially radiance assimilation
in the UV spectrum, this study demonstrates the potential
of directly assimilating satellite radiance in the UV–visible
spectrum for aerosol modeling and analyses.

6 Conclusions

The OMI aerosol index (AI), which measures the differences
between simulated radiances over Rayleigh sky and observed
radiances at 354 nm, has been used to detect the presence of
absorbing aerosols over both dark and bright surfaces. We
have constructed a new assimilation system, based on the
VLIDORT radiative transfer code as the major component
of the forward model, for the direct assimilation of OMI AI.
The aim is to improve accuracies of aerosol analyses over
bright surfaces such as cloudy regions and deserts.

The performance of the OMI AI data assimilation sys-
tem was evaluated over south-central and northern African
regions for the period of 1 July–31 August 2007. This eval-
uation was done by intercomparing NAAPS analyses with
and without the inclusion of OMI AI data assimilation. Be-
sides cloud-free AI retrievals over dark surfaces, OMI AI re-
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trievals over desert regions were also considered. When com-
pared against AERONET data, a total ∼ 29 % reduction in
root mean square error (RMSE) with a ∼ 32 % reduction in
absolute error was found for NAAPS analyses with the use of
OMI AI assimilation. Also, NAAPS analyses with the inclu-
sion of OMI AI data assimilation show similar aerosol pat-
terns as those in the OMI AI datasets, showing that our OMI
AI data assimilation system works as expected.

This study also suggests that NAAPS analyses with OMI
AI data assimilation cannot outperform NAAPS reanalysis
data incorporated with MODIS and MISR AOD assimila-
tion through validation against AERONET data. This is not
surprising, as OMI AI is only a proxy for the AOD and is
sensitive to other factors such as surface albedo and aerosol
vertical distribution. Also, AERONET data are only avail-
able over cloud-free fields of view, so the performance of our
OMI AI data assimilation system over cloudy regions has not
been evaluated.

There are a number of issues arising from our study. For
example, aerosol optical properties are needed for the OMI
AI-DA system – these have strong regional and temporal sig-
natures that need to be carefully quantified before applying
them to the AI-DA on a global scale. Also, OMI AI retrievals
are rather noisy and contain known and unknown biases. Ab-
normally high OMI AI values are found over mountain re-
gions and polar regions. Sporadic high AI values are also
known to occur for reasons that are still not properly under-
stood. Even though quality assurance steps were proposed in
this study, detailed analyses of OMI AI data are needed for
future implementation of OMI AI data assimilation in aerosol
studies.

Lastly, AI values are derived from radiances, and thus the
AI-DA system presented in the study can be thought of as
a radiance assimilation system for the UV spectrum. This is
because the AI-DA system contains all the necessary compo-
nents for radiance assimilation based on a forward model for
calculating not only simulated satellite radiances, but also the
aerosol profile Jacobians of these radiances, with both quan-
tities as functions of observation conditions. This study is
among the first attempts at radiance assimilation in the UV
spectrum and indicates the future potential for direct radi-
ance assimilation in the UV and visible spectra for aerosol
analyses and forecasts.

Code and data availability. The OMI data assimilation scheme
(V1.0) is constructed using VLIDORT and NAVDAS-AOD for
NAAPS analyses and forecasts. The VLIDORT radiative transfer
mode is the property of RT Solutions Inc. The VLIDORT code is
publicly available and comes with a standard GNU public license
through direct contact with RT Solutions Inc. (http://www.rtslidort.
com/mainprod_vlidort.html, last access: 18 December 2020). Both
NAAPS and NAVDAS-AOD are proprietary to the Naval Research
Laboratory, United States Department of the Navy. Nevertheless,
both NAAPS and NAVDAS-AOD are well documented in past stud-

ies (e.g., Lynch et al., 2016; Zhang et al., 2008; 2011, 2014; Ru-
bin et al., 2017), and we have made every effort to thoroughly re-
port our methods so that they may be replicated. AOD fields from
the NAAPS OMI AI-DA and natural runs over the study region
and period are shared in the Supplement to the paper for readers
who are interested. The NAAPS reanalysis data are available from
the USGODAE website (https://nrlgodae1.nrlmry.navy.mil/cgi-bin/
datalist.pl?dset=nrl_naaps_reanalysis&summary=Go, last access:
18 December 2020, Naval Research Laboratory Monterey, Lynch
et al., 2016). The OMI OMAERUV data are available from the
NASA Goddard Earth Sciences Data and Information Services
Center (GES DISC; https://doi.org/10.5067/Aura/OMI/DATA2004,
Torres, 2006). AERONET data are obtained from the NASA
AERONET web page (https://aeronet.gsfc.nasa.gov/cgi-bin/draw_
map_display_inv_v3, last access: 18 December 2020, NASA
AERONET team, Holben et al., 1998; Giles et al., 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-27-2021-supplement.
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