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Abstract. Forest ecosystem processes follow classic re-
sponses with age, peaking production around canopy closure
and declining thereafter. Although age dynamics might be
more dominant in certain regions over others, demographic
effects on net primary production (NPP) and heterotrophic
respiration (Rh) are bound to exist. Yet, explicit represen-
tation of ecosystem demography is notably absent in many
global ecosystem models. This is concerning because the
global community relies on these models to regularly up-
date our collective understanding of the global carbon cy-
cle. This paper aims to present the technical developments
of a computationally efficient approach for representing age-
class dynamics within a global ecosystem model, the Lund–
Potsdam–Jena – Wald, Schnee, Landschaft version 2.0 (LPJ-
wsl v2.0) dynamic global vegetation model and to determine
if explicit representation of demography influenced ecosys-
tem stocks and fluxes at global scales or at the level of a
grid cell. The modeled age classes are initially created by
simulated fire and prescribed wood harvesting or abandon-
ment of managed land, otherwise aging naturally until an
additional disturbance is simulated or prescribed. In this pa-
per, we show that the age module can capture classic demo-
graphic patterns in stem density and tree height compared
to inventory data, and that simulated patterns of ecosystem
function follow classic responses with age. We also present
two scientific applications of the model to assess the mod-
eled age-class distribution over time and to determine the
demographic effect on ecosystem fluxes relative to climate.
Simulations show that, between 1860 and 2016, zonal age
distribution on Earth was driven predominately by fire, caus-
ing a 45- to 60-year difference in ages between older boreal

(50–90◦ N) and younger tropical (23◦ S–23◦ N) ecosystems.
Between simulation years 1860 and 2016, land-use change
and land management were responsible for a decrease in
zonal age by −6 years in boreal and by −21 years in both
temperate (23–50◦ N) and tropical latitudes, with the anthro-
pogenic effect on zonal age distribution increasing over time.
A statistical model helped to reduce LPJ-wsl v2.0 complex-
ity by predicting per-grid-cell annual NPP and Rh fluxes
by three terms: precipitation, temperature, and age class; at
global scales, R2 was between 0.95 and 0.98. As determined
by the statistical model, the demographic effect on ecosys-
tem function was often less than 0.10 kg C m−2 yr−1 but as
high as 0.60 kg C m−2 yr−1 where the effect was greatest. In
the eastern forests of North America, the simulated demo-
graphic effect was of similar magnitude, or greater than, the
effects of climate; simulated demographic effects were simi-
larly important in large regions of every vegetated continent.
Simulated spatial datasets are provided for global ecosystem
ages and the estimated coefficients for effects of precipita-
tion, temperature and demography on ecosystem function.
The discussion focuses on our finding of an increasing role of
demography in the global carbon cycle, the effect of demog-
raphy on relaxation times (resilience) following a disturbance
event and its implications at global scales, and a finding of a
40 Pg C increase in biomass turnover when including age dy-
namics at global scales. Whereas time is the only mechanism
that increases ecosystem age, any additional disturbance not
explicitly modeled will decrease age. The LPJ-wsl v2.0 age
module represents another step forward towards understand-
ing the role of demography in global ecosystems.
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1 Introduction

Forest ecosystem production follows predictable patterns
with time since disturbance. Classic forest age–production
curves from Odum (1969) suggest that net ecosystem pro-
duction (NEP) peaks around canopy closure, declining there-
after due to hydraulic limitations on gross primary produc-
tion (GPP) (Ryan et al., 2004; Drake et al., 2010, 2011) and
increases in heterotrophic respiration from biomass turnover
due stand-level declines in population density (Pretzsch
and Biber, 2005; Stephenson et al., 2014). That younger
forests are more productive than older forests has been long-
standing knowledge in forestry, as evidenced by yield and
growth tables dating back to the 18th century that incorpo-
rated stand age into their calculations of lumber production
(Pretzsch et al., 2008).

On global scales, forest age is a considerable factor in the
global carbon cycle and comprises a large fraction of the total
land carbon sink, which is estimated at 3.2±0.8 Pg C yr−1 for
the years 2008–2017 (Le Quéré et al., 2018). According to
country-level forest inventories, net carbon uptake from post-
disturbance tropical forest regrowth was 1.6± 0.5 Pg C yr−1

from 1990 to 2007 (Pan et al., 2011a). Although the time-
frames for estimates of the total land sink and the inventory-
based regrowth flux do not perfectly overlap, the magnitude
of the regrowth sink relative to the total land sink warrants
that models take regrowth dynamics into account. A multi-
model global regrowth analysis with demographically en-
abled dynamic global vegetation models (DGVMs), to which
Lund–Potsdam–Jena – Wald, Schnee, Landschaft version 2.0
(LPJ-wsl v2.0) contributed, estimated that post-disturbance
regrowth comprised a large global regrowth sink of 0.3 to
1.1 Pg C yr−1 due to demography alone over the years 1981–
2010 (Pugh et al., 2019b). In the last decade, explicit model
representation of forests as a function of time since distur-
bance (hereafter simply, “ecosystem age”) has been a grand
challenge in an effort to quantify the demographic response
of forests to changes in climate, atmospheric CO2, land-use
change and land management (LUCLM), and fire (Friend et
al., 2014; Kondo et al., 2018; Pugh et al., 2019b). Much of
the focus of these global modeling studies has been on the
effect of natural and anthropogenic disturbances on the car-
bon dynamics in old-growth versus second-growth forests
(Gitz and Ciais, 2003; Shevliakova et al., 2009; Kondo et
al., 2018; Yue et al., 2018; Pugh et al., 2019b) but lack finer
distinction of demographic effects at different age classes.
Following a call to the science community to improve de-
mographic representation in models (Fisher et al., 2016),
there is now a growing list of global models that are ca-
pable of simulating global ecosystem demographics (Gitz
and Ciais, 2003, OSCAR; Shevliakova et al., 2009, LM3V;
Haverd et al., 2014, CABLE-POP; Lindeskog et al., 2013,
LPJ-GUESS; Yue et al., 2018, ORCHIDEE MICT; Nabel et
al., 2020, Jena Scheme for Biosphere Atmosphere Coupling
in Hamburg version 4 – JSBACH4), although more models

need the capability to represent landscape heterogeneity in
forest structure and function.

Much of the evidence for the relative importance and
global distribution of large disturbances has come from either
satellite retrievals of spectral indices indicating forest loss or
burn scars on the land (Potter et al., 2003; Frolking et al.,
2009; Pugh et al., 2019a), national forest inventory records
of land-use change and forest management (Houghton, 1999;
FAO-FRA, 2015; Williams et al., 2016), or model-based
studies (Goldewijk, 2001; Arneth et al., 2017) that integrate
information on historical land use (Goldewijk, 2001; Hurtt
et al., 2006). Other natural disturbances such as pest and
pathogen outbreaks, flooding, ice storms, and volcanic erup-
tions are less widespread globally (Frolking et al., 2009) but
are still influential drivers of landscape age-class dynamics
(Dale et al., 2001; Turner, 2010). In the conterminous United
States, forest management is the predominant forest distur-
bance (1.4 % of forested area converted to non-forest and
then re-established annually), followed by fire (0.01 %–0.5 %
of forested area burned annually 1997–2008) (Williams et
al., 2016). Although pests and pathogens, namely bark bee-
tle infestations, affected a much larger area (up to 6 % of to-
tal forested area in the US) than both logging and fire, their
effects do not always cause immediate tree mortality. It is ar-
guable whether fire and LUCLM are the two most important
global drivers of ecosystem age (Pan et al., 2011a), but never-
theless these are the drivers applied in a model framework in
this study, in a manner that moves modeling one step forward
to assess global age-class dynamics.

The overall aims of this study are to present new model
developments that simulate the time evolution of age-class
distributions in a global ecosystem model and to determine
if explicit representation of demography in this model in-
fluenced ecosystem stocks and fluxes at global scales or at
the level of a grid cell. Technical details are presented for a
module representing age-class dynamics, driven by fire feed-
backs, land abandonment, and wood harvesting in the LPJ-
wsl v2.0 DGVM. Prior versions of LPJ-wsl v2.0 that in-
cluded early developments of the land-use change module
and the age-class module have already contributed to previ-
ous studies (Arneth et al., 2017; Kondo et al., 2018; Pugh
et al., 2019b). Analyses of model behavior, in terms of age–
structure and age–functional patterns, the temporal evolution
of age distributions and their causative drivers, and a statisti-
cal model of ecosystem production and respiration as a func-
tion of demography and climate, are presented.
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Figure 1. LPJ-wsl v2.0 model structure of inputs (red), time steps
(blue), and the level at which state variables are tracked within grid
cells and sub-grid-cell age classes (green), such as age classes or
land uses. Simulation of abiotic, biotic, and ecological processes
occurs at the scale of an age class.

2 Methods

2.1 LPJ-wsl v2.0 general model description

2.1.1 LPJ history

LPJ-wsl v2.0 has its legacy in the LPJ family of models,
first developed by Sitch et al. (2003) in a Fortran coding
environment1. In 2007, Bondeau et al. (2007) produced the
LPJ managed Land (LPJmL) codebase, in C, which included
the addition of “managed lands”. The model known as LPJ-
wsl v2.0 is based on LPJmL v3.0 but includes modifications
to managed lands that now includes modeling gross land-
cover transitions, forest age cohorts, and also a modification
that include permafrost and wetland methane; the permafrost
and wetland modules were not used in this study. Many de-
velopments were made in the publicly available LPJmL4
(version 4.0; Schaphoff et al., 2018) that are not present
in LPJ-wsl v2.0. The LPJ-wsl v2.0 model was branched
off of LPJmL some time around 2010 and continued to di-
verge. This research paper represents a large effort toward
this end, and the LPJ-wsl v2.0 code is now freely and pub-
licly available (https://github.com/benpoulter/LPJ-wsl_v2.0,
last access: 28 July 2020) under GNU Affero General Pub-
lic License version 3.

2.1.2 LPJ-wsl v2.0 overview

LPJ-wsl v2.0 simulates soil hydrology and vegetation dy-
namics in 0.5◦ grid cells, wherein climate, atmospheric CO2,

1LPJ and LPJmL history; https://www.pik-potsdam.de/research/
projects/activities/biosphere-water-modelling/lpjml/history-1 (last
access: 28 July 2020).

and soil texture are prescribed from driver datasets (Fig. 1).
Vegetation is categorized into plant functional types (PFTs;
Box, 1996). Plant populations compete for light, space, and
soil water, depending on demand; nutrient cycles are not
considered in this model version. LPJ-wsl v2.0 is a “big-
leaf” ecosystem model, whereby leaf-level photosynthesis
and respiration (Haxeltine and Prentice, 1996; Farquhar et
al., 1980) occur at daily time steps, accounting for the photo-
synthetically active period (daytime), and are scaled to the
stand level using a mean-individual approximation, which
assumes that important state variables (carbon stocks and
fluxes) can be determined by using the average properties of a
population. Plant populations are categorized using 10 PFTs
in this study (phenology parameters and bioclimatic limits
listed in Table S1), which are the same PFTs as in Sitch et
al. (2003). Left unchanged are the PFT-specific bioclimatic
limits, turnover rates, C : N tissue ratios, allometric ratios,
and other parameters not explicitly commented on here but
as described in Sitch et al. (2003). Mortality occurs as in the
original version of LPJ, “. . . as a result of light competition,
low growth efficiency, a negative annual carbon balance, heat
stress, or when PFT bioclimatic limits are exceeded for a pe-
riod of time” (Sitch et al., 2003). The fire module and the
representation of land-use change and land management are
described in detail in Sect. 2.2.2, as these modules require
a greater number of modifications for integration with age
classes.

2.2 Age-class module

2.2.1 An age-based model of ecosystems – sub-grid-cell
dynamics

Age classes are represented as “patches” within a grid cell
(Fig. 1). Every age class has the same climate, atmospheric
CO2, and soil texture, but the properties of the age class, such
as available soil water and light availability, are determined
by feedbacks from plant demand within an age class. Plant
processes (competition, photosynthesis, respiration) are sim-
ulated at the level of the age class for each PFT within the
age class.

The age-class module has a fixed number of age classes
that can be represented in a grid cell, but all age classes are
not always represented. Age classes are classified into 12 age
classes in fixed age-width bins, defined as the unequalbin or
the 10yr-equalbin age-width setup (Table 1). Each age class
contains within-age-class elements, which are simply a vec-
tor representation of areas for each age unit in the age class.
The within-age-class elements are not independent, and ev-
ery within-age-class element has the same state variables,
including the same soil water and light. As such, we only
simulate processes at the age-class level, and the within-age-
class elements are a simple method for a “smooth” transition
between age classes. In theory, we can simulate processes
independently for each within-age-class element, but this is
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Table 1. Age-class widths corresponding to two different simulation
age-class setups in LPJ-wsl v2.0. The age-class codes are referenced
in figures.

Age widths (years)

Code Unequal bins 10-year equal bins

1 1–2 1–10
2 3–4 11–20
3 5–6 21–30
4 7–8 31–40
5 9–10 41–50
6 11–15 51–60
7 16–20 61–70
8 21–25 71–80
9 26–50 81–90
10 51–75 91–100
11 76–100 101–150
12 +101 +151

not practical or necessary. The main benefit for using equal-
bin or unequal-bin age classes is to independently simulate
processes. The age widths of the age classes in the 10yr-
equalbin setup correspond to common age widths of classes
used in forest inventories; for contrast, JSBACH4 uses a 15-
year age width in their equal-bin age-class setup. Most age
classes in this setup are represented by a vector of 10 ele-
ments, wherein each element represents an aerial fraction for
each age unit (Table 1). The 10yr-equalbin age setup is used
for all simulations including the global simulation, whereas
the unequalbin setup is used for regional and single-grid-cell
simulations; simulation details are in next section. The use of
equal or unequal age-class setups is more than just for report-
ing purposes. Resources available to plants (space, light, soil
water) differ between age classes but not within age classes,
and we limit the model to represent a total of 12 age classes
only. Also, there exists a greater range of forest ages at global
scales and the equal-bin age-class setup allows us to indepen-
dently model resource dynamics for more of the terrestrial
surface. If we had chosen the unequal-bin setup for global
simulations, we would be independently modeling processes
only for the youngest age classes and we would lose capacity
to independently model processes at intermediate and older
age classes. A study by Nabel et al. (2020), using the demo-
graphically enabled JSBACH4 DGVM, found that unequal
binning of age widths had lower errors than equal-age-width
binning but the largest reduction in model–observation error
was achieved by simply adding more age classes at younger
ages, regardless of the binning strategy employed.

Age classes are only created by disturbance, and we only
model the following disturbances: fire, wood harvest, or land
abandonment, which initialize a new, youngest age class. The
fraction of the age class that burns gets its age “reset” to the
youngest age class (1–10 years). The same process occurs
for the fractional area that undergoes wood harvest or when

managed land is abandoned and allowed to regrow – the frac-
tional area undergoing an age transition is reclassified as a 1-
to 10-year age class. This process allows the model to accu-
rately track the carbon stocks, fluxes, and feedbacks associ-
ated with these state variables. For example, if a fire burns
50 % of an age class, then 50 % might have bare ground and
50 % will have vegetation at pre-burn levels. If the probabil-
ity of another fire is dependent on live vegetation, then feed-
backs will result in a lower chance of fire on the bare-ground
fraction versus the fully vegetated fraction that was not pre-
viously burned.

The most novel advancement in this study is a new method
of age-class transition modeling, which we call “vector track-
ing of fractional transitions” (VTFT), which improves the
computational efficiency of modeling age classes in global
models; there is a similar approach independently conceived
by Nabel et al. (2020). The method is a transparent and sim-
ple solution to the problem of dilution, which manifests as
an advective process when state variables, such as carbon
stocks or tree density, are made to merge by area-weighted
averaging. The concept of merging two unique age classes
on the basis of similarity is a computational solution to con-
strain the number of simulated age classes in accordance with
computer resources but can be considered ecologically unre-
alistic. For example, along what axis of similarity is an age
class considered to be most similar to another age class –
in terms of PFT composition, biomass in plant organs, plant
height, or stem density? Existing age-class models (Med-
vigy et al., 2009, ED2; Lawrence et al., 2019, CLMv5.0; Yue
et al., 2018, ORCHIDEE-MICT) employ merging rules (al-
though some do not – Lindeskog et al., 2013, LPJ-GUESS)
with varying thresholds to ensure that age classes are only
merged if the difference among one state variable (biomass,
tree height) is less than a fixed threshold. We also merge age
classes, but we do not employ merging rules along arbitrary
axes of similarity. We fix the number of age classes a priori,
similar to LPJ-GUESS in that there is a maximum number
of age classes. Instead of forced merging to reduce computa-
tional burden (as in ED2), a fraction of the age class always
transitions to an older state, and a fractional area can tran-
sition and merge with the next oldest age class. By design,
VTFT allows age classes to advance in a natural progression
from young to old and ensures that age-class transitions al-
ways occur between the most similar age classes along mul-
tiple state variables.

The theoretical description of the VTFT approach is de-
scribed as following in matrix notation. VTFT describes a
matrix of size (w indicates age widths per age class; n in-
dicates age classes), where the elements fi,j are the within-
age-class fractional areas of the grid cell:

F=


f1,1 f1,2 . . . f1,n
f2,1 f2,2 . . . f2,n
...

...
. . .

...

fw,1 fw,2 . . . fw,n

= (fi,j ∈ Rwxn) . (1)
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It is important to note here that within-age-class fractional
areas (fi,j ) are only used during age-class transitions – this
is a key point. For almost all calculations in LPJ, processes
operate on the total fractional area for each age class:

Ftotal =
∑n

j=1

∑w

i=1
fi,j

F_totalj =
∑w

i=1
fi,j , (2)

where F_total is the sum of fractional areas for all grid-cell
age classes, defined as the sum of fractional areas for over
age classes (n) and age widths (w). F_totalj is the column
sum of F for a given age class (j ); the calculation can be
vectorized for efficiency by computing the dot product be-
tween an “all-ones” row vector of length (w) and F. In prac-
tice, when LPJ-wsl v2.0 simulates physical processes on an
arbitrary carbon pool (C), for example, the calculations are
computed on a per-mass basis, which then requires conver-
sion to a per-area basis by multiplying the total carbon mass
in an age class by the representative total fractional area:

Cj

[
kgm−2

]
= Cj

[
kg
]
×F_totalj , (3)

where Cj (units: kg or km−2) is the total carbon for a given
age class (j ). Again, the calculation can be computed via
the Hadamard (element-wise) product, taking a vector (C),
where elements are the carbon pool totals for every age class
and multiplying by vector F_total, with elements of the to-
tal fractional areas in each age class. In effect, all simulated
processes in LPJ-wsl v2.0 act on an area basis, based on the
column sums of F.

In every year of simulation, an age-class transition always
occurs, and this procedure is defined as an operation that in-
crements the positions of the elements as

F(t+1)
:=

f
(t+1)
1,1

def
= f

(t+1)
new f

(t+1)
1,2

def
= f

(t)
w,1 . . . f

(t+1)
1,n

def
= f

(t)
w,n−1

f
(t+1)
2,1

def
= f

(t)
1,1 f

(t+1)
2,2

def
= f

(t)
1,2 . . . f

(t+1)
2,n

def
= f

(t)
1,n

.

.

.
.
.
.

. . .
.
.
.

f
(t+1)
w,1

def
= f

(t)
w−1,1 f

(t+1)
w,2

def
= f

(t)
w−1,2 . . . f

(t+1)
w,n

def
= f

(t)
w,n+ f

(t)
w−1,n

 ,

(4)

where the superscripts are the time indices for the current
time step (t+1) and the previous time step (t), subscripts are
the matrix indices, f (t+1)

new is the fractional area of a newly
created stand (by definition, it is the youngest age-class frac-
tion), and fw,n is the oldest fractional age of the grid cell,
which is incremented by an amount equal to fractional area
(f (t)w−1,n). Of special importance is the bottom row of the F
matrix, Fw,1≤j≤n, which includes the fractional areas of each
age class transitioning to the next-oldest age class. The tran-
sitioning fractions (Fw∗) become the incoming fractions in
the next-oldest age class. Using an arbitrary carbon pool (C)
as an example, the carbon pool for the next time step (t + 1)
would be calculated via an area-weighted average between

the carbon remaining in the age class and the carbon in the
transitioning fraction:

C
(t+1)
j =

(
C
(t)
j ×F

′_total(t)j
)
+

(
C
(t)
j−1× f

(t)
w,j−1

)
F ′_total(t)j + f

(t)
w,j−1

, (5)

where F ′_totalj is the total fractional area of age class (j )
that remains in the age class, f (t)w,j−1 is the transitioning or

“incoming” fraction from the younger age class, and C(t)j−1 is
the carbon pool (on an area basis; kg m−2) in the younger
age class, calculated at the end of the previous time step.
Equation (5) effectively converts the units of the carbon pools
from an area basis (km m−2) to a total mass (kg), taking the
sum of the carbon remaining and transitioning into the age
class, and “redistributes” the carbon mass by the new frac-
tional area; during age-class transitions, these area-weighted
averages are used to conserve mass across all state variables.
In theory, VTFT minimizes the redistribution (or “dilution”)
of mass across a larger area if the incoming fractional area
is much smaller than the fractional area of the existing age
class.

In a plain-language summary of the matrix representation,
VTFT ensures that a vector of fractional areas is associated
with every age class (n), of length (w), and where “w” is
equal to the age width of the age class, with elements (f )
that are the fractional areas contributing to the total fractional
area of the age class (F_total). When a young age class (a1)
is first created, VTFT vectors are initialized to zero and the
first element (f1) is set to the incoming fractional area. The
following is a description for within-class and between-class
transitions.

Within-class fractional transitions. For every simulation
year, the position of each element (fx) in the VTFT vector is
incremented by the representative time of each element (x),
which is simply 1. No changes occur to the state variables of
the age class during within-class transitions.

Between-class fractional transitions. Upon incrementing
the position of each element in the VTFT vector, if the value
at fw is non-zero, then the corresponding fractional area fw,
defined as the outgoing fraction, is used in an area-weighted
average between the state variables of a1fw and the next old-
est age class a2F_total. Upon incrementing the element po-
sition, if all elements in the VTFT vector of the preceding
age class are zeros then the age class is simply deleted from
computational memory.

Two hypothetical scenarios are provided in Fig. 2 that
demonstrate age-class transitions using the VTFT procedure
when there is a young age class created, and when there
are fractional age-class transitions between age classes. With
VTFT, any number of age classes and age widths can be
modeled, but it is demonstrated in this study that the age
widths employed in this study are sufficient to minimize the
dilution of state variables when area-weighted averaging is
used to merge fractional age classes while also simulating
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Figure 2. Methodological examples of the matrix-based method called vector-tracking of fractional transitions for computationally efficient
simulation of age classes in large-scale models. (a) Hypothetical matrix of VTFT vectors of fractional areas (f ). The total area of the age
class is the sum of the fractional areas in the corresponding VTFT vector. State variables are calculated on an area basis by accounting for
the fractional area of the age class; in this example, Csoil is the carbon in soil. (b) An example of the VTFT method for a newly created age
class by clear-cut wood harvest. An area-weighted average updates age-class state variables in the youngest age class using the preceding
total fractional area of the age class and the incoming fraction. (c) A VTFT example for a fractional age-class transition. An area-weighted
average updates state variables in an age class using the preceding total fractional area of the age class and the incoming fraction from the
younger age class.

stand–age patterns in state variables of carbon stocks, stem
density and fluxes.

2.2.2 Integration with fire and LUCLM modules

The disturbance processes of simulated fire, land-use change,
and land management can occur on multiple age classes at a
time. That is, these processes are related but independent.
For instance, fire can occur independently on each age class,
and each age class would have its own independent esti-
mate of the probability of fire. Wood harvest occurs first on
the oldest age class and progressively harvests younger age
classes until two demands are met (harvest area and harvest
biomass), described in detail in the relevant section below.
Clearly, each process influences the other as logging or fire
both remove biomass that could be potential fuel for a fu-
ture fire or biomass for a future harvest. These relationships
are not evaluated here but are noted for their potential impor-
tance. Below, we describe in detail the integration of the age-
class module with the two prominent forms of disturbance:
fire and LUCLM.

Fire. The fractional area burned initiates the creation of a
youngest age class, or it gets merged with a youngest age
class if one exists already. Fire simulation is based on the
semi-empirical Glob-FIRM model by Thonicke et al. (2001),
with implementation details described in Sitch et al. (2003).
In short, fire is dependent on the length of the fire season, cal-
culated as the number of dry days in a year above a threshold
and a minimum fuel load, defined only as the mass of carbon
in litter. When a fire occurs, PFT-specific fire resistances de-
termine the fraction of the PFT population that gets burned.
The biomass of burned PFTs, along with the aboveground

litter in the age class, gets calculated as an immediate flux to
the atmosphere. The fraction of the PFT population that does
not burn maintains state variables (e.g., tree height, carbon
in leaf and wood) at previous values. It is possible to have
so-called “survivor” trees on the youngest age class that then
skew the age-height distribution of the age class. The model
does not assume any structure of survivor trees. Instead, sur-
vivor trees occur as a function of the underlying process. For
example, if a fire occurs on a stand, but the fire does not burn
all the PFTs, then there will be survivor PFTs on the stand.
Both fire and wood harvest (below) are simulated based on
fractional area, and it is the fractional area, specifically, that
gets reset to a young age class.

LUCLM. Age classes get created when managed land (i.e.,
crop and/or pasture) is abandoned and allowed to regrow into
secondary forests, or when wood harvest occurs on forested
lands and causes deforestation. In both cases, the fractional
area abandoned or logged initiates the creation of a youngest
age class, or it gets merged with a youngest age class if one
exists already. To improve the account of primary forests, de-
fined here as natural land without a history of LUCLM, and
second-growth forests, defined as natural land with a history
of LUCLM, transitions between these classes are unidirec-
tional from primary to secondary. In the LUCLM module,
gross transitions between land uses are simulated (Pongratz
et al., 2014; Stocker et al., 2014), such that if the fraction
of abandoned land equals the fraction of land deforested in
the same year (net zero land-use change), then the fluxes
from the gross transitions are tracked independently and give
an overall more accurate account (and higher magnitude) of
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emissions from LUC than if we only tracked net transitions
(Arneth et al., 2017).

General rules distinguishing primary and secondary stands
within the age-class context stem from the Land Use Harmo-
nization dataset version 2 (LUHv2; Hurtt et al., 2020) but
with the following modifications so that the LUHv2 data can
be used in LPJ-wsl v2.0. (1a) The primary grid cell fraction
only decreases in size and never gets mixed with existing sec-
ondary forests or with abandoned managed land. Only fire
creates young age classes on primary lands. (2a) Secondary
grid cell fractions can be mixed with other secondary for-
est fractions, recently abandoned land, fractions with wood
harvest, and recently burned area. General priority rules for
deforestation and wood harvest. (1b) For simplicity, defor-
estation (i.e., land-use change) always occurs in the rank-
ing of oldest to youngest age class, proceeding to deforest
each age class until the prescribed fractional area of defor-
estation is met. This rule will always result in greater land-
to-atmosphere fluxes than if rules were employed that al-
lowed younger age classes to be preferentially deforested.
(2b) Wood harvest (i.e., biomass harvest) also occurs in the
ranking of oldest to youngest age class until two conditions
are met. Timber harvest occurs on each age class until a pre-
scribed harvest mass or harvest area is met.

Treatment of immediate emissions and residues. Defor-
estation results in 100 % of heartwood biomass and 50 % of
sapwood biomass being stored for delay emission in prod-
uct pools; root biomass is entirely part of belowground litter
pools, while 100 % leaf and 50 % of sapwood biomass be-
comes part of aboveground litter pools. Grid cell fractions
that underwent land-use change were not mixed with ex-
isting managed lands or secondary fractions until all land-
use transitions had occurred. This avoids a computational se-
quence that results in a lower flux if deforestation and aban-
donment occur in the same year. For wood harvest, 100 % of
leaf biomass and 40 % of the sapwood and heartwood enters
the aboveground litter pools, and 100 % of root biomass the
belowground litter pools; 60 % of sapwood and heartwood
are assumed to go into a product pool for delayed emission.

Timber from deforestation and harvest in product pools
for delayed emission (Earles et al., 2012). For deforestation,
60 % of exported wood (i.e., not in litter) goes into a 2-year
product pool, and 40 % goes into a 25-year product pool, fol-
lowing the 40 : 60 efficiency assumption from McGuire et
al. (2001). For wood harvest, the model uses space–time ex-
plicit data on harvest fractions going into roundwood, fuel-
wood, and biofuel product pools. We use three product pools
and assume that 100 % of the fuelwood and biofuel fraction
goes into the 1-year product pool (emitted in the same year
of wood harvest), 50 % of the roundwood fraction goes into
the 10-year product pool (emitted at rate 10 % per year), and
the remaining 50 % of the roundwood fraction goes into the
100-year product pool (emitted at rate 1 % per year).

2.3 Experimental design and analysis

2.3.1 Model inputs

Inputs to the model are gridded soil texture (sand, silt,
clay fractions) from the USDA Harmonized World Soils
Dataset v1.2 (Nachtergaele et al., 2008), annually varying
global mean [CO2] (time series available in the Supplement),
and monthly varying air temperature, precipitation, precipi-
tation frequency, and radiation from the Climate Research
Unit (CRU, version TS3.26) data for 1901–2016. Land use,
land-use change, and wood harvest were prescribed annu-
ally based on LUHv2 (Hurtt et al., 2020), which is used as
forcing land use for the sixth Coupled Model Intercompar-
ison Project (CMIP6; Eyring et al., 2016). The dataset in-
cludes fractional area of bi-directional (gross) land-use tran-
sitions between forested and managed lands, as well as the
total biomass of wood harvest on a specified fractional area
logged. In LPJ-wsl v2.0, managed lands (i.e., crop and/or
pasture) are treated as grasslands with no irrigation, no fire,
and tree PFTs were not allowed to establish. Model represen-
tation of land management is an oversimplification to focus
on effects of wood harvest.

2.3.2 Examining age dynamics: qualitative evaluation
of regional simulations against the US Forest
Inventory Analysis data to assess simulated
changes in stand structure and ecosystem
function

US Forest Inventory and Analysis (FIA). The FIA dataset
is freely available at the FIA DataMart web portal (FIADB
version 1.6.0.0.2), accessed 2 February 2016. The FIA plot-
level data are composed of four circular subplot sample ar-
eas (168 m2), wherein attributes of all trees with diame-
ter at breast height (DBH) ≥ 5.0 in (12.7 cm) diameter are
recorded. We extracted variables that capture two main axes
of structural change as a function of forest age: stem den-
sity and tree height. Spatial coordinates of sample plots are
“fuzzed” with imposed error for privacy reasons (FIA User
Guide v 6.02; O’Connell et al., 2015). For purposes of this
analysis, plot data were aggregated to the spatial scale of the
US Forest Service Divisions (Fig. S2; USFS Divisions are
delineated by regional-scale precipitation levels and patterns
as well as temperature) minimizing co-location concerns be-
tween model–observation comparisons. We filtered the FIA
data based on the following criteria. We only included plots
that used the national standard plot design (DESIGNCD of
1) and were located on forested land (COND_STATUS of
1) with no history of major disturbance, stocking, or logging
(DSTRBCD of 0; TRTCD1 of 0), which could alter natural
patterns of tree density versus age and confound the compar-
ison to simulated data. We also only included plots that had
both subplot samples of live tree (STATUSCD of 1) stem
density and also circular micro-plot (13.5 m2) stem density

https://doi.org/10.5194/gmd-14-2575-2021 Geosci. Model Dev., 14, 2575–2601, 2021



2582 L. Calle and B. Poulter: Age-class dynamics in LPJ-wsl v2.0 global ecosystem model

samples of seedlings and/or saplings (defined as trees 1 to
5 in (2.54 to 12.7 cm) in diameter), and where the subplot
sampling design was the national standard (tree table SUBP
of [1,4]); LPJ-wsl v2.0 implicitly includes sapling and adult
trees in estimates of tree height and stem density. We as-
sumed that the filtered plots were representative of the true
density and distribution of tree species for the general vicin-
ity of the plots and of the USFS Division. Although these
requirements for selecting FIA plots reduce the total amount
of data, we aimed to make evaluations in a fair manner, in
both spatial scale and meaning.

Regional simulations. The objectives of the regional simu-
lations (Table 2) were to evaluate demographic patterns of
stand structure and function when simulating age classes
using different age-width binning. Two idealized simula-
tions were conducted at a regional scale to sample simu-
lated annual stem density, average tree height, and NEP.
The first simulation used the unequalbin age-width setup,
Sunequalbin, and another used the 10-yr-equalbin age-width
setup, S10 yr bin (Table 2). For both simulations, fire and LU-
CLM were not simulated. Instead, 5 % of the fractional area
of age classes > 25 years were cleared of biomass annually;
the fractional area cleared was reclassified and merged with
the youngest age class. The intent of the setup was to ensure
that each grid cell maintained fractional area in every age
class for each year of the simulation and avoided situations in
which age classes were only present in “bad years”, or when
growing conditions were poor. Both simulations were con-
ducted with a 1000-year “spinup” using fixed CO2 (287 ppm,
“pre-industrial” values) and climate randomly sampled from
1901–1920 to ensure that age distributions were developed
and state variables were in dynamic equilibrium (i.e., no
trend). A transient simulation then used time-varying CO2
and climate, as prescribed by model inputs. Stand structure
data were analyzed for 1980–2016.

The idealized simulations were performed for the mixed
deciduous and evergreen forests of Michigan, Minnesota,
and Wisconsin in the US (bounding box defined by left:
97.00◦W; right: 82.50◦W, top: 49.50◦ N, bottom: 42.00◦W).
These forests are of moderate temperate climates, with
total annual rainfall 815.0 mm yr−1 (average over 1980–
2016, based on CRU TS3.26), a time-series minimum of
21.0 mm per month, and a maximum of 148.5 mm per month.
Mean annual temperature (1980–2016, CRU TS3.26) was
5.98 ◦C with monthly minimum of−11.45 ◦C and maximum
20.98 ◦C.

Data were pooled for the region over the time period and
by age class. Data were plotted in boxplots to show median
value, interquartile range, and outliers. No attempt was made
to detrend data because there was enough between-age-class
variation to evaluate general demographic patterns visually.

2.3.3 Examining resilience: idealized simulation of a
single event of deforestation, abandonment, and
regrowth

The objective of the idealized simulation was to evaluate the
effect of age classes on relaxation times following a sin-
gle deforestation, abandonment and regrowth event within
a single grid cell (Table 2). The relaxation time is defined
as the time required for a variable to recover to previous
state and is a direct measure of ecosystem resilience (sensu
Pimm, 1984). Two simulations were conducted, the first sim-
ulation used the 10-yr-equalbin age-width setup, Sage_event,
and another did not simulate age classes, Snoage_event (Ta-
ble 2). Both simulations were conducted with a 1000-year
“spinup” using fixed CO2 (287 ppm, pre-industrial value)
and climate randomly sampled from 1901–1920 to ensure
that state variables were in dynamic equilibrium. A tran-
sient simulation then used time-varying CO2 and climate,
as prescribed by model inputs. Fire and LUCLM were not
simulated. Instead, 25 % of the fractional area was defor-
ested in year 1910 of the simulation and classified as man-
aged land. Treatment of deforestation byproducts (i.e., car-
bon in dead wood left on site) were the same in both simula-
tions. In the following year (1911), the managed land fraction
was abandoned and allowed to regrow. The following state
variables were plotted over time and visually evaluated: net
biome production (NBP, defined as the difference between
NEP and LUC_flux), NEP, net primary production (NPP),
heterotrophic respiration (Rh), and carbon in biomass.

The idealized simulations were performed for a single
grid cell in a mixed broadleaf and evergreen needleleaf
forest in British Columbia, Canada (57.25◦ N, 121.25◦W).
The grid cell is a boreal climate with total annual rain-
fall 473.7 mm yr−1 (average over 1980–2016, based on CRU
TS3.26) with monthly minimum 9.11 mm per month and
maximum of 105.8 mm per month. Mean annual tempera-
ture (1980–2016, CRU TS3.26) was 0.59 ◦C with a monthly
minimum of −16.9 ◦C and maximum 14.7 ◦C.

2.3.4 Global simulation objectives and setup

There were three main objectives for global simulations. The
first objective was to evaluate the contribution of age-class
information to global stocks and fluxes. Here, a simulation
with age classes (Sage) was compared to a simulation without
age-class representation (Snoage) (Table 2). The second objec-
tive was to determine the relative influence of fire and LU-
CLM on the spatial and temporal distribution of ecosystem
ages. For this objective, a fire-only simulation (SFire) had age
classes only created by fire, whereas a LUCLM-only simu-
lation (SLU) had age classes only created by abandonment
of managed land or by wood harvest (Table 2). A simula-
tion with both fire and LUCLM (SFireLU) was used as the
baseline for comparison against SFire and SLU. The third and
fourth objectives used data from Sage (Sage = SFireLU) to de-

Geosci. Model Dev., 14, 2575–2601, 2021 https://doi.org/10.5194/gmd-14-2575-2021



L. Calle and B. Poulter: Age-class dynamics in LPJ-wsl v2.0 global ecosystem model 2583

Table 2. Description of LPJ-wsl v2.0 simulations in this study, corresponding objectives and related science questions.

Simulation Description Objective and questions Structure/processes included

Age classes Fire LUCLM

Single cell

Sage_event Idealized simulations of a defor-
est, abandon, and regrow event in
British Columbia, Canada (57.25◦ N,
121.25◦W)

Evaluate recovery dynamics of a single
regrow event. Do age dynamics influ-
ence relaxation times?

X X X

Snoage_event × X X

Regional

Sa
unequalbin Idealized simulation with 5 % of

grid cell cleared annually to create a
wide age-class distribution in mixed
broadleaf and evergreen temperate
forests of Michigan (MI), Minnesota,
and Wisconsin (WI) in the US

Does the model capture “classic” demo-
graphic patterns in stand structure (tree
density and height) and function (NEP,
NPP, Rh)?

Xa
× ×

Sb
10yrbin Xb

× ×

Global

Snoage Standard-forcing factorial simulations
at global scale

Do age dynamics influence global
stocks and fluxes?

× X X

SFire What is the relative contribution of fire
and LU to ecosystem age?

X X ×

SLU Are demographic effects evident in
fluxes, and where is the effect greatest?

X × X

SFireLU (Sage) What is the relative contribution of cli-
mate versus demography on fluxes?

X X X

a Unequal age-width simulation. Age widths are as described in Table 1. b The 10-year interval age-width simulation. Age widths are as described in Table 1.

termine where the effect of demography was greatest and to
identify the relative influence of demography versus climate
on simulated fluxes (NEP, NPP, and Rh).

For all global simulations, a spinup simulation was run
for 1000 years using randomly sampled climate conditions
from 1901–1920 and atmospheric CO2 fixed at pre-industrial
levels (287 ppm) and no land use or wood harvest; spinup
ensured that age distributions and state variables were in
dynamic equilibrium (i.e., no trend). For simulations with
land use, a second “land-use-spinup” procedure was run for
398 years to initialize land-use fractions of crop and/or pas-
ture to year 1860, resampling climate and fixing CO2 as in
the first spinup. After spinup procedures, climate and CO2
were allowed to vary until simulation year 2016; in SLU and
SFireLU, land-use change and wood harvest varied annually
as prescribed by the LUHv2 dataset.

In the first objective (as above), global values for stocks
and fluxes include both natural and managed lands. These
global estimates conform to typical presentation of global
values (Le Quéré et al., 2018), in petagrams (1015) of car-
bon. Comparisons are made among simulation types and to
values from the literature.

For the second objective, a time series of zonal mean
ecosystem ages were analyzed to determine the relative im-
portance of SFire and SLU on the observed distributions in

SFireLU. The first assessment was made by visual inspection
of zonally averaged time series (i.e., Hovmöller plots) for the
entire period of transient simulation (1860–2016). In addi-
tion, for each of SFire and SFireLU, a simple linear regres-
sion model (age is equivalent to β0+β1 · year, setting 1860
as the reference year and defined as 1) was applied to iden-
tify trends in ecosystem age by the following zonal bands:
boreal (50 to 90◦ N), temperate (23 to 50◦ N), and tropics
(23◦ S to 23◦ N). Trends in age distributions due to LUCLM
are not prescribed by inputs per se; instead, the age module is
a necessary model structure that allows full realization of the
effect of forcing data on age distributions. Trends in age dis-
tribution due to fire, which is a simulated process as opposed
to prescribed, result from climate and fuel load feedbacks on
fire simulation.

2.3.5 Statistical model to assess relative importance of
demography and climate

For the third objective of global simulations – to reduce di-
mensionality of the data and to assess the relative influence
of demography and climate on simulated fluxes – annual flux
data from Sage (Table 2) were analyzed from 2000–2016 us-
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ing a generalized linear regression model:

fluxi,yr = B1i × total_precipitationi,yr

+B2i ×mean_temperaturei,yr

+B3i,ageclass× ageclassi,yr, (6)

where “flux” was either NEP, NPP, or Rh in kg C m−2 yr−1,
precipitation (mm) and temperature (Celsius) data from CRU
TS3.26, and “ageclass” was categorical, defined by the age-
class code (Table 1), and the beta coefficients (B) for sub-
scripts of grid cells (i), years (yr), and age class. The beta
coefficients are therefore unique to every grid cell, and the
betas for age classes are estimated separately for each age
class within the grid cell (B3i,age). An initial test of the model
attempted to estimate globally consistent predictor effects,
but the model was found to be a poor fit (not shown) and it
was assumed that there was too much variation among grid
cells to detect globally consistent effects. Instead of adding
additional gridded fields of predictor variables to account for
grid-cell-level variation, the same statistical model was ap-
plied and analyzed per grid cell. This allowed coefficients of
precipitation, temperature and “ageclass” to vary by grid cell,
in essence, reducing the effect of variation in PFT composi-
tion, soil texture, and hydrology that might otherwise reduce
predictive power.

In all grid cell analyses, the intercept term was intention-
ally omitted from the data model by adding a “−1” term to
the data model. The “ageclass” term in the statistical model
(B3i,age), as a categorical variable, effectively takes the place
of the intercept term anyhow, so the outcome is that esti-
mates are for the absolute effect of each age class on the
predicted flux as opposed to estimates that were relative
to the first age class; this had no impact on estimated co-
efficients but it did simplify analyses. In grid cells where
only a single age class was present, the statistical model
was defined as (fluxi,yr = B1i total_precipitationi,yr+B2i
mean_temperaturei,yr+B3i), leaving the intercept term, in
this case – B3i , to be estimated from the data and then re-
classifying the intercept term by the age-class code for the
grid cell.

The degrees of freedom (DoFs) of a model for a grid cell
with a single age class was 14 DoFs, based on 17 annual
data points to estimate coefficients of three predictors. The
degrees of freedom for a grid cell that had a maximum of 12
age classes was 190 DoFs, based on 204 annual data points to
estimate coefficients for 14 predictors. Because the analysis
produced statistical results for every grid cell, the degrees of
freedom are not presented elsewhere. Coefficients were only
analyzed or mapped when significant at p = 0.05.

3 Results

3.1 Model stand structure – comparison against
inventory data

FIA data were not equally available for every age class, nor
for every division (Fig. S2), but there were enough inven-
tory data across eight divisions, spanning subtropical to tem-
perate steppe climates, to qualitatively suggest that LPJ-wsl
v2.0 does capture the expected patterns of tree density and
height per age in the different climates evaluated. There was
a tendency for LPJ-wsl v2.0 to overestimate stem density in
younger age classes and systematically underestimate tree
heights among age classes (e.g., Figs. S3, S5), for which the
greater number of small individuals could cause the average
tree heights to be dampened. However, LPJ-wsl v2.0 is a big-
leaf, single-canopy model that include space-filling “pack-
ing” constraints on stem density, based on allometric rules
for size and height of PFTs. Also the model does not repre-
sent multiple PFT cohorts in an age class, or more simply, it
does not represent vertical heterogeneity such as understory
growth that would otherwise increase stem density. As such,
and under the current model architecture and associated as-
sumptions, the exact cause of the mismatch is unclear. Even
still, the more general pattern of modeled stem density and
tree height tended to track FIA data, with stem density being
maximal in the younger age classes and declining thereafter,
whereas tree height patterns increased more linearly before
stabilizing (Figs. S6 to S9).

FIA data had greater variability among age classes, regard-
less of division. FIA data are not aggregated by PFT, instead
they are species-level data. Changes in species composition
over time do occur and can add to the observed variability
among age classes in tree density and tree height. LPJ-wsl
v2.0 includes a limited set of PFTs, which most likely lim-
its the model’s capacity to represent similar levels of vari-
ation in tree density and tree height. It is beyond the scope
of this study to disentangle these patterns further, but greater
agreement between observed and simulated patterns of for-
est structure might be achieved by including additional plant
functional types that are representative of tree species for a
given division.

3.2 Model age dynamics

3.2.1 Dynamics of stand structure and function –
regional simulations

Forest structural characteristics of stem density, height, and
NEP followed the expected patterns with age with a few ex-
ceptions. In Sunequalbin (Table 2), stem density increased from
near zero to maximum in the 21- to 25-year age class, before
declining non-linearly (Fig. 3). By contrast, the gradual in-
crease in stem density in the first age class in S10−yrbin (Ta-
ble 1) was not readily apparent because this process, which
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is evident in Sunequalbin, occurs entirely within the youngest
1- to 10-year age class in S10−yrbin. Both simulation setups
approach the same stem densities after age ∼ 25; prior dif-
ferences are due to binning of age widths.

For average tree height in Sunequalbin, there were large tree
heights in the youngest age class, which results from so-
called “survivor” trees (Fig. 3). Not all trees are killed off
when a disturbance occurs in LPJ. Although the age class is
“reset” to the youngest age class, the survivor trees skew the
height distribution until the density of establishing saplings
subsequently increases and brings down the average tree
height to smaller values. This pattern is more akin to what
occurs during natural fires or selective harvesting, which can
reduce the overall age but might not result in a complete re-
moval of all trees. By contrast, the skewed age-height pattern
is not apparent in S10−yrbin (Fig. 3) only because the same
process is effectively hidden. Both simulation types approach
the same average tree heights after age ∼ 25 (Fig. 3).

NEP peaked at age classes 5–6 in Sunequalbin, before declin-
ing non-linearly to the lowest average value in the oldest age
class (Fig. 3). Although the unimodal peak was not apparent
in S10−yrbin, the maximum NEP occurred in the youngest age
class and also declined non-linearly thereafter (Fig. 3). The
decline in NEP after a maximum at 5–6 years was driven
mainly by an increase in Rh due to increases in turnover
rather than a larger decline in NPP (Fig. 4). The peak in NEP
did not coincide with maximum tree density at ∼ 20 years.
Instead, model dynamics suggest that the total foliar projec-
tive cover of tree canopies reaches near maximum (80 %–
95 % cover; not shown) at 5–6 years, thereafter plant compe-
tition reduces NPP while biomass turnover increases, which
together cause the apparent decline in NEP. The time period
of canopy closure, at 5–6 years, in LPJ-wsl v2.0 is probably
too early, in part due to advanced regeneration (saplings es-
tablish at 1.5 m height) and constant establishment rates. The
age-class module qualitatively demonstrates NEP–age rela-
tionships consistent with field-based evidence (Ryan et al.,
2004; Turner, 2010).

Lastly, an emergent pattern was found in the declining por-
tion of the NEP–age curve and approximately follows the
functional form NEPmax · 0.70age−agemax, where “NEPmax”
is the maximum NEP flux at the initial point of decline,
“age” is the age of the patch, and “agemax” is the age of
the patch where NEP is maximized. Thus, the non-linear de-
cline in NEP is approximately 30 % with increasing age. The
functional equation holds between years 5–6 and year 25, af-
ter which NEP decreases only by 20 % with increasing age
and the functional form becomes NEP25yr ·0.80age−25, where
NEP25yr is the NEP at year 25. The functional form of the
decline in NEP is consistent among climate regions when
simulated data are analyzed separately for all US states (not
shown). The binning strategy is likely not a determinant of
this pattern between NEP and stand age, which is evident in
Fig. 3 for both age-class setups. In this regard, we care less
about the binning strategy and more that the emergent pat-

tern is reflective of simulated model dynamics. This emer-
gent pattern could lend itself to observational constraints if
similar emergent patterns can be derived from forest inven-
tory data in the future.

3.2.2 Time-series evolution of a deforestation,
abandonment, and regrow event

A single event of deforestation, abandonment, and subse-
quent forest regrowth caused long-lasting effects on carbon
balance and dynamics when omitting age-class dynamics.
In the simulation without age classes, Snoage_event (Table 2),
grid-cell-level NEP takes ∼ 30 years to recover to values
prior the event, whereas the age-class simulation, Sage_event,
takes only 5–6 years to recover (Fig. 5) – a 5-fold change in
relaxation times. The quick recovery of grid-cell-level NEP
in Sage_event is due partly to the fact that the fraction of the
grid cell (75 %) that was not deforested maintained its state
variables (carbon stocks in vegetation, soil, litter) unchanged
from its prior state, which buffered NEP and dampened the
effect of the smaller fraction (25 % of grid cell) that was
deforested. Age-class dynamics also contributed an elevated
NEP (Fig. 5) that quickens the recovery at the grid cell level.
In Sage_event, there is an elevated NEP in the secondary stand
that is sustained for more than 30 years following the event.

In Snoage_event, vegetation dynamics cause turnover to in-
crease and cause an elevated grid-cell-level Rh that is con-
sistently higher than grid-cell-level NPP for 30 years af-
ter the event. This pattern is striking because NPP recovers
quicker than in Sage_event and maintains an elevated value for
∼ 30 years. Following a disturbance event in LPJ, stem den-
sity and foliar projective cover is reduced but the state vari-
ables (carbon in plant organ pools of leaf, stem, root) main-
tain prior values; this is the reason grid-cell-level NPP re-
covers quickly in the standard no-age simulation. As stand
density increases again, canopy closure initiates competitive
dynamics that result in mortality of individuals of the plant
population that are generally larger than if the stand had pro-
gressed from small to large individuals (as in Sage_event).

The VTFT module also uses the mean-individual approx-
imation but stand dynamics are always allowed to occur
in natural progression and the relatively small age widths
(10 years) ensure that stand age dynamics (NEP–age trajec-
tories in Figs. 3 and 4) most evident in the first 50 years are
discretely modeled. To reiterate, we think that the simulated
flux dynamics in the no-age simulation is a pure model arti-
fact. What we mean by that is that a patch-based (age-class)
model is more like reality, where the full “grid” of space is
an explicit representation of unique patches of ecosystem.
Whether or not the recovery times themselves are accurate
(30 years versus 5 years) is less concerning at this point. The
growth rates and recovery trajectories will likely have to be
optimized, ideally, to observed patterns, but this is beyond
the scope of this paper.
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Figure 3. Boxplots by age classes (x axis, in years) from LPJ-wsl v2.0 simulations for US states of MI, MN, and WI. Data are from (yellow)
simulations using equal age widths and (blue) simulations using and unequal age widths (see Table 1). Data are plotted on the x axis at the
middle age of the age-class bin; note that the last age-class bin for either simulation is defined as +151 years (equal bin) and +101 years
(unequal bin). For average tree height (middle row), large tree heights in the youngest age class of the unequal-bin simulation (blue) represent
so-called “survivor” trees.

Figure 4. Boxplots of NPP and Rh by age classes (x axis, in years) from LPJ-wsl v2.0 simulations for US states MI, MN, and WI, for
simulations using (a) equal-bin age widths and (b) unequal-bin age widths.

3.3 Global stocks, fluxes, and age distribution

3.3.1 Stocks and fluxes – Snoage versus SFireLU and
convergence in global NEP

Carbon stocks in biomass are lower in Sage than in Snoage by
∼ 40 Pg C globally (Fig. 6). Lower global biomass in Sage
can be explained by feedbacks from LUC and fire that cre-
ate younger age classes that have lower overall biomass than
in older stands. In addition, age dynamics cause turnover
to increase (as in Figs. 3 and 4), causing soil carbon to be

greater by∼ 35 Pg C and litter carbon to be greater by 5 Pg C.
Taken together, age-class dynamics cause 40 Pg C to be re-
allocated from the living biomass pool to the soil-detrital
pool, which compounds to alter the magnitude of fluxes from
heterotrophic respiration. Demographic changes in turnover,
such as these, are already known to be a large source of
uncertainty among projections by global ecosystem models
(Friend et al., 2014). What these numbers emphasize, how-
ever, is that uncertainty among models could be reduced by
explicitly modeling age dynamics.
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Figure 5. A time-series comparison between the standard LPJ-wsl v2.0 simulation (Snoage_event) and the age-class approach (Sage_event)
in an idealized single-cell simulation of a deforestation, abandonment, and subsequent regrow event. The x axis is the simulation year. See
Table 2 for simulation details.

Net ecosystem exchange (NEE; positive fluxes to atmo-
sphere) is only marginally different between Snoage and Sage
simulations (mean difference of 0.25 Pg C yr−1 over 2000–
2010). Compensatory fluxes in fire and Rh explain the small
difference in NEE at global scales. Fire fluxes in Sage are
lower by 0.92 Pg C yr−1 in the 2000s than in the Snoage, but
fluxes from Rh are greater in Sage by 1.61 Pg C yr−1 and NPP
also greater by 0.55 Pg C yr−1. The fluxes in fire, Rh, and

NPP largely offset to minimize differences in NEE from age
dynamics.

The question still remains – should there be an expecta-
tion for greater differences in NEE? Consider that deforesta-
tion (areal changes prescribed the same in Snoage and Sage)
occurs from the oldest to youngest age class in Sage, follow-
ing greater to lower overall biomass, respectively. The defor-
estation flux is greater in the Sage by only 0.04 Pg C yr−1 in
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Figure 6. Time series of global carbon stocks and fluxes from LPJ-wsl v2.0 simulation without age classes (black lines) compared against
simulations with age classes (red).

the 2000s compared to deforestation fluxes in Snoage, which
makes sense given that low-biomass age classes are not pref-
erentially deforested or harvested. By contrast, fire is not pre-
scribed in LPJ-wsl v2.0 but it is simulated based on soil mois-
ture and a minimum fuel load. It is not clear outright how
age dynamics affect soil moisture, but fluxes from fire would
need to be proportional to the biomass in an age class. By
definition in Sage, there is explicit representation of lower-
biomass age classes (i.e., younger) than in Snoage, and a series
of fires or disturbances within the grid cell would drive the
age distribution towards younger states, exacerbating differ-
ences in downstream fluxes as well. That global NEE only
changed marginally when simulating global age dynamics
was a surprise but explained by shifts in the carbon pools
and compensatory fluxes, then the patterns appear to make
sense. In light of these compensation effects, however, there
is a great need to benchmark fluxes from critical feedbacks,
particularly from fire in this case. It is beyond the scope of

this paper to do so, and the best available datasets, such as the
Global Fire Emission Database (GFEDv4s; van der Werf et
al., 2017), do not lend themselves to direct comparison with
fire fluxes from LPJ. GFED includes fires from deforestation
and land management that are tracked differently in LPJ-wsl
v2.0 – as a land-use change flux, which cannot simply be
added to the fire flux for direct comparison to GFED with-
out double counting. In any manner, this issue is stated as a
suggestion for future development and refinement.

3.3.2 Global age-class distribution – contribution of
fire and LUCLM to age distributions

Average ecosystem age, generated by the model, differed
greatly among continents (Fig. 7), with large areas of old-
growth forests in Asia, Europe, North America, and South
America skewing the distribution towards older ages. The
largest area of young ecosystems was located in Africa and
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Figure 7. Age-class distributions by continent. (a) Violin plots of ecosystem age by continent averaged over 2000–2010, based on LPJ-wsl
v2.0 simulations. Violin plots show the distribution of data points (green), interquartile range (black box), and the median value (white
circle). The number of vegetated 0.5◦ grid cells in each continent are above the plot. (b) Cumulative fractional area in continent by age
classes. Age-class codes, lowest (youngest) to greatest (oldest), correspond to the 10-yr-equalbin age-class setup (Table 1).

Australia (Fig. 1), wherein age classes comprised an ∼ 1 : 1
age to fractional area ratio of vegetated land (age classes
< 20 years comprise ∼ 20 % of the vegetated land area in
Africa and Australia and age classes < 40 years ∼ 40 % of
vegetated land area; Fig. 7).

Ecosystem age by zonal band was oldest at boreal lat-
itudes, followed by temperature latitudes, and youngest in
tropical latitudes, which was primarily the results of frequent
fires in simulated grassland ecosystems. The primary driver
of zonal age distributions was fire (Fig. 8). According to re-
sults from the statistical model (Table 3), the average age dif-
ference due to fire among zonal bands in 1860 was 23 years
between boreal (older) and temperature (younger) latitudes,
and it was 32 years between temperature (older) and tropical
(younger) latitudes. The difference in ecosystem age among
zonal bands increased to 60 years in simulation year 2016
between boreal and temperate latitudes, while the difference
in ages between temperature and tropical latitudes remained
similar (31-year age difference). There was a statistically sig-
nificant decrease in zonal ecosystem age over time due to
fire (Table 3), most likely from feedbacks due to enhanced
fuel (biomass) production from CO2 fertilization. The causes
were not explored further because feedbacks between fire–
climate–CO2 are largely constrained by the fire module itself.
The emphasis here is simply that fire was a major driver of
age distributions and fire–age relationships had an apparent
trend over time. Between simulation years 1860 and 2016,
fire caused a total change in ecosystem age, integrated over
the time period, by −1.5 years in boreal zones (negative val-
ues for a decrease in age), whereas the change was greater
in temperate (−6.7 years) and tropical (−8.24 years) zonal
bands (Table 3). The larger trend in temperate and tropical
latitudes might be due to increasing warming temperatures
in contemporary times, causing drier conditions more suit-
able for fire, or from increases in fuel loads from CO2 fertil-
ization. A more convincing argument would require support
from additional factorial experiments to identify to the casual
driver of the trend differences.

After accounting for the effects of fire, LUCLM caused a
much greater change over time in the zonal ecosystem age
(Fig. 9). Integrating from 1860 to 2016, LUCLM caused
a zonal change in ecosystem age by −6.1 years in boreal
zones, whereas the change in ecosystem age from LUCLM
in temperate and tropical zones was−21.6 years, with no sig-
nificant difference in the trend due to LUCLM among these
zonal bands (Table 3). These patterns are consistent with
the concentration of deforestation in the tropics and land-
use change in temperate latitudes, as described by the forcing
data (Hurtt et al., 2011, 2020).

3.4 Global demographic effects on NPP and Rh

3.4.1 Simplification of LPJ-wsl v2.0 via a statistical
model

The statistical model (flux being the sum of B1 precipita-
tion, B2 temperature and B3age age class; see Sect. 2.3.5
for details) was able to estimate simulated NPP and Rh with
great predictive power, with R2 values between 0.95–0.98
(Fig. 10). The predicted fluxes were at annual timescales,
with annual variation being mainly driven by total annual
precipitation and mean annual temperature, whereas the
mean state (intercept) being predicted by the age class. The
predictive power for a model of NEP was worse (R2 between
0.60–0.65; Fig. S1). The effect of precipitation, temperature,
and age class on NEP was not consistent enough for robust
predictions, but more specifically, the predictors had differ-
ent effects on NPP versus Rh leading to poorer model fit.
As it is, NEP is better derived as predictions of NPP minus
predictions of Rh rather than having a stand-alone model for
NEP.

https://doi.org/10.5194/gmd-14-2575-2021 Geosci. Model Dev., 14, 2575–2601, 2021



2590 L. Calle and B. Poulter: Age-class dynamics in LPJ-wsl v2.0 global ecosystem model

Table 3. Linear trend statistics by zonal band from LPJ-wsl v2.0 simulations, based on model (age= β0+β1· year), where the year at 1860
is indexed at 1. Coefficients listed as µ±S.E. All DoFs are 113 and p < 0.001.

Zonal band Simulation β0 β1 R2

Boreal Fire only (SFire) 141.7± 0.01 −0.0098± 0.0002 0.95
Fire and LUCLM (SFireLU) 139.7± 0.13 −0.0388± 0.0019 0.78

Temperate Fire only (SFire) 118.5± 0.05 −0.0525± 0.0008 0.98
Fire and LUCLM (SFireLU) 112.6± 0.21 −0.1383± 0.0032 0.94

Tropics Fire only (SFire) 95.9± 0.06 −0.0429± 0.0009 0.95
Fire and LUCLM (SFireLU) 88.9± 0.16 −0.1382± 0.0024 0.97

Figure 8. Zonal ecosystem age versus year based on LPJ-wsl v2.0 simulations using full forcing (a), only fire (b), or only land-use and
land-cover change (c).

3.4.2 The effective range of predictors – assessing
relative importance of demography on predicted
fluxes

The “effective range of the predictors” was mapped to visu-
alize spatial patterns of the range of effects, given observed
values for the predictors (Fig. 11). In essence, the effective
range of the predictor is a measure of the dynamic range in

the predicted flux due to changes in precipitation, tempera-
ture or demography. It is calculated as the grid-cell-specific
beta coefficient multiplied by the observed range of the pre-
dictor for a given grid cell, which helps constrain the ef-
fect of the predictor on the predicted flux to realistic val-
ues. For example, for the LPJ-wsl v2.0 grid cell at location
50.25◦ N, 110.75◦W, the β estimate for the effect of precip-
itation on NPP was 0.0028, and the range of observed pre-
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Figure 9. Trend in ecosystem age by zonal band for LPJ-wsl v2.0
simulation with only fire (SFire, solid lines) and with both fire and
LUCLM (SFireLU, dashed lines). Fire causes zonal bands to dif-
fer in ecosystem age by ∼ 23 years and decreases the average age
by 0.009 to 0.054 yr−1. LUCLM decreased ecosystem age at rates
up to 3 times the rate of fire, from 0.038 yr−1 in boreal zones to
0.138 yr−1 in temperate and tropical zones.

cipitation (based on CRU TS36) was 282 mm, then the ef-
fective range of the predictor on the flux was calculated as
0.0028 · 282= 0.79 kg C m−2 yr−1.

The effect of precipitation on NPP was clearly greater
in the central US, central South America, and eastern Aus-
tralia (range of effect ∼ 0.70 kg C m−2 yr−1 due to precipi-
tation) than in other locations, and overall, precipitation had
a stronger (positive) effect on NPP than on Rh (Fig. 11). It
was also clear from the maps that the direction of the effect
of temperature on NPP was more spatially varied in the di-
rection of effect (both positive and negative) than other pre-
dictors (Fig. 11). The effects of precipitation and tempera-
ture displayed similar spatial patterns in both primary and
secondary stands, which was a good indicator that the model
was performing as expected because, within the LPJ-wsl v2.0
model, the distinction between primary and secondary stands
is mainly to track land-use histories and there was no reason,
a priori, that climate effects should differ substantially be-
tween the two stand types.

The effective range of demography on fluxes was gener-
ally lower than the effective range of precipitation and tem-
perature, but there were regions where the range of demo-
graphic effects were just as important as, or greater than, the
climate predictors. The demographic effect on NPP ranged
between 0.30–0.60 kg C m−2 yr−1 in eastern North America,
western Europe, central Africa, eastern China, tropical Asia,
and distributed smaller areas of South America (Fig. 11),
whereas it was at maximum ∼ 0.10 kg C m−2 yr−1 in other
regions. The higher demographic effect was predominately
on secondary stands (Fig. 12), but there was also a distinct
absence of primary stands in these same areas (Fig. 11), so
it could not be said definitively if the higher demographic

effect was due to a wider age distribution, and therefore a
greater demographic effect, or simply due to the productivity
of these locations.

3.4.3 Frequency distribution of demographic effects

The global mean demographic effect on NPP on primary
stands was 0.078± 0.063 [0, 1.37] kg C m−2 yr−1 (µ±SD
[min, max]), whereas on secondary stands it was 0.160±
0.141 [0, 1.33] kg C m−2 yr−1. There were differences in the
spatial distribution of primary and secondary stands that led
to the disparity in global mean values of the demographic ef-
fect. On primary stands, the distribution of age classes with
maximum NPP flux was skewed towards the second (11–
20 years) age class having the maximum NPP flux, whereas
on secondary stands, the maximum NPP flux was in the first
(1–10 years) and also in the second age class (Fig. 12). The
first class was categorized as 1–10 years, but in the presence
of constant renewal, an age class can effectively be younger
than an equivalent age class without such recurrent distur-
bance. Furthermore, on primary stands, fire is the only mech-
anism that creates young age classes, whereas land manage-
ment also creates young age classes on secondary stands. It is
possible for wood harvest, a form of simulated land manage-
ment, to result in advanced regeneration of younger stands if
harvest demand is met without “clear-cutting” the prescribed
fractional area under harvest. Currently, the model structure
does not lend itself to say definitively the cause of the differ-
ence in the age class of maximum flux, but the only process
that differs between primary and secondary stands is land
management, so it is reasonable to assume that land manage-
ment is the cause of the difference. In any manner, global val-
ues for age effects for NPP on primary and secondary stands
were also skewed towards greater values on secondary stands
but more due to the absence of primary stands in productive
areas where secondary stands dominated (e.g., eastern US).

Following a similar pattern, the demographic effects on
Rh were greater on secondary stands than on primary stands
(Figs. 11 and 12), which could be partly explained by the dif-
ferential coverage of secondary and primary stands but also
by historical land use. LUCLM leads to overall greater in-
puts to soil and litter carbon pools than does fire, and the
latter is simulated in the same manner on secondary stands
as on primary stands. In LPJ, wood harvest is only 60 % ef-
ficient, leaving dead biomass “residue” as a legacy flux. An
increase of carbon in the litter and soil pools would add ad-
ditional mass that can be respired during heterotrophic respi-
ration and which manifests as a larger demographic effect on
Rh, ranging from 0.25 to 0.70 kg C m−2 yr−1 on the high end
(Fig. 12).
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Figure 10. Annual fluxes (NPP, Rh) (2000–2017) from LPJ-wsl v2.0 simulations versus predictions of LPJ-wsl v2.0 fluxes based on a
generalized linear model (GLM; flux is the sum of precipitation, temperature and age class); coefficients were allowed to vary by grid cell, in
essence, reducing the effect of variation in plant composition, soil texture, and hydrology. Coloring is by density of grid cells on a log scale;
diagonal red line is the 1 : 1 correspondence line. The simplified statistical model can simplify the dynamics in the global vegetation model,
with coefficients from the GLM helping to determine the relative importance of a small set of predictors.

4 Discussion

4.1 Distribution of ecosystem age on Earth

The LPJ-wsl v2.0 age module simulates the age-class dis-
tributions on Earth resulting from fire, land-use change, and
wood harvest (Fig. 13), while also simulating important de-
mographics effects on NPP and Rh. Simulations demon-
strate that fire and LUCLM have been driving the latitudi-
nal age distribution towards younger states in contemporary
times (Fig. 8), suggesting an increasing role of age dynamics
in global ecosystem functioning. Whereas time is the only
mechanism that increases ecosystem age, any additional dis-
turbance not explicitly modeled in this study will decrease
age.

The simulations omit widespread disturbances of wind-
storms, flood, pest and disease outbreak, selective logging,
and other processes that would modify stand structure and

function. For instance, small-scale logging activity is a dom-
inant disturbance in the southeastern US (Williams et al.,
2016) but it is underestimated by the LUCLM driver data
in this study (LUHv2; Hurtt et al., 2020); otherwise, the sim-
ulated age of secondary forests in this region (∼ 100 years)
would be lower and closer to inventory-based age estimates
of these forests (< 50 years; Fig. 4 in Pan et al., 2011b).
In some geographic locations, it is certainly possible that
our wood harvest priority rules (defined by harvesting old-
est age class first) might lead to simulated stand ages that
are younger than observed stand ages if other harvest rules
were applied in real life. For example, if there are mandates
to preserve old-growth forests, then logging might preferen-
tially occur on young or mid-aged forests, leaving older-age-
class forests unharvested. We evaluated the age distribution
by continent simulated by LPJ-wsl v2.0 to the Global Forest
Age Database (GFAD v1.0; Poulter et al., 2018), which is
derived from country-level inventory data. The comparison
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Figure 11. Global maps of the Effective Range of the Predictors (precipitation, temperature, demography) on LPJ-wsl v2.0 fluxes (NPP,
Rh); black indicates zero values or no data. The effective range of the predictor is calculated as the grid-cell-specific beta (β) coefficient
multiplied by the observed range of the predictor variable for the grid cell, for the years 2000–2017. Units are on the scale of the predicted
flux (kg C m−2 yr−1). In these maps, an emphasis is placed on the effective range of the predictor rather than the absolute value of the
coefficient, although these too can be mapped for forecasting purposes. See Sects. 2.3.5 and 3.4 for additional details.

shows that the simulated ages are consistently older than the
GFAD dataset (Supplement Fig. S11). Furthermore, the fire
module has been well evaluated at global scale (Thonicke et
al., 2001) but it needs improvement because it is overly sim-
plistic and underestimates global burned area (Hantson et al.,
2020). It is more likely that effects of fire are much greater
than those simulated in this study. This study likely under-
estimates disturbances rather than overestimates them, and
as such, these simulations overestimate ecosystem age. But
again, additional disturbances would only lead to younger

age classes, enhancing the role of age dynamics in regional
and global carbon cycles.

Our model developments are not optimized to match ob-
servations, although we are working toward this end. Future
goals are to assimilate stand-age-related data, such as re-
motely sensed canopy data and stand index growth curves,
to align model processes with observations. Even with these
caveats in mind, the findings presented retain utility as in-
sight into the way age-class dynamics integrate into our
broader understanding of global carbon dynamics. Ecosys-
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Figure 12. Stacked frequency plots for NPP and Rh on primary and secondary stands. (a, b) Global frequency of age classes with the
largest flux (NPP, Rh) relative to other age classes in the grid cell. Age-class codes, lowest (youngest) to greatest (oldest), correspond
to the 10-yr-equalbin age-class setup (Table 1). (c, d) Global frequency of the range of the demographic effect on fluxes; bin width is
0.10 kg C m−2 yr−1. An example interpretation, on primary stands: (a) NPP is greatest in the second age class, and (c) the demographic
effect on NPP is < 0.25 kg C m−2 yr−1.

tem demographics likely play a larger role than suggested
here, and on regional scales, demographic effects on NPP
and Rh are already identified by this study as more important
in East Asia, tropical Asia, Europe, central Africa, eastern
North America, and tropical South America than they are in
other regions, where average ecosystem ages are much older.

4.2 Age dynamics increase turnover

In an analysis by Friend et al. (2014), it was determined
that demographic processes (age-dependent mortality and
turnover) influence carbon residence time, which was found
to be a major source of uncertainty in future projections by
global ecosystem models. In this study, it was demonstrated
that simulation of age classes led to a ∼ 40 Pg C shift from
live vegetation to the soil-litter pool, effectively an increase
in biomass turnover. That turnover increases when explicitly
simulating age classes is a natural expectation, but the mag-
nitude of the simulated turnover between carbon pools less
certain until detailed benchmarking is conducted. Further, re-
laxation times, or the time to return to a previous state, were
up to 30 years in the no-age simulation (Snoage_event; Fig. 5)

but relaxation times were less than 10 years when simulating
age classes, suggesting that uncertainty in carbon residence
time could potentially be reduced by improving representa-
tion of demographics in models. Omitting age-class repre-
sentation in models can leave long-lasting patterns in simu-
lated fluxes that could inflate land-use change fluxes at global
scales when considering legacy fluxes from past land-use
change (Pongratz et al., 2014). The current state of knowl-
edge is that fluxes from gross land-use change and land man-
agement cause greater-than-expected land-use fluxes (Arneth
et al., 2017), but existing models that estimate the global
land-use flux (Arneth et al., 2017; Le Quéré et al., 2018)
do not include age dynamics. If resiliency is inversely pro-
portional to relaxation times (a quicker return to previous
states is represented by shorter relaxation times and therefore
greater resiliency; Pimm, 1984; Tilman and Downing, 1994),
then instead of land-use change fluxes being “greater than
assumed” (Arneth et al., 2017), we might rethink the land
as being “more resilient than expected” when demographic
effects are considered at large scales.
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Figure 13. LPJ-wsl v2.0 simulated global distribution of ecosystem ages, defined as the time since disturbance by fire and/or LUCLM in the
year 2016. (a) Average age of the natural ecosystem, scaled to the area of natural lands within 0.5◦ grid cells. (b) Average age of primary
ecosystems only, wherein only fire creates age structure, scaled to the area of primary lands. (c) Average age of secondary ecosystems only,
wherein fire and LUCLM create age structure, scaled to the area of secondary lands.

4.3 Forecasting demographic effects with a simplified
statistical model

The modeling community has made increasing effort to
simplify complex models using a traceability framework
(Friedlingstein et al., 2006; Xia et al., 2013). Statistical
emulators, from matrix models (Huang et al., 2018) to

accounting-type statistical models, which track individual
carbon pools (Xia et al., 2013; Ahlström et al., 2015b), have
been developed to reduce the dimensionality of simulated
state variables. However, statistical modeling by linear re-
gression can be a more straightforward approach, as long as
the statistical model shows promise.
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We found that LPJ-wsl v2.0 fluxes of NPP and Rh could be
predicted at annual timescales by three terms: precipitation,
temperature, and age class. Part of the success of the data
model came from allowing coefficients to vary by grid cell.
This allowed the intercept (age-class) term to effectively cap-
ture grid cell level variation in soil texture (which influences
soil hydrology and plant-available water), PFT composition,
and cloud cover. Another insight was that climate and age
class had differential effects on NPP versus Rh, which makes
sense and ultimately led to poorer fit of the NEP model (NEP
is the difference between NPP and Rh). It might have been
possible to improve upon the NPP model further by sepa-
rately modeling GPP and autotrophic respiration (NPP is the
difference between GPP and Ra) because climate might also
have differential effects on GPP than on Ra but suffice to say
that the NPP statistical model was robust.

Although unexplored in this study, the spatial datasets of
predictor coefficients could be used within an emulator (Xia
et al., 2013; Ahlström et al., 2015a) to forecast NPP and Rh,
while exploring the effects of extreme climate scenarios (Re-
ichstein et al., 2013) and changes in ecosystem demography
from land-use change and land management. Such applica-
tion would allow for a much quicker exploration of scenarios
and could include a more explicit treatment of uncertainty
that would otherwise be too costly for the simulation model
in terms of computing time. With regards to climate, the
spatial dataset of precipitation coefficients has an equivalent
meaning to spatial maps of climatic sensitivity. In fact, the
maps of the effective range of precipitation on NPP (Fig. 11)
show areas where the precipitation effect is largest, notably
in semi-arid biomes – a biome that is known to be highly sen-
sitive to precipitation and has been shown to play an impor-
tant role in the interannual variability of global-scale fluxes
(Poulter et al., 2014; Ahlström et al., 2015a). But what if, in a
given year, semi-arid biomes received their maximum annual
precipitation, while every other biome received its lowest an-
nual precipitation – can anomalously high annual precipita-
tion and high-productivity events in some regions overcome
anomalously low-precipitation and low-productivity events
in other regions? Are the effects of different climate sce-
narios dependent on demography? These types of question
are best suited for exploration within a simplified statistical
model that maintains fidelity to the process-based model be-
cause effects of climate on fluxes can be explored quicker,
easier, and with a better treatment of statistical uncertainty.

A last note on emulators. Useful statistical emulators have
fidelity to the underlying process model, but such emulators
often cannot address uncertainty from parameter values that
are often fixed in the underlying process model or uncer-
tainty in process representation. In an ideal world, the statis-
tical parameters for climate sensitivity and stand age, for in-
stance, would be constrained by uncertainty simulations that
are themselves bounded to a realistic range of parameter val-
ues in the process model (Zaehle et al., 2005) and alternate
representations of ecosystem processes (Forkel et al., 2016).

4.4 VTFT – modeling age classes in global models

The VTFT approach simulated classic demographic re-
sponses in NPP and Rh (Fig. 4), a differential in younger
age classes that led to a larger carbon sink in the youngest
stands. These demographic responses are inherent within the
original formulation in LPJ; that is, establishment rates and
the process of self-thinning of stand density over time as
plants grow and compete (for space, light, water resources)
have been unchanged. In the original formulation of LPJ-wsl
v2.0 (prior to this study), and under a hypothetical scenario
where a disturbance clears the biomass from the entire grid
cell (0.5◦ ∼ 2500 km2), the resultant evolution of stand struc-
ture and fluxes would produce the same pattern as in the age
module, such as the age–NPP pattern from Fig. 4. It is often
the case, however, that smaller disturbances (� 2500 km2)
occur regularly as opposed to a much larger disturbance the
size of the entire grid cell. As such, in the original formula-
tion of LPJ, the potential benefits of demographic responses
are often masked (as demonstrated in Sect. 3.2.2; Fig. 5). One
can then say that the VTFT age module reveals intrinsic de-
mographic responses and model behavior that would rarely
emerge otherwise.

Total runtime for global age-class simulations (Sage) was
∼ 8 h on 32 Intel Xeon CPUs, including spinup to transient
simulations, whereas the total runtime for the no-age simula-
tions (Snoage) was ∼ 3 h. On a limited sample of single-grid-
cell simulations, there was a 4- to 6-fold increase in runtime,
but not all grid cells require simultaneous tracking of every
age class so the increase in runtime of global simulations was
lower than expected from per-grid-cell estimates.

4.5 Opportunities for improving modeled age dynamics

The order of priority for improvement of the age module
is to (1) improve age-class growth rates to align with ob-
servations, (2) improve representation of disturbances, and
(3) improve representation of early- and late-successional
plant species and add vertical structural complexity such as
understory/overstory canopy. Below, we provide suggestions
and examples from the literature as how these improvements
might be accomplished.

Inventory data or remotely sensed observations of canopy
height provide a potential means for constructing age-height
curves (Croft et al., 2014; Yue et al., 2016) to inform growth
rates by age class. Alternately, Hiltner et al. (2020) recently
optimized mortality rates in an individual-based model at dif-
ferent forest successional stages by using satellite-derived
proxies of tree mortality (Hiltner et al., 2020); their opti-
mized model was shown to improve representation of forest
states during post-disturbance regrowth. Another LPJ vari-
ant, the LPJmL4 DGVM, also underwent parameter opti-
mization to improve spatial patterns of tree cover and forest
turnover (Forkel et al., 2019). Different solutions are pos-
sible, and not all of them require parameter optimization,
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but the aim should be to align simulated forest structure and
function with observations.

Our comparison of simulated versus inventory forest age
distributions by continent (Supplement Fig. S11) clearly
show that LPJ-wsl v2.0 overestimates stand age. A potential
solution to this discrepancy is to incorporate additional dis-
turbances within the model to help simulate age distributions
more consistent with inventory (Pan et al., 2011a) and satel-
lite (Pugh et al., 2019a) data and contribute to more scien-
tifically relevant questions. Firstly, general improvement of
the fire module in LPJ-wsl v2.0 is necessary to match burned
area observations. One such solution is to use a suite of satel-
lite data products to prescribe burned area instead of sim-
ulating fire, which could help improve simulated stand age
distributions in areas where fire is observed but not well sim-
ulated mechanistically (Poulter et al., 2015). Modeled dis-
turbances need not be complex to explore their effects on
age distributions, they only need to reset a fractional area to
the youngest age class. For example, windstorms from hur-
ricanes are known to be a large disturbance of eastern North
American forests (Dale et al., 2001). Data on hurricane return
intervals and locations of landfall in eastern North America
have been available for some time (Keim et al., 2007) and
could be used to prescribe a periodic resetting of age classes
to assess the demographic effect of hurricanes on ecosystem
function. In another example, forest gaps represent areas of
high production because of high resource abundance relative
to the surrounding areas. The distribution of forest gaps also
has a predictable power-law relationship with size of the gap
(Asner et al., 2013), which can be allowed to vary across
and within regions (Asner et al., 2013; Espírito-Santo et al.,
2014), and this fact lends itself well to representing gaps
within the framework of the current age module. Many dis-
turbances can be prescribed based on observed forest distur-
bance rates (Pugh et al., 2019a), but prescribed disturbance
patterns typically sacrifice capacity to simulate under novel
conditions so there are tradeoffs to consider.

There are limitations to the current framework of the
model, which are more difficult to overcome and will re-
quire more effort in model development. In this version of
the model, plant composition, and competitive dynamics in
young age classes are not representative of early successional
dynamics because there is a lack of plant trait variation in the
current set of PFTs that could otherwise represent a wider
range of growth strategies, turnover, and production (Pütz
et al., 2011; Fisher et al., 2016; Miller et al., 2016). There
is also no height variation within an age class, for lack of
a radiative transfer model; each age class in LPJ-wsl v2.0
is an even-height stand. Demographic patterns in this study
(age–NPP, age–Rh, relaxation times by age class) will in-
evitably differ when, and if, additional trait and height varia-
tions are incorporated into the model. Recent model develop-
ments in JSBACH4 (Nabel et al., 2020) and ED-2.2 (Longo
et al., 2019) could point at a way forward for incorporating a

greater amount of vertical heterogeneity in LPJ-wsl v2.0, as
well as in other models.

Code and data availability. LPJ-wsl v2.0 model code, in its
entirety, is freely available at https://github.com/benpoulter/
LPJ-wsl_v2.0 (last access: 28 July 2020), and a perma-
nent version of the model code is deposited at Zenodo,
https://doi.org/10.5281/zenodo.4409331 (Calle and Poulter, 2021).
Code used for analyses and figure production are available at https:
//github.com/lcalle/VTFT_demography (last access: 28 July 2020).
Associated data necessary to reproduce the analyses and figures, as
well as a copy of the analysis code, are permanently archived at the
Dryad Digital Repository https://doi.org/10.5061/dryad.k6djh9w4x
(Calle, 2020).
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